Problem 9.1 This is a variation on the example on pages

Size: px
Start display at page:

Download "Problem 9.1 This is a variation on the example on pages"

Transcription

1 Problem 9 his is a variation on the example on pages 00-0 n n g g exp We are given that n()/n()=/000 and we want to solve for Also, we know that g()= and g()=8 We want to solve exp for I'll set this up more generally n n g exp g ln n n g g ln n n g g kln n n g g Now substitute values and get the answer 6 6 n 000 n g g 8 k since we are working with ev 's n g kln n g = 7 0 Problem 9 his is another variation on the example on pages 00-0 n n g g exp We are given =5000 and we want to solve for n()/n(), etc n ( n) n gn ( ) n k since we are working with ev 's

2 ratio( m, n) gm ( ) gn ( ) exp ( ( m) ( n) ) ratio(, ) = (just checking) ratio(, ) = ratio(, ) = ratio(, ) = 5 0 vbar vbar = m/s Problem 97 vrms vrms = 6 m/s 7 0 Problem 98 k Boltzmann's constant in units of ev/k he average energy per molecule is E k E 008 = ev his is much less than the 0 ev needed to raise a hydrogen atom from its ground state to its first excited state: E = Problem 99 k Boltzmann's constant in units of ev/k E 6 Binding energy of hydrogen in ev We need to solve E E k k for = or about 0500 K

3 Problem h 66 0 k 8 0 Boltzmann's constant in mks units m E λ λ k h p 0 0 mass of oxygen average oxygen molecule energy p m E oxygen momentum λ = 6 0 de Broglie wavelength = 0065 so the de Broglie wavelength is only about 65 percent of the molecular diameter Problem 9 he flux is the number of neutrons per square meter per second If we divide the flux by the average neutron velocity, we get the number of neutrons per cubic meter at any time in the beam port: neutrons volume neutrons seconds_for_neutron_to_travel meter m s _meter m n k 8 0 S 0 According to Maxwell-Boltzmann statistics: vbar ρ 8k π m n S vbar ρ = neutrons/m Problem 99 According to the Stefan-Boltzmann law, an object at a temperature radiates an energy R per second per unit time R e σ where e is the object's emissivity and σ is a constant For skin at two temperatures, R R ratio ratio = 0 A percent difference; not huge, but measurable

4 his is "just like" problem ratio Problem 90 ratio = 8 almost a factor of two different R e σ R e σ Problem 9 R R R R 00 7 = 8006 K or 7 = 576 C Problem 9 e σ R e σ R = 9 0 his is in units of watts/square meter o find the rate at which this particular sphere radiates, we need to multiply R by the surface area of the sphere r 5 0 rate R π r rate = 707 watts Problem 95 In the absence of a given emissivity, let's treat the hole as a blackbody, so that Also σ R e σ e

5 R = his is the number of watts/m radiated by the hole o find the rate at which radiation escapes from the hole, multiply R by the area of the hole Don't forget to convert cm to m rate R 0 0 rate = 508 watts Problem 96 R R e σ e σ R R R R = 067 kw Problem 90 According to Wien's displacement law, λ max in MKS units λ max λ max = meters his wavelength of 79 nanometers is lower energy than the lowest energy visible photon, which has a wavelength of about 00 nm hus, these photons are in the infrared See figure on page 5 for a confirmation of this λ max Problem equation 90, page 6 = about 0000 K λ max 5

6 λ max Problem 9 equation 90, page 6 λ max = about 90 nanometers his wavelength is in the infrared; see figure on page 5 Problem 98 he average energy of the free electrons in copper can be found from equation avg 5 avg = ev he average energy of free electrons at room temperature, according to Maxwell-Boltzmann statistics, is bar k Beiser says to use k=005 ev, so bar 005 bar = 008eV he actual free electron energy in copper is bigger by a factor of avg = 6 bar than the average energy of a gas of free electrons at room temperature Problem 99 Part a he average energy is given by equation avg 5 avg = 06 ev Part b he temperature corresponding to this energy is given by equation 9 k Boltzmann's constant in ev energy units avg k = or about 5600 K 6

7 Part c It's safe to do a classical calculation of the velocity of an electron having an energy of 06 ev, because the energy is very much less than the electron rest energy of 5 kev E avg first convert energy to joules From E=mv /, we get v E 9 0 v = m/s a fairly high, but still nonrelativistic velocity Problem 90 Part a Use equation 950 his is relatively easy in Mathcad, not so easy with paper and pencil Let's just pick N= N e k e 00 his is what Beiser uses for a warm "room" temperature n(, ) N 5 F exp Just for kicks, let's plot n() See the end of the document for Beiser's solution = his gives me a reference for scaling 0 9, set a range of energies n, his looks reassuringly like figure 90 he numbers are big because I haven't multiplied by a d Electrons in excited states are those with >F Since we defined N=, we can find the fraction in excited states by integraging n() from F to infinity 7

8 fraction fraction n (, )d n(, )d I did this on purpose Mathcad gripes because some numbers involved in calculating n() are getting too big, so I should integrate not to, but to some "big" number, say times F If I go any bigger than F, I get an overflow fraction = 8 0 about 0% Part b At =08K, 08 7 n, fraction 0 n(, )d Now I can go higher in energy without overflowing fraction = 007 About 7% he above solution is too much for a paper-and-pencil type test problem All of the excited electrons will have energies just slightly greater than F herefore, it is a reasonable approximation to replace in equation 950 by Also, for greater than, the in the denominator of equation 950 is much smaller than the exponential he equation then becomes n( ) N F F exp exp 8

9 he antiderivative of n() is N F F exp exp When you integrate from F to infinity, the value of the antiderivative is 0 at, and evaluated at F it gives integral( ) ( k ) N integral( ) ( k ) N F exp exp Evaluating at the two temperatures: integral( 00) 55 0 = or about 055% integral( 7 08) = 005 or about 5% I would expect that if I gave you the appropriate hints as to what approximations to make, that you could do this calculation for an exam Problem 9 he Fermi energy is calculated from h F m or h m N 8 π V n 8 π where n=n/v is the density of free electrons We can get the number of aluminum atoms per volume by multiplying the density by the atomic mass: n atoms volume mass atom volume mass Don't forget to convert grams to kilograms and centimeters to meters According to able 7, aluminum has s and p electron Beiser tells us that the s and p electrons are close in energy, so we expect all three electrons to become part of the free electron gas hus, we need to multiply the number of atoms by to get the number of free electrons in aluminum h 66 0 m here's where effective mass enters in 9

10 n he /0 converts g-->kg, the (0 ) converts cm -->m, and the/66*0-7 converts amu-->kg h F m n 8 π = Joules = 055 Fermi energy in ev 0

Chapter 9 Problem Solutions

Chapter 9 Problem Solutions Chapter 9 Problem Solutions. At what temperature would one in a thousand of the atoms in a gas of atomic hydrogen be in the n energy level? g( ε ), g( ε ) Then, where 8 n ( ε ) ( ε )/ kt kt e ε e ε / n(

More information

Physics 107 Final Exam May 6, Your Name: 1. Questions

Physics 107 Final Exam May 6, Your Name: 1. Questions Physics 107 Final Exam May 6, 1996 Your Name: 1. Questions 1. 9. 17. 5.. 10. 18. 6. 3. 11. 19. 7. 4. 1. 0. 8. 5. 13. 1. 9. 6. 14.. 30. 7. 15. 3. 8. 16. 4.. Problems 1. 4. 7. 10. 13.. 5. 8. 11. 14. 3. 6.

More information

is the minimum stopping potential for which the current between the plates reduces to zero.

is the minimum stopping potential for which the current between the plates reduces to zero. Module 1 :Quantum Mechanics Chapter 2 : Introduction to Quantum ideas Introduction to Quantum ideas We will now consider some experiments and their implications, which introduce us to quantum ideas. The

More information

QM all started with - - The Spectrum of Blackbody Radiation

QM all started with - - The Spectrum of Blackbody Radiation QM all started with - - The Spectrum of Blackbody Radiation Thermal Radiation: Any object, not at zero temperature, emits electromagnetic called thermal. When we measure the intensity of a real object,

More information

Light carries energy. Lecture 5 Understand Light. Is light. Light as a Particle. ANSWER: Both.

Light carries energy. Lecture 5 Understand Light. Is light. Light as a Particle. ANSWER: Both. Light carries energy Lecture 5 Understand Light Reading: Chapter 6 You feel energy carried by light when light hits your skin. Energy Conservation: Radiation energy will be given to molecules making your

More information

The greenhouse effect

The greenhouse effect 16 Waves of amplitude of 1 m roll onto a beach at a rate of one every 12 s. If the wavelength of the waves is 120 m, calculate (a) the velocity of the waves (b) how much power there is per metre along

More information

5. Light-matter interactions: Blackbody radiation

5. Light-matter interactions: Blackbody radiation 5. Light-matter interactions: Blackbody radiation REMINDER: no lecture on Monday Feb. 6th The electromagnetic spectrum Sources of light Boltzmann's Law Blackbody radiation The cosmic microwave background

More information

Problem Set 4 is due Thursday. Problem Set 5 will be out today or tomorrow. Launch Latest from MASCOT

Problem Set 4 is due Thursday. Problem Set 5 will be out today or tomorrow. Launch Latest from MASCOT 1 Problem Set 4 is due Thursday. Problem Set 5 will be out today or tomorrow. Launch Latest from MASCOT 3 Continuous Spectra: Thermal Radiation The equations below quantitatively summarize the light-emitting

More information

WAVES AND PARTICLES. (c)

WAVES AND PARTICLES. (c) WAVES AND PARTICLES 1. An electron and a proton are accelerated through the same potential difference. The ration of their De Broglie wave length will be -- (a) (b) (c) (d) 1 2. What potential must be

More information

Examination Radiation Physics - 8N120, 2 November

Examination Radiation Physics - 8N120, 2 November Examination Radiation Physics - 8N0, November 0-4.00-7.00 Four general remarks: This exam consists of 6 assignments on a total of pages. There is a table on page listing the maximum number of that can

More information

PHYSICS 250 May 4, Final Exam - Solutions

PHYSICS 250 May 4, Final Exam - Solutions Name: PHYSICS 250 May 4, 999 Final Exam - Solutions Instructions: Work all problems. You may use a calculator and two pages of notes you may have prepared. There are problems of varying length and difficulty.

More information

Chemistry 431. Lecture 1. Introduction Statistical Averaging Electromagnetic Spectrum Black body Radiation. NC State University

Chemistry 431. Lecture 1. Introduction Statistical Averaging Electromagnetic Spectrum Black body Radiation. NC State University Chemistry 431 Lecture 1 Introduction Statistical Averaging Electromagnetic Spectrum Black body Radiation NC State University Overview Quantum Mechanics Failure of classical physics Wave equation Rotational,

More information

Statistical Mechanics

Statistical Mechanics Statistical Mechanics Newton's laws in principle tell us how anything works But in a system with many particles, the actual computations can become complicated. We will therefore be happy to get some 'average'

More information

Tuesday, August 27, Stellar Astrophysics

Tuesday, August 27, Stellar Astrophysics Stellar Astrophysics Policies No Exams Homework 65% Project 35% Oral Presentation 5% More on the project http://myhome.coloradomesa.edu/ ~jworkman/teaching/fall13/396/ syllabus396.pdf You need to self

More information

[2] (b) An electron is accelerated from rest through a potential difference of 300 V.

[2] (b) An electron is accelerated from rest through a potential difference of 300 V. 1 (a) In atomic physics electron energies are often stated in electronvolts (ev) Define the electronvolt. State its value in joule.. [2] (b) An electron is accelerated from rest through a potential difference

More information

Chemistry 795T. Lecture 7. Electromagnetic Spectrum Black body Radiation. NC State University

Chemistry 795T. Lecture 7. Electromagnetic Spectrum Black body Radiation. NC State University Chemistry 795T Lecture 7 Electromagnetic Spectrum Black body Radiation NC State University Black body Radiation An ideal emitter of radiation is called a black body. Observation: that peak of the energy

More information

Chemistry 795T. Black body Radiation. The wavelength and the frequency. The electromagnetic spectrum. Lecture 7

Chemistry 795T. Black body Radiation. The wavelength and the frequency. The electromagnetic spectrum. Lecture 7 Chemistry 795T Lecture 7 Electromagnetic Spectrum Black body Radiation NC State University Black body Radiation An ideal emitter of radiation is called a black body. Observation: that peak of the energy

More information

Module 5 : MODERN PHYSICS Lecture 23 : Particle and Waves

Module 5 : MODERN PHYSICS Lecture 23 : Particle and Waves Module 5 : MODERN PHYSICS Lecture 23 : Particle and Waves Objectives In this lecture you will learn the following Radiation (light) exhibits both wave and particle nature. Laws governing black body radiation,

More information

1. The most important aspects of the quantum theory.

1. The most important aspects of the quantum theory. Lecture 5. Radiation and energy. Objectives: 1. The most important aspects of the quantum theory: atom, subatomic particles, atomic number, mass number, atomic mass, isotopes, simplified atomic diagrams,

More information

Examination Radiation Physics - 8N120 5 November 2014, 13:30-16:30

Examination Radiation Physics - 8N120 5 November 2014, 13:30-16:30 Examination Radiation Physics - 8N120 5 November 2014, 13:30-16:30 Four general remarks: This exam consists of 8 assignments on a total of 3 pages. There is a table on page 4 listing the maximum number

More information

Physics Oct A Quantum Harmonic Oscillator

Physics Oct A Quantum Harmonic Oscillator Physics 301 5-Oct-2005 9-1 A Quantum Harmonic Oscillator The quantum harmonic oscillator (the only kind there is, really) has energy levels given by E n = (n + 1/2) hω, where n 0 is an integer and the

More information

5. Light-matter interactions: Blackbody radiation

5. Light-matter interactions: Blackbody radiation 5. Light-matter interactions: Blackbody radiation The electromagnetic spectrum Sources of light Boltzmann's Law Blackbody radiation why do hot things glow? The cosmic microwave background The electromagnetic

More information

Physical Chemistry II Exam 2 Solutions

Physical Chemistry II Exam 2 Solutions Chemistry 362 Spring 208 Dr Jean M Standard March 9, 208 Name KEY Physical Chemistry II Exam 2 Solutions ) (4 points) The harmonic vibrational frequency (in wavenumbers) of LiH is 4057 cm Based upon this

More information

Chemistry. Slide 1 / 72. Slide 2 / 72. Slide 3 / 72. Atomic Structures Practice Problems

Chemistry. Slide 1 / 72. Slide 2 / 72. Slide 3 / 72. Atomic Structures Practice Problems Slide 1 / 72 Slide 2 / 72 Chemistry Atomic Structures Practice Problems 2015-10-27 www.njctl.org 1 According to Einstein s view of matter and energy, what is the common link between light and matter? Slide

More information

Examination cover sheet

Examination cover sheet Student name: Student number: Examination cover sheet (to be completed by the examiner) Course name: Radiation Physics Course code: 8CM10/8N120 Date: 20-01-2016 Start time: 13:30 End time : 16:30 Number

More information

Lecture 10 Diatomic Vibration Spectra Harmonic Model

Lecture 10 Diatomic Vibration Spectra Harmonic Model Chemistry II: Introduction to Molecular Spectroscopy Prof. Mangala Sunder Department of Chemistry and Biochemistry Indian Institute of Technology, Madras Lecture 10 Diatomic Vibration Spectra Harmonic

More information

Chapter 11 FUNDAMENTALS OF THERMAL RADIATION

Chapter 11 FUNDAMENTALS OF THERMAL RADIATION Chapter Chapter Fundamentals of Thermal Radiation FUNDAMENTALS OF THERMAL RADIATION Electromagnetic and Thermal Radiation -C Electromagnetic waves are caused by accelerated charges or changing electric

More information

Lecture 2 Blackbody radiation

Lecture 2 Blackbody radiation Lecture 2 Blackbody radiation Absorption and emission of radiation What is the blackbody spectrum? Properties of the blackbody spectrum Classical approach to the problem Plancks suggestion energy quantisation

More information

CPO Science Foundations of Physics. Unit 8, Chapter 26

CPO Science Foundations of Physics. Unit 8, Chapter 26 CPO Science Foundations of Physics Unit 8, Chapter 26 Unit 8: Matter and Energy Chapter 26 Heat Transfer 26.1 Heat Conduction 26.2 Convection 26.3 Radiation Chapter 26 Objectives 1. Explain the relationship

More information

Thermal Radiation By: Prof. K M Joshi

Thermal Radiation By: Prof. K M Joshi Thermal Radiation By: Prof. K M Joshi Radiation originate due to emission of matter and its subsequent transports does not required any matter / medium. Que: Then what is the nature of this transport???

More information

Earth: the Goldilocks Planet

Earth: the Goldilocks Planet Earth: the Goldilocks Planet Not too hot (460 C) Fig. 3-1 Not too cold (-55 C) Wave properties: Wavelength, velocity, and? Fig. 3-2 Reviewing units: Wavelength = distance (meters or nanometers, etc.) Velocity

More information

Elements of Statistical Mechanics

Elements of Statistical Mechanics Dr. Y. Aparna, Associate Prof., Dept. of Physics, JNTU College of ngineering, JNTU - H, lements of Statistical Mechanics Question: Discuss about principles of Maxwell-Boltzmann Statistics? Answer: Maxwell

More information

INTRODUCTION Radiation differs from conduction and convection in that it does not require the presence of a material medium to take place.

INTRODUCTION Radiation differs from conduction and convection in that it does not require the presence of a material medium to take place. RADIATION INTRODUCTION Radiation differs from conduction and convection in that it does not require the presence of a material medium to take place. Radiation: The energy emitted by matter in the form

More information

Chapter Two. Energy Bands and Effective Mass

Chapter Two. Energy Bands and Effective Mass Chapter Two Energy Bands and Effective Mass Energy Bands Formation At Low Temperature At Room Temperature Valence Band Insulators Metals Effective Mass Energy-Momentum Diagrams Direct and Indirect Semiconduction

More information

Chapter 22 Quantum Mechanics & Atomic Structure 22.1 Photon Theory of Light and The Photoelectric Effect Homework # 170

Chapter 22 Quantum Mechanics & Atomic Structure 22.1 Photon Theory of Light and The Photoelectric Effect Homework # 170 22.1 Photon Theory of Light and The Photoelectric Effect Homework # 170 See Homework #95 in "Chapter 12-Electrostatics" for the table of "Useful nformation" on atomic particles. 01. What is the energy

More information

ASTRONOMY QUALIFYING EXAM August Possibly Useful Quantities

ASTRONOMY QUALIFYING EXAM August Possibly Useful Quantities L = 3.9 x 10 33 erg s 1 M = 2 x 10 33 g M bol = 4.74 R = 7 x 10 10 cm 1 A.U. = 1.5 x 10 13 cm 1 pc = 3.26 l.y. = 3.1 x 10 18 cm a = 7.56 x 10 15 erg cm 3 K 4 c= 3.0 x 10 10 cm s 1 σ = ac/4 = 5.7 x 10 5

More information

OBJECTIVES FOR TODAY S CLASS:

OBJECTIVES FOR TODAY S CLASS: OBJECTIVES FOR TODAY S CLASS: To understand the key differences between Solar radiation & Terrestrial radiation based on the principles of the Radiation Laws. WRAP UP OF TOPIC #4... ELECTROMANGETIC RADIATION

More information

10/29/2018. Chapter 7. Atoms Light and Spectra. Reminders. Topics For Today s Class. Hydrogen Atom. The Atom. Phys1411 Introductory Astronomy

10/29/2018. Chapter 7. Atoms Light and Spectra. Reminders. Topics For Today s Class. Hydrogen Atom. The Atom. Phys1411 Introductory Astronomy Phys1411 Introductory Astronomy Instructor: Dr. Goderya Chapter 7 Atoms Light and Spectra Reminders Topics For Today s Class Project 1 due November 12 th after and during Lab. Extra-credit Homework online.

More information

Lecture 24. Paths on the pv diagram

Lecture 24. Paths on the pv diagram Goals: Lecture 24 Chapter 17 Apply heat and energy transfer processes Recognize adiabatic processes Chapter 18 Follow the connection between temperature, thermal energy, and the average translational kinetic

More information

Lecture 5: Greenhouse Effect

Lecture 5: Greenhouse Effect /30/2018 Lecture 5: Greenhouse Effect Global Energy Balance S/ * (1-A) terrestrial radiation cooling Solar radiation warming T S Global Temperature atmosphere Wien s Law Shortwave and Longwave Radiation

More information

The Nature of Light. Chapter Five

The Nature of Light. Chapter Five The Nature of Light Chapter Five Guiding Questions 1. How fast does light travel? How can this speed be measured? 2. Why do we think light is a wave? What kind of wave is it? 3. How is the light from an

More information

Period 13 Solutions: Earth as an Energy System

Period 13 Solutions: Earth as an Energy System Period 13 Solutions: Earth as an Energy System 13.1 The Earth-Sun System 1) Energy from the sun Observe the models of the Earth, Moon, and Sun in the room. a) Imagine that the distance between the Earth

More information

Physics 1302, Exam 4 Review

Physics 1302, Exam 4 Review c V Andersen, 2006 1 Physics 1302, Exam 4 Review The following is a list of things you should definitely know for the exam, however, the list is not exhaustive. You are responsible for all the material

More information

Chemistry 1A, Fall 2003 Midterm 1 Sept 16, 2003 (90 min, closed book)

Chemistry 1A, Fall 2003 Midterm 1 Sept 16, 2003 (90 min, closed book) Name: SID: TA Name: Chemistry 1A, Fall 2003 Midterm 1 Sept 16, 2003 (90 min, closed book) This exam has 38 multiple choice questions. Fill in the Scantron form AND circle your answer on the exam. Each

More information

Characteristics and Structure of Matter Perry Sprawls, Ph.D.

Characteristics and Structure of Matter Perry Sprawls, Ph.D. Online Textbook Perry Sprawls, Ph.D. Table of Contents INTRODUCTION AND OVERVIEW NUCLEAR STRUCTURE Composition Nuclides Isotopes Isobars Isomers Isotones NUCLEAR STABILITY Radioactivity NUCLEAR ENERGY

More information

Lecture 5: Greenhouse Effect

Lecture 5: Greenhouse Effect Lecture 5: Greenhouse Effect S/4 * (1-A) T A 4 T S 4 T A 4 Wien s Law Shortwave and Longwave Radiation Selected Absorption Greenhouse Effect Global Energy Balance terrestrial radiation cooling Solar radiation

More information

Prof. Jeff Kenney Class 4 May 31, 2018

Prof. Jeff Kenney Class 4 May 31, 2018 Prof. Jeff Kenney Class 4 May 31, 2018 Which stellar property can you estimate simply by looking at a star on a clear night? A. distance B. diameter C. luminosity D. surface temperature E. mass you can

More information

Chapters 28 and 29: Quantum Physics and Atoms Questions & Problems

Chapters 28 and 29: Quantum Physics and Atoms Questions & Problems Chapters 8 and 9: Quantum Physics and Atoms Questions & Problems hc = hf = K = = hf = ev P = /t = N h h h = = n = n, n = 1,, 3,... system = hf photon p mv 8 ml photon max elec 0 0 stop total photon 91.1nm

More information

Chapter 13. Phys 322 Lecture 34. Modern optics

Chapter 13. Phys 322 Lecture 34. Modern optics Chapter 13 Phys 3 Lecture 34 Modern optics Blackbodies and Lasers* Blackbodies Stimulated Emission Gain and Inversion The Laser Four-level System Threshold Some lasers Pump Fast decay Laser Fast decay

More information

Chapter 39. Particles Behaving as Waves

Chapter 39. Particles Behaving as Waves Chapter 39 Particles Behaving as Waves 39.1 Electron Waves Light has a dual nature. Light exhibits both wave and particle characteristics. Louis de Broglie postulated in 1924 that if nature is symmetric,

More information

Physics 107 Final Exam December 13, Your Name: Questions

Physics 107 Final Exam December 13, Your Name: Questions Physics 107 Final Exam December 13, 1993 Your Name: Questions 1. 11. 21. 31. 41. 2. 12. 22. 32. 42. 3. 13. 23. 33. 43. 4. 14. 24. 34. 44. 5. 15. 25. 35. 45. 6. 16. 26. 36. 46. 7. 17. 27. 37. 47. 8. 18.

More information

The Death of Classical Physics. The Rise of the Photon

The Death of Classical Physics. The Rise of the Photon The Death of Classical Physics The Rise of the Photon A fundamental question: What is Light? James Clerk Maxwell 1831-1879 Electromagnetic Wave Max Planck 1858-1947 Photon Maxwell's Equations (1865) Maxwell's

More information

Slowing down the neutrons

Slowing down the neutrons Slowing down the neutrons Clearly, an obvious way to make a reactor work, and to make use of this characteristic of the 3 U(n,f) cross-section, is to slow down the fast, fission neutrons. This can be accomplished,

More information

Family of stars. Fred Sarazin Physics Department, Colorado School of Mines. PHGN324: Family of stars

Family of stars. Fred Sarazin Physics Department, Colorado School of Mines. PHGN324: Family of stars Family of stars Reminder: the stellar magnitude scale In the 1900 s, the magnitude scale was defined as follows: a difference of 5 in magnitude corresponds to a change of a factor 100 in brightness. Dm

More information

Lasers PH 645/ OSE 645/ EE 613 Summer 2010 Section 1: T/Th 2:45-4:45 PM Engineering Building 240

Lasers PH 645/ OSE 645/ EE 613 Summer 2010 Section 1: T/Th 2:45-4:45 PM Engineering Building 240 Lasers PH 645/ OSE 645/ EE 613 Summer 2010 Section 1: T/Th 2:45-4:45 PM Engineering Building 240 John D. Williams, Ph.D. Department of Electrical and Computer Engineering 406 Optics Building - UAHuntsville,

More information

INFRAMET. 2.1 Basic laws

INFRAMET. 2.1 Basic laws tel: 048 60844873, fax 48 6668780. Basic laws.. Planck law All objects above the temperature of absolute zero emit thermal radiation due to thermal motion of the atoms and the molecules. The hotter they

More information

Final Exam Practice Solutions

Final Exam Practice Solutions Physics 390 Final Exam Practice Solutions These are a few problems comparable to those you will see on the exam. They were picked from previous exams. I will provide a sheet with useful constants and equations

More information

STSF2223 Quantum Mechanics I

STSF2223 Quantum Mechanics I STSF2223 Quantum Mechanics I What is quantum mechanics? Why study quantum mechanics? How does quantum mechanics get started? What is the relation between quantum physics with classical physics? Where is

More information

EVOLUTION OF STARS HERTZSPRUNG-RUSSELL DIAGRAM

EVOLUTION OF STARS HERTZSPRUNG-RUSSELL DIAGRAM VISUAL PHYSICS ONLINE EVOLUTION OF STARS HERTZSPRUNG-RUSSELL DIAGRAM The total power radiated by a star is called its intrinsic luminosity L (luminosity). The apparent brightness (apparent luminosity)

More information

2. Estimate the amount of heat required to raise the temperature of 4 kg of Aluminum from 20 C to 30 C

2. Estimate the amount of heat required to raise the temperature of 4 kg of Aluminum from 20 C to 30 C 1. A circular rod of length L = 2 meter and diameter d=2 cm is composed of a material with a heat conductivity of! = 6 W/m-K. One end is held at 100 C, the other at 0 C. At what rate does the bar conduct

More information

Today. Spectra. Thermal Radiation. Wien s Law. Stefan-Boltzmann Law. Kirchoff s Laws. Emission and Absorption. Spectra & Composition

Today. Spectra. Thermal Radiation. Wien s Law. Stefan-Boltzmann Law. Kirchoff s Laws. Emission and Absorption. Spectra & Composition Today Spectra Thermal Radiation Wien s Law Stefan-Boltzmann Law Kirchoff s Laws Emission and Absorption Spectra & Composition Spectrum Originally, the range of colors obtained by passing sunlight through

More information

Take away concepts. What is Energy? Solar Radiation Emission and Absorption. Energy: The ability to do work

Take away concepts. What is Energy? Solar Radiation Emission and Absorption. Energy: The ability to do work Solar Radiation Emission and Absorption Take away concepts 1. 2. 3. 4. 5. 6. Conservation of energy. Black body radiation principle Emission wavelength and temperature (Wien s Law). Radiation vs. distance

More information

AST 105 Intro Astronomy The Solar System. MIDTERM II: Tuesday, April 5 [covering Lectures 10 through 16]

AST 105 Intro Astronomy The Solar System. MIDTERM II: Tuesday, April 5 [covering Lectures 10 through 16] AST 105 Intro Astronomy The Solar System MIDTERM II: Tuesday, April 5 [covering Lectures 10 through 16] REVIEW Light as Information Bearer We can separate light into its different wavelengths (spectrum).

More information

Final Exam - Solutions PHYS/ECE Fall 2011

Final Exam - Solutions PHYS/ECE Fall 2011 Final Exam - Solutions PHYS/ECE 34 - Fall 211 Problem 1 Cosmic Rays The telescope array project in Millard County, UT can detect cosmic rays with energies up to E 1 2 ev. The cosmic rays are of unknown

More information

Chapter 2 Problem Solutions

Chapter 2 Problem Solutions Chapter Problem Solutions 1. If Planck's constant were smaller than it is, would quantum phenomena be more or less conspicuous than they are now? Planck s constant gives a measure of the energy at which

More information

If you cannot solve the whole problem, write down all relevant equations and explain how you will approach the solution. Show steps clearly.

If you cannot solve the whole problem, write down all relevant equations and explain how you will approach the solution. Show steps clearly. Letter ID Comprehensive Exam Session I Modern Physics (Including Stat.Mech) Physics Department- Proctor: Dr. Chris Butenhoff (Sat. Jan. 11 th, 2014) (3 hours long 9:00 to 12:00 AM) If you cannot solve

More information

MRI Homework. i. (0.5 pt each) Consider the following arrangements of bar magnets in a strong magnetic field.

MRI Homework. i. (0.5 pt each) Consider the following arrangements of bar magnets in a strong magnetic field. MRI Homework 1. While x-rays are used to image bones, magnetic resonance imaging (MRI) is used to examine tissues within the body by detecting where hydrogen atoms (H atoms) are and their environment (e.g.

More information

Lecture 4: Global Energy Balance. Global Energy Balance. Solar Flux and Flux Density. Blackbody Radiation Layer Model.

Lecture 4: Global Energy Balance. Global Energy Balance. Solar Flux and Flux Density. Blackbody Radiation Layer Model. Lecture : Global Energy Balance Global Energy Balance S/ * (1-A) terrestrial radiation cooling Solar radiation warming T S Global Temperature Blackbody Radiation ocean land Layer Model energy, water, and

More information

Lecture 4: Global Energy Balance

Lecture 4: Global Energy Balance Lecture : Global Energy Balance S/ * (1-A) T A T S T A Blackbody Radiation Layer Model Greenhouse Effect Global Energy Balance terrestrial radiation cooling Solar radiation warming Global Temperature atmosphere

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics Problem Solving 10: The Greenhouse Effect. Section Table and Group

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics Problem Solving 10: The Greenhouse Effect. Section Table and Group MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics 8.02 Problem Solving 10: The Greenhouse Effect Section Table and Group Names Hand in one copy per group at the end of the Friday Problem Solving

More information

Rb, which had been compressed to a density of 1013

Rb, which had been compressed to a density of 1013 Modern Physics Study Questions for the Spring 2018 Departmental Exam December 3, 2017 1. An electron is initially at rest in a uniform electric field E in the negative y direction and a uniform magnetic

More information

Topics Covered in Chapter. Light and Other Electromagnetic Radiation. A Subatomic Interlude II. A Subatomic Interlude. A Subatomic Interlude III

Topics Covered in Chapter. Light and Other Electromagnetic Radiation. A Subatomic Interlude II. A Subatomic Interlude. A Subatomic Interlude III Light and Other Electromagnetic Radiation Topics Covered in Chapter 1.Structure of Atoms 2.Origins of Electromagnetic Radiation 3.Objects with Different Temperature and their Electromagnetic Radiation

More information

Light and Other Electromagnetic Radiation

Light and Other Electromagnetic Radiation Light and Other Electromagnetic Radiation 1 Topics Covered in Chapter 1.Structure of Atoms 2.Origins of Electromagnetic Radiation 3.Objects with Different Temperature and their Electromagnetic Radiation

More information

aka Light Properties of Light are simultaneously

aka Light Properties of Light are simultaneously Today Interaction of Light with Matter Thermal Radiation Kirchhoff s Laws aka Light Properties of Light are simultaneously wave-like AND particle-like Sometimes it behaves like ripples on a pond (waves).

More information

Wave Description. Transverse and Longitudinal Waves. Physics Department 2/13/2019. Phys1411 Goderya 1. PHYS 1403 Stars and Galaxies

Wave Description. Transverse and Longitudinal Waves. Physics Department 2/13/2019. Phys1411 Goderya 1. PHYS 1403 Stars and Galaxies PHYS 1403 Stars and Galaxies for Today s Class 1. How do we explain the motion of energy? 2. What is a wave and what are its properties 3. What is an electromagnetic spectrum? 4. What is a black body and

More information

Physics 6C. Final Practice Solutions. Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB

Physics 6C. Final Practice Solutions. Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB Physics 6C Final Practice Solutions Use the following information for problems 1 and. A beam of white light with frequency between 4.00 x 10 14 Hz and 7.90 x 10 14 Hz is incident on a sodium surface, which

More information

11 Quantum theory: introduction and principles

11 Quantum theory: introduction and principles Part 2: Structure Quantum theory: introduction and principles Solutions to exercises E.b E.2b E.3b E.4b E.5b E.6b Discussion questions A successful theory of black-body radiation must be able to explain

More information

PHYSICS 149: Lecture 26

PHYSICS 149: Lecture 26 PHYSICS 149: Lecture 26 Chapter 14: Heat 14.1 Internal Energy 14.2 Heat 14.3 Heat Capacity and Specific Heat 14.5 Phase Transitions 14.6 Thermal Conduction 14.7 Thermal Convection 14.8 Thermal Radiation

More information

Light and Atoms

Light and Atoms Light and Atoms ASTR 170 2010 S1 Daniel Zucker E7A 317 zucker@science.mq.edu.au ASTR170 Introductory Astronomy: II. Light and Atoms 1 Overview We ve looked at telescopes, spectrographs and spectra now

More information

ASTR-1010: Astronomy I Course Notes Section IV

ASTR-1010: Astronomy I Course Notes Section IV ASTR-1010: Astronomy I Course Notes Section IV Dr. Donald G. Luttermoser Department of Physics and Astronomy East Tennessee State University Edition 2.0 Abstract These class notes are designed for use

More information

C12 technical supplement

C12 technical supplement C12 technical supplement scientific notation 2 density, unit conversion 3 gravitational force 4 light:wavelengths, etc. 5 thermal radiation (overview) 6 thermal radiation (stefan-boltzmann law) 7 thermal

More information

Lecture 12. Measurements in Astronomy. Using Light. ASTR 111 Section 002. In astronomy, we need to make remote and indirect measurements

Lecture 12. Measurements in Astronomy. Using Light. ASTR 111 Section 002. In astronomy, we need to make remote and indirect measurements Lecture 12 ASTR 111 Section 002 Measurements in Astronomy In astronomy, we need to make remote and indirect measurements Think of an example of a remote and indirect measurement from everyday life Using

More information

Quantum Physics Lecture 5

Quantum Physics Lecture 5 Quantum Physics Lecture 5 Thermal Phenomena - continued Black Body radiation - Classical model, UV catastrophe - Planck model, Wien & Stefan laws - Photoelectric effect revisited The hydrogen atom Planetary

More information

Quantum Mysteries. Scott N. Walck. September 2, 2018

Quantum Mysteries. Scott N. Walck. September 2, 2018 Quantum Mysteries Scott N. Walck September 2, 2018 Key events in the development of Quantum Theory 1900 Planck proposes quanta of light 1905 Einstein explains photoelectric effect 1913 Bohr suggests special

More information

Physics 228 Final MAY 12, 2009 Profs. Rabe and Coleman. Useful Information. Your name sticker. with exam code

Physics 228 Final MAY 12, 2009 Profs. Rabe and Coleman. Useful Information. Your name sticker. with exam code Your name sticker with eam code Physics 228 Final MAY 12, 2009 Profs. Rabe and Coleman guess. At the end of the eam, hand in the answer sheet and the cover page. Retain this question paper for future reference

More information

Period 13: Earth as an Energy System

Period 13: Earth as an Energy System Name Section Period 13: Earth as an Energy System 13.1 The Earth-Sun System 1) Energy from the sun Observe the models of the Earth, Moon, and Sun in the room. a) Imagine that the distance between the Earth

More information

CHM 424 EXAM 4 CRIB - COVER PAGE FALL

CHM 424 EXAM 4 CRIB - COVER PAGE FALL CHM 44 EXAM 4 CRIB - COVER PAGE FALL 006 There are seven numbered pages with five questions. Answer the questions on the exam. Exams done in ink are eligible for regrade, those done in pencil will not

More information

1) Introduction 2) Photo electric effect 3) Dual nature of matter 4) Bohr s atom model 5) LASERS

1) Introduction 2) Photo electric effect 3) Dual nature of matter 4) Bohr s atom model 5) LASERS 1) Introduction 2) Photo electric effect 3) Dual nature of matter 4) Bohr s atom model 5) LASERS 1. Introduction Types of electron emission, Dunnington s method, different types of spectra, Fraunhoffer

More information

Chapter 5 Light and Matter: Reading Messages from the Cosmos. How do we experience light? Colors of Light. How do light and matter interact?

Chapter 5 Light and Matter: Reading Messages from the Cosmos. How do we experience light? Colors of Light. How do light and matter interact? Chapter 5 Light and Matter: Reading Messages from the Cosmos How do we experience light? The warmth of sunlight tells us that light is a form of energy We can measure the amount of energy emitted by a

More information

Properties of Electromagnetic Radiation Chapter 5. What is light? What is a wave? Radiation carries information

Properties of Electromagnetic Radiation Chapter 5. What is light? What is a wave? Radiation carries information Concepts: Properties of Electromagnetic Radiation Chapter 5 Electromagnetic waves Types of spectra Temperature Blackbody radiation Dual nature of radiation Atomic structure Interaction of light and matter

More information

I understand the relationship between energy and a quanta I understand the difference between an electron s ground state and an electron s excited

I understand the relationship between energy and a quanta I understand the difference between an electron s ground state and an electron s excited NCCS 1.1.2 & 1.1.3 I understand the relationship between energy and a quanta I understand the difference between an electron s ground state and an electron s excited state I will describe how an electron

More information

Homework 04 - Electromagnetic Radiation

Homework 04 - Electromagnetic Radiation HW04 - Electromagnetic Radiation This is a preview of the published version of the quiz Started: Jul 7 at 9:43am Quiz Instructions Homework 04 - Electromagnetic Radiation Question 1-7 What is the frequency

More information

Electromagnetic Radiation.

Electromagnetic Radiation. Electromagnetic Radiation http://apod.nasa.gov/apod/astropix.html CLASSICALLY -- ELECTROMAGNETIC RADIATION Classically, an electromagnetic wave can be viewed as a self-sustaining wave of electric and magnetic

More information

Modern Physics Departmental Exam Last updated November 2013

Modern Physics Departmental Exam Last updated November 2013 Modern Physics Departmental Exam Last updated November 213 87 1. Recently, 2 rubidium atoms ( 37 Rb ), which had been compressed to a density of 113 atoms/cm 3, were observed to undergo a Bose-Einstein

More information

Supplemental Activities. Module: Atomic Theory. Section: Electromagnetic Radiation and Matter - Key

Supplemental Activities. Module: Atomic Theory. Section: Electromagnetic Radiation and Matter - Key Supplemental Activities Module: Atomic Theory Section: Electromagnetic Radiation and Matter - Key Introduction to Electromagnetic Radiation Activity 1 1. What are the two components that make up electromagnetic

More information

CHAPTER 9 Statistical Physics

CHAPTER 9 Statistical Physics CHAPTER 9 Statistical Physics 9.1 9.2 9.3 9.4 9.5 9.6 9.7 Historical Overview Maxwell Velocity Distribution Equipartition Theorem Maxwell Speed Distribution Classical and Quantum Statistics Fermi-Dirac

More information

The Nature of Light I: Electromagnetic Waves Spectra Kirchoff s Laws Temperature Blackbody radiation

The Nature of Light I: Electromagnetic Waves Spectra Kirchoff s Laws Temperature Blackbody radiation The Nature of Light I: Electromagnetic Waves Spectra Kirchoff s Laws Temperature Blackbody radiation Electromagnetic Radiation (How we get most of our information about the cosmos) Examples of electromagnetic

More information

Physics 404: Final Exam Name (print): "I pledge on my honor that I have not given or received any unauthorized assistance on this examination.

Physics 404: Final Exam Name (print): I pledge on my honor that I have not given or received any unauthorized assistance on this examination. Physics 404: Final Exam Name (print): "I pledge on my honor that I have not given or received any unauthorized assistance on this examination." May 20, 2008 Sign Honor Pledge: Don't get bogged down on

More information

Problem #1 30 points Problem #2 30 points Problem #3 30 points Problem #4 30 points Problem #5 30 points

Problem #1 30 points Problem #2 30 points Problem #3 30 points Problem #4 30 points Problem #5 30 points Name ME 5 Exam # November 5, 7 Prof. Lucht ME 55. POINT DISTRIBUTION Problem # 3 points Problem # 3 points Problem #3 3 points Problem #4 3 points Problem #5 3 points. EXAM INSTRUCTIONS You must do four

More information

Lecture 3: Emission and absorption

Lecture 3: Emission and absorption Lecture 3: Emission and absorption Senior Astrophysics 2017-03-10 Senior Astrophysics Lecture 3: Emission and absorption 2017-03-10 1 / 35 Outline 1 Optical depth 2 Sources of radiation 3 Blackbody radiation

More information