Applied Statistics and Probability for Engineers, 6 th edition Xy

Size: px
Start display at page:

Download "Applied Statistics and Probability for Engineers, 6 th edition Xy"

Transcription

1 Aled Statstcs and Probablty or Engneers, 6 th edton CHAPTER Sectons a) XX Xy b) ˆ c) (8).6(43) a) ˆ (XX) X y.9 ˆ so b).9.93().53(5) a) Model Model y 8 y ( ) 4 y y 8 y y 4( 8) y ( 8) 6 y 3 y MODEL y = y = MODEL

2 Aled Statstcs and Probablty or Engneers, 6 th edton The nteracton term n model aects the sloe o the regresson equaton. That s, t modes the amount o change er unt o on y. b) 6 y ˆ 4(6) 4 Then, s the eected change on y er unt o. No, t does not deend on the value o, because there s no relatonsh or nteracton between these two varables n model. c) Change er unt o (6) (6) Yes, the result does deend on the value o, because nteracts wth. -4 a) There are two regressor varables n ths model based on the sze o the (X X) matr. SS b) The estmate o s the MS Resdual. The MS Resdual = Resdual 37 = DF c) Standard error o ˆ ˆ C (5.583)(.339) a) The results rom comuter sotware ollow. The model can be eressed as Satsacton = Age Severty +.3 Anety n et t SS E 39.9 b) ˆ n ˆ) n c) cov( ( X X ) C, se( ˆ) ˆ C rom the Mntab outut.

3 Aled Statstcs and Probablty or Engneers, 6 th edton d) Because the regresson coecents have derent standard errors the arameters estmators do not have smlar recson o estmaton. Regresson Analyss: Satsacton versus Age, Severty, Anety The regresson equaton s Satsacton = Age Severty +.3 Anety Predctor Coe SE Coe T P Constant Age Severty Anety S = 7.37 R-Sq = 9.4% R-Sq(ad) = 89.% Analyss o Varance Source DF SS MS F P Regresson Resdual Error Total Source DF Seq SS Age Severty 97. Anety 74.6 Unusual Observatons Obs Age Satsacton Ft SE Ft Resdual St Resd R -6 Regresson Analyss: y versus,, 3, 4 The regresson equaton s y = Predctor Coe SE Coe T P Constant X X X X S = R-Sq = 7.% R-Sq(ad) = 54.5% Analyss o Varance Source DF SS MS F P Regresson Resdual Error Total a) 3 4 ˆ 7.9 b) c) se( ˆ ).8, se( ˆ ).6774, se( ˆ ) 9.68, se( ˆ 3).45, and se( ˆ 4).965 Because the regresson coecents have derent standard errors the arameters estmators do not have smlar recson o estmaton. d) 5.79(4) 4.93(4).78(9).46(98) 9.37

4 Aled Statstcs and Probablty or Engneers, 6 th edton -7 The regresson equaton s mg = cd -. rh -.34 etw +.9 cm ale +.9 n/v Predctor Coe SE Coe T P Constant cd rh etw cm ale n/v S =.83 R-Sq = 89.3% R-Sq(ad) = 84.8% Analyss o Varance Source DF SS MS F P Regresson Resdual Error Total a) where cd rh etw cm ale n / v b) ˆ se ( ˆ ) 9.67, se ( ˆ ). 338, se ( ˆ ). 63, se ( ˆ 3 ). 9459, se ( ˆ 4 ).765, se( ˆ 5 ). 39 and se ( ˆ 6 ). 73 c) (5).(53).3(45).9(9.9) 3.855(3.7).897(3.9) = The regresson equaton s y = Predctor Coe StDev T P Constant S =.887 R-Sq = 67.% R-Sq(ad) = 57.8% Analyss o Varance Source DF SS MS F P Regresson Error Total a) b) ˆ. 779 c) se ( ˆ ) 7. 6, se ( ˆ ). 633, se ( ˆ 3 ). 359, se( ˆ 4 ). 5339and se ( ˆ 5 ). 395 y ˆ y ˆ d) ().55(3).8(9).66(.)

5 Aled Statstcs and Probablty or Engneers, 6 th edton -9 Regresson Analyss: E-9y versus E-9, E-9, E-93 The regresson equaton s E-9y = E E E-93 Predctor Coe SE Coe T P Constant E E E S = R-Sq = 99.4% R-Sq(ad) = 99.% Analyss o Varance Source DF SS MS F P Regresson Resdual Error 6 97 Total a) y hat = b) ˆ c) The estmated standard errors o the coecent estmators are rovded n the above table (SE Coe). Because the regresson coecents have derent standard errors the arameters estmators do not have smlar recson o estmaton. d) y hat = (5.) +.45(3) + 8.3(7) = Predctor Coe SE Coe T P Constant tem soaktme soakct dtme dct S =.96 R-Sq = 96.8% R-Sq(ad) = 96.% Analyss o Varance Source DF SS MS F P Regresson Resdual Error Total a) where TEMP SOAKTIME SOAKPCT DFTIME DIFFPCT b) ˆ c) The standard errors are lsted under the StDev column above. d).33.9(65).38().39(.).8476().363(.8) y ˆ.39

6 Aled Statstcs and Probablty or Engneers, 6 th edton - The regresson equaton s rads = mams eosure tme Predctor Coe SE Coe T P Constant mams eosure tme S = R-Sq = 84.3% R-Sq(ad) = 83.5% Analyss o Varance Source DF SS MS F P Regresson Resdual Error Total a) where mams Eosure Tme b) ˆ se ( ˆ ) 94., se ( ˆ ) 3. 46, and se ( ˆ ) 5. 4 ˆ c) y () 68.8(5) The regresson equaton s ARSNAILS = AGE -.7 DRINKUSE -.45 COOKUSE + 3. ARSWATER Predctor Coe SE Coe T P Constant AGE DRINKUSE COOKUSE ARSWATER S =.36 R-Sq = 8.% R-Sq(ad) = 76.5% Analyss o Varance Source DF SS MS F P Regresson Resdual Error Total a) 3 4 where AGE DrnkUse 3 CookUse 4 ARSWater b) ˆ. 557 se ( ˆ ).47, se ( ˆ ). 358, se ( ˆ ). 4747, se ( ˆ 3 ). 848 se ( ˆ 4 ).679 c) y ˆ (55).74(5).45(5) 3.4(.65) , and

7 Aled Statstcs and Probablty or Engneers, 6 th edton -3 The regresson equaton s densty = delectrc constant +. loss actor Predctor Coe SE Coe T P Constant delectrc constant loss actor S =.8834 R-Sq = 99.7% R-Sq(ad) = 99.7% Analyss o Varance Source DF SS MS F P Regresson Resdual Error Total LossFactor a) where DelectrcConst b) ˆ. 8 se ( ˆ ).5, se ( ˆ ). 68, and se ( ˆ ) c) y ˆ.5.47(.3).8(.3) The regresson equaton s y = Predctor Coe SE Coe T P Constant S = R-Sq = 93.7% R-Sq(ad) = 9.6% Analyss o Varance Source DF SS MS F P Regresson Resdual Error Total ˆ a) y ˆ 9. se ( ˆ ) 8.4, se ( ˆ ). 539, and se ( ˆ ). 539 b) 48 ˆ c) y 7 7.3(4.5).7(.5) = The regresson equaton s Useul range (ng) = Brghtness (%) -.7 Contrast (%) Predctor Coe SE Coe T P Constant Brghtness (%)

8 Aled Statstcs and Probablty or Engneers, 6 th edton Contrast (%) S = R-Sq = 75.6% R-Sq(ad) = 67.4% Analyss o Varance Source DF SS MS F P Regresson Resdual Error Total Contrast a) where % Brghtness % b) ˆ 3 se ˆ, se ( ˆ ). 6763, and se ( ˆ ) c) ( ) d) y ˆ (9).767(8) The regresson equaton s Stack Loss(y) = X +.3 X -.5 X3 Predctor Coe SE Coe T P Constant X X X S = R-Sq = 9.4% R-Sq(ad) = 89.8% Analyss o Varance Source DF SS MS F P Regresson Resdual Error Total a) 3 b) ˆ. 5 se ˆ, se ( ˆ ). 349, se ( ˆ ). 368, and se ( ˆ 3 ). 563 c) ( ). 9 d) y ˆ (65).953(8).5(9) a) The model can be eressed as: Ratng Pts = Pct Com Pct TD Pct Int Regresson Analyss: Ratng Pts versus Pct Com, Pct TD, Pct Int The regresson equaton s Ratng Pts = Pct Com Pct TD Pct Int

9 Aled Statstcs and Probablty or Engneers, 6 th edton Predctor Coe SE Coe T P Constant Pct Com Pct TD Pct Int S =.3479 R-Sq = 95.3% R-Sq(ad) = 94.8% Analyss o Varance Source DF SS MS F P Regresson Resdual Error Total Source DF Seq SS Pct Com Pct TD Pct Int n et t SS E 5.93 b) ˆ 4. 4 n ˆ) n 8 c) cov( ( X X ) C, se( ˆ) rom the SE Coe column n the comuter outut. ˆ C d) Ratng Pts =.99 +.* *5-3.8*4 = Regresson Analyss: W versus GF, GA,... The regresson equaton s W = GF -.83 GA -.54 ADV +.9 PPGF -.4 PCTG -.63 PEN -.8 BMI + 3. AVG +.9 SHT -.6 PPGA PKPCT +.6 SHGF +.6 SHGA +.5 FG Predctor Coe SE Coe T P Constant GF GA ADV PPGF PCTG PEN BMI AVG SHT PPGA PKPCT SHGF SHGA FG S = R-Sq = 9.9% R-Sq(ad) = 86.3% Analyss o Varance

10 Aled Statstcs and Probablty or Engneers, 6 th edton Source DF SS MS F P Regresson Resdual Error Total where GF AVG GA 9 3 SHT ADV 4 PPGA PPGF 5 PKPCT PCTG 6 PEN SHGF ˆ 7.46 The standard errors o the coecents are lsted under the SE Coe column above. -9 Predctor Coe SE Coe T P Constant Xl X S =.674 R-Sq = 98.4% R-Sq(ad) = 97.3% Analyss o Varance Source DF SS MS F P Regresson Resdual Error Total a) b) ˆ 59, se( ˆ ) 37.8, se( ˆ ).557, and se( ˆ ).446 c) (5).843() 8.95 d) Predctor Coe SE Coe T P Constant Xl X X*X S =.5443 R-Sq = 99.% R-Sq(ad) = 98.% Analyss o Varance Source DF SS MS F P Regresson Resdual Error.4. Total e) ˆ., se( ˆ ) 8.68, se( ˆ ) 3.89, se( ˆ ).9 and se( ˆ ).3 ) (5).().48(5)() 7.75 The redcted value s smaller 3 7 BMI SHGA 4 4 FG 7

11 Aled Statstcs and Probablty or Engneers, 6 th edton - a) ' ' )] ( ) ( [ ),, ( y ) )]( ( ) ( [ )] ( ) ( [ ' ' ' y y ) )]( ( ) ( [ ' y Settng the dervatves equal to zero yelds ) ( ) ( ) )( ( ) ( ) )( ( ) ( ' ' ' y n y n y n b) From the rst normal equaton, y ' ˆ. c) Substtutng y y or y n the rst normal equaton yelds ˆ '. Sectons - - a) ) ˆ ( ˆ se t, null hyothess ˆ s reected at level n t t, / E R E R MS MS n SS k SS F ) /( /, regresson s sgncant at level n k,, The mssng quanttes are as ollows: Predctor Coe SE Coe T P Constant Source DF SS MS F P Regresson Resdual Error Total 4 39 R-Squared = 784/39 =.9867 b) From the P-value rom the F test (F = ) or regresson s sgncant. c) Each ndvdual regressor s sgncant to the model that contans the other regressors. - a).83 R T SS R SS b) SS E = SS T SS R = =

12 Aled Statstcs and Probablty or Engneers, 6 th edton SSE /( n ) /( 3) Rad.837 SS /( n ) /( ) T SSRegresson c) MS Regresson = 5 k SS MS Error = E.765 n 7 7 F = MS MS Regresson Error The ANOVA table Source DF SS MS F P Regresson <. Resdual Error Total 9 For the F test the P-value <.. Thereore the F test reects the null hyothess at =.5 and also reects at =.. d) The ANOVA table ater addng a thrd regressor Source DF SS MS Regresson Resdual Error Total 9 SSRegresson ( 3,, ) / = MSError 5.94 Because.5,,6 = 4.49, we al to reect H and conclude that the thrd regressor does not contrbute sgncantly to the model. -3 a) n =, k =, = 3, =.5 H :... k H : or at least one (96) S yy y 96 X ' y y y ˆ ' X ' y SSR SS S SS E yy R SS R k 446.3/ 84.5 SSE 83.7 / 7.5,,7 n ,,7 Reect H and conclude that the regresson model s sgncant at =.5. P-value =.

13 Aled Statstcs and Probablty or Engneers, 6 th edton b) ˆ SSE MS E.957 n se( ˆ ) ˆ c.957(.439).9 se( ˆ ) ˆ c.957(.87).99 H : H: ˆ ˆ t t se( ˆ ) se( ˆ ) t /,7 t.5,7.365 Reect H, P-value <. Reect H, P-value <. Both regresson coecents sgncant -4 S 738. yy a) H : H : or at least one =. SS SS R E ( ˆ' X ' y S yy SS R y ) SSR k / SSE 5.45/ 7.,,7 n 9.55 n n ,,7 Reect H and conclude that the regresson model s sgncant at =.. SS 5.45 ˆ E MSE n 7 se( ˆ ) 7.493(7.9799E 5).45 b) H :

14 Aled Statstcs and Probablty or Engneers, 6 th edton H : ˆ t se( ˆ ) t t ,7 t.5,7 Reect H and conclude that s sgncant n the model at =. P-value = ( P( t t )) = ( ) =.675 c) s useul as a regressor n the model. -5 a) Degrees o reedom = 4 = 6 : t 4.8 P-value = (9.44 E-5) =.88 E-4 : t 8. P-value = (.978 E-7) = 3.96 E-7 3 : t.98 P-value = (.7) =.34 b) H : 3 H : 3 =.5 t, P-value = (.7) = Because the P-value > =.5, al to reect H. We conclude that 3 does not contrbute sgncantly to the model. -6 a) H : 3 4 H at least one =..,4, ,4,7 Reect H P-value =.5 b) =. H : H : t.7 t. 87 t t. t t.895 /, n.5,7 t t.5,7 or Reect H or., 3 and 4-7 a) H : H : at least one

15 Aled Statstcs and Probablty or Engneers, 6 th edton 9.53,6,4.,6,4.4.,6,4 Reect H and conclude regresson model s sgncant at =. b) The t-test statstcs or β through β 6 are -.45, -.7, -3.4,.7, -.9,.69. Because t.5,4 =.76, the regressors that contrbute to the model at α =. are etw and ale. -8 a) : H or all : H or at least one 7.6.,4,4.39.,4,4 Reect H and conclude that the regresson s sgncant at =.. P-value =.3 b) ˆ. 779 =. t t. 76 /, n.5,4 H : H : t. 3 t t. 9 t. 9 t t /, 4 t t /, 4 t t /, 4 t t /, 4 Fal to reect H Reect H Reect H Fal to reect H X and X 5 do not contrbute to the model. -9 a) H : 3 H : or at least one.,3, ,3,6 Reect H and conclude regresson s sgncant at =. b) ˆ. 856 =. t /, n t.5, H : 3 H : 3 t.58 t. 84 t 3. 8 t t.5,6 t t.5, 6 t t.5, 6 Reect H Reect H Reect H -3 ARSNAILS = AGE -. DRINKUSE +. COOKUSE Predctor Coe SE Coe T P Constant AGE DRINKUSE COOKUSE

16 Aled Statstcs and Probablty or Engneers, 6 th edton S =.5697 R-Sq = 8.% R-Sq(ad) =.% Analyss o Varance Source DF SS MS F P Regresson Resdual Error Total H : a) 3 H : or at least one ; k = 4..5.,3,7 5.8.,3,7 Do not reect H. There s nsucent evdence to conclude that the model s sgncant at α =.. The P-value =.687. b) H : H : =. ˆ.858 t. se( ˆ ).783 t.5,7.898 t t /,7. Fal to reect H, there s not enough evdence to conclude that s sgncant n the model at =.. H : H : =. t ˆ.8 se( ˆ ).8 t.5, t t /,7. Fal to reect H, there s not enough evdence to conclude that s sgncant n the model at =.. H : 3 H : 3 =. ˆ 3.97 t.5 se( ˆ ).798 t 3.5,7.898 t t /,7. Fal to reect H, there s not enough evdence to conclude that 3 s sgncant n the model at =.. -3 a) H : H : or at least one =.5

17 Aled Statstcs and Probablty or Engneers, 6 th edton ,, ,,37 The regresson equaton s rads = mams eosure tme Predctor Coe SE Coe T P Constant mams eosure tme S = R-Sq = 84.3% R-Sq(ad) = 83.5% Analyss o Varance Source DF SS MS F P Regresson Resdual Error Total Reect H and conclude regresson model s sgncant at =.5. P-value <. ˆ b) MS t se( ˆ ) H : H : =.5 E ˆ c ˆ se( ˆ ) t.6 t.5,43.5,37 t t /,37, Reect H and conclude that s sgncant n the model at =.5 ˆ se( ) ˆ c 5.4 H : H : =.5 ˆ t se( ˆ )

18 Aled Statstcs and Probablty or Engneers, 6 th edton t.5,43 t.5,37 t t /,37,.6 Reect H conclude that s sgncant n the model at =.5-3 The regresson equaton s y = Predctor Coe SE Coe T P Constant S = R-Sq = 93.7% R-Sq(ad) = 9.6% Analyss o Varance Source DF SS MS F P Regresson Resdual Error Total a) H : H : or at least one =.5 SSR k SSE n.5,, ,, / / 6 Reect H and conclude regresson model s sgncant at =.5 P-value b) ˆ MS E t se( ˆ ) H : H : =.5 ˆ c ˆ se( ˆ ) t.447 t.5,93.5,6 t t /,6, Reect H, s sgncant n the model at =.5

19 Aled Statstcs and Probablty or Engneers, 6 th edton t ˆ se( ) ˆ c.539 H : H : =.5 ˆ se( ˆ ) t.447 t.5,93.5,6 t t /,6, Reect H conclude that s sgncant n the model at =.5 c) Wth a smaller samle sze, the derence n the estmate rom the hyotheszed value needs to be greater to be sgncant. -33 Useul range (ng) = Brghtness (%) -.7 Contrast (%) Predctor Coe SE Coe T P Constant Brghtness (%) Contrast (%) S = R-Sq = 75.6% R-Sq(ad) = 67.4% Analyss o Varance Source DF SS MS F P Regresson Resdual Error Total H : a) H : or at least one =. SSR 458/ k SSE 798/ 6 n.,,6.9.,,6 9.8 Fal to reect H and conclude that the regresson model s not sgncant at =. P-value =.5 b) ˆ MS E 3 se ˆ ˆ c ( ).6763 H : H : =.

20 Aled Statstcs and Probablty or Engneers, 6 th edton t ˆ se( ˆ ) t.5,93 t.5, t t /,6, Fal to reect H, there s no enough evdence to conclude that s sgncant n the model at =. se ˆ ˆ c ( ).6887 H : H : =. ˆ t se( ˆ ) t.5,93 t.5, t t /,6, Reect H conclude that s sgncant n the model at =. -34 The regresson equaton s Stack Loss(y) = X +.3 X -.5 X3 Predctor Coe SE Coe T P Constant X X X S = R-Sq = 9.4% R-Sq(ad) = 89.8% Analyss o Varance Source DF SS MS F P Regresson Resdual Error Total 69.4 a) H : 3 : H or at least one =. SSR k SSE n.,3, / / ,3,7 Reect H and conclude that the regresson model s sgncant at =. P-value <. b) ˆ MSE. 5 se( ˆ ) ˆ c.349

21 Aled Statstcs and Probablty or Engneers, 6 th edton t H : H : =. ˆ se( ˆ ) t.898 t.5, 4.5,7 t t /,7. Reect H and conclude that s sgncant n the model at =.. ˆ se( ) ˆ c.368 t t H : H : =. ˆ se( ˆ ) t.898.5, 4.5,7 t /,7 t t. Reect H and conclude that ˆ se( ) ˆ 3 c.563 H : 3 H : 3 =. ˆ 3 se( ˆ ) t.898 t.5, 4.5,7 t t /,7. s sgncant n the model at =.. Fal to reect H, there s not enough evdence to conclude that 3 s sgncant n the model at = a) Comuter outut ollows. The test statstc s F = 9.9. Because the P-value s near zero, the regresson s sgncant at.. b) t ˆ se( ˆ ), null hyothess ˆ s reected at level t t /, n or the P-value <

22 Aled Statstcs and Probablty or Engneers, 6 th edton The P-values o all regressors are less than.. Thereore, all ndvdual varables n the model are sgncant. c) The comuter outut or three regressors s ollowed by the comuter outut or two regressors. From the regresson SS R ( ) / r sum o squares n each model the F test or s F MS E 4.4 The F-test P-value s near zero. Thereore the regressor (TD ercentage) s sgncant to the model. Ths s the equvalent to the t test on the coecent o. The F statstc = 4.66 =.94, ecet or some round-o error. Results o regresson on three varables and on two varables are shown below. Regresson Analyss: Ratng Pts versus Pct Com, Pct TD, Pct Int The regresson equaton s Ratng Pts = Pct Com Pct TD Pct Int Predctor Coe SE Coe T P Constant Pct Com Pct TD Pct Int S =.3479 R-Sq = 95.3% R-Sq(ad) = 94.8% Analyss o Varance Source DF SS MS F P Regresson Resdual Error Total Source DF Seq SS Pct Com Pct TD Pct Int Unusual Observatons Obs Pct Com Ratng Pts Ft SE Ft Resdual St Resd R R R R R denotes an observaton wth a large standardzed resdual. Regresson Analyss: Ratng Pts versus Pct Com, Pct Int The regresson equaton s Ratng Pts = Pct Com Pct Int Predctor Coe SE Coe T P Constant Pct Com Pct Int S = R-Sq = 7.6% R-Sq(ad) = 69.7% Analyss o Varance Source DF SS MS F P

23 Aled Statstcs and Probablty or Engneers, 6 th edton Regresson Resdual Error Total a) H : or all H : or at least one ,5,6,5,6 Reect H and conclude regresson s sgncant at =.5. P-value <. b) =.5 t/, n t. 5, H : : H 3 3 t.83 t. 5 t. 5 t t. 9 Fal to reect H Reect H Fal to reect H Reect H Fal to reect H c) d) H : or all H : or at least one ,, ,,9 Reect H and conclude regresson s sgncant at =.5 =.5 t t. 45 H : : /, n.5,9 H t 8.3 t t t /, 9 t t /, 9 Reect H or each regressor varable and conclude that both varables are sgncant at =.5 ˆ art( d ) e) 6.7E 6. Part c) s smaller, suggestng a better model. ŷ ˆ ˆ ˆ, Assume no nteracton model. -37 H : a) H at least one ,,3 3.8.,,3 Reect H P-value =

24 Aled Statstcs and Probablty or Engneers, 6 th edton b) H : H : H: H: t 6.4 t.57 t /,3 t.5, t /,3 t.5, t t t t.5,3.5,3 Reect H or regressor. Do not reect H or regressor. SSR(, ) H : c) H : =. 6.69,,3.,,3.5,,3 Do not reect H d) 34. H : H at least one =. 7.74,3,.,3,.,3, Do not reect H e) H : H : 99.7 =. SSR(, ) ,, SSR MS 47 E 98.5.,, Do not reect H ) ˆ. ˆ (no nteracton term) = 59 MS ˆ E ( ) was reduced n the model wth the nteracton term. -38 a) : H or all : H or at least one From the comuter outut 4.9.,4, ,4,5 Reect H and conclude that the regresson model s sgncant at =.

25 Aled Statstcs and Probablty or Engneers, 6 th edton b) H : : H t.5,5.947 GF : t 46 Reect H PPGF :. 8 PCTG :. 4 GA : t 83 Reect H ADV : t 5 Fal to reect H t Fal to reect H t Fal to reect H PEN : t 54 Fal to reect H.. BMI : t 45 Fal to reect H AVG : t 53 Fal to reect H. SHT : t 9 Fal to reect H... PPGA : t 5 Fal to reect H PKPCT : t 54 Fal to reect H SHGF : t. 54 Fal to reect H SHGA : t 34 Fal to reect H. FG :. t Fal to reect H It does not seem that all regressors are mortant. Only the regressors "GF" ( ) and GA ( ) are sgncant at =. c) The comuter result s shown below. Regresson Analyss: W versus GF, PPGF The regresson equaton s W = GF -.6 PPGF Predctor Coe SE Coe T P Constant GF PPGF S = R-Sq = 5.8% R-Sq(ad) = 49.3% Analyss o Varance Source DF SS MS F P Regresson Resdual Error Total Because PPGF had a t statstc near zero n art (b) there s a concern that t s not an mortant redctor. We wll evaluate ts role n the smaller model wth GF ,, Because >.5,,7, we reect the null hyothess that the coecent o GF and PPGF are both zero.

26 Aled Statstcs and Probablty or Engneers, 6 th edton H : : 4 H 4 t 3.98 t. 4 Reect H Fal to reect H Based on the t-test, ower lay goals or (PPGF) s not a logcal choce to add to the model that already contans GF. -39 a) The comuter outut ollows. The P-value or the F-test s near zero. Thereore, the regresson s sgncant at both.5 or. ˆ b) t se( ˆ ). Because the P-values or Age and Severty are <.5 both regressors are sgncant to the model. Because the P-value or Anety s.33, t s not sgncant to the model at level. 5. Regresson Analyss: Satsacton versus Age, Severty, Anety The regresson equaton s Satsacton = Age Severty +.3 Anety Predctor Coe SE Coe T P Constant Age Severty Anety S = 7.37 R-Sq = 9.4% R-Sq(ad) = 89.% Analyss o Varance Source DF SS MS F P Regresson Resdual Error Total Source DF Seq SS Age Severty 97. Anety a) Regresson Analyss: Satsacton versus Age, Severty The regresson equaton s Satsacton = Age Severty Predctor Coe SE Coe T P Constant Age Severty S = R-Sq = 89.7% R-Sq(ad) = 88.7% Analyss o Varance Source DF SS MS F P Regresson Resdual Error Total

27 Aled Statstcs and Probablty or Engneers, 6 th edton Because the P-value o the F test s less than =.5 and =., we reect the H and conclude that at least one regressor contrbutes sgncantly to the model at ether level. b) Because the P-values rom the t-test or both age and severty regressors are less than =.5, we reect the H and conclude that both age and severty regressors contrbute sgncantly to the model. c) From MS Resdual, the estmate o the varance = 5.7. From the comuter outut below, the thrd varable anety s added to the model, the estmate o the varance s reduced to The varance changed very slghtly here so t s unlkely that the varable contrbutes sgncantly to the model. Regresson Analyss: Satsacton versus Age, Severty, Anety The regresson equaton s Satsacton = Age Severty +.3 Anety Predctor Coe SE Coe T P Constant Age Severty Anety S = 7.37 R-Sq = 9.4% R-Sq(ad) = 89.% Analyss o Varance Source DF SS MS F P Regresson Resdual Error Total Sectons -3 and -4-4 a) ˆ t ˆ /, n c 7.55 t se( ˆ ).5, (.365)(5.7) ˆ t ˆ /, n 3.73 t.5, (.365)(.556) c se( ˆ ) ˆ t ˆ /, n.6 t.5,7.6 (.365)(.693) c se( ˆ )

28 Aled Statstcs and Probablty or Engneers, 6 th edton b) 8 ' X ( X ' X ) X (.365) c) = ' t Y X ( X ' X ) /, n (.365) 6.64 y X (.3565) ˆ ( X ' a) ˆ t ˆ /, n c.9 t se( ˆ ).5,7.9 (.365)(.55) ˆ t ˆ /, n.93 t.5,7.93 (.365)(.87) c ( X ' X ) X (.3565) se( ˆ ) ) ˆ t ˆ /, n.53 t.5,7.53 (.365)(.998) c se( ˆ ) b) ' X ( X ' X ) 9.37 (.365) X Y (.88) 39.49

29 Aled Statstcs and Probablty or Engneers, 6 th edton c) =.5 5 ' t 9.37 X ( X ' X ) /, n 9.37 (.365) (.88) y X.88 ˆ ( X ' ( X ' X ) X ) -43 Analyss o Varance Source DF Sum o Squares Mean Square F Value Pr > F Model <. Error Corrected Total Root MSE R-Square.9937 Deendent Mean 9.6 Ad R-Sq.995 Coe Var Parameter Estmates Varable DF Parameter Estmate Standard Error t Value Pr > t 99% Condence Lmts Intercet < Outut Statstcs Obs Deendent Varable Predcted Value Std Error Mean Predct 99% CL Mean 99% CL Predct Resdual a)

30 Aled Statstcs and Probablty or Engneers, 6 th edton b) y ˆ y 8.93 c) ˆ.957 Y Y -44 a) 95 % CI on coecents b) ˆ 9.65 c) ˆ Y t se( ˆ ) 4.49 t.5,7.365 Y Y /, n Y Y se( ˆ ) 9.65 (.365)(4.49) t ˆ ( X ( X X ) X /, n (.949) 4.74 y a) b) These art b) ntervals are much wder. Yes, the addton o ths term ncreased the standard error o the regresson coecent estmators. -46 Parameter Estmates Varable DF Parameter Estmate Standard Error t Value Pr > t 95% Condence Lmts Intercet

31 Aled Statstcs and Probablty or Engneers, 6 th edton Outut Statstcs Obs Deendent Varable Predcted Value Std Error Mean Predct 95% CL Mean 95% CL Predct Resdual a) b) ˆ Y.7836 Y c) y ˆ y Parameter Estmates Varable DF Parameter Estmate Standard Error t Value Pr > t 95% Condence Lmts Intercet < mams < EosureTme < Outut Statstcs Obs Deendent Varable Predcted Value Std Error Mean Predct 99% CL Mean 99% CL Predct Resdual a) ˆ t ˆ /, n 9.47 t.5, (.6)(3.46) c se( ˆ ) ˆ t ˆ /, n 68.8 t.5, (.6)(5.4) c se( ˆ )

32 Aled Statstcs and Probablty or Engneers, 6 th edton b) ˆ ˆ Y Y t /, n.8 c) y ˆ se( ˆ Y Y ) y Parameter Estmates Varable DF Parameter Estmate Standard Error t Value Pr > t 99% Condence Lmts Intercet Age DrnkUse CookUse Outut Statstcs Obs Deendent Varable Predcted Value Std Error Mean Predct 99% CL Mean 99% CL Predct Resdual a) t , b) ˆ. 488 ˆ Y Y t.4 3 /, n c) y ˆ. 488 Y se( ˆ Y y.3-49 a) t.5, β b) ˆ.8787 Y ) se( ˆ ).96 t.5,6.86 Y

33 Aled Statstcs and Probablty or Engneers, 6 th edton ˆ t Y /, n Y Y se( ˆ ).8787 (.86)(.96) c).8787 se( ) (.34).8549 y.95-5 The regresson equaton s y = Predctor Coe SE Coe T P Constant S = R-Sq = 93.7% R-Sq(ad) = 9.6% Analyss o Varance Source DF SS MS F P Regresson Resdual Error Total ˆ t ˆ c a) /, n 7.3 t se( ˆ ).5,6 7.3 (.943)(.539) ˆ t ˆ /, n.5,6 c.7 t se( ˆ ).7 (.943)(.539) b) New Obs Ft SE Ft 9% CI 9% PI (7.899, 53.74) (6.58, 55.6)XX ˆ 4.8 ˆ Y t se( ˆ ) 6.65 t.5,6.447 Y Y /, n Y Y se( ˆ ) 4.8 (.943)(6.65) c) 4.8 se( ) (7.33) 6.58 y 55.6

34 Aled Statstcs and Probablty or Engneers, 6 th edton d) The smaller the samle sze, the wder the nterval -5 The regresson equaton s Useul range (ng) = Brghtness (%) -.7 Contrast (%) Predctor Coe SE Coe T P Constant Brghtness (%) Contrast (%) S = R-Sq = 75.6% R-Sq(ad) = 67.4% Analyss o Varance Source DF SS MS F P Regresson Resdual Error Total a) t.5, b) Predcted Values or New Observatons New Obs Ft SE Ft 99% CI 99% PI (-36.7, 5.8) (-.8,.) Values o Predctors or New Observatons New Contrast Obs Brghtness (%) (%) ˆ 44.6 ˆ Y t se( ˆ ).9 t.5, Y Y /, n Y Y se( ˆ ) 44.6 (3.77)(.9) c) 44.6 se( ) (4.44).8 y. d) Predcted Values or New Observatons New Obs Ft SE Ft 99% CI 99% PI (7.4, 67.) (3.7, 344.) Values o Predctors or New Observatons New Contrast Obs Brghtness (%) (%) 5. 5.

35 Aled Statstcs and Probablty or Engneers, 6 th edton CI: Y PI: 3.7 y 344. These ntervals are wder because the regressors are set at etreme values n the sace and the standard errors are greater. -5 Parameter Estmates Varable DF Parameter Estmate Standard Error t Value Pr > t 95% Condence Lmts Intercet < a) t..5, b) Outut Statstcs Obs Deendent Varable Predcted Value Std Error Mean Predct 95% CL Mean 95% CL Predct Resdual Predcton at = 8, =, 3 = 85 s ˆ 3.37 Y 3.77 Y c) y ˆ y d) Outut Statstcs Obs Deendent Varable Predcted Value Std Error Mean Predct 95% CL Mean 95% CL Predct Resdual Predcton at = 8, = 9, 3 = 93 s Y CI:.3 Y PI: 8.73 y

36 Aled Statstcs and Probablty or Engneers, 6 th edton -53 a) The comuter outut ollows. The outut s used to obtan estmates o the coecents and standard errors. The condence ntervals or the coecents are comuted rom ˆ t ( ˆ) ˆ.5,8se t.5,8se( ˆ). Parameter Estmates Varable DF Parameter Estmate Standard Error t Value Pr > t 95% Condence Lmts Intercet PctCom < PctTD < PctInt < From the t table, t.5, 8 =.48. The condence ntervals or the s are b) Outut Statstcs Obs Deendent Varable Predcted Value Std Error Mean Predct 95% CL Mean 95% CL Predct Resdual ' From the comuter outut ˆ 68.3, ( ˆ ) ( ˆ ) ( ' ) Y se Y V Y X X. 9 ˆ ˆ c) t se( ) t se( ), Y.5,8 Y Y Y.5,8 Y Y a) b) ˆ.466 Y 5 Y 3 Y.86 (.76)(.595).99.3 c) ˆ.7 Y Y Y.7 (.699)(.548).6.8 ˆ se( ˆ ).595 t.5,6.76 se( ˆ ).548 t.5,9.699 ˆ

37 Aled Statstcs and Probablty or Engneers, 6 th edton d) : wdth =.8 : wdth =. The nteracton model has a shorter condence nterval. Yes, ths suggests the nteracton model s reerable. -55 a) t.5,4 = b) ˆ 9.7 ˆ Y t Y.5,4 Y 7 Y se( ˆ ).395 Y se( ˆ ) 9.7 (.45)(.395) c) 7 9 t.5, d) The ntervals n art c) are narrower. All o the regressors used n art c) are sgncant, but not all o those used n art a) are sgncant. The model used n art c) s reerable. -56 a) From the Mntab outut n Eercse -8 the estmate, standard error, t statstc and P-value or the coecent o GF are: Predctor Coe SE Coe T P GF The 95% CI on the regresson coecent o GF s ˆ t se( ˆ ) ˆ ˆ t se( ˆ ) /, n /, n ˆ t se( ˆ ) ˆ ˆ t se( ˆ ).5,5.5, (.947)(.3673) ˆ.6374 (.947)(.3673) ˆ.7983 b) The Mntab result s shown below. Regresson Analyss: W versus GF The regresson equaton s W = GF Predctor Coe SE Coe T P Constant GF

38 Score Aled Statstcs and Probablty or Engneers, 6 th edton S = 5.39 R-Sq = 5.8% R-Sq(ad) = 5.% Analyss o Varance Source DF SS MS F P Regresson Resdual Error Total c) The 95% CI on the regresson coecent o GF s ˆ t se( ˆ ) ˆ ˆ t se( ˆ ) /, n /, n ˆ t se( ˆ ) ˆ ˆ t se( ˆ ).5,8.5,8.8 (.763)(.3795) ˆ.8 (.763)(.3795).4856 ˆ.3736 d) The smle lnear regresson model has the narrower nterval. Obvously there are etraneous varables n the model rom art a). The shorter nterval s an ntal ndcator that the orgnal model wth all varables mght be mroved. One mght eect there are other good redctors n the model rom art a), only one o whch s ncluded n the model o art b). Secton a) The regresson equaton s mg = cd -. rh -.34 etw +.9 cm ale +.9 n/v Predctor Coe SE Coe T P Constant cd rh etw cm ale n/v S =.83 R-Sq = 89.3% R-Sq(ad) = 84.8% b) There aears to be an outler. Otherwse, the normalty assumton s not volated. Normal Probablty Plot o the Resduals (resonse s mg) Standardzed Resdual 3 c) The lots do not show any volatons o the assumtons.

39 Standardzed Resdual Standardzed Resdual Standardzed Resdual Standardzed Resdual Aled Statstcs and Probablty or Engneers, 6 th edton Resduals Versus the Ftted Values (resonse s mg) Ftted Value 35 4 Resduals Versus cd (resonse s mg) cd 4 5 Resduals Versus etw (resonse s mg) etw Resduals Versus cm (resonse s mg) cm

40 Standardzed Resdual Standardzed Resdual Aled Statstcs and Probablty or Engneers, 6 th edton Resduals Versus ale (resonse s mg) ale Resduals Versus n/v (resonse s mg) n/v 35 4 d).366,.67,.4684,.858,.6788,.4384,.336,.96794,.67746,.659,.756,.69,.464,.735,.8565,.5335,.83,.935,.8,.9845, None o the values s greater than so none o the observatons are nluental. -58 a) R.7 b) The resdual lots look reasonable. There s some ncrease n varablty at the mddle o the redcted values. c) Normalty assumton s reasonable. The resdual lots aear reasonable too.

41 Aled Statstcs and Probablty or Engneers, 6 th edton

42 Aled Statstcs and Probablty or Engneers, 6 th edton -59 a) The comuter outut ollows. The roorton o total varablty elaned by ths model s: R SS SS R T b) Normal Probablty Plot: Some moderate, but not severe, deartures rom normalty are ndcated. c) Plot the resduals versus tted value and versus each regressor. There s no obvous model alure n the lot o tted values versus resduals. There s a modest ncrease n varablty n the mddle range o tted values. The resdual versus PctTD shows some non-random atterns. Possbly a non-lnear term would benet the model.

43 Resdual Resdual Aled Statstcs and Probablty or Engneers, 6 th edton 5. Resduals Versus Pct Com (resonse s Ratng Pts) Pct Com Resduals Versus Pct TD (resonse s Ratng Pts) Pct TD 6 7

44 COOK Resdual Aled Statstcs and Probablty or Engneers, 6 th edton 5. Resduals Versus Pct Int (resonse s Ratng Pts) Pct Int 4 5 d) A lot o Cook s dstance measures ollows. Although no onts eceed the usual crteron o dstance greater than, two onts are derent and mght be urther studed or nluence..5 Tme Seres Plot o COOK Inde Regresson Analyss: Ratng Pts versus Pct Com, Pct TD, Pct Int The regresson equaton s Ratng Pts = Pct Com Pct TD Pct Int Predctor Coe SE Coe T P Constant Pct Com Pct TD Pct Int S =.3479 R-Sq = 95.3% R-Sq(ad) = 94.8% Analyss o Varance Source DF SS MS F P Regresson Resdual Error Total Source DF Seq SS Pct Com Pct TD Pct Int Unusual Observatons

45 Percent Resdual Resdual Aled Statstcs and Probablty or Engneers, 6 th edton Obs Pct Com Ratng Pts Ft SE Ft Resdual St Resd R R R R R denotes an observaton wth a large standardzed resdual. -6 a) R =.969 b) Normalty s accetable Normal Probablty Plot o the Resduals (resonse s PITCH) Normal Score c) Plot s accetable. Resduals Versus the Ftted Values (resonse s PITCH) Ftted Value d) Cook s dstance values * The 9 th observaton s nluental -6 a) R 84. 3% b) Assumton o normalty aears adequate. 99 Normal Probablty Plot o the Resduals (resonse s rads) Resdual

46 Percent Resdual Resdual Resdual Aled Statstcs and Probablty or Engneers, 6 th edton c) There are unnel shaes n the grahs, so the assumton o constant varance s volated. The model s nadequate. 75 Resduals Versus the Ftted Values (resonse s rads) Ftted Value 5 Resduals Versus eosure tme (resonse s rads) Resduals Versus mams (resonse s rads) eosure tme mams d) Cook s dstance values No, none o the observatons has a Cook s dstance greater than. -6 a) R 8. % b) Assumton o normalty s not adequate. 99 Normal Probablty Plot o the Resduals (resonse s ARSNAILS) Resdual..5

47 Resdual Resdual Resdual Standardzed Resdual Aled Statstcs and Probablty or Engneers, 6 th edton c) The grahs ndcate non-constant varance. Thereore, the model s not adequate. 4 Resduals Versus the Ftted Values (resonse s ARSNAILS) Ftted Value Resduals Versus AGE (resonse s ARSNAILS) AGE Resduals Versus DRINKUSE (resonse s ARSNAILS) Resduals Versus COOKUSE (resonse s ARSNAILS) DRINKUSE COOKUSE d) Cook s dstance values nnty There are two nluental onts wth Cook s dstance greater than one. The entry nnty n the lst above ndcate a data ont wth h = and an undened studentzed resdual. -63 a) R % b) Assumton o normalty aears adequate.

48 Resdual Resdual Resdual Percent Aled Statstcs and Probablty or Engneers, 6 th edton 99 Normal Probablty Plot o the Resduals (resonse s densty) Resdual.. c) There s a non-constant varance shown n grahs. Thereore, the model s nadequate.. Resduals Versus the Ftted Values (resonse s densty) Ftted Value.. Resduals Versus delectrc constant (resonse s densty) Resduals Versus loss actor (resonse s densty) delectrc constant loss actor d) Cook s dstance values No, none o the observatons has a Cook s dstance greater than. -64 a) R % b) The normal assumton aears nadequate

49 Resdual Resdual Standardzed Resdual Percent Aled Statstcs and Probablty or Engneers, 6 th edton 99 Normal Probablty Plot o the Resduals (resonse s y) Resdual.5 5. c) The constant varance assumton s not nvald.. Resduals Versus the Ftted Values (resonse s y) Ftted Value 9 Resduals Versus (resonse s y) Resduals Versus (resonse s y) d) Cook s dstance values There are two nluental onts wth Cook s dstances greater than. -65 a) R % b) Assumton o normalty aears adequate.

50 Resdual Resdual Resdual Percent Aled Statstcs and Probablty or Engneers, 6 th edton 99 Normal Probablty Plot o the Resduals (resonse s Useul range (ng)) Resdual c) Assumton o constant varance s a ossble concern. One ont s a concern as a ossble outler. 8 Resduals Versus the Ftted Values (resonse s Useul range (ng)) Ftted Value Resduals Versus Contrast (%) (resonse s Useul range (ng)) 8 Resduals Versus Brghtness (%) (resonse s Useul range (ng)) Contrast (%) Brghtness (%) 9 d) Cook s dstance values No, none o the observatons has a Cook s dstance greater than. -66 a) R 9. 4 % b) Assumton o normalty aears adequate.

51 Resdual Resdual Resdual Resdual Percent Aled Statstcs and Probablty or Engneers, 6 th edton 99 Normal Probablty Plot o the Resduals (resonse s Stack Loss(y)) Resdual c) Assumton o constant varance aears reasonable Resduals Versus the Ftted Values (resonse s Stack Loss(y)) Resduals Versus X (resonse s Stack Loss(y)) Ftted Value X Resduals Versus X (resonse s Stack Loss(y)) Resduals Versus X3 (resonse s Stack Loss(y)) X X d) Cook s dstance values No, none o the observatons has a Cook s dstance greater than. -67 a) R.9835 b) R.99 R ncreases wth addton o nteracton term. No, addng addtonal regressor wll always ncrease r

52 Resduals Resdual Resdual Aled Statstcs and Probablty or Engneers, 6 th edton -68 a) R. 955 regressors.. Yes, the R usng these two regressors s nearly as large as the R rom the model wth ve b) Normalty s accetable, but there s some ndcaton o outlers. Resduals Versus the Ftted Values (resonse s PITCH) Normal Probablty Plot o the Resduals (resonse s PITCH) Ftted Value Normal Score c) Cook s dstance values The last observaton s very nluental -69 a) There s some ndcaton o nonconstant varance snce the resduals aear to an out wth ncreasng values o y. Resdual Plot or y b) Source Sum o Squares DF Mean Square F-Rato P- value Model Error Total (Corr.) R-squared = Stnd. error o est. = R-squared (Ad. or d..) =.9953 Durbn-Watson statstc = R or %; R Ad. 995 or 99.5%; Predcted c) Model ttng results or: log(y)

53 Resduals Resduals Aled Statstcs and Probablty or Engneers, 6 th edton d) Indeendent varable coecent std. error t-value sg.level CONSTANT R-SQ. (ADJ.) =.9574 SE=.7899 MAE= DurbWat=.3 Prevously:.... observatons tted, orecast(s) comuted or mssng val. o de. var Resdual Plot or log(y) Predcted Plot ehbts curvature There s curvature n the lot. The lot does not gve much more normaton as to whch model s reerable. e) Resdual Plot or log(y)

54 Resduals Aled Statstcs and Probablty or Engneers, 6 th edton Plot ehbts curvature Varance does not aear constant. Curvature s evdent. ) Model ttng results or: log(y) Indeendent varable coecent std. error t-value sg.level CONSTANT / R-SQ. (ADJ.) =.9893 SE= MAE=.8896 DurbWat=.869 Analyss o Varance or the Full Regresson Source Sum o Squares DF Mean Square F-Rato P- value Model Error Total (Corr.) R-squared =.996 Stnd. error o est. = R-squared (Ad. or d..) =.9893 Durbn-Watson statstc =.8689 Resdual Plot or log(y) Predcted Usng /3 The resdual lot ndcates better conormance to assumtons. Curvature s removed when usng / 3 as the regressor nstead o 3, and the log o the resonse data. -7 a) Regresson Analyss: W versus GF The regresson equaton s W = GF

55 Resdual Resdual Aled Statstcs and Probablty or Engneers, 6 th edton Predctor Coe SE Coe T P Constant GF S = 5.39 R-Sq = 5.8% R-Sq(ad) = 5.% Analyss o Varance Source DF SS MS F P Regresson Resdual Error Total b) R-Sq = 5.8% c) Model aears adequate. Resduals Versus the Ftted Values (resonse s W) Ftted Value 5 55 d) No, the resduals do not seem to be related to PPGF. Because there s no attern evdent n the lot, t does not seem that ths varable would contrbute sgncantly to the model. Resduals Versus PPGF (resonse s W) PPGF a) = k + = + = 3 Average sze = /n = 3/5 =. b) Leverage ont crtera:

56 Normal Score Aled Statstcs and Probablty or Engneers, 6 th edton h h h h h ( / n) (.).4 7,7 8, Ponts 7 and 8 are leverage onts. Sectons -6-7 a) b) H : or all H : or at least one =. 7..,, ,,5 Reect H and conclude that model s sgncant at =. c) H : H : =. t.45 t /, n t t.5.5,83 t.5,5.5 Reect H and conclude sucent evdence to suort value o quadratc term n model at =.. d) One resdual s an outler Normalty assumton aears accetable Resduals aganst tted values s somewhat curved, but the mact o the outler should be consdered. Normal Probablty Plot o the Resduals (resonse s y) Resdual

57 Aled Statstcs and Probablty or Engneers, 6 th edton -73 a) b) = 6.86, >.5,,7, reect H and conclude regresson model s sgncant at =.5 t t c).5,7 t =.66, al to reect H and the regresson model s not sgncant at =.5 d) Model s not accetable. Observaton number 8 and have large leverages.

58 Aled Statstcs and Probablty or Engneers, 6 th edton -74 a) b) H : or all H : or at least one =.5.6.5,, ,,9 Reect H and conclude regresson model s sgncant at =.5 H : c) H : =.5 t.55 t.5,9 t t.6.5,9 Reect H and conclude that s sgncant at =.5 d) Observaton number 9 s an etreme outler.

59 Aled Statstcs and Probablty or Engneers, 6 th edton e) H : 33 H : =.5 t t ,8 t t.36.5,8 3 Do not reect H and conclude that cubc term s not sgncant at =.5-75 a) Predctor Coe SE Coe T P Constant l ^ ^ ^ S =.69 R-Sq = 9.7% R-Sq(ad) = 87.% Analyss o Varance Source DF SS MS F P Regresson Resdual Error Total b) H all 3 3 H at least one 9.68.,9, ,9,6 3 3

60 Normal Score Aled Statstcs and Probablty or Engneers, 6 th edton Reect H and conclude that the model s sgncant at =.. c) Assumtons aear to be reasonable. Normal Probablty Plot o the Resduals (resonse s y) Resdual d) H : H at least one.,6,6 SS ( R.,6, MS E 3 ) / r Fal to reect H SS ( R ) SS R 3 ( ) SS 3 R ( ) 3

61 Aled Statstcs and Probablty or Engneers, 6 th edton Reduced Model: y a) Create an ndcator varable or se (e.g. or male, or emale) and nclude ths varable n the model. b) The regresson equaton s ARSNAILS = DRINKUSE +.8 COOKUSE AGE +.67 SEXID Predctor Coe SE Coe T P Constant DRINKUSE COOKUSE AGE SEXID S =.54 R-Sq =.8% R-Sq(ad) =.% where SEXID = or male and or emale c) Because the P-value or testng : se erson s se aects arsenc n the nals. H aganst H : s.495, there s no evdence that the se -77 a) Use ndcator varable or transmsson tye. There are three ossble transmsson tyes: L4, L5 and M6. So, two ndcator varables could be used where 3 = trns=l5, otherwse and 4 = trns=m6, otherwse b) 3 4 c) The P-value or testng H : 3 s.99, whch s not sgncant. However, the P-value or testng H : 4 s., whch s sgncant or values o α >.. Thus, t aears that whether or not the transmsson s manual aects mg, but there s not a sgncant derence between the tyes o automatc transmsson. -78 y where Test o derent sloes: H : H : =.5 t t t.79.5,6 t. or tool tye3 or tool tye46.5,6 Fal to reect H. There s not sucent evdence to conclude that two regresson models are needed. Test o derent ntercets and sloes usng etra sums o squares: H : H at least one s not zero

62 Aled Statstcs and Probablty or Engneers, 6 th edton SS(, ) SS(,, ) SS( ) , ) / / MS E.459 SS( Reect H a) The mn C model s:, C 3. and MS E MS model s the same as the mn C. The mn E b) Same as the model n art (a). c) Same as the model n art (a). d) Same as the model n art (a). e) All methods gve the same model wth ether mn C or mn MS E. -8 The deault settngs or F-to-enter and F-to-remove, equal to 4, n the comuter sotware were used. Derent settngs can change the models generated by the method. a) The mn MS E model s:,, 3 C 3.8 MS E The mn C model s:,, C 3.4 MS E b) Same as the mn C model n art (a) c) Same as art mn MS E model n art (a) d) Same as art mn C model n art (a) e) The mnmum MS E and orward models all are the same. Stewse and backward regressons generate the mnmum C model. The mnmum C model has ewer regressors and t mght be reerred, but MS E has ncreased. -8 a) The mn C model s: C.and MS The mn E MS E model s the same as the mn C. b) Same as model n art (a). c) Same as model n art (a). d) Same as model n art (a). e) All methods gve the same model wth ether mn C or mn MS E. -8 The deault settngs or F-to-enter and F-to-remove or Mntab were used. Derent settngs can change the models generated by the method. a) The mn MS E model s:, 3, 4 C.6 MS The mn C model s: 3, 4 C.6 MS. 737 E E b) Same as the mn C model n art (a) c) Same as the mn C model n art (a) 4 4

63 Aled Statstcs and Probablty or Engneers, 6 th edton d) Same as the mn C model n art (a) e) The mnmum MS E and orward models all are the same. Stewse and backward regressons generate the mnmum C model. The mnmum C model has ewer regressors and t mght be reerred, but MS E has ncreased. -83 a) The mn C model s: C. and MS E MS model s the same as the mn C. The mn E b) Same as model n art (a). c) Same as model n art (a). d) Same as model n art (a). e) All methods gve the same model wth ether mn C or mn MS E. -84 a) The mn C model s:, C 3. and MS E MS model s the same as the mn C. The mn E b) Same as model n art (a). c) Same as model n art (a). d) Same as model n art (a). e) All methods gve the same model wth ether mn C or mn MS E. -85 a) The mn C model s:, C.9 and MS. 49 E MS model s the same as the mn C. The mn E b) Same as model n art (a). c) Same as model n art (a). d) Same as model n art (a). e) All methods gve the same model wth ether mn C or mn MS E. ) There are no observatons wth a Cook s dstance greater than so the results wll be the same. -86 The deault settngs or F-to-enter and F-to-remove or Mntab were used. Derent settngs can change the models generated by the method. a) Best Subsets Regresson: W versus GF, GA,... Resonse s W P P P P K S S A P C P B A S P P H H Mallows G G D G T E M V H G C G G F Vars R-Sq R-Sq(ad) C- S F A V F G N I G T A T F A G X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X

64 Aled Statstcs and Probablty or Engneers, 6 th edton X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X From the outut the mnmum CP model and mnmum MSE model are the same. The regressors are GF, GA, ADV, SHT, PPGA, PKPCT, SHGA. The comuter outut or ths model ollows. Regresson Analyss: W versus GF, GA, ADV, SHT, PPGA, PKPCT, SHGA The regresson equaton s W = GF -.87 GA ADV +.56 SHT -.44 PPGA PKPCT SHGA Predctor Coe SE Coe T P Constant GF GA ADV SHT PPGA PKPCT SHGA S =.8935 R-Sq = 9.3% R-Sq(ad) = 89.8% Analyss o Varance Source DF SS MS F P Regresson Resdual Error Total The model s 457.8GF.87GA.375ADV.56SHT.44PPGA 4.94PKPCT. 489SHGA b) Stewse Regresson: W versus GF, GA,... Alha-to-Enter:.5 Alha-to-Remove:.5 Resonse s W on 4 redctors, wth N = 3 Ste 3 4 Constant GF T-Value

65 Aled Statstcs and Probablty or Engneers, 6 th edton P-Value.... GA T-Value P-Value... SHGA.7.9 T-Value P-Value.6.9 SHT -.6 T-Value -.5 P-Value.43 S R-Sq R-Sq(ad) Mallows C The selected model rom Stewse Regresson has our regressors GF, GA, SHT, SHGA. The comuter outut or ths model ollows. Regresson Analyss: W versus GF, GA, SHT, SHGA The regresson equaton s W = GF -.67 GA -.59 SHT +.93 SHGA Predctor Coe SE Coe T P Constant GF GA SHT SHGA S =.65 R-Sq = 88.7% R-Sq(ad) = 86.9% Analyss o Varance Source DF SS MS F P Regresson Resdual Error Total The model s GF.67GA.59SHT. 93SHGA c) Stewse Regresson: W versus GF, GA,... Forward selecton. Alha-to-Enter:.5 Resonse s W on 4 redctors, wth N = 3 Ste 3 4 Constant GF T-Value P-Value.... GA T-Value

66 Aled Statstcs and Probablty or Engneers, 6 th edton P-Value... SHGA.7.9 T-Value P-Value.6.9 SHT -.6 T-Value -.5 P-Value.43 S R-Sq R-Sq(ad) Mallows C The model selected by Forward Selecton s the same as art (b). d) Stewse Regresson: W versus GF, GA,... Backward elmnaton. Alha-to-Remove:. Resonse s W on 4 redctors, wth N = 3 Ste Constant GF T-Value P-Value GA T-Value P-Value ADV T-Value P-Value PPGF T-Value P-Value PCTG T-Value P-Value PEN T-Value P-Value BMI T-Value P-Value AVG T-Value P-Value SHT T-Value P-Value

67 Aled Statstcs and Probablty or Engneers, 6 th edton PPGA T-Value P-Value PKPCT T-Value P-Value SHGF T-Value P-Value SHGA T-Value P-Value FG. T-Value. P-Value.98 S R-Sq R-Sq(ad) Mallows C Ste Constant GF T-Value P-Value... GA T-Value P-Value... ADV T-Value P-Value.9.4 PPGF T-Value P-Value PCTG T-Value P-Value PEN -.39 T-Value -.94 P-Value.358 BMI T-Value P-Value AVG T-Value P-Value SHT

68 Aled Statstcs and Probablty or Engneers, 6 th edton T-Value P-Value..6.8 PPGA T-Value P-Value PKPCT T-Value P-Value SHGF T-Value P-Value SHGA T-Value P-Value...36 FG T-Value P-Value S R-Sq R-Sq(ad) Mallows C The model selected by Backward Selecton ncludes GF, GA, SHT, PPGA, PKPCT, SHGA. The comuter outut or ths model ollows. Regresson Analyss: W versus GF, GA, SHT, PPGA, PKPCT, SHGA The regresson equaton s W = GF -.87 GA +.38 SHT -.34 PPGA PKPCT SHGA Predctor Coe SE Coe T P Constant GF GA SHT PPGA PKPCT SHGA S =.3776 R-Sq = 9.3% R-Sq(ad) = 89.% Analyss o Varance Source DF SS MS F P Regresson Resdual Error Total The model s 48.77GF.87GA.38SHT.34PPGA 4.58PKPCT. 387SHGA e) There are several reasonable choces. The seven-varable model GF, GA, ADV, SHT, PPGA, PKPCT, SHGA wth mnmum C s a good choce. It has MSE not much larger than the MSE n the ull model.

69 Aled Statstcs and Probablty or Engneers, 6 th edton The our-varable model GF, GA, SHT, SHGA rom Stewse Regresson(and Forward Selecton) s a smler model wth C = 4. < =5 and good R-squared. Even the three-varable model GF, GA, SHGA s reasonable. It s stll smler wth a good R-squared. The C = 4. and ths s only slghtly greater than = 4. However, the MSE or ths model s somewhat hgher than or the svarable model. -87 a) The comuter outut ollows. The rst model n the table wth seven varables mnmzes MS E and C. Best Subsets Regresson: Pts versus Att, Com,... PctCom, YdsPerAtt, PctTD, PctInt Resonse s Pts Y d P s c P t e P c C C r c t A o o Y A t L I I t m m d t T T n n n Vars R-Sq R-Sq(ad) Mallows C- S t s t D D g t t X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X The comuter outut or ths model ollows. Regresson Analyss: RatngPts versus Att, PctCom,... The regresson equaton s RatngPts = Att +.87 PctCom -.5 Yds YdsPerAtt +.7 TD PctTD PctInt Predctor Coe SE Coe T P Constant Att PctCom Yds YdsPerAtt TD PctTD PctInt S =.3637 R-Sq =.% R-Sq(ad) =.%

70 Aled Statstcs and Probablty or Engneers, 6 th edton Analyss o Varance Source DF SS MS F P Regresson Resdual Error Total b) Stewse regresson selects the our-varable model YdsPerAtt,PctInt,PctTD,PctCom. Stewse Regresson: Pts versus Att, Com,... Alha-to-Enter:.5 Alha-to-Remove:.5 Resonse s Pts on redctors, wth N = 3 Ste 3 4 Constant YdserAtt T-Value P-Value.... PctInt T-Value P-Value... PctTD T-Value P-Value.. PctCom.884 T-Value 96.4 P-Value. S R-Sq R-Sq(ad) Mallows C The comuter outut or ths model ollows. Regresson Analyss: RatngPts versus YdsPerAtt, PctInt, PctTD, PctCom The regresson equaton s RatngPts = YdsPerAtt PctInt PctTD +.88 PctCom Predctor Coe SE Coe T P Constant YdsPerAtt PctInt PctTD PctCom S =.466 R-Sq =.% R-Sq(ad) =.% Analyss o Varance Source DF SS MS F P Regresson Resdual Error Total The model s

71 Aled Statstcs and Probablty or Engneers, 6 th edton.3 4.YdsPerAtt 4.6PctInt 3.3PctTD. 88PctCom c) Forward selecton shown below selects the same our-varable model YdsPerAtt,PctInt,PctTD,PctCom as n art (b). Stewse Regresson: Pts versus Att, Com,... Forward selecton. Alha-to-Enter:.5 Resonse s Pts on redctors, wth N = 3 Ste 3 4 Constant YdserAtt T-Value P-Value.... PctInt T-Value P-Value... PctTD T-Value P-Value.. PctCom.884 T-Value 96.4 P-Value. S R-Sq R-Sq(ad) Mallows C d) Backward elmnaton shown below selects the s-varable model Att, PctCom, Yds, YdsPerAtt, PctTD, PctInt. It s smlar to the model wth mnmum MS E ecet varable TD s ecluded. Stewse Regresson: Pts versus Att, Com,... Backward elmnaton. Alha-to-Remove:. Resonse s Pts on redctors, wth N = 3 Ste Constant Att T-Value P-Value Com. T-Value. P-Value.98 PctCom T-Value P-Value.....

72 Aled Statstcs and Probablty or Engneers, 6 th edton Yds T-Value P-Value YdserAtt T-Value P-Value..... TD T-Value P-Value PctTD T-Value P-Value..... Lng.. T-Value.5.5 P-Value Int... T-Value P-Value PctInt T-Value P-Value..... S R-Sq R-Sq(ad) Mallows C The comuter outut or ths model ollows. Regresson Analyss: RatngPts versus Att, PctCom,... The regresson equaton s RatngPts = Att +.89 PctCom -.86 Yds YdsPerAtt PctTD PctInt Predctor Coe SE Coe T P Constant Att PctCom Yds YdsPerAtt PctTD PctInt S = R-Sq =.% R-Sq(ad) =.% Analyss o Varance Source DF SS MS F P Regresson Resdual Error Total The model s

73 Aled Statstcs and Probablty or Engneers, 6 th edton.7.55 Att.889 PctCom.8 Yds YdsPerAtt PctTd PctInt e) The our varable model (PctCom, YdsPerAtt, PctTD, PctInt)has the second mnmum C and also has small MS E and large adusted R-squared. It s also a model wth the ew regressors so t s reerred. -88 a) The mn C model s: C. and MS E The mn MS E model s the same as the mn C model b) The ull model that contans all 3 varables where AGE DrnkUse 3 c) No varables are selected CookUse d) The mn C model has only the ntercet term wth. 5 C and MS. 37 The mn MS E model s the same as the mn C n art (a). e) None o the varables seem to be good redctors o arsenc n nals based on the models above (none o the varables are sgncant). -89 Ths analyss ncludes the emssons varables hc, co, and co. It would be reasonable to consder models wthout these varables as regressors. Best Subsets Regresson: mg versus cd, rh,... Resonse s mg a c r e c n c Mallows h t m l / h c o Vars R-Sq R-Sq(ad) C- S d w e v c o X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X E a) The mnmum C (.3) model s: cd The mnmum MSE (4.8) model s: cd etw.345 etw.9 ale cm 3.84 ale.96 c

74 Aled Statstcs and Probablty or Engneers, 6 th edton b) cd etw ale c c) Same model as the mn MS E equaton n art (a) ˆ d) y etw 4.4ale.385n / v e) The mnmum C model s reerred because t has a very low MSE as well (4.9) ) Only one ndcator varable s used or transmsson to dstngush the automatc rom manual tyes and two ndcator varables are used or drv: trans = or automatc (L4, L5) and or manual (M6) and drv = drv = 4 or R and drv =F; drv = drv = 4 or F and drv = R. The mnmum C (4.) model s the same as the mnmum MSE (.67) model: Stewse: drv Forward selecton:..34 etw etw etw drv cm 5.6 n / v 4.5trns 3.drv. 7 n / v. ale drv drv Backward selecton: same as mnmum C and mnmum MSE. Preer the model gvng the mnmum C and mnmum MSE. 3.4 co trans.8 drv c 7.4 trans -9 ' ( ') '.33( ') ( 97.5).33( 97.5) a) ' 47.66( ' ), where ' S y ˆ (.6) 47.66(.6) s b) At = 85 '. 6 c) y ( 97.5).33( 97.5) d) They are the same. e) ' '.44( y y y' and ' where S y S ')

75 Aled Statstcs and Probablty or Engneers, 6 th edton The roorton o total varablty elaned s the same or both the standardzed and un-standardzed models. Thereore, R s the same or both models. y' y' where ' ( ' ) ' ( ' ) y y y ' and S y ' -9 The deault settngs or F-to-enter and F-to-remove, equal to 4, were used. Derent settngs can change the models generated by the method. a) C MS.4 b) C 4.66 MS.4 E E c) The orward selecton model n art (a) s more arsmonous wth a lower C and equvalent MS E. Thereore, we reer the model n art (a). -9 n = 3, k = 9, = 9 + = n ull model. a) ˆ MS E R.9 SSR SSE R S S SS E yy MS E.9 5 yy ( n ) (3 ) S yy S yy SS S SS R yy E 5 3 SSR 3 MSR k 9 MSR MS E.,9,,9, 3.46 Reect H and conclude at least one s sgncant at =.. b) k = 4 = 5 SSE SSE MS E 88 n 3 5 Yes, MS E s reduced wth new model (k = 4). SSE ( ) c) C n C 3 (5) ˆ Yes, C s reduced rom the ull model. S

76 Aled Statstcs and Probablty or Engneers, 6 th edton -93 n = 3 k = 7 MS E( ull ) a) =3 SS E 3 SS E 3 MS E. n 3 3 SS E C n MS E( ull) 3 3 (3) 6 YES, C > b) = 4 SS E 75 SS E 75 MS E.6 n 3 4 Yes, both MS E and C are reduced. C 75 3 (4) 5.5 Sulemental Eercses -94 a) The mssng quanttes are as ollows: Coe T Constant = SE Coe 7.68 From the t table wth 6 degrees o reedom, P-value Constant < (.5), so P-value Constant <. T = Coe SE Coe Coe , SE Coe =. 343 T P-valule < (.5), so P-valule <. Coe T X = SE Coe.969 P-valule < (.5), so P-valule <. Coe.8565 T 3 = SE Coe.665 P-valule 3 < (.5), so P-valule 3 <. Regresson DF = 9 6 = 3 SS Error = SS SS Total Regresson MSRegresson 5767 F =. 543 MS 5 Error P-value <.. R-Squared = 3473/ =.995 R-Squared Adusted = (683/6)/(348943/9) =.994 b) Because the P-value rom the F-test s less than =.5 and less than =., we reect the H or ether value and conclude that at least one regressor sgncantly contrbutes to the model.

77 Aled Statstcs and Probablty or Engneers, 6 th edton c) Because the P-value rom the t-test or the,, and 3 varables are less than =.5, we reect the H s and conclude that each ndvdual regressor contrbutes sgncantly to the model. -95 a) Because the matr s 3 3 two regressors are n the regresson model. The ntercet s also n the model. b) cov( ˆ ) ( X X ) C, thereore the varances o the two varables regresson coecents are: 5(.339) and 5(.98).4554 c) se( ˆ ) ˆ C Analyss o Varance Source DF Sum o Squares Mean Square F Value Pr > F Model <. Error Corrected Total Root MSE R-Square.993 Deendent Mean 394. Ad R-Sq.995 Coe Var.846 Parameter Estmates Varable DF Parameter Estmate Standard Error t Value Pr > t 99% Condence Lmts Intercet < a) b) H : H : or at least one = ,3, Reect H and conclude that regresson s sgncant. P-value <. c) All at =. t. 5, H : 3 H : 4 H : 5 H : 3 H : 4 H : 5 t.97 t t 3. t t /, 36 t t /, 36 t t /, 36 Fal to reect H Reect H Reect H

78 Normal Score Aled Statstcs and Probablty or Engneers, 6 th edton d) R. 993 Ad. R. 995 e) Normalty assumton aears reasonable. However there s a ga n the lne. Normal Probablty Plot o the Resduals (resonse s y) Resdual ) Plot s satsactory. g) Slght ndcaton that varance ncreases as 3 ncreases.

79 Resdual Aled Statstcs and Probablty or Engneers, 6 th edton Resduals Versus 3 (resonse s y) h) Outut Statstcs Obs Deendent Varable Predcted Value Std Error Mean Predct 99% CL Mean 99% CL Predct Resdual y ˆ 389.5(974).3(7).657(63) Analyss o Varance Source DF Sum o Squares Mean Square F Value Pr > F Model <. Error Corrected Total Root MSE.34 R-Square.99 Deendent Mean 8.68 Ad R-Sq.993 Coe Var.59 Parameter Estmates Varable DF Parameter Estmate Standard Error t Value Pr > t 95% Condence Lmts Intercet * < a) H : 3 4 5

80 Resdual Resdual Percent Aled Statstcs and Probablty or Engneers, 6 th edton H : or at least one =.5.5,3, ,3,36 Reect H and conclude that regresson s sgncant. P-value <. b) =.5 t. 8. 5,36 H : 3 H : 4 H : 5 H : 3 H : 4 H : 5 t.3 t t. 48 t t /, 36 t t /, 36 t t /,36 Fal to reect H Reect H Reect H c) Curvature s evdent n the resduals lots rom ths model. 99 Normal Probablty Plot o the Resduals (resonse s y*) Resdual Resduals Versus the Ftted Values (resonse s y*).3 Resduals Versus 3* (resonse s y*) Ftted Value * a) H : H : at least one =.

81 Aled Statstcs and Probablty or Engneers, 6 th edton ,5,9,5,9 Reect H. P-value =.5 b) =.5 t.5,9.93 H : H : H : 3 H : 4 H : 5 H: H: H: 3 H: 4 H: 5 t.48 t.74 t.4 t.8 t.5 t t t t t t /,9 t /,9 t /,9 t /,9 t /,9 Reect H Reect H Reect H Reect H Do not reect H c) 3 4 H : 3 4 H : = ,4,,4, or at least one Reect H. =.5 t.5,.86 H : H : H : 3 H : 4 H: H: H: 3 H: 4 t.53 t.89 t.49 t 3.6 t t t t t /, t /, t /, t /, Reect H Reect H Reect H Reect H d) The addton o the 5 th regressor results n a loss o one degree o reedom n the denomnator and the reducton n SS E s not enough to comensate or ths loss. e) Observaton s unusually large. Studentzed resduals ) R or model n art (a):.558. R or model n art (c):.557. R or model,, 3, 4 wthout obs. #:.84. R ncreased because observaton was not t well by ether o the revous models. H : g) 3 4 H : = ,4,9 Reect H..9.5,4,9 =.5 t.5,9.93 H : H : H : 3 H : 4 H: H: H: 3 H: 4 t 3.96 t 6.43 t 3.64 t 3.39 t t t t t t t t.5,9.5,9.5,9.5,9

82 Aled Statstcs and Probablty or Engneers, 6 th edton Reect H Reect H Reect H Reect H h) There s some ndcaton o curvature.

83 Aled Statstcs and Probablty or Engneers, 6 th edton -99 Note that data n row are deleted to ollow the nstructons n the eercse. a) The regresson equaton s y* = * +.3 * * -.4 4* Predctor Coe SE Coe T P Constant * * * * S =.8333 R-Sq = 95.8% R-Sq(ad) = 94.9% Analyss o Varance Source DF SS MS F P Regresson Resdual Error Total b) H : 3 4 : at least one H =.5 9., P-value, Reect H at =.5. T tests aear n the revous comuter outut. Because all P-values, all tests reect H c) The resdual lots are more satsactory than the lots n the revous eercse.

Multiple Regression Analysis

Multiple Regression Analysis Multle Regresson Analss Roland Szlág Ph.D. Assocate rofessor Correlaton descres the strength of a relatonsh, the degree to whch one varale s lnearl related to another Regresson shows us how to determne

More information

Comparison of Regression Lines

Comparison of Regression Lines STATGRAPHICS Rev. 9/13/2013 Comparson of Regresson Lnes Summary... 1 Data Input... 3 Analyss Summary... 4 Plot of Ftted Model... 6 Condtonal Sums of Squares... 6 Analyss Optons... 7 Forecasts... 8 Confdence

More information

Y = β 0 + β 1 X 1 + β 2 X β k X k + ε

Y = β 0 + β 1 X 1 + β 2 X β k X k + ε Chapter 3 Secton 3.1 Model Assumptons: Multple Regresson Model Predcton Equaton Std. Devaton of Error Correlaton Matrx Smple Lnear Regresson: 1.) Lnearty.) Constant Varance 3.) Independent Errors 4.) Normalty

More information

Statistics for Managers Using Microsoft Excel/SPSS Chapter 13 The Simple Linear Regression Model and Correlation

Statistics for Managers Using Microsoft Excel/SPSS Chapter 13 The Simple Linear Regression Model and Correlation Statstcs for Managers Usng Mcrosoft Excel/SPSS Chapter 13 The Smple Lnear Regresson Model and Correlaton 1999 Prentce-Hall, Inc. Chap. 13-1 Chapter Topcs Types of Regresson Models Determnng the Smple Lnear

More information

Chapter 11: Simple Linear Regression and Correlation

Chapter 11: Simple Linear Regression and Correlation Chapter 11: Smple Lnear Regresson and Correlaton 11-1 Emprcal Models 11-2 Smple Lnear Regresson 11-3 Propertes of the Least Squares Estmators 11-4 Hypothess Test n Smple Lnear Regresson 11-4.1 Use of t-tests

More information

Statistics for Economics & Business

Statistics for Economics & Business Statstcs for Economcs & Busness Smple Lnear Regresson Learnng Objectves In ths chapter, you learn: How to use regresson analyss to predct the value of a dependent varable based on an ndependent varable

More information

Negative Binomial Regression

Negative Binomial Regression STATGRAPHICS Rev. 9/16/2013 Negatve Bnomal Regresson Summary... 1 Data Input... 3 Statstcal Model... 3 Analyss Summary... 4 Analyss Optons... 7 Plot of Ftted Model... 8 Observed Versus Predcted... 10 Predctons...

More information

STAT 3008 Applied Regression Analysis

STAT 3008 Applied Regression Analysis STAT 3008 Appled Regresson Analyss Tutoral : Smple Lnear Regresson LAI Chun He Department of Statstcs, The Chnese Unversty of Hong Kong 1 Model Assumpton To quantfy the relatonshp between two factors,

More information

Reminder: Nested models. Lecture 9: Interactions, Quadratic terms and Splines. Effect Modification. Model 1

Reminder: Nested models. Lecture 9: Interactions, Quadratic terms and Splines. Effect Modification. Model 1 Lecture 9: Interactons, Quadratc terms and Splnes An Manchakul amancha@jhsph.edu 3 Aprl 7 Remnder: Nested models Parent model contans one set of varables Extended model adds one or more new varables to

More information

Chapter 13: Multiple Regression

Chapter 13: Multiple Regression Chapter 13: Multple Regresson 13.1 Developng the multple-regresson Model The general model can be descrbed as: It smplfes for two ndependent varables: The sample ft parameter b 0, b 1, and b are used to

More information

Basic Business Statistics, 10/e

Basic Business Statistics, 10/e Chapter 13 13-1 Basc Busness Statstcs 11 th Edton Chapter 13 Smple Lnear Regresson Basc Busness Statstcs, 11e 009 Prentce-Hall, Inc. Chap 13-1 Learnng Objectves In ths chapter, you learn: How to use regresson

More information

Department of Quantitative Methods & Information Systems. Time Series and Their Components QMIS 320. Chapter 6

Department of Quantitative Methods & Information Systems. Time Series and Their Components QMIS 320. Chapter 6 Department of Quanttatve Methods & Informaton Systems Tme Seres and Ther Components QMIS 30 Chapter 6 Fall 00 Dr. Mohammad Zanal These sldes were modfed from ther orgnal source for educatonal purpose only.

More information

Statistics MINITAB - Lab 2

Statistics MINITAB - Lab 2 Statstcs 20080 MINITAB - Lab 2 1. Smple Lnear Regresson In smple lnear regresson we attempt to model a lnear relatonshp between two varables wth a straght lne and make statstcal nferences concernng that

More information

Logistic regression with one predictor. STK4900/ Lecture 7. Program

Logistic regression with one predictor. STK4900/ Lecture 7. Program Logstc regresson wth one redctor STK49/99 - Lecture 7 Program. Logstc regresson wth one redctor 2. Maxmum lkelhood estmaton 3. Logstc regresson wth several redctors 4. Devance and lkelhood rato tests 5.

More information

28. SIMPLE LINEAR REGRESSION III

28. SIMPLE LINEAR REGRESSION III 8. SIMPLE LINEAR REGRESSION III Ftted Values and Resduals US Domestc Beers: Calores vs. % Alcohol To each observed x, there corresponds a y-value on the ftted lne, y ˆ = βˆ + βˆ x. The are called ftted

More information

Learning Objectives for Chapter 11

Learning Objectives for Chapter 11 Chapter : Lnear Regresson and Correlaton Methods Hldebrand, Ott and Gray Basc Statstcal Ideas for Managers Second Edton Learnng Objectves for Chapter Usng the scatterplot n regresson analyss Usng the method

More information

Biostatistics 360 F&t Tests and Intervals in Regression 1

Biostatistics 360 F&t Tests and Intervals in Regression 1 Bostatstcs 360 F&t Tests and Intervals n Regresson ORIGIN Model: Y = X + Corrected Sums of Squares: X X bar where: s the y ntercept of the regresson lne (translaton) s the slope of the regresson lne (scalng

More information

Regression Analysis. Regression Analysis

Regression Analysis. Regression Analysis Regresson Analyss Smple Regresson Multvarate Regresson Stepwse Regresson Replcaton and Predcton Error 1 Regresson Analyss In general, we "ft" a model by mnmzng a metrc that represents the error. n mn (y

More information

NANYANG TECHNOLOGICAL UNIVERSITY SEMESTER I EXAMINATION MTH352/MH3510 Regression Analysis

NANYANG TECHNOLOGICAL UNIVERSITY SEMESTER I EXAMINATION MTH352/MH3510 Regression Analysis NANYANG TECHNOLOGICAL UNIVERSITY SEMESTER I EXAMINATION 014-015 MTH35/MH3510 Regresson Analyss December 014 TIME ALLOWED: HOURS INSTRUCTIONS TO CANDIDATES 1. Ths examnaton paper contans FOUR (4) questons

More information

[The following data appear in Wooldridge Q2.3.] The table below contains the ACT score and college GPA for eight college students.

[The following data appear in Wooldridge Q2.3.] The table below contains the ACT score and college GPA for eight college students. PPOL 59-3 Problem Set Exercses n Smple Regresson Due n class /8/7 In ths problem set, you are asked to compute varous statstcs by hand to gve you a better sense of the mechancs of the Pearson correlaton

More information

18. SIMPLE LINEAR REGRESSION III

18. SIMPLE LINEAR REGRESSION III 8. SIMPLE LINEAR REGRESSION III US Domestc Beers: Calores vs. % Alcohol Ftted Values and Resduals To each observed x, there corresponds a y-value on the ftted lne, y ˆ ˆ = α + x. The are called ftted values.

More information

Lecture 9: Linear regression: centering, hypothesis testing, multiple covariates, and confounding

Lecture 9: Linear regression: centering, hypothesis testing, multiple covariates, and confounding Recall: man dea of lnear regresson Lecture 9: Lnear regresson: centerng, hypothess testng, multple covarates, and confoundng Sandy Eckel seckel@jhsph.edu 6 May 8 Lnear regresson can be used to study an

More information

Lecture 9: Linear regression: centering, hypothesis testing, multiple covariates, and confounding

Lecture 9: Linear regression: centering, hypothesis testing, multiple covariates, and confounding Lecture 9: Lnear regresson: centerng, hypothess testng, multple covarates, and confoundng Sandy Eckel seckel@jhsph.edu 6 May 008 Recall: man dea of lnear regresson Lnear regresson can be used to study

More information

Dr. Shalabh Department of Mathematics and Statistics Indian Institute of Technology Kanpur

Dr. Shalabh Department of Mathematics and Statistics Indian Institute of Technology Kanpur Analyss of Varance and Desgn of Exerments-I MODULE III LECTURE - 2 EXPERIMENTAL DESIGN MODELS Dr. Shalabh Deartment of Mathematcs and Statstcs Indan Insttute of Technology Kanur 2 We consder the models

More information

Department of Statistics University of Toronto STA305H1S / 1004 HS Design and Analysis of Experiments Term Test - Winter Solution

Department of Statistics University of Toronto STA305H1S / 1004 HS Design and Analysis of Experiments Term Test - Winter Solution Department of Statstcs Unversty of Toronto STA35HS / HS Desgn and Analyss of Experments Term Test - Wnter - Soluton February, Last Name: Frst Name: Student Number: Instructons: Tme: hours. Ads: a non-programmable

More information

Chap 10: Diagnostics, p384

Chap 10: Diagnostics, p384 Chap 10: Dagnostcs, p384 Multcollnearty 10.5 p406 Defnton Multcollnearty exsts when two or more ndependent varables used n regresson are moderately or hghly correlated. - when multcollnearty exsts, regresson

More information

17 - LINEAR REGRESSION II

17 - LINEAR REGRESSION II Topc 7 Lnear Regresson II 7- Topc 7 - LINEAR REGRESSION II Testng and Estmaton Inferences about β Recall that we estmate Yˆ ˆ β + ˆ βx. 0 μ Y X x β0 + βx usng To estmate σ σ squared error Y X x ε s ε we

More information

Interval Estimation in the Classical Normal Linear Regression Model. 1. Introduction

Interval Estimation in the Classical Normal Linear Regression Model. 1. Introduction ECONOMICS 35* -- NOTE 7 ECON 35* -- NOTE 7 Interval Estmaton n the Classcal Normal Lnear Regresson Model Ths note outlnes the basc elements of nterval estmaton n the Classcal Normal Lnear Regresson Model

More information

Regression. The Simple Linear Regression Model

Regression. The Simple Linear Regression Model Regresson Smple Lnear Regresson Model Least Squares Method Coeffcent of Determnaton Model Assumptons Testng for Sgnfcance Usng the Estmated Regresson Equaton for Estmaton and Predcton Resdual Analss: Valdatng

More information

STAT 3340 Assignment 1 solutions. 1. Find the equation of the line which passes through the points (1,1) and (4,5).

STAT 3340 Assignment 1 solutions. 1. Find the equation of the line which passes through the points (1,1) and (4,5). (out of 15 ponts) STAT 3340 Assgnment 1 solutons (10) (10) 1. Fnd the equaton of the lne whch passes through the ponts (1,1) and (4,5). β 1 = (5 1)/(4 1) = 4/3 equaton for the lne s y y 0 = β 1 (x x 0

More information

a. (All your answers should be in the letter!

a. (All your answers should be in the letter! Econ 301 Blkent Unversty Taskn Econometrcs Department of Economcs Md Term Exam I November 8, 015 Name For each hypothess testng n the exam complete the followng steps: Indcate the test statstc, ts crtcal

More information

Chapter 15 Student Lecture Notes 15-1

Chapter 15 Student Lecture Notes 15-1 Chapter 15 Student Lecture Notes 15-1 Basc Busness Statstcs (9 th Edton) Chapter 15 Multple Regresson Model Buldng 004 Prentce-Hall, Inc. Chap 15-1 Chapter Topcs The Quadratc Regresson Model Usng Transformatons

More information

Chapter 3 Differentiation and Integration

Chapter 3 Differentiation and Integration MEE07 Computer Modelng Technques n Engneerng Chapter Derentaton and Integraton Reerence: An Introducton to Numercal Computatons, nd edton, S. yakowtz and F. zdarovsky, Mawell/Macmllan, 990. Derentaton

More information

β0 + β1xi. You are interested in estimating the unknown parameters β

β0 + β1xi. You are interested in estimating the unknown parameters β Ordnary Least Squares (OLS): Smple Lnear Regresson (SLR) Analytcs The SLR Setup Sample Statstcs Ordnary Least Squares (OLS): FOCs and SOCs Back to OLS and Sample Statstcs Predctons (and Resduals) wth OLS

More information

Statistics for Business and Economics

Statistics for Business and Economics Statstcs for Busness and Economcs Chapter 11 Smple Regresson Copyrght 010 Pearson Educaton, Inc. Publshng as Prentce Hall Ch. 11-1 11.1 Overvew of Lnear Models n An equaton can be ft to show the best lnear

More information

STATISTICS QUESTIONS. Step by Step Solutions.

STATISTICS QUESTIONS. Step by Step Solutions. STATISTICS QUESTIONS Step by Step Solutons www.mathcracker.com 9//016 Problem 1: A researcher s nterested n the effects of famly sze on delnquency for a group of offenders and examnes famles wth one to

More information

Statistics for Managers Using Microsoft Excel/SPSS Chapter 14 Multiple Regression Models

Statistics for Managers Using Microsoft Excel/SPSS Chapter 14 Multiple Regression Models Statstcs for Managers Usng Mcrosoft Excel/SPSS Chapter 14 Multple Regresson Models 1999 Prentce-Hall, Inc. Chap. 14-1 Chapter Topcs The Multple Regresson Model Contrbuton of Indvdual Independent Varables

More information

Chapter 15 - Multiple Regression

Chapter 15 - Multiple Regression Chapter - Multple Regresson Chapter - Multple Regresson Multple Regresson Model The equaton that descrbes how the dependent varable y s related to the ndependent varables x, x,... x p and an error term

More information

THE ROYAL STATISTICAL SOCIETY 2006 EXAMINATIONS SOLUTIONS HIGHER CERTIFICATE

THE ROYAL STATISTICAL SOCIETY 2006 EXAMINATIONS SOLUTIONS HIGHER CERTIFICATE THE ROYAL STATISTICAL SOCIETY 6 EXAMINATIONS SOLUTIONS HIGHER CERTIFICATE PAPER I STATISTICAL THEORY The Socety provdes these solutons to assst canddates preparng for the eamnatons n future years and for

More information

Lecture 6: Introduction to Linear Regression

Lecture 6: Introduction to Linear Regression Lecture 6: Introducton to Lnear Regresson An Manchakul amancha@jhsph.edu 24 Aprl 27 Lnear regresson: man dea Lnear regresson can be used to study an outcome as a lnear functon of a predctor Example: 6

More information

1. Inference on Regression Parameters a. Finding Mean, s.d and covariance amongst estimates. 2. Confidence Intervals and Working Hotelling Bands

1. Inference on Regression Parameters a. Finding Mean, s.d and covariance amongst estimates. 2. Confidence Intervals and Working Hotelling Bands Content. Inference on Regresson Parameters a. Fndng Mean, s.d and covarance amongst estmates.. Confdence Intervals and Workng Hotellng Bands 3. Cochran s Theorem 4. General Lnear Testng 5. Measures of

More information

Dependent variable for case i with variance σ 2 g i. Number of distinct cases. Number of independent variables

Dependent variable for case i with variance σ 2 g i. Number of distinct cases. Number of independent variables REGRESSION Notaton Ths rocedure erforms multle lnear regresson wth fve methods for entry and removal of varables. It also rovdes extensve analyss of resdual and nfluental cases. Caseweght (CASEWEIGHT)

More information

Chapter 14 Simple Linear Regression

Chapter 14 Simple Linear Regression Chapter 4 Smple Lnear Regresson Chapter 4 - Smple Lnear Regresson Manageral decsons often are based on the relatonshp between two or more varables. Regresson analss can be used to develop an equaton showng

More information

Topic 7: Analysis of Variance

Topic 7: Analysis of Variance Topc 7: Analyss of Varance Outlne Parttonng sums of squares Breakdown the degrees of freedom Expected mean squares (EMS) F test ANOVA table General lnear test Pearson Correlaton / R 2 Analyss of Varance

More information

ECON 351* -- Note 23: Tests for Coefficient Differences: Examples Introduction. Sample data: A random sample of 534 paid employees.

ECON 351* -- Note 23: Tests for Coefficient Differences: Examples Introduction. Sample data: A random sample of 534 paid employees. Model and Data ECON 35* -- NOTE 3 Tests for Coeffcent Dfferences: Examples. Introducton Sample data: A random sample of 534 pad employees. Varable defntons: W hourly wage rate of employee ; lnw the natural

More information

Correlation and Regression. Correlation 9.1. Correlation. Chapter 9

Correlation and Regression. Correlation 9.1. Correlation. Chapter 9 Chapter 9 Correlaton and Regresson 9. Correlaton Correlaton A correlaton s a relatonshp between two varables. The data can be represented b the ordered pars (, ) where s the ndependent (or eplanator) varable,

More information

Chapter 2 - The Simple Linear Regression Model S =0. e i is a random error. S β2 β. This is a minimization problem. Solution is a calculus exercise.

Chapter 2 - The Simple Linear Regression Model S =0. e i is a random error. S β2 β. This is a minimization problem. Solution is a calculus exercise. Chapter - The Smple Lnear Regresson Model The lnear regresson equaton s: where y + = β + β e for =,..., y and are observable varables e s a random error How can an estmaton rule be constructed for the

More information

ECONOMICS 351*-A Mid-Term Exam -- Fall Term 2000 Page 1 of 13 pages. QUEEN'S UNIVERSITY AT KINGSTON Department of Economics

ECONOMICS 351*-A Mid-Term Exam -- Fall Term 2000 Page 1 of 13 pages. QUEEN'S UNIVERSITY AT KINGSTON Department of Economics ECOOMICS 35*-A Md-Term Exam -- Fall Term 000 Page of 3 pages QUEE'S UIVERSITY AT KIGSTO Department of Economcs ECOOMICS 35* - Secton A Introductory Econometrcs Fall Term 000 MID-TERM EAM ASWERS MG Abbott

More information

Lecture Notes for STATISTICAL METHODS FOR BUSINESS II BMGT 212. Chapters 14, 15 & 16. Professor Ahmadi, Ph.D. Department of Management

Lecture Notes for STATISTICAL METHODS FOR BUSINESS II BMGT 212. Chapters 14, 15 & 16. Professor Ahmadi, Ph.D. Department of Management Lecture Notes for STATISTICAL METHODS FOR BUSINESS II BMGT 1 Chapters 14, 15 & 16 Professor Ahmad, Ph.D. Department of Management Revsed August 005 Chapter 14 Formulas Smple Lnear Regresson Model: y =

More information

Dr. Shalabh Department of Mathematics and Statistics Indian Institute of Technology Kanpur

Dr. Shalabh Department of Mathematics and Statistics Indian Institute of Technology Kanpur Analyss of Varance and Desgn of Experment-I MODULE VII LECTURE - 3 ANALYSIS OF COVARIANCE Dr Shalabh Department of Mathematcs and Statstcs Indan Insttute of Technology Kanpur Any scentfc experment s performed

More information

x i1 =1 for all i (the constant ).

x i1 =1 for all i (the constant ). Chapter 5 The Multple Regresson Model Consder an economc model where the dependent varable s a functon of K explanatory varables. The economc model has the form: y = f ( x,x,..., ) xk Approxmate ths by

More information

β0 + β1xi. You are interested in estimating the unknown parameters β

β0 + β1xi. You are interested in estimating the unknown parameters β Revsed: v3 Ordnar Least Squares (OLS): Smple Lnear Regresson (SLR) Analtcs The SLR Setup Sample Statstcs Ordnar Least Squares (OLS): FOCs and SOCs Back to OLS and Sample Statstcs Predctons (and Resduals)

More information

F statistic = s2 1 s 2 ( F for Fisher )

F statistic = s2 1 s 2 ( F for Fisher ) Stat 4 ANOVA Analyss of Varance /6/04 Comparng Two varances: F dstrbuton Typcal Data Sets One way analyss of varance : example Notaton for one way ANOVA Comparng Two varances: F dstrbuton We saw that the

More information

Unit 10: Simple Linear Regression and Correlation

Unit 10: Simple Linear Regression and Correlation Unt 10: Smple Lnear Regresson and Correlaton Statstcs 571: Statstcal Methods Ramón V. León 6/28/2004 Unt 10 - Stat 571 - Ramón V. León 1 Introductory Remarks Regresson analyss s a method for studyng the

More information

Professor Chris Murray. Midterm Exam

Professor Chris Murray. Midterm Exam Econ 7 Econometrcs Sprng 4 Professor Chrs Murray McElhnney D cjmurray@uh.edu Mdterm Exam Wrte your answers on one sde of the blank whte paper that I have gven you.. Do not wrte your answers on ths exam.

More information

Diagnostics in Poisson Regression. Models - Residual Analysis

Diagnostics in Poisson Regression. Models - Residual Analysis Dagnostcs n Posson Regresson Models - Resdual Analyss 1 Outlne Dagnostcs n Posson Regresson Models - Resdual Analyss Example 3: Recall of Stressful Events contnued 2 Resdual Analyss Resduals represent

More information

Chapter 14 Simple Linear Regression Page 1. Introduction to regression analysis 14-2

Chapter 14 Simple Linear Regression Page 1. Introduction to regression analysis 14-2 Chapter 4 Smple Lnear Regresson Page. Introducton to regresson analyss 4- The Regresson Equaton. Lnear Functons 4-4 3. Estmaton and nterpretaton of model parameters 4-6 4. Inference on the model parameters

More information

Introduction to Dummy Variable Regressors. 1. An Example of Dummy Variable Regressors

Introduction to Dummy Variable Regressors. 1. An Example of Dummy Variable Regressors ECONOMICS 5* -- Introducton to Dummy Varable Regressors ECON 5* -- Introducton to NOTE Introducton to Dummy Varable Regressors. An Example of Dummy Varable Regressors A model of North Amercan car prces

More information

e i is a random error

e i is a random error Chapter - The Smple Lnear Regresson Model The lnear regresson equaton s: where + β + β e for,..., and are observable varables e s a random error How can an estmaton rule be constructed for the unknown

More information

UNIVERSITY OF TORONTO. Faculty of Arts and Science JUNE EXAMINATIONS STA 302 H1F / STA 1001 H1F Duration - 3 hours Aids Allowed: Calculator

UNIVERSITY OF TORONTO. Faculty of Arts and Science JUNE EXAMINATIONS STA 302 H1F / STA 1001 H1F Duration - 3 hours Aids Allowed: Calculator UNIVERSITY OF TORONTO Faculty of Arts and Scence JUNE EXAMINATIONS 008 STA 30 HF / STA 00 HF Duraton - 3 hours Ads Allowed: Calculator LAST NAME: FIRST NAME: STUDENT NUMBER: Enrolled n (Crcle one): STA30

More information

Two-factor model. Statistical Models. Least Squares estimation in LM two-factor model. Rats

Two-factor model. Statistical Models. Least Squares estimation in LM two-factor model. Rats tatstcal Models Lecture nalyss of Varance wo-factor model Overall mean Man effect of factor at level Man effect of factor at level Y µ + α + β + γ + ε Eε f (, ( l, Cov( ε, ε ) lmr f (, nteracton effect

More information

Statistics II Final Exam 26/6/18

Statistics II Final Exam 26/6/18 Statstcs II Fnal Exam 26/6/18 Academc Year 2017/18 Solutons Exam duraton: 2 h 30 mn 1. (3 ponts) A town hall s conductng a study to determne the amount of leftover food produced by the restaurants n the

More information

Introduction to Regression

Introduction to Regression Introducton to Regresson Dr Tom Ilvento Department of Food and Resource Economcs Overvew The last part of the course wll focus on Regresson Analyss Ths s one of the more powerful statstcal technques Provdes

More information

β0 + β1xi and want to estimate the unknown

β0 + β1xi and want to estimate the unknown SLR Models Estmaton Those OLS Estmates Estmators (e ante) v. estmates (e post) The Smple Lnear Regresson (SLR) Condtons -4 An Asde: The Populaton Regresson Functon B and B are Lnear Estmators (condtonal

More information

The SAS program I used to obtain the analyses for my answers is given below.

The SAS program I used to obtain the analyses for my answers is given below. Homework 1 Answer sheet Page 1 The SAS program I used to obtan the analyses for my answers s gven below. dm'log;clear;output;clear'; *************************************************************; *** EXST7034

More information

Lecture 3 Stat102, Spring 2007

Lecture 3 Stat102, Spring 2007 Lecture 3 Stat0, Sprng 007 Chapter 3. 3.: Introducton to regresson analyss Lnear regresson as a descrptve technque The least-squares equatons Chapter 3.3 Samplng dstrbuton of b 0, b. Contnued n net lecture

More information

Economics 130. Lecture 4 Simple Linear Regression Continued

Economics 130. Lecture 4 Simple Linear Regression Continued Economcs 130 Lecture 4 Contnued Readngs for Week 4 Text, Chapter and 3. We contnue wth addressng our second ssue + add n how we evaluate these relatonshps: Where do we get data to do ths analyss? How do

More information

Econ107 Applied Econometrics Topic 3: Classical Model (Studenmund, Chapter 4)

Econ107 Applied Econometrics Topic 3: Classical Model (Studenmund, Chapter 4) I. Classcal Assumptons Econ7 Appled Econometrcs Topc 3: Classcal Model (Studenmund, Chapter 4) We have defned OLS and studed some algebrac propertes of OLS. In ths topc we wll study statstcal propertes

More information

Lecture 4 Hypothesis Testing

Lecture 4 Hypothesis Testing Lecture 4 Hypothess Testng We may wsh to test pror hypotheses about the coeffcents we estmate. We can use the estmates to test whether the data rejects our hypothess. An example mght be that we wsh to

More information

Chapter 5 Multilevel Models

Chapter 5 Multilevel Models Chapter 5 Multlevel Models 5.1 Cross-sectonal multlevel models 5.1.1 Two-level models 5.1.2 Multple level models 5.1.3 Multple level modelng n other felds 5.2 Longtudnal multlevel models 5.2.1 Two-level

More information

7.1. Single classification analysis of variance (ANOVA) Why not use multiple 2-sample 2. When to use ANOVA

7.1. Single classification analysis of variance (ANOVA) Why not use multiple 2-sample 2. When to use ANOVA Sngle classfcaton analyss of varance (ANOVA) When to use ANOVA ANOVA models and parttonng sums of squares ANOVA: hypothess testng ANOVA: assumptons A non-parametrc alternatve: Kruskal-Walls ANOVA Power

More information

Dr. Shalabh Department of Mathematics and Statistics Indian Institute of Technology Kanpur

Dr. Shalabh Department of Mathematics and Statistics Indian Institute of Technology Kanpur Analyss of Varance and Desgn of Exerments-I MODULE II LECTURE - GENERAL LINEAR HYPOTHESIS AND ANALYSIS OF VARIANCE Dr. Shalabh Deartment of Mathematcs and Statstcs Indan Insttute of Technology Kanur 3.

More information

SIMPLE LINEAR REGRESSION and CORRELATION

SIMPLE LINEAR REGRESSION and CORRELATION Expermental Desgn and Statstcal Methods Workshop SIMPLE LINEAR REGRESSION and CORRELATION Jesús Pedrafta Arlla jesus.pedrafta@uab.cat Departament de Cènca Anmal dels Alments Items Correlaton: degree of

More information

where I = (n x n) diagonal identity matrix with diagonal elements = 1 and off-diagonal elements = 0; and σ 2 e = variance of (Y X).

where I = (n x n) diagonal identity matrix with diagonal elements = 1 and off-diagonal elements = 0; and σ 2 e = variance of (Y X). 11.4.1 Estmaton of Multple Regresson Coeffcents In multple lnear regresson, we essentally solve n equatons for the p unnown parameters. hus n must e equal to or greater than p and n practce n should e

More information

2016 Wiley. Study Session 2: Ethical and Professional Standards Application

2016 Wiley. Study Session 2: Ethical and Professional Standards Application 6 Wley Study Sesson : Ethcal and Professonal Standards Applcaton LESSON : CORRECTION ANALYSIS Readng 9: Correlaton and Regresson LOS 9a: Calculate and nterpret a sample covarance and a sample correlaton

More information

Multiple Linear Regression

Multiple Linear Regression Andrew Lonardelli December 20, 2013 Multiple Linear Regression 1 Table Of Contents Introduction: p.3 Multiple Linear Regression Model: p.3 Least Squares Estimation of the Parameters: p.4-5 The matrix approach

More information

General Linear Models

General Linear Models General Lnear Models Revsed: 10/10/2017 Summary... 2 Analyss Summary... 6 Analyss Optons... 10 Model Coeffcents... 11 Scatterplot... 14 Table of Means... 15 Means Plot... 16 Interacton Plot... 19 Multple

More information

/ n ) are compared. The logic is: if the two

/ n ) are compared. The logic is: if the two STAT C141, Sprng 2005 Lecture 13 Two sample tests One sample tests: examples of goodness of ft tests, where we are testng whether our data supports predctons. Two sample tests: called as tests of ndependence

More information

Chapter 6. Supplemental Text Material

Chapter 6. Supplemental Text Material Chapter 6. Supplemental Text Materal S6-. actor Effect Estmates are Least Squares Estmates We have gven heurstc or ntutve explanatons of how the estmates of the factor effects are obtaned n the textboo.

More information

ANSWERS. Problem 1. and the moment generating function (mgf) by. defined for any real t. Use this to show that E( U) var( U)

ANSWERS. Problem 1. and the moment generating function (mgf) by. defined for any real t. Use this to show that E( U) var( U) Econ 413 Exam 13 H ANSWERS Settet er nndelt 9 deloppgaver, A,B,C, som alle anbefales å telle lkt for å gøre det ltt lettere å stå. Svar er gtt . Unfortunately, there s a prntng error n the hnt of

More information

experimenteel en correlationeel onderzoek

experimenteel en correlationeel onderzoek expermenteel en correlatoneel onderzoek lecture 6: one-way analyss of varance Leary. Introducton to Behavoral Research Methods. pages 246 271 (chapters 10 and 11): conceptual statstcs Moore, McCabe, and

More information

4 Analysis of Variance (ANOVA) 5 ANOVA. 5.1 Introduction. 5.2 Fixed Effects ANOVA

4 Analysis of Variance (ANOVA) 5 ANOVA. 5.1 Introduction. 5.2 Fixed Effects ANOVA 4 Analyss of Varance (ANOVA) 5 ANOVA 51 Introducton ANOVA ANOVA s a way to estmate and test the means of multple populatons We wll start wth one-way ANOVA If the populatons ncluded n the study are selected

More information

DO NOT OPEN THE QUESTION PAPER UNTIL INSTRUCTED TO DO SO BY THE CHIEF INVIGILATOR. Introductory Econometrics 1 hour 30 minutes

DO NOT OPEN THE QUESTION PAPER UNTIL INSTRUCTED TO DO SO BY THE CHIEF INVIGILATOR. Introductory Econometrics 1 hour 30 minutes 25/6 Canddates Only January Examnatons 26 Student Number: Desk Number:...... DO NOT OPEN THE QUESTION PAPER UNTIL INSTRUCTED TO DO SO BY THE CHIEF INVIGILATOR Department Module Code Module Ttle Exam Duraton

More information

OPTIMISATION. Introduction Single Variable Unconstrained Optimisation Multivariable Unconstrained Optimisation Linear Programming

OPTIMISATION. Introduction Single Variable Unconstrained Optimisation Multivariable Unconstrained Optimisation Linear Programming OPTIMIATION Introducton ngle Varable Unconstraned Optmsaton Multvarable Unconstraned Optmsaton Lnear Programmng Chapter Optmsaton /. Introducton In an engneerng analss, sometmes etremtes, ether mnmum or

More information

STAT 405 BIOSTATISTICS (Fall 2016) Handout 15 Introduction to Logistic Regression

STAT 405 BIOSTATISTICS (Fall 2016) Handout 15 Introduction to Logistic Regression STAT 45 BIOSTATISTICS (Fall 26) Handout 5 Introducton to Logstc Regresson Ths handout covers materal found n Secton 3.7 of your text. You may also want to revew regresson technques n Chapter. In ths handout,

More information

Chapter 9: Statistical Inference and the Relationship between Two Variables

Chapter 9: Statistical Inference and the Relationship between Two Variables Chapter 9: Statstcal Inference and the Relatonshp between Two Varables Key Words The Regresson Model The Sample Regresson Equaton The Pearson Correlaton Coeffcent Learnng Outcomes After studyng ths chapter,

More information

Linear Regression Analysis: Terminology and Notation

Linear Regression Analysis: Terminology and Notation ECON 35* -- Secton : Basc Concepts of Regresson Analyss (Page ) Lnear Regresson Analyss: Termnology and Notaton Consder the generc verson of the smple (two-varable) lnear regresson model. It s represented

More information

Chemometrics. Unit 2: Regression Analysis

Chemometrics. Unit 2: Regression Analysis Chemometrcs Unt : Regresson Analyss The problem of predctng the average value of one varable n terms of the known values of other varables s the problem of regresson. In carryng out a regresson analyss

More information

The Ordinary Least Squares (OLS) Estimator

The Ordinary Least Squares (OLS) Estimator The Ordnary Least Squares (OLS) Estmator 1 Regresson Analyss Regresson Analyss: a statstcal technque for nvestgatng and modelng the relatonshp between varables. Applcatons: Engneerng, the physcal and chemcal

More information

Systems of Equations (SUR, GMM, and 3SLS)

Systems of Equations (SUR, GMM, and 3SLS) Lecture otes on Advanced Econometrcs Takash Yamano Fall Semester 4 Lecture 4: Sstems of Equatons (SUR, MM, and 3SLS) Seemngl Unrelated Regresson (SUR) Model Consder a set of lnear equatons: $ + ɛ $ + ɛ

More information

) is violated, so that V( instead. That is, the variance changes for at least some observations.

) is violated, so that V( instead. That is, the variance changes for at least some observations. Econ 388 R. Butler 014 revsons Lecture 15 I. HETEROSKEDASTICITY: both pure and mpure (the mpure verson s due to an omtted regressor that s correlated wth the ncluded regressors n the model) A. heteroskedastcty=when

More information

: 5: ) A

: 5: ) A Revew 1 004.11.11 Chapter 1: 1. Elements, Varable, and Observatons:. Type o Data: Qualtatve Data and Quanttatve Data (a) Qualtatve data may be nonnumerc or numerc. (b) Quanttatve data are always numerc.

More information

Here is the rationale: If X and y have a strong positive relationship to one another, then ( x x) will tend to be positive when ( y y)

Here is the rationale: If X and y have a strong positive relationship to one another, then ( x x) will tend to be positive when ( y y) Secton 1.5 Correlaton In the prevous sectons, we looked at regresson and the value r was a measurement of how much of the varaton n y can be attrbuted to the lnear relatonshp between y and x. In ths secton,

More information

LINEAR REGRESSION ANALYSIS. MODULE IX Lecture Multicollinearity

LINEAR REGRESSION ANALYSIS. MODULE IX Lecture Multicollinearity LINEAR REGRESSION ANALYSIS MODULE IX Lecture - 31 Multcollnearty Dr. Shalabh Department of Mathematcs and Statstcs Indan Insttute of Technology Kanpur 6. Rdge regresson The OLSE s the best lnear unbased

More information

Confidence intervals for weighted polynomial calibrations

Confidence intervals for weighted polynomial calibrations Confdence ntervals for weghted olynomal calbratons Sergey Maltsev, Amersand Ltd., Moscow, Russa; ur Kalambet, Amersand Internatonal, Inc., Beachwood, OH e-mal: kalambet@amersand-ntl.com htt://www.chromandsec.com

More information

Durban Watson for Testing the Lack-of-Fit of Polynomial Regression Models without Replications

Durban Watson for Testing the Lack-of-Fit of Polynomial Regression Models without Replications Durban Watson for Testng the Lack-of-Ft of Polynomal Regresson Models wthout Replcatons Ruba A. Alyaf, Maha A. Omar, Abdullah A. Al-Shha ralyaf@ksu.edu.sa, maomar@ksu.edu.sa, aalshha@ksu.edu.sa Department

More information

+, where 0 x N - n. k k

+, where 0 x N - n. k k CO 745, Mdterm Len Cabrera. A multle choce eam has questons, each of whch has ossble answers. A student nows the correct answer to n of these questons. For the remanng - n questons, he checs the answers

More information

is the calculated value of the dependent variable at point i. The best parameters have values that minimize the squares of the errors

is the calculated value of the dependent variable at point i. The best parameters have values that minimize the squares of the errors Multple Lnear and Polynomal Regresson wth Statstcal Analyss Gven a set of data of measured (or observed) values of a dependent varable: y versus n ndependent varables x 1, x, x n, multple lnear regresson

More information

Correlation and Regression

Correlation and Regression Correlaton and Regresson otes prepared by Pamela Peterson Drake Index Basc terms and concepts... Smple regresson...5 Multple Regresson...3 Regresson termnology...0 Regresson formulas... Basc terms and

More information

Module Contact: Dr Susan Long, ECO Copyright of the University of East Anglia Version 1

Module Contact: Dr Susan Long, ECO Copyright of the University of East Anglia Version 1 UNIVERSITY OF EAST ANGLIA School of Economcs Man Seres PG Examnaton 016-17 ECONOMETRIC METHODS ECO-7000A Tme allowed: hours Answer ALL FOUR Questons. Queston 1 carres a weght of 5%; Queston carres 0%;

More information