Measuring Distant Objects

Size: px
Start display at page:

Download "Measuring Distant Objects"

Transcription

1 Measuring Distant Objects 17 March 2014 Measuring Distant Objects 17 March /30

2 How can you measure the length of an object? Ideally, you use a ruler, a tape measure, or some other measuring device. But what if you can t get to the object to physically measure it? For instance, what if it is the height of a mountain? This week we will explore how certain objects can be measured. Today we will focus on terrestrial objects, such as pyramids or buildings. Later this week we will look at how the distance to the earth and moon, and the size of the earth, was approximated over 2000 years ago. Measuring Distant Objects 17 March /30

3 Thales of Miletus Thales, born around 624 B.C., was a pre-socratic Greek philosopher. Many, including Aristotle, regard him as the first philosopher in the Greek tradition. Thales rejection of mythological explanations became an essential idea for the scientific revolution. He was also the first to define general principles and set forth hypotheses, and as a result has been dubbed the Father of Science. One of the mathematical problems Thales solved was how to measure the heights of the Egyptian pyramids. Measuring Distant Objects 17 March /30

4 Great Pyramid of Cheops Measuring Distant Objects 17 March /30

5 Clicker Question Could we take a long rope to the top and measure how much of the rope it takes to reach the bottom? A Yes that should work. B No it won t give the right height. Measuring Distant Objects 17 March /30

6 Answer Unfortunately, that won t work. It would give the length of a diagonal side of the pyramid. That is longer than the height of the pyramid. If we could cut a hole in the pyramid straight down and drop the rope until it hits the ground, measuring the length of the rope would give us the height. Measuring Distant Objects 17 March /30

7 Illustration of a Variant of Thales Method Measuring Distant Objects 17 March /30

8 What did Thales Do to Measure the Height? Thales discovered a way to measure the height of the pyramids. Thales reasoned that if his height was the same as the length of his shadow, then the same should be true for the pyramid. He waited till his height equaled his shadow, then measured the shadow of the pyramid. From this he knew the height of the pyramid. Measuring Distant Objects 17 March /30

9 Thales Discovery as a Beginning of Mathematics Auguste Comte: In light of previous experience we must acknowledge the impossibility of determining, by direct measurement, most of the heights and distances we should like to know... In renouncing the hope, in almost every case, of measuring great heights or distances directly, the human mind has had to attempt to determine them indirectly, and it is thus that philosophers were led to invent mathematics. Auguste Comte 19th century philosopher Measuring Distant Objects 17 March /30

10 At the heart of Thales discovery is the notion of proportionality. Plutarch, a Greek historian, gives another version of Thales measurement: The height of a pyramid is related to the length of its shadow just as the height of any vertical object is related to the length of its shadow at the same time of day. This is more powerful than what Thales did. We ll discuss the idea behind Plutarch s statement in some detail, and make it precise. Measuring Distant Objects 17 March /30

11 Proportionality and Scaling Measuring Distant Objects 17 March /30

12 What happens when you put an image in a copy machine and enlarge or shrink the image? The pictures on the previous page are the same, except that the right-hand picture is enlarged to 200% of the left-hand picture. By doubling the size of the picture, each length gets doubled. If King Kong was 2 inches tall in the first picture, he d be 4 inches tall in the second picture. Measuring Distant Objects 17 March /30

13 Clicker Question If you double King Kong s dimensions, do you think his weight doubles? A Yes B No Measuring Distant Objects 17 March /30

14 Answer His weight would increase much more than twice. One way to think about this is to think of a cube of some material. If each side length doubles, then the volume increases by a factor of 8. The weight would increase by a factor of 8. It turns out that this is the reason why King Kong and flies the size of humans are fictional. Bones aren t strong enough to handle the increased weight. But, that is a story for another time. Measuring Distant Objects 17 March /30

15 Similar Triangles If we take one triangle and enlarge or shrink it, as a copy machine would do, we get another triangle. These two triangles are called similar. Each angle of the small triangle is equal to one of the angles in the big triangle. The equal angles are marked with the same color. Measuring Distant Objects 17 March /30

16 When the angles of one triangle are equal to the angles of another, then one triangle is obtained from the other by magnifying (or shrinking), and the two are similar. If we think of taking the smaller figure and magnifying it with a copy machine, then the scale factor represents how much we magnify. For example 200% corresponds to a scale factor of 2, and 150% corresponds to a scale factor of 1.5. The scale factor says by what factor each length grows when going from the smaller figure to the larger figure. Measuring Distant Objects 17 March /30

17 In the following picture, the right-hand picture was made by taking the left-hand picture and magnifying it by 200%. Note that the two line segments have doubled length but the size of the angle is the same. Scaling does not change angles. Measuring Distant Objects 17 March /30

18 The length of the segment EG can be found by multiplying the length of AB times the scale factor. Similarly, the length of EF is the length of AC times the scale factor, and similarly for the third sides. Written as equations, if s is the scale factor, then EG = s AB EF = s AC GF = s BC Measuring Distant Objects 17 March /30

19 By dividing, we can write these as EG AB = s EF AC = s GF BC = s We can write this without reference to the scale factor as EG AB = EF AC = GF BC This is a useful set of equations coming from similar triangles. Measuring Distant Objects 17 March /30

20 In words, this relationship can be described as: If two triangles are similar, then corresponding sides are proportional, meaning that the ratio of the lengths of corresponding sides is the same. Corresponding sides represent an original side and a scaled side. For example, AB and EG are corresponding sides. Corresponding angles are those drawn in the same color above. Measuring Distant Objects 17 March /30

21 Clicker Question These two triangles are similar. How long is the unknown side? Measuring Distant Objects 17 March /30

22 Answer The length is 2 inches. It is the solution of the equation??? 1 = = 2 Another way to answer this is to note that, due to the top sides, the scale factor is 3/1.5 = 2. Thus, we have to multiply each length of the left-hand triangle by 2 to get the corresponding length in the right-hand triangle. Therefore, the unknown length is 2 inches. Measuring Distant Objects 17 March /30

23 Proportionality The relationship between corresponding sides of similar triangles is an example of a proportional relationship. Two variable quantities are said to be proportional if their ratio is a constant. Another example is the ratio of height to arm length in any photo of King Kong. No matter how much we scale the picture, the ratio will be the same. If, say we scale the picture by 200%, King Kong s height will double, but so will his arm length. So, the ratio of height to arm length will remain the same. Another example comes from circles. The ratio of circumference to diameter (twice the radius) is always constant. The ratio is the number π. Measuring Distant Objects 17 March /30

24 Plutarch s Variant of Thales Method Thales understood similar triangles, and how similar triangles could be used to measure heights. Measuring Distant Objects 17 March /30

25 In this picture the two triangles are similar because they have equal corresponding angles. The blue angles are equal because the sun s rays are parallel. Measuring Distant Objects 17 March /30

26 Because these triangles are similar, corresponding sides are proportional. This means height of clock tower height of stick = length of clock tower shadow length of stick shadow In this equation, we know or can measure three things, the two shadows and the height of the stick. We can then solve for the height of the clock tower. Measuring Distant Objects 17 March /30

27 An Example Suppose the stick is 3 feet high, it casts a shadow of 2 feet, and the clock tower casts a shadow of 25 feet. Our equation then becomes height of clock tower height of stick = height of the clock tower 3 length of clock tower shadow length of stick shadow = 25 2 We can multiply by 3 to get height of the clock tower = = 75 2 = 37.5 feet Measuring Distant Objects 17 March /30

28 The benefit of using similar triangles is that we don t have to wait for our shadow (or that of the stick) to be the same length as our height, as Thales did. We can do this measurement at any point in time. One drawback to this method is that we need to have a sunny day, so that we can see shadows. Another drawback is that we may not be able to measure a shadow. We need to have space around us in order to measure the shadow. This wouldn t be feasible in many situations. For instance, we couldn t measure the height of Organ Peak in this way. Measuring Distant Objects 17 March /30

29 Next Time We will explore some methods that will overcome the problems mentioned in the last slide. Each of the methods we consider will use similar triangles. Measuring Distant Objects 17 March /30

Astronomical Distances. Astronomical Distances 1/30

Astronomical Distances. Astronomical Distances 1/30 Astronomical Distances Astronomical Distances 1/30 Last Time We ve been discussing methods to measure lengths and objects such as mountains, trees, and rivers. Today we ll look at some more difficult problems.

More information

Astronomical Distances

Astronomical Distances Astronomical Distances 13 April 2012 Astronomical Distances 13 April 2012 1/27 Last Time We ve been discussing methods to measure lengths and objects such as mountains, trees, and rivers. Astronomical

More information

Problem Set 3 (Individual) Due 2/16/11, 9:30am

Problem Set 3 (Individual) Due 2/16/11, 9:30am 1. Suppose you have a line segment AB. (a) If you have a line segment AB, where on it must you put the point C so that the ratio AB is 2? When C is in this location, what is AC the value of the ratio AC?

More information

Geometry. Commensurate and incommensurate segments. The Euclidean algorithm.

Geometry. Commensurate and incommensurate segments. The Euclidean algorithm. September 24, 2017 Geometry. Commensurate and incommensurate segments. The Euclidean algorithm. Definition. Two segments, and, are commensurate if there exists a third segment,, such that it is contained

More information

Geometry. Thales (intercept) theorem. Similarity and related concepts. Megiston topos: hapanta gar chorei (Μέγιστον τόπος άπαντα γαρ χωρεί)

Geometry. Thales (intercept) theorem. Similarity and related concepts. Megiston topos: hapanta gar chorei (Μέγιστον τόπος άπαντα γαρ χωρεί) September 21, 2014 Geometry Thales (intercept) theorem Similarity and related concepts Megiston topos: hapanta gar chorei (Μέγιστον τόπος άπαντα γαρ χωρεί) Space is the greatest thing, as it contains all

More information

Lesson 6 Plane Geometry Practice Test Answer Explanations

Lesson 6 Plane Geometry Practice Test Answer Explanations Lesson 6 Plane Geometry Practice Test Answer Explanations Question 1 One revolution is equal to one circumference: C = r = 6 = 1, which is approximately 37.68 inches. Multiply that by 100 to get 3,768

More information

Upon Whose Shoulders We Stand: A History of Astronomy Up to 200 A.D. Dick Mallot 3/17/2005

Upon Whose Shoulders We Stand: A History of Astronomy Up to 200 A.D. Dick Mallot 3/17/2005 Upon Whose Shoulders We Stand: A History of Astronomy Up to 200 A.D. Dick Mallot 3/17/2005 Who were these ancient astronomers? Where did real astronomy begin? What did we know about astronomy 2000+ years

More information

Jennifer Duong Daniel Szara October 9, 2009

Jennifer Duong Daniel Szara October 9, 2009 Jennifer Duong Daniel Szara October 9, 2009 By around 2000 BC, Geometry was developed further by the Babylonians who conquered the Sumerians. By around 2000 BC, Rational and Irrational numbers were used

More information

Size of the Earth and the Distances to the Moon and the Sun

Size of the Earth and the Distances to the Moon and the Sun Size of the Earth and the Distances to the Moon and the Sun Objectives Using observations of the Earth-Moon-Sun system and elementary geometry and trigonometry, we will duplicate the methods of the ancient

More information

Atomic Theory. Introducing the Atomic Theory:

Atomic Theory. Introducing the Atomic Theory: Atomic Theory Chemistry is the science of matter. Matter is made up of things called atoms, elements, and molecules. But have you ever wondered if atoms and molecules are real? Would you be surprised to

More information

The GED math test gives you a page of math formulas that

The GED math test gives you a page of math formulas that Math Smart 643 The GED Math Formulas The GED math test gives you a page of math formulas that you can use on the test, but just seeing the formulas doesn t do you any good. The important thing is understanding

More information

Vocabulary atom atomos Dalton's atomic theory law of constant composition law of definite proportions law of multiple proportions matter.

Vocabulary atom atomos Dalton's atomic theory law of constant composition law of definite proportions law of multiple proportions matter. 1.3 Early Atomic Theory Lesson Objectives The student will: define matter and explain how it is composed of building blocks known as atoms. give a short history of how the concept of the atom developed.

More information

4 ERATOSTHENES OF CYRENE

4 ERATOSTHENES OF CYRENE 4 ERATOSTHENES OF CYRENE BIOGRAPHY 770L ERATOSTHENES OF CYRENE MEASURING THE CIRCUMFERENCE OF THE EARTH Born c. 276 BCE Cyrene, Libya Died c. 195 BCE Alexandria, Egypt By Cynthia Stokes Brown, adapted

More information

Grade 6 Math Circles. Ancient Mathematics

Grade 6 Math Circles. Ancient Mathematics Faculty of Mathematics Waterloo, Ontario N2L 3G1 Introduction Grade 6 Math Circles October 17/18, 2017 Ancient Mathematics Centre for Education in Mathematics and Computing Have you ever wondered where

More information

Moon Project Handout. I: A Mental Model of the Sun, Moon, and Earth (Do in class.)

Moon Project Handout. I: A Mental Model of the Sun, Moon, and Earth (Do in class.) Moon Project Handout Summary: You will recreate and interpret the geometric and timing measurements performed by the Ancient Greeks in order to determine the sizes of the Sun, Moon, and Earth and the distances

More information

Euclidean Geometry. The Elements of Mathematics

Euclidean Geometry. The Elements of Mathematics Euclidean Geometry The Elements of Mathematics Euclid, We Hardly Knew Ye Born around 300 BCE in Alexandria, Egypt We really know almost nothing else about his personal life Taught students in mathematics

More information

Earth s Rotation. reflect

Earth s Rotation. reflect reflect In ancient Greece, people believed that powerful gods were responsible for all things that happened in nature. The Greeks believed that Helios, the Sun god, drove his fiery chariot from one end

More information

UNIT 1 MECHANICS PHYS:1200 LECTURE 2 MECHANICS (1)

UNIT 1 MECHANICS PHYS:1200 LECTURE 2 MECHANICS (1) 1 UNIT 1 MECHANICS PHYS:1200 LECTURE 2 MECHANICS (1) The topic of lecture 2 is the subject of mechanics the science of how and why objects move. The subject of mechanics encompasses two topics: kinematics:

More information

Lab 2: Angles and other needed math (or the history of astronomy)

Lab 2: Angles and other needed math (or the history of astronomy) Astronomy 101 Name(s): Lab 2: Angles and other needed math (or the history of astronomy) Purpose: This lab is an overview of much of the math skills you will need for this course. As I hope you will see

More information

Grade 8 Chapter 7: Rational and Irrational Numbers

Grade 8 Chapter 7: Rational and Irrational Numbers Grade 8 Chapter 7: Rational and Irrational Numbers In this chapter we first review the real line model for numbers, as discussed in Chapter 2 of seventh grade, by recalling how the integers and then the

More information

ENLARGING AREAS AND VOLUMES

ENLARGING AREAS AND VOLUMES ENLARGING AREAS AND VOLUMES First of all I m going to investigate the relationship between the scale factor and the enlargement of the area of polygons: I will use my own examples. Scale factor: 2 A 1

More information

from Euclid to Einstein

from Euclid to Einstein WorkBook 2. Space from Euclid to Einstein Roy McWeeny Professore Emerito di Chimica Teorica, Università di Pisa, Pisa (Italy) A Pari New Learning Publication Book 2 in the Series WorkBooks in Science (Last

More information

For First year book and James Randi must meet for discussion with Dr. Peel. See e mail from him for details

For First year book and James Randi must meet for discussion with Dr. Peel. See e mail from him for details For First year book and James Randi must meet for discussion with Dr. Peel. See e mail from him for details James Randi dinner tonight at North Campus Diner, meet after class today First year book Coffee

More information

A Series Transformations

A Series Transformations .3 Constructing Rotations We re halfway through the transformations and our next one, the rotation, gives a congruent image just like the reflection did. Just remember that a series of transformations

More information

CSU FRESNO MATHEMATICS FIELD DAY

CSU FRESNO MATHEMATICS FIELD DAY CSU FRESNO MATHEMATICS FIELD DAY MAD HATTER MARATHON 9-10 PART II April 26 th, 2014 1. Consider the set of all solutions (x, y) to the equation 4x 2 = 4y 4 + 2014, where x and y are integers. What is the

More information

But DO use this to check on whether you are doing things correctly. Not all the items are shown here, only the ones that seem to be the hardest.

But DO use this to check on whether you are doing things correctly. Not all the items are shown here, only the ones that seem to be the hardest. Math and Measurement Help The following are worked examples of items LIKE those in Lab 1, Math and Measurement. The answers are not correct ones for the lab. So don t turn them in. But DO use this to check

More information

Waterloo Collegiate Astronomy Assignment SES4UI. Size of the Earth and the Distances to the Moon and Sun

Waterloo Collegiate Astronomy Assignment SES4UI. Size of the Earth and the Distances to the Moon and Sun Waterloo Collegiate Astronomy Assignment SES4UI Size of the Earth and the Distances to the Moon and Sun Objectives Using observations of the Earth-Sun-Moon system and elementary geometry and trigonometry,

More information

Accelerated Math. Class work 3. Algebra.

Accelerated Math. Class work 3. Algebra. Accelerated Math. Class work 3. Algebra. We say that a natural number is divisible by another natural number if the result of this operation is a natural number. If this is not the case then we can divide

More information

Origins of Modern Astronomy

Origins of Modern Astronomy PHYS 1411 Introduction to Astronomy Origins of Modern Astronomy Chapter 4 Topics in Chapter 4 Chapter 4 talks about the history of Astronomy and the development of the model of the solar system. Brief

More information

Small angles and their measurement (due Friday, September 18)

Small angles and their measurement (due Friday, September 18) Small angles and their measurement (due Friday, September 18) Angles, angular sizes, and angular separation The apparent positions and separations of objects in the sky are not determined by the linear

More information

THE END OF YEAR 2015 COMPETITION

THE END OF YEAR 2015 COMPETITION FAU Math Circle 12/5/2015 THE END OF YEAR 2015 COMPETITION SOLUTIONS 1. Erika promised to sell an average of 20 boxes of girl scout cookies per week over a period of six weeks. In the first five weeks

More information

WHERE ARE YOU? LOCATING BY THE SUN

WHERE ARE YOU? LOCATING BY THE SUN WHERE ARE YOU? LOCATING BY THE SUN Sakari Ekko EAAE Summer School Working Group (Finland) Abstract In this workshop, we first find our location on the globe by the Sun and Polaris, the Pole Star. After

More information

CK-12 Geometry: Similarity by AA

CK-12 Geometry: Similarity by AA CK-12 Geometry: Similarity by AA Learning Objectives Determine whether triangles are similar. Understand AA for similar triangles. Solve problems involving similar triangles. Review Queue a. a. Find the

More information

Stepping stones for Number systems. 1) Concept of a number line : Marking using sticks on the floor. (1 stick length = 1 unit)

Stepping stones for Number systems. 1) Concept of a number line : Marking using sticks on the floor. (1 stick length = 1 unit) Quality for Equality Stepping stones for Number systems 1) Concept of a number line : Marking using sticks on the floor. (1 stick length = 1 unit) 2) Counting numbers: 1,2,3,... Natural numbers Represent

More information

All great designs are driven by a motivator. A single or series of entities prompt the

All great designs are driven by a motivator. A single or series of entities prompt the The Driving Force: Mathematics or the Universe? All great designs are driven by a motivator. A single or series of entities prompt the development of the design, shaping and influencing the end product.

More information

Inventors and Scientists: Eratosthenes

Inventors and Scientists: Eratosthenes Inventors and Scientists: Eratosthenes By Cynthia Stokes Brown, Big History Project on 06.15.16 Word Count 1,033 TOP: An undated illustration of scholars at the Library of Alexandria. MIDDLE:A reconstruction

More information

Telescopes and Observatories. Parent Guide, page 1 of 2. OurStory: Exploring the Sky. Read the Directions sheets for step-by-step instructions.

Telescopes and Observatories. Parent Guide, page 1 of 2. OurStory: Exploring the Sky. Read the Directions sheets for step-by-step instructions. Parent Guide, page 1 of 2 Read the Directions sheets for step-by-step instructions. SUMMARY In this activity, children and adults will watch and discuss a short video about how people use telescopes. WHY

More information

Sec 2.4 Geometry Similar Figures

Sec 2.4 Geometry Similar Figures Sec 2.4 Geometry Similar Figures Name: Two figures are considered to be SIMILAR if the two figures have the same shape but may differ in size. To be similar by definition, all corresponding sides have

More information

Final key scientist in this story: Galileo Galilei

Final key scientist in this story: Galileo Galilei Announcements Astronomy 101: 9/30/2008 Exam study materials are posted on the course web page, and a practice exam is available in OWL. Homework 2 is now available on the OWL Due 10/01/08 before midnight

More information

Lecture 3: History of Astronomy. Astronomy 111 Monday September 4, 2017

Lecture 3: History of Astronomy. Astronomy 111 Monday September 4, 2017 Lecture 3: History of Astronomy Astronomy 111 Monday September 4, 2017 Reminders Labs start this week Homework #2 assigned today Astronomy of the ancients Many ancient cultures took note of celestial objects

More information

4 ERATOSTHENES OF CYRENE

4 ERATOSTHENES OF CYRENE 4 ERATOSTHENES OF CYRENE BIOGRAPHY 990L ERATOSTHENES OF CYRENE MEASURING THE CIRCUMFERENCE OF THE EARTH Born c. 276 BCE Cyrene, Libya Died c. 195 BCE Alexandria, Egypt By Cynthia Stokes Brown, adapted

More information

TRAINING LAB BLOOD AS EVIDENCE ANALYZING BLOOD SPATTER NAME

TRAINING LAB BLOOD AS EVIDENCE ANALYZING BLOOD SPATTER NAME TRAINING LAB BLOOD AS EVIDENCE ANALYZING BLOOD SPATTER NAME Background: You have learned how to analyze individual blood drops to determine the height a passive drop fell, the direction a moving drop was

More information

ASTRONAUT PUSHES SPACECRAFT

ASTRONAUT PUSHES SPACECRAFT ASTRONAUT PUSHES SPACECRAFT F = 40 N m a = 80 kg m s = 15000 kg a s = F/m s = 40N/15000 kg = 0.0027 m/s 2 a a = -F/m a = -40N/80kg = -0.5 m/s 2 If t push = 0.5 s, then v s = a s t push =.0014 m/s, and

More information

HAMPSHIRE COLLEGE: YOU CAN T GET THERE FROM HERE : WHY YOU CAN T TRISECT AN ANGLE, DOUBLE THE CUBE, OR SQUARE THE CIRCLE. Contents. 1.

HAMPSHIRE COLLEGE: YOU CAN T GET THERE FROM HERE : WHY YOU CAN T TRISECT AN ANGLE, DOUBLE THE CUBE, OR SQUARE THE CIRCLE. Contents. 1. HAMPSHIRE COLLEGE: YOU CAN T GET THERE FROM HERE : WHY YOU CAN T TRISECT AN ANGLE, DOUBLE THE CUBE, OR SQUARE THE CIRCLE RAVI VAKIL Contents 1. Introduction 1 2. Impossibility proofs, and 2 2 3. Real fields

More information

Gravity. Newton s Law of Gravitation Kepler s Laws of Planetary Motion Gravitational Fields

Gravity. Newton s Law of Gravitation Kepler s Laws of Planetary Motion Gravitational Fields Gravity Newton s Law of Gravitation Kepler s Laws of Planetary Motion Gravitational Fields Simulation Synchronous Rotation https://www.youtube.com/watch?v=ozib_l eg75q Sun-Earth-Moon System https://vimeo.com/16015937

More information

Rocket building social tonight in CCC Rocket launch this Sunday 7 April

Rocket building social tonight in CCC Rocket launch this Sunday 7 April Rocket building social tonight in CCC 1200 Right after class Required if going to rocket launch on Sunday Rocket launch this Sunday 7 April Bus departs at 11:45am from Cambridge Hall Horseshoe Please eat

More information

Humanities 3 V. The Scientific Revolution

Humanities 3 V. The Scientific Revolution Humanities 3 V. The Scientific Revolution Lecture 19 Reading the Book of Nature Outline Bacon s Four Idols Galileo s Scientific Achievements Dialogue Concerning the Two Chief World Systems Friday movie

More information

TEACHER S GUIDE: THE ERATOSTHENES PROJECT

TEACHER S GUIDE: THE ERATOSTHENES PROJECT TEACHER S GUIDE: THE ERATOSTHENES PROJECT Overview This activity is part of the World Year of Physics 2005, the centennial celebration of Einstein s miracle year. In 1905, Einstein created three groundbreaking

More information

Earth s Rotation. How often does the day-and-night cycle occur on Earth?

Earth s Rotation. How often does the day-and-night cycle occur on Earth? How often does the day-and-night cycle occur on Earth? Earth moves through space in several important ways. One type of motion is called rotation. A rotation is a spin around a center. For example, imagine

More information

Chapter 5.1 Variation Direct Variation, Inverse Variation and Joint Variation

Chapter 5.1 Variation Direct Variation, Inverse Variation and Joint Variation 1 Chapter 5.1 Variation Direct Variation, Inverse Variation and Joint Variation Sometimes the equation that relates two or more variables can be described in words by the idea of variation. There are three

More information

P1-763.PDF Why Proofs?

P1-763.PDF Why Proofs? P1-763.PDF Why Proofs? During the Iron Age men finally started questioning mathematics which eventually lead to the creating of proofs. People wanted to know how and why is math true, rather than just

More information

The following text is for tailored for reading aloud to Delta Six students at Diamond Middle School by Jennifer Burgin while showing The Librarian

The following text is for tailored for reading aloud to Delta Six students at Diamond Middle School by Jennifer Burgin while showing The Librarian The following text is for tailored for reading aloud to Delta Six students at Diamond Middle School by Jennifer Burgin while showing The Librarian who Measured the Earth by Kathryn Lasky. Most of the text

More information

Around the corner. Mathematics B-day 2015, Friday November 13, 9:00h-16:00h

Around the corner. Mathematics B-day 2015, Friday November 13, 9:00h-16:00h Around the corner Mathematics B-day 2015, Friday November 13, 9:00h-16:00h Exploration 1 (Piano) You have to move a heavy piano through a 1 meter wide corridor with a right-angled corner in it. The figure

More information

y = k for some constant k. x Equivalently, y = kx where k is the constant of variation.

y = k for some constant k. x Equivalently, y = kx where k is the constant of variation. Section 6. Variation 47 6. Variation Two variable quantities are often closely linked; if you change one then the other also changes. For instance, two quantities x and y might satisfy the following properties:

More information

Homework 1 from Lecture 1 to Lecture 10

Homework 1 from Lecture 1 to Lecture 10 Homework from Lecture to Lecture 0 June, 207 Lecture. Ancient Egyptians calculated product essentially by using additive. For example, to find 9 7, they considered multiple doublings of 7: Since 9 = +

More information

1. The length of an object in inches, as a function of its length in feet. 2. The length of an object in feet, as a function of its length in inches

1. The length of an object in inches, as a function of its length in feet. 2. The length of an object in feet, as a function of its length in inches 2.2 20 Functions Algebra is about relations. If we know how two quantities are related, then information about one quantity gives us information about the other. For instance, if we know the relationship

More information

G-MG Eratosthenes and the circumference of the earth

G-MG Eratosthenes and the circumference of the earth G-MG Eratosthenes and the circumference of the earth Alignments to Content Standards: G-MG.A Task The ancient Greek scientist Eratosthenes devised the following experiment for estimating the circumference

More information

Greece In 700 BC, Greece consisted of a collection of independent city-states covering a large area including modern day Greece, Turkey, and a multitu

Greece In 700 BC, Greece consisted of a collection of independent city-states covering a large area including modern day Greece, Turkey, and a multitu Chapter 3 Greeks Greece In 700 BC, Greece consisted of a collection of independent city-states covering a large area including modern day Greece, Turkey, and a multitude of Mediterranean islands. The Greeks

More information

Guiding Questions Activity 6. What are your ideas about gravity?

Guiding Questions Activity 6. What are your ideas about gravity? Guiding Questions Activity 6 What are your ideas about gravity? Round? Flat? Begin this discussion by reminding students of the earlier work they did concerning how people viewed their world. Remind them

More information

A100 Exploring the Universe: The Rise of Science. Martin D. Weinberg UMass Astronomy

A100 Exploring the Universe: The Rise of Science. Martin D. Weinberg UMass Astronomy A100 Exploring the Universe: The Rise of Science Martin D. Weinberg UMass Astronomy weinberg@astro.umass.edu September 11, 2012 Read: Chap 3 09/11/12 slide 1 Problem Set #1 due this afternoon at 5pm! Read:

More information

An Intuitive Introduction to Motivic Homotopy Theory Vladimir Voevodsky

An Intuitive Introduction to Motivic Homotopy Theory Vladimir Voevodsky What follows is Vladimir Voevodsky s snapshot of his Fields Medal work on motivic homotopy, plus a little philosophy and from my point of view the main fun of doing mathematics Voevodsky (2002). Voevodsky

More information

FIRST GRADE 1 WEEK LESSON PLANS AND ACTIVITIES

FIRST GRADE 1 WEEK LESSON PLANS AND ACTIVITIES FIRST GRADE 1 WEEK LESSON PLANS AND ACTIVITIES UNIVERSE CYCLE OVERVIEW OF FIRST GRADE UNIVERSE WEEK 1. PRE: Describing the Universe. LAB: Comparing and contrasting bodies that reflect light. POST: Exploring

More information

Lab Title: Parallax and Astronomical Distances. Equipment: Sextant Meter sticks (or tape measures) Calipers Magnetic compasses.

Lab Title: Parallax and Astronomical Distances. Equipment: Sextant Meter sticks (or tape measures) Calipers Magnetic compasses. Lab Title: Parallax and Astronomical Distances Equipment: Sextant Meter sticks (or tape measures) Calipers Magnetic compasses Introduction: Since we cannot travel to most celestial objects in order to

More information

The Sun-Earth-Moon System

The Sun-Earth-Moon System chapter 311 section 1 Earth The Sun-Earth-Moon System Before You Read What do you already know about Earth s shape, its size, and how it moves? Write what you know on the lines below. What You ll Learn

More information

Wheels Radius / Distance Traveled

Wheels Radius / Distance Traveled Mechanics Teacher Note to the teacher On these pages, students will learn about the relationships between wheel radius, diameter, circumference, revolutions and distance. Students will use formulas relating

More information

Unit 2 Math II - History of Trigonometry

Unit 2 Math II - History of Trigonometry TSK # Unit Math II - History of Trigonometry The word trigonometry is of Greek origin and literally translates to Triangle Measurements. Some of the earliest trigonometric ratios recorded date back to

More information

5.19 Māui and the Sun

5.19 Māui and the Sun 5.19 Māui and the Sun Topic: Weather Subtopic: Climate Activity type/skill: Ask and answer Literacy focus: Reading Genre: Explanations Objective Demonstrate a high level of understanding of text. Recognise

More information

~ 1 ~ Geometry 2 nd Semester Review Find the value for the variable for each of the following situations

~ 1 ~ Geometry 2 nd Semester Review Find the value for the variable for each of the following situations Geometry nd Semester Review 018 Find the value for the variable for each of the following situations. 7. 400 m 1. 7 8. y. 8.9 cm 0 0 9.. 19 6 60 1 11 10. 45 4. 58 5 11. 5. 11 6. 18 1 slide 4.1 meters long

More information

Physics Lab #10:! Stellar Parallax!

Physics Lab #10:! Stellar Parallax! opposite Physics 10293 Lab #10: Stellar Parallax Introduction Parallax is a distance determination technique that uses geometry to measure the distance to some object when other means (such as a ruler

More information

Integration Made Easy

Integration Made Easy Integration Made Easy Sean Carney Department of Mathematics University of Texas at Austin Sean Carney (University of Texas at Austin) Integration Made Easy October 25, 2015 1 / 47 Outline 1 - Length, Geometric

More information

Chapter 10. Right Triangles

Chapter 10. Right Triangles Chapter 10 Right Triangles If we looked at enough right triangles and experimented a little, we might eventually begin to notice some relationships developing. For instance, if I were to construct squares

More information

2016 Junior Lesson One

2016 Junior Lesson One 2016 Junior Lesson One To complete this lesson make sure you answer all the questions in bold and do one of the projects at the end of the lesson. Parts marked ADVANCED are for the curious. This year we

More information

2015 Joe Holbrook Memorial Math Competition 7th Grade Exam Solutions

2015 Joe Holbrook Memorial Math Competition 7th Grade Exam Solutions 05 Joe Holbrook Memorial Math Competition 7th Grade Exam Solutions The Bergen County Academies Math Team October th, 05. We have two 5 s, two 7 s, two 9 s, two s, one, and one. This simplifies to (5 +

More information

Understanding the Atom

Understanding the Atom Understanding the Atom CHAPTER 9 LESSON 1 Discovering Parts of an Atom What do you think? Read the three statements below and decide whether you agree or disagree with them. Place an A in the Before column

More information

4 ERATOSTHENES OF CYRENE

4 ERATOSTHENES OF CYRENE 4 ERATOSTHENES OF CYRENE BIOGRAPHY 1180L ERATOSTHENES OF CYRENE MEASURING THE CIRCUMFERENCE OF THE EARTH Born c. 276 BCE Cyrene, Libya Died c. 195 BCE Alexandria, Egypt By Cynthia Stokes Brown More than

More information

Generalized Pythagoras Theorem

Generalized Pythagoras Theorem Generalized Pythagoras Theorem The Pythagoras theorem came from India through Arab mathematicians to the Greeks. It claims that if we draw squares on the sides of a right angle triangle, then the two smaller

More information

Venus Project Book, the Galileo Project, GEAR

Venus Project Book, the Galileo Project, GEAR 1 Venus Project Book, the Galileo Project, GEAR Jeffrey La Favre November, 2013 Updated March 31, 2016 You have already learned about Galileo and his telescope. Recall that he built his first telescopes

More information

1.10 Continuity Brian E. Veitch

1.10 Continuity Brian E. Veitch 1.10 Continuity Definition 1.5. A function is continuous at x = a if 1. f(a) exists 2. lim x a f(x) exists 3. lim x a f(x) = f(a) If any of these conditions fail, f is discontinuous. Note: From algebra

More information

3 Newton s First Law of Motion Inertia. Forces cause changes in motion.

3 Newton s First Law of Motion Inertia. Forces cause changes in motion. Forces cause changes in motion. A ball at rest in the middle of a flat field is in equilibrium. No net force acts on it. If you saw it begin to move across the ground, you d look for forces that don t

More information

Circle Theorems. Angles at the circumference are equal. The angle in a semi-circle is x The angle at the centre. Cyclic Quadrilateral

Circle Theorems. Angles at the circumference are equal. The angle in a semi-circle is x The angle at the centre. Cyclic Quadrilateral The angle in a semi-circle is 90 0 Angles at the circumference are equal. A B They must come from the same arc. Look out for a diameter. 2x Cyclic Quadrilateral Opposite angles add up to 180 0 A They must

More information

Kids Garden Teacher s Guide: Grade 3

Kids Garden Teacher s Guide: Grade 3 Kids Garden Teacher s Guide: Grade 3 California Content Standards Grade 2 Science: 2a, 6a, 6c, 6d, 6e What s Going On? The Kids Garden gives children the opportunity to explore the natural community of

More information

What is proof? Lesson 1

What is proof? Lesson 1 What is proof? Lesson The topic for this Math Explorer Club is mathematical proof. In this post we will go over what was covered in the first session. The word proof is a normal English word that you might

More information

SCIENCE FUN. Copyright by The Adventures of Scuba Jack, Inc., All rights reserved.

SCIENCE FUN. Copyright by The Adventures of Scuba Jack, Inc., All rights reserved. SCIENCE FUN AIR Air is all around you. It is made up of many different gasses. The most important gas in air is oxygen. Animals and people need oxygen to live. When you breathe, you are breathing in air,

More information

Unit 3, Lesson 1: How Well Can You Measure?

Unit 3, Lesson 1: How Well Can You Measure? Unit 3, Lesson 1: How Well Can You Measure? 1. Estimate the side length of a square that has a 9 cm long diagonal. 2. Select all quantities that are proportional to the diagonal length of a square. A.

More information

Physics 8 Wednesday, November 20, 2013

Physics 8 Wednesday, November 20, 2013 Physics 8 Wednesday, November 20, 2013 I plan next time to use Statics & Strength of Materials for Architecture & Building Construction by Onouye & Kane for these few weeks supplemental topics. Used copies

More information

Basic Questions About the Universe. What is the shape of the Earth? How far is it from the Earth to the Moon? How far is it from the Earth to the Sun?

Basic Questions About the Universe. What is the shape of the Earth? How far is it from the Earth to the Moon? How far is it from the Earth to the Sun? Basic Questions About the Universe What is the shape of the Earth? What is size of the Earth? How far is it from the Earth to the Moon? How far is it from the Earth to the Sun? What is the speed of light?

More information

g = Gm / r 2 The Big Idea

g = Gm / r 2 The Big Idea The Big Idea Over 2500 years ago Aristotle proposed two laws of physics governing motion. One for Earthly bodies (objects on Earth) that states objects naturally go in straight lines and one for Heavenly

More information

PTOLEMY DAY 10 PREPARING TO FIND OTHER ARCS BETWEEN THE ECLIPTIC AND EQUATOR. You might have noticed that in Day 9, when we found the arc

PTOLEMY DAY 10 PREPARING TO FIND OTHER ARCS BETWEEN THE ECLIPTIC AND EQUATOR. You might have noticed that in Day 9, when we found the arc PTOLEMY DAY 10 PREPARING TO FIND OTHER ARS BETWEEN THE ELIPTI AND EQUATOR You might have noticed that in Day 9, when we found the arc D between the tropics, we made no use of our table of chords. We simply

More information

Oakland Unified School District. Worksheet To Accompany USGS Map Adventures Teaching Packet

Oakland Unified School District. Worksheet To Accompany USGS Map Adventures Teaching Packet Worksheet To Accompany USGS Map Adventures Teaching Packet Lesson 7: Map Scale Is the large map of the park the same size as the real park? Maps almost always have to be drawn smaller than the actual area

More information

No, not the PIE you eat.

No, not the PIE you eat. March 14 is National Pi Day! No, not the PIE you eat. I'm talking about the mathematical constant, Pi, which is equal to approximately 3.14. 1 I wonder why Pi Day is on March 14? Here's a hint: Write March

More information

AST 104 Lab 8: Hubble Deep Field & The Fate of the Universe

AST 104 Lab 8: Hubble Deep Field & The Fate of the Universe Name: SUID: AST 104 Lab 8: Hubble Deep Field & The Fate of the Universe Introduction: One of the most revered images in all of Astronomy is the so called Hubble Deep Field image. Part of the Hubble Telescope

More information

Mesopotamia Here We Come

Mesopotamia Here We Come Babylonians Mesopotamia Here We Come Chapter The Babylonians lived in Mesopotamia, a fertile plain between the Tigris and Euphrates rivers. Babylonian society replaced both the Sumerian and Akkadian civilizations.

More information

California CCSS Mathematics Grades 1-3

California CCSS Mathematics Grades 1-3 Operations and Algebraic Thinking Represent and solve problems involving addition and subtraction. 1.OA.1. Use addition and subtraction within 20 to solve word problems involving situations of adding to,

More information

DISCOVERING GEOMETRY Over 6000 years ago, geometry consisted primarily of practical rules for measuring land and for

DISCOVERING GEOMETRY Over 6000 years ago, geometry consisted primarily of practical rules for measuring land and for Name Period GEOMETRY Chapter One BASICS OF GEOMETRY Geometry, like much of mathematics and science, developed when people began recognizing and describing patterns. In this course, you will study many

More information

Final Exam Extra Credit Opportunity

Final Exam Extra Credit Opportunity Final Exam Extra Credit Opportunity For extra credit, counted toward your final exam grade, you can write a 3-5 page paper on (i) Chapter II, Conceptions in Antiquity, (ii) Chapter V, Newton and Leibniz,

More information

18.2 Earth Cycles Days and years Calendars Years and days Leap years Calendars throughout human history 20,000 years ago. 7,000 BC. 4,000 BC.

18.2 Earth Cycles Days and years Calendars Years and days Leap years Calendars throughout human history 20,000 years ago. 7,000 BC. 4,000 BC. 18.2 Reading 18.2 Earth Cycles Do you ever wonder where our calendar comes from? Or why the Moon gradually changes its shape? Or why we have seasons? The answers have to do with the relative positions

More information

8-6. Square Roots and Cube Roots. Vocabulary. Areas of Squares and Powers as Squares. Activity 1. Lesson

8-6. Square Roots and Cube Roots. Vocabulary. Areas of Squares and Powers as Squares. Activity 1. Lesson Lesson 8-6 Square Roots and Cube Roots BIG IDEA If a fi rst number is the square (or the cube) of a second number, then the second number is a square root (or cube root) of the fi rst. Areas of Squares

More information

Exercise 3: The history of astronomy

Exercise 3: The history of astronomy Astronomy 100 Name(s): Exercise 3: The history of astronomy In the previous exercise, you saw how the passage of time is intimately related to the motion of celestial objects. This, of course, led many

More information

Take It To The Limit. Calculus H Mr. Russo Reaction to Take It To The Limit

Take It To The Limit. Calculus H Mr. Russo Reaction to Take It To The Limit Calculus H Mr. Russo Reaction to Take It To The Limit For Tuesday, I am asking you to read the article below, Take It To The Limit by Steven Strogatz, and to write a brief reaction paper to this reading.

More information

STONEHENGE AS A SOLSTICE INDICATOR

STONEHENGE AS A SOLSTICE INDICATOR STONEHENGE AS A SOLSTICE INDICATOR One of the most impressive megalithic structures in the world is Stonehenge just north of Salisbury, England. I first visited the monument during my post-doctorate year

More information