TRAINING LAB BLOOD AS EVIDENCE ANALYZING BLOOD SPATTER NAME

Size: px
Start display at page:

Download "TRAINING LAB BLOOD AS EVIDENCE ANALYZING BLOOD SPATTER NAME"

Transcription

1 TRAINING LAB BLOOD AS EVIDENCE ANALYZING BLOOD SPATTER NAME Background: You have learned how to analyze individual blood drops to determine the height a passive drop fell, the direction a moving drop was falling when it hit a surface, and the Impact Angle of a falling drop. It s now time to learn how to put it all together and interpret the blood spatter at a crime scene to find out where the blood drops came from, to move back in time to recreate what happened and tell the story of the crime. 1. You will be trained to analyze blood spatter pattern to determine the Point of Convergence. 2. You will be trained to analyze blood spatter pattern to determine the Point of Origin. Procedures: Part 1 The Appearance Of Blood Spatter 1. The initial blood spatter from a gunshot wound usually forms a collection of many, smaller blood droplets that fly outward from the wound and may land on walls, ceilings, or floors. 2. The initial blood spatter traveling from someone being hit usually forms average-sized blood drops that fly outward from the wound and may land on walls or floors. 3. Blood spatter from a swinging weapon usually forms a long line of average-sized blood drops that may land on walls, ceiling, or floors. 4. Blood spatter from a bleeding wound usually forms average-sized drops that drop to the ground. They can be round if the person is standing still, or oval-shaped if the person is moving. Part 2 Analyzing Blood Spatter To Determine The Point Of Convergence 1. A blood spatter pattern on the wall, floor, ceiling, or similar surface can help you find the location in a room where a victim was injured. 2. Your first step is to draw STRAIGHT LINES through all the blood drops that fell at an angle to see where they came from (you don t need to draw lines through the perfectly round blood drops you already know they came from a wound directly above the drop). A. Use a ruler/meter stick to draw your straight lines OR stretch out and tape down strings to form the straight lines. B. Draw lines through the Long Axis of the blood drops (see picture at right). C. Draw the line so it travels back toward where the drop came from (opposite the direction of travel). direction of travel 53

2 3. The collection of lines through several blood drops should intersect at some point. This area of intersection is called the POINT OF CONVERGENCE (see the diagram at the bottom of the page). The Convergence is the location where the injury must have taken place and it is always where your blood drop travel lines intersect. 4. Look at Figure 1 Training Lab Crime Scene. The Setup - This page represents a miniature version of a floor in a room. Everything is drawn to scale, exactly as it was found in the room. However, the blood drops have been enlarged so they will be easier for you to analyze. MAKE ALL MEASUREMENTS IN THIS MINIATURE ROOM USING MILLIMETERS. The Story - A male victim was found unconscious on the floor and had been hit in the head with a rock. Blood spatter evidence is present on the floor (the blood drops have been enlarged for your analysis). No suspects have been located. The Problem You must: 1. Find where the victim was located in the room when he was struck with the rock (the Convergence). 2. Determine the exact height of the victim s head when it was struck with the rock (was the victim standing, kneeling, or lying on the floor?). 5. Determine the Point Of Convergence in the Training Lab Crime Scene by drawing lines though the blood drops and looking for the point of intersection. This intersection point is where the victim was located in the room when he was struck with the rock. 6. To determine the height of the victim s head when it was struck will require a little more work. Move on to Part 3 to learn how to answer this problem. Part 3 Analyzing Blood Spatter To Determine The Point Of Origin 1. The Convergence is important when analyzing blood spatter it shows you the general location where an injury was inflicted at a crime scene. However, EXACTLY where along a line extending out from the Convergence did the injury occur close to the surface or far away from the surface? 2. The EXACT location of where the injury occurred along this Convergence line is called the POINT OF ORIGIN. Convergence IF BLOOD SPATTER IS ON A WALL The Origin How far away from the wall (out from the Convergence) did the injury occur? IF BLOOD SPATTER IS ON THE FLOOR The Origin How high above the floor (above the Convergence) did the injury occur? Convergence 54

3 THE POINT OF ORIGIN CAN BE EASILY CALCULATED 3. To calculate the Origin complete the following steps. Step #1 Determine the Convergence Step #2 Calculate the Impact Angle of one of the blood drops you used to find the Convergence (DO NOT measure tails!). Step #3 Accurately measure the distance from the FRONT EDGE of this same blood drop to the Convergence (see diagram at right). You can measure in any units, however, you should measure in millimeters in this activity. Step #4 Use the Trigonometry formula below to calculate the Origin. You front edge of blood drop Where did the injury occur along this line? measure this distance Origin is the exact distance along this Convergence line where the injury occurred Convergence is where all the blood drop travel lines intersect will need a scientific calculator OR trigonometry table to complete the Tangent of Blood Drop Impact Angle calculation (see your supervisor for help finding the correct buttons to push on your calculator for Tangent ). Tangent of Blood Drop Impact Angle Distance From Blood Drop To Convergence Example #1: Impact Angle of the blood drop 40 o and the front edge of the blood drop is 38.7cm away from the Convergence. Where is the Origin? BLOOD SPATTER ON THE FLOOR Distance To Point of Origin? Impact Angle 40 o front edge of blood drop Distance to Convergence 38.7cm Tangent of 40 o cm 38.7cm 32.5cm The injury occurred exactly 32.5cm above the Convergence! 55

4 Example #2: Impact Angle of the blood drop 70 o and the front edge of the blood drop is 28.5cm away from the Convergence. Where is the Origin? BLOOD SPATTER ON A WALL Distance to Point of Origin? Distance to Convergence 28.5cm Impact Angle 70 0 Tangent of 70 o cm 28.5cm 78.3cm The injury occurred exactly 78.3cm away from the Convergence 4. Look over the Reference Page Trigonometry And Blood Drops Part 2 to get a better understanding of why this Origin formula works. 5. Calculate the Origin for the Training Lab Crime Scene. Use Blood Drop #1 for your calculations. Record your results in Table 1 (located on the Training Lab Crime Scene ) 6. Calculate the Origin for the Training Lab Crime Scene using Blood Drop #2 for your calculations, and then repeat your calculations one more time using Blood Drop #3 for your calculations. Record all results in Table 1. 56

5 Figure 1 Training Lab Crime Scene Make all measurements in millimeters Table 1 Blood spatter analysis #1 #2 #3 Impact Angle Distance To Point of Convergence (mm) Origin Height (mm) #1 #2 #3 Rock 57

6 REFERENCE PAGE TRIGONOMETRY AND BLOOD DROPS PART 2 *Recall a Right Triangle and its labels: Angle B side a side c (hypotenuse) Angle C side b Angle A *A Right Triangle is defined when calculating the Origin from blood spatter. Origin Origin Distance (side a ) Distance from blood drop to Convergence (side b ) Convergence Blood Drops Impact Angle (Angle A) Blood Drop *This makes it very easy to calculate the Distance To The Origin for blood splatter! Simple use the Trigonometry Formula: Tangent of Impact Angle (Angle A) (side a ) Distance From Blood Drop To Convergence (side c ) *Tangent works like a conversion factor to convert degrees of an angle into units of length so the problem can be worked correctly. *PROBLEM What is the Origin of the blood spatter shown below? Tangent of 70 o 12 inches inches 33 inches Origin? Blood Drop #2 Blood Drop #1 The injury occurred 33 inches above the Convergence Distance from the front edge of Blood Drop #1 to Convergence 12 inches Impact Angle of Blood Drop #

7 QUESTIONS BLOOD AS EVIDENCE ANALYZING BLOOD SPATTER NAME 1. A victim was shot and found at the bottom of a ladder. You are preparing to analyze blood spatter at the crime scene to determine if the victim was on the ground or on the ladder when they were shot. What do you need to find first the Origin or the Convergence? 2. You enter a crime scene and discover one, single blood drop. You immediately measure the drop and calculate it s Impact Angle. However, you will not be able to determine the Origin of this single blood drop. Why can t you determine the Origin from a single blood drop? 3. Think back to the first Training Lab you completed on blood drops (passive blood drops falling straight down to the ground not at an angle). How did you determine the Origin Height for these round, passive blood drops? Use your Figure 1 - Training Lab Crime Scene results to answer Questions #4 #8. 4. List your calculated Origin Heights in Table 2 (provided to the right). 5. All three of my Origin Height calculations were (check one): identical similar very different Table 2 - Calculated Origin Heights for Training Lab Crime Scene #1 #2 #3 Origin Height (mm) Average Point of Origin Height (mm) 59

8 6. Why should you complete calculations using several blood drops (like Blood Drops #1, #2, and #3) rather than simply calculating Distance To Point Of Origin from one drop (like Blood Drop #1 only)? 7. Calculate your Average Origin Height and record in Table 2. For Questions #8 **Every 1mm of measurement you make in the miniature crime scene 1 inch of measurement in the actual room where the crime occurred (scale is 1mm 1 inch). 8. Remember, blood spatter analysis can help you move back in time to recreate what happened at a crime scene. Let s give it a try! About how tall is the victim of the crime? Use a ruler and measure his height. Remember, the scale is 1mm 1inch. What is the Average Origin Height in inches? (scale is 1mm 1 inch) Was the victim most likely: standing / on their knees / on their hands and knees / or lying down near the ground when struck with the rock? Based on the evidence was the victim likely struck: once / twice / three or more times? How far did the victim move after being struck before collapsing? (scale is 1mm 1 inch) 60

9 9. Use the blood spatter evidence below to determine how many times the victim was hit (find the Points of Convergence only you do not need to determine Points of Origin). Also, DRAW A SMALL CIRCLE at each location in the room where the victim was hit. The victim was hit times. 10. A victim was shot and you are analyzing the crime scene. You find blood spatter on the wall. You must calculate where along the wall ( Convergence), and how far away from the wall ( Origin), the victim was standing when they were shot. In this crime scene 1mm 1 inch, however, the blood drops have been enlarged so they will be easier for you to analyze. PLEASE SHOW YOUR WORK. W ALL FLOOR A. How far away from the wall (in inches) was the victim standing when he was shot? The Origin B. How far above the ground was the gunshot wound on the victim s body (in inches)? Simply measure the height. C. What part of the victim s body was likely shot? HINT - When working with blood spatter on a wall the Origin becomes the distance AWAY FROM THE WALL (not the height). Height can simply be measured as the distance from the floor to the Convergence. 61

Point of Origin. Forensics Lab. Name. Period

Point of Origin. Forensics Lab. Name. Period Forensics Lab Point of Origin Name Period Introduction: In the previous labs, you determined the angle of impact and area of convergence for blood spatter. Now you can use that information and the Law

More information

Blood Splatter: The Point of Origin

Blood Splatter: The Point of Origin Blood Splatter: The Point of Origin Topic Program Developed by Developer Type Forensic Science Brown Science Prep Joseph Paliotti High school teacher Overview / Purpose / Essential Questions How can physics

More information

Blood Spatter Lab: Angle of Impact

Blood Spatter Lab: Angle of Impact Blood Spatter Lab: Angle of Impact Materials: Simulated blood Samples, yardstick, metric ruler Objective: Determine how angle affects blood spatter and to apply this to a mock crime scenario. Background:

More information

BULLET TRAJECTORY. Concepts and Calculations

BULLET TRAJECTORY. Concepts and Calculations BULLET TRAJECTORY Concepts and Calculations WHAT IS A FORCE? Strength or energy from a physical action or movement Something that causes a change in the motion of an object. Mass X Acceleration (kg m/s

More information

ACTIVITY 8-1 A PRESUMPTIVE TEST FOR BLOOD

ACTIVITY 8-1 A PRESUMPTIVE TEST FOR BLOOD ACTIVITY 8-1 A PRESUMPTIVE TEST FOR BLOOD Objective: By the end of this activity, you will be able to: Use the Kastle-Meyer Presumptive Blood Test to determine if a given stain contains blood. Scenario:

More information

Blood Spatter Interpretation at Crime Scenes for First Responders, Homicide Detectives, Crime Scene Technicians.

Blood Spatter Interpretation at Crime Scenes for First Responders, Homicide Detectives, Crime Scene Technicians. Blood Spatter Interpretation at Crime Scenes for First Responders, Homicide Detectives, Crime Scene Technicians. Excerpted from: Blood Spatter Interpretation at Crime and Accident Scenes: A Step by Step

More information

Motion in Two Dimensions Teacher s Guide

Motion in Two Dimensions Teacher s Guide Motion in Two Dimensions Teacher s Guide Objectives: 1. Use kinematic equations for motion in two dimensions to determine the range of a projectile.. Use the equation for torque to determine at what point

More information

Forensics with TI-Nspire Technology

Forensics with TI-Nspire Technology Forensics with TI-Nspire Technology 2013 Texas Instruments Incorporated 1 education.ti.com Science Objectives Determine the height of a source of blood spatters or drops Graph data to find quantitative

More information

Experimenting with Forces

Experimenting with Forces A mother hears a loud crash in the living room. She walks into the room to see her seven-year-old son looking at a broken vase on the floor. How did that happen? she asks. I don t know. The vase just fell

More information

Projectiles: Target Practice Student Advanced Version

Projectiles: Target Practice Student Advanced Version Projectiles: Target Practice Student Advanced Version In this lab you will shoot a chopstick across the room with a rubber band and measure how different variables affect the distance it flies. You will

More information

Assignment 1 and 2: Complete practice worksheet: Simplifying Radicals and check your answers

Assignment 1 and 2: Complete practice worksheet: Simplifying Radicals and check your answers Geometry 0-03 Summary Notes Right Triangles and Trigonometry These notes are intended to be a guide and a help as you work through Chapter 8. These are not the only thing you need to read, however. Rely

More information

F = ma W = mg v = D t

F = ma W = mg v = D t Forces and Gravity Car Lab Name: F = ma W = mg v = D t p = mv Part A) Unit Review at D = f v = t v v Please write the UNITS for each item below For example, write kg next to mass. Name: Abbreviation: Units:

More information

8.6 Inverse Trigonometric Ratios

8.6 Inverse Trigonometric Ratios www.ck12.org Chapter 8. Right Triangle Trigonometry 8.6 Inverse Trigonometric Ratios Learning Objectives Use the inverse trigonometric ratios to find an angle in a right triangle. Solve a right triangle.

More information

OBSERVING PROJECT PARTNER ELECTION

OBSERVING PROJECT PARTNER ELECTION ASTRONOMY 25 NOON SUN PROJECT P. P. 1 Name(s) Section Day/Time Fill in either Part 1 or Part 2. OBSERVING PROJECT PARTNER ELECTION Part I. SOLO OBSERVER I will do the observing project by myself. I will

More information

LAB 2 - ONE DIMENSIONAL MOTION

LAB 2 - ONE DIMENSIONAL MOTION Name Date Partners L02-1 LAB 2 - ONE DIMENSIONAL MOTION OBJECTIVES Slow and steady wins the race. Aesop s fable: The Hare and the Tortoise To learn how to use a motion detector and gain more familiarity

More information

Lab 6 Forces Part 2. Physics 225 Lab

Lab 6 Forces Part 2. Physics 225 Lab b Lab 6 Forces Part 2 Introduction This is the second part of the lab that you started last week. If you happen to have missed that lab then you should go back and read it first since this lab will assume

More information

2. Find the side lengths of a square whose diagonal is length State the side ratios of the special right triangles, and

2. Find the side lengths of a square whose diagonal is length State the side ratios of the special right triangles, and 1. Starting at the same spot on a circular track that is 80 meters in diameter, Hayley and Kendall run in opposite directions, at 300 meters per minute and 240 meters per minute, respectively. They run

More information

Student Content Brief Advanced Level

Student Content Brief Advanced Level Student Content Brief Advanced Level Vectors Background Information Physics and Engineering deal with quantities that have both size and direction. These physical quantities have a special math language

More information

Sums of Squares (FNS 195-S) Fall 2014

Sums of Squares (FNS 195-S) Fall 2014 Sums of Squares (FNS 195-S) Fall 014 Record of What We Did Drew Armstrong Vectors When we tried to apply Cartesian coordinates in 3 dimensions we ran into some difficulty tryiing to describe lines and

More information

Casting Physics Simplified Part Two. Frames of Reference

Casting Physics Simplified Part Two. Frames of Reference Casting Physics Simplified Part Two Part one of this paper discussed physics that applies to linear motion, i.e., motion in a straight line. This section of the paper will expand these concepts to angular

More information

Vector and Relative motion discussion/ in class notes. Projectile Motion discussion and launch angle problem. Finish 2 d motion and review for test

Vector and Relative motion discussion/ in class notes. Projectile Motion discussion and launch angle problem. Finish 2 d motion and review for test AP Physics 1 Unit 2: 2 Dimensional Kinematics Name: Date In Class Homework to completed that evening (before coming to next class period) 9/6 Tue (B) 9/7 Wed (C) 1D Kinematics Test Unit 2 Video 1: Vectors

More information

Trigonometry Basics. Which side is opposite? It depends on the angle. θ 2. Y is opposite to θ 1 ; Y is adjacent to θ 2.

Trigonometry Basics. Which side is opposite? It depends on the angle. θ 2. Y is opposite to θ 1 ; Y is adjacent to θ 2. Trigonometry Basics Basic Terms θ (theta) variable for any angle. Hypotenuse longest side of a triangle. Opposite side opposite the angle (θ). Adjacent side next to the angle (θ). Which side is opposite?

More information

Experiment 3 Forces are Vectors

Experiment 3 Forces are Vectors Name Partner(s): Experiment 3 Forces are Vectors Objectives Preparation Pre-Lab Understand that some quantities in physics are vectors, others are scalars. Be able to perform vector addition graphically

More information

AP Calculus. Applications of Derivatives. Table of Contents

AP Calculus. Applications of Derivatives.   Table of Contents AP Calculus 2015 11 03 www.njctl.org Table of Contents click on the topic to go to that section Related Rates Linear Motion Linear Approximation & Differentials L'Hopital's Rule Horizontal Tangents 1 Related

More information

Vector components and motion

Vector components and motion Vector components and motion Objectives Distinguish between vectors and scalars and give examples of each. Use vector diagrams to interpret the relationships among vector quantities such as force and acceleration.

More information

Force Vectors and Static Equilibrium

Force Vectors and Static Equilibrium Force Vectors 1 Force Vectors and Static Equilibrium Overview: In this experiment you will hang weights from pulleys over the edge of a small round force table, to exert various forces on a metal ring

More information

Trigonometry Math 076

Trigonometry Math 076 Trigonometry Math 076 133 Right ngle Trigonometry Trigonometry provides us with a way to relate the length of sides of a triangle to the measure of its angles. There are three important trigonometric functions

More information

Please read this introductory material carefully; it covers topics you might not yet have seen in class.

Please read this introductory material carefully; it covers topics you might not yet have seen in class. b Lab Physics 211 Lab 10 Torque What You Need To Know: Please read this introductory material carefully; it covers topics you might not yet have seen in class. F (a) (b) FIGURE 1 Forces acting on an object

More information

But DO use this to check on whether you are doing things correctly. Not all the items are shown here, only the ones that seem to be the hardest.

But DO use this to check on whether you are doing things correctly. Not all the items are shown here, only the ones that seem to be the hardest. Math and Measurement Help The following are worked examples of items LIKE those in Lab 1, Math and Measurement. The answers are not correct ones for the lab. So don t turn them in. But DO use this to check

More information

Different Forces Act on Objects

Different Forces Act on Objects Have you heard the story about Isaac Newton sitting under an apple tree? According to the story, an apple fell from a tree and hit him on the head. From that event, it is said that Newton discovered the

More information

Linear Motion with Constant Acceleration

Linear Motion with Constant Acceleration Linear Motion 1 Linear Motion with Constant Acceleration Overview: First you will attempt to walk backward with a constant acceleration, monitoring your motion with the ultrasonic motion detector. Then

More information

ASTRONOMY 25 SUMMER 2017 PROJECT 2: THE HEIGHT OF THE SUN

ASTRONOMY 25 SUMMER 2017 PROJECT 2: THE HEIGHT OF THE SUN Name(s) Section Time ASTRONOMY 25 SUMMER 2017 PROJECT 2: THE HEIGHT OF THE SUN Rules: 1) Do the project by yourself or with one other person. If you want to work with a partner, get an agreement form from

More information

FORCE TABLE INTRODUCTION

FORCE TABLE INTRODUCTION FORCE TABLE INTRODUCTION All measurable quantities can be classified as either a scalar 1 or a vector 2. A scalar has only magnitude while a vector has both magnitude and direction. Examples of scalar

More information

Vectors. A vector is usually denoted in bold, like vector a, or sometimes it is denoted a, or many other deviations exist in various text books.

Vectors. A vector is usually denoted in bold, like vector a, or sometimes it is denoted a, or many other deviations exist in various text books. Vectors A Vector has Two properties Magnitude and Direction. That s a weirder concept than you think. A Vector does not necessarily start at a given point, but can float about, but still be the SAME vector.

More information

1. In Activity 1-1, part 3, how do you think graph a will differ from graph b? 3. Draw your graph for Prediction 2-1 below:

1. In Activity 1-1, part 3, how do you think graph a will differ from graph b? 3. Draw your graph for Prediction 2-1 below: PRE-LAB PREPARATION SHEET FOR LAB 1: INTRODUCTION TO MOTION (Due at the beginning of Lab 1) Directions: Read over Lab 1 and then answer the following questions about the procedures. 1. In Activity 1-1,

More information

UNIT 4 NEWTON S THIRD LAW, FORCE DIAGRAMS AND FORCES. Objectives. To understand and be able to apply Newton s Third Law

UNIT 4 NEWTON S THIRD LAW, FORCE DIAGRAMS AND FORCES. Objectives. To understand and be able to apply Newton s Third Law UNIT 4 NEWTON S THIRD LAW, FORCE DIAGRAMS AND FORCES Objectives To understand and be able to apply Newton s Third Law To be able to determine the object that is exerting a particular force To understand

More information

Trigonometric ratios:

Trigonometric ratios: 0 Trigonometric ratios: The six trigonometric ratios of A are: Sine Cosine Tangent sin A = opposite leg hypotenuse adjacent leg cos A = hypotenuse tan A = opposite adjacent leg leg and their inverses:

More information

Pythagoras theorem (8 9)

Pythagoras theorem (8 9) Pythagoras theorem (8 9) Contents 1 The theorem 1 1.1 Using Pythagoras in context........................... 2 1.2 Distance between points............................. 4 1.3 Harder questions.................................

More information

PHY 123 Lab 1 - Error and Uncertainty and the Simple Pendulum

PHY 123 Lab 1 - Error and Uncertainty and the Simple Pendulum To print higher-resolution math symbols, click the Hi-Res Fonts for Printing button on the jsmath control panel. PHY 13 Lab 1 - Error and Uncertainty and the Simple Pendulum Important: You need to print

More information

LAB 3: VELOCITY AND ACCELERATION

LAB 3: VELOCITY AND ACCELERATION Lab 3 - Velocity & Acceleration 25 Name Date Partners LAB 3: VELOCITY AND ACCELERATION A cheetah can accelerate from to 5 miles per hour in 6.4 seconds. A Jaguar can accelerate from to 5 miles per hour

More information

Make sure that you are able to operate with vectors rapidly and accurately. Practice now will pay off in the rest of the course.

Make sure that you are able to operate with vectors rapidly and accurately. Practice now will pay off in the rest of the course. Ch3 Page 1 Chapter 3: Vectors and Motion in Two Dimensions Tuesday, September 17, 2013 10:00 PM Vectors are useful for describing physical quantities that have both magnitude and direction, such as position,

More information

Motion II. Goals and Introduction

Motion II. Goals and Introduction Motion II Goals and Introduction As you have probably already seen in lecture or homework, and if you ve performed the experiment Motion I, it is important to develop a strong understanding of how to model

More information

Unit 5 Circular Motion and Gravitation

Unit 5 Circular Motion and Gravitation Unit 5 Circular Motion and Gravitation In the game of tetherball, the struck ball whirls around a pole. In what direction does the net force on the ball point? 1) Tetherball 1) toward the top of the pole

More information

Chapter 19 Sir Migo Mendoza

Chapter 19 Sir Migo Mendoza The Linear Regression Chapter 19 Sir Migo Mendoza Linear Regression and the Line of Best Fit Lesson 19.1 Sir Migo Mendoza Question: Once we have a Linear Relationship, what can we do with it? Something

More information

SIMILAR TRIANGLES PROJECT

SIMILAR TRIANGLES PROJECT SIMILAR TRIANGLES PROJECT Due Tuesday, November 29, 2016 Group member s names Name Hr REAL LIFE HEIGHT OF TALL OBJECT 4 3 2 1 Shows a proficient understanding, with a few minor mistakes. Pictures drawn

More information

Student Worksheet for Activity The Pendulum. Question. Materials

Student Worksheet for Activity The Pendulum. Question. Materials Student Worksheet for Activity 6.1.1 The Pendulum Questioning Hypothesizing Predicting Planning Conducting INQUIRY SKILLS Recording Analyzing Evaluating Communicating A pendulum swings with a regular period,

More information

Projectiles: Target Practice Teacher Advanced Version

Projectiles: Target Practice Teacher Advanced Version Projectiles: Target Practice Teacher Advanced Version In this lab you will shoot a chopstick across the room with a rubber band and measure how different variables affect the distance it flies. You will

More information

Definitions In physics we have two types of measurable quantities: vectors and scalars.

Definitions In physics we have two types of measurable quantities: vectors and scalars. 1 Definitions In physics we have two types of measurable quantities: vectors and scalars. Scalars: have magnitude (magnitude means size) only Examples of scalar quantities include time, mass, volume, area,

More information

Math 2 Trigonometry. People often use the acronym SOHCAHTOA to help remember which is which. In the triangle below: = 15

Math 2 Trigonometry. People often use the acronym SOHCAHTOA to help remember which is which. In the triangle below: = 15 Math 2 Trigonometry 1 RATIOS OF SIDES OF A RIGHT TRIANGLE Trigonometry is all about the relationships of sides of right triangles. In order to organize these relationships, each side is named in relation

More information

Projectiles: Target Practice Teacher Version

Projectiles: Target Practice Teacher Version Projectiles: Target Practice Teacher Version In this lab you will shoot a chopstick across the room with a rubber band and measure how different variables affect the distance it flies. You will use concepts

More information

LAB 3 - VELOCITY AND ACCELERATION

LAB 3 - VELOCITY AND ACCELERATION Name Date Partners L03-1 LAB 3 - VELOCITY AND ACCELERATION OBJECTIVES A cheetah can accelerate from 0 to 50 miles per hour in 6.4 seconds. Encyclopedia of the Animal World A Jaguar can accelerate from

More information

3 Using Newton s Laws

3 Using Newton s Laws 3 Using Newton s Laws What You ll Learn how Newton's first law explains what happens in a car crash how Newton's second law explains the effects of air resistance 4(A), 4(C), 4(D), 4(E) Before You Read

More information

Lesson 8: Work and Energy

Lesson 8: Work and Energy Name Period Lesson 8: Work and Energy 8.1 Experiment: What is Kinetic Energy? (a) Set up the cart, meter stick, pulley, hanging mass, and tape as you did in Lesson 5.1. You will examine the distance and

More information

WARM-UPS Part I. Unit 5 - Circles DEGREES cm A. C =20.75 cm REMINDER: REMINDER: Circumference = 2πr = πd. 1. Find the circumference of :

WARM-UPS Part I. Unit 5 - Circles DEGREES cm A. C =20.75 cm REMINDER: REMINDER: Circumference = 2πr = πd. 1. Find the circumference of : WARM-UPS Part I REMINDER: Circumference = 2πr = πd REMINDER: DEGREES 360 ARC CIRCUMFERE NCE 1. Find the circumference of : C 4.37 cm 6.24 cm A 85 B C= C= C= 2. Find the radius of : Find the diameter of:

More information

Triangles and Vectors

Triangles and Vectors Chapter 3 Triangles and Vectors As was stated at the start of Chapter 1, trigonometry had its origins in the study of triangles. In fact, the word trigonometry comes from the Greek words for triangle measurement.

More information

Chapter 3. Vectors. θ that the vector forms with i ˆ is 15. I. Vectors and Scalars

Chapter 3. Vectors. θ that the vector forms with i ˆ is 15. I. Vectors and Scalars Chapter 3. Vectors I. Vectors and Scalars 1. What type of quantity does the odometer of a car measure? a) vector; b) scalar; c) neither scalar nor vector; d) both scalar and vector. 2. What type of quantity

More information

Physics Chapter 3 Notes. Section 3-1: Introduction to Vectors (pages 80-83)

Physics Chapter 3 Notes. Section 3-1: Introduction to Vectors (pages 80-83) Physics Chapter 3 Notes Section 3-1: Introduction to Vectors (pages 80-83) We can use vectors to indicate both the magnitude of a quantity, and the direction. Vectors are often used in 2- dimensional problems.

More information

Figure Two. Then the two vector equations of equilibrium are equivalent to three scalar equations:

Figure Two. Then the two vector equations of equilibrium are equivalent to three scalar equations: 2004- v 10/16 2. The resultant external torque (the vector sum of all external torques) acting on the body must be zero about any origin. These conditions can be written as equations: F = 0 = 0 where the

More information

Mathematics Second Practice Test 1 Levels 6-8 Calculator not allowed

Mathematics Second Practice Test 1 Levels 6-8 Calculator not allowed Mathematics Second Practice Test 1 Levels 6-8 Calculator not allowed Please read this page, but do not open your booklet until your teacher tells you to start. Write your name and the name of your school

More information

MILLIONS AND BILLIONS STUDENT WORKSHEET

MILLIONS AND BILLIONS STUDENT WORKSHEET MILLIONS AND BILLIONS STUDENT WORKSHEET Name: Date: Problem 1: A) How tall is a stack of a million sheets of paper? B) How tall is a stack of a billion sheets of paper? 1. I would estimate that the height

More information

AP PHYSICS 1 UNIT 4 / FINAL 1 PRACTICE TEST

AP PHYSICS 1 UNIT 4 / FINAL 1 PRACTICE TEST AP PHYSICS 1 UNIT 4 / FINAL 1 PRACTICE TEST NAME FREE RESPONSE PROBLEMS Put all answers on this test. Show your work for partial credit. Circle or box your answers. Include the correct units and the correct

More information

Chapter 9: Circular Motion

Chapter 9: Circular Motion Text: Chapter 9 Think and Explain: 1-5, 7-9, 11 Think and Solve: --- Chapter 9: Circular Motion NAME: Vocabulary: rotation, revolution, axis, centripetal, centrifugal, tangential speed, Hertz, rpm, rotational

More information

Experiment #7 Centripetal Force Pre-lab Questions Hints

Experiment #7 Centripetal Force Pre-lab Questions Hints Experiment #7 Centripetal Force Pre-lab Questions Hints The following are some hints for this pre-lab, since a few of these questions can be a little difficult. Note that these are not necessarily the

More information

Pythagoras Theorem. What it is: When to use: What to watch out for:

Pythagoras Theorem. What it is: When to use: What to watch out for: Pythagoras Theorem a + b = c Where c is the length of the hypotenuse and a and b are the lengths of the other two sides. Note: Only valid for right-angled triangles! When you know the lengths of any two

More information

Surveying and trigonometry

Surveying and trigonometry Surveying and trigonometry Materials: protractor 2m string or thread 2 small heavy objects (for plumb bobs) drinking straw paper clip tape measure pushpins tape (any kind) broom handle (available for about

More information

Conservation of Momentum: Marble Collisions Student Version

Conservation of Momentum: Marble Collisions Student Version Conservation of Momentum: Marble Collisions Student Version In this lab you will roll a marble down a ramp, and at the bottom of the ramp the marble will collide with another marble. You will measure the

More information

PHYSICS LAB: CONSTANT MOTION

PHYSICS LAB: CONSTANT MOTION PHYSICS LAB: CONSTANT MOTION Introduction Experimentation is fundamental to physics (and all science, for that matter) because it allows us to prove or disprove our hypotheses about how the physical world

More information

-π -π/2 π/2 π 3π/2 2π 5π/2 3π 7π/2 4π 9π/

-π -π/2 π/2 π 3π/2 2π 5π/2 3π 7π/2 4π 9π/ Name Solutions Trigonometry, Test 2, 3/17/2015 Please show your work, circle your answer, and round all decimals to two decimal places. No calculators are allowed. When graphing a function: Graph as much

More information

Lab 1: Jumping Right In

Lab 1: Jumping Right In Lab 1: Jumping Right In Bio427 Biomechanics The first lecture of the class reviewed basic physical quantities that we will use throughout the course. Distance (position), velocity, acceleration, momentum,

More information

Partner s Name: EXPERIMENT MOTION PLOTS & FREE FALL ACCELERATION

Partner s Name: EXPERIMENT MOTION PLOTS & FREE FALL ACCELERATION Name: Partner s Name: EXPERIMENT 500-2 MOTION PLOTS & FREE FALL ACCELERATION APPARATUS Track and cart, pole and crossbar, large ball, motion detector, LabPro interface. Software: Logger Pro 3.4 INTRODUCTION

More information

AP Calculus. Slide 1 / 101. Slide 2 / 101. Slide 3 / 101. Applications of Derivatives. Table of Contents

AP Calculus. Slide 1 / 101. Slide 2 / 101. Slide 3 / 101. Applications of Derivatives. Table of Contents Slide 1 / 101 Slide 2 / 101 AP Calculus Applications of Derivatives 2015-11-03 www.njctl.org Table of Contents click on the topic to go to that section Slide 3 / 101 Related Rates Linear Motion Linear

More information

Wheels Radius / Distance Traveled

Wheels Radius / Distance Traveled Mechanics Teacher Note to the teacher On these pages, students will learn about the relationships between wheel radius, diameter, circumference, revolutions and distance. Students will use formulas relating

More information

Measurements and Error Analysis

Measurements and Error Analysis Experiment : Measurements and Error Analysis 1 Measurements and Error Analysis Introduction: [Two students per group. There should not be more than one group of three students.] All experiments require

More information

r y The angle theta defines a vector that points from the boat to the top of the cliff where rock breaks off. That angle is given as 30 0

r y The angle theta defines a vector that points from the boat to the top of the cliff where rock breaks off. That angle is given as 30 0 From a boat in the English Channel, you slowly approach the White Cliffs of Dover. You want to know how far you are from the base of the cliff. Then suddenly you see a rock break off from the top and hit

More information

Boyle s Law and Charles Law Activity

Boyle s Law and Charles Law Activity Boyle s Law and Charles Law Activity Introduction: This simulation helps you to help you fully understand 2 Gas Laws: Boyle s Law and Charles Law. These laws are very simple to understand, but are also

More information

Tower of PISA. Standards Addressed

Tower of PISA. Standards Addressed Tower of PISA Standards Addressed. The Standards for Mathematical Practice, especially:. Make sense of problems and persevere in solving them and. Reason abstractly and quantitatively.. 8.G.B.5: Apply

More information

6.1 George W. Ferris Day Off

6.1 George W. Ferris Day Off 6.1 George W. Ferris Day Off A Develop Understanding Task Perhaps you have enjoyed riding on a Ferris wheel at an amusement park. The Ferris wheel was invented by George Washington Ferris for the 1893

More information

Preliminary Physics. Moving About. DUXCollege. Week 2. Student name:. Class code:.. Teacher name:.

Preliminary Physics. Moving About. DUXCollege. Week 2. Student name:. Class code:.. Teacher name:. Week 2 Student name:. Class code:.. Teacher name:. DUXCollege Week 2 Theory 1 Present information graphically of: o Displacement vs time o Velocity vs time for objects with uniform and non-uniform linear

More information

Lab 3 Acceleration. What You Need To Know: Physics 211 Lab

Lab 3 Acceleration. What You Need To Know: Physics 211 Lab b Lab 3 Acceleration Physics 211 Lab What You Need To Know: The Physics In the previous lab you learned that the velocity of an object can be determined by finding the slope of the object s position vs.

More information

Vectors. Graphical Method. Graphical Method. SEEMS SIMPLE? = 30.5 m/s. Graphical Method. Graphical Method (TIP TO TAIL) S

Vectors. Graphical Method. Graphical Method. SEEMS SIMPLE? = 30.5 m/s. Graphical Method. Graphical Method (TIP TO TAIL) S Vectors Graphical Method General discussion. Vector - A quantity which has magnitude and direction. Velocity, acceleration, Force, E Field, Mag Field, calar - A quantity which has magnitude only. (temp,

More information

SOH CAH TOA. b c. sin opp. hyp. cos adj. hyp a c. tan opp. adj b a

SOH CAH TOA. b c. sin opp. hyp. cos adj. hyp a c. tan opp. adj b a SOH CAH TOA sin opp hyp b c c 2 a 2 b 2 cos adj hyp a c tan opp adj b a Trigonometry Review We will be focusing on triangles What is a right triangle? A triangle with a 90º angle What is a hypotenuse?

More information

Quest Chapter 09. Eliminate the obviously wrong answers. Consider what is changing: speed, velocity, some part of velocity? Choose carefully.

Quest Chapter 09. Eliminate the obviously wrong answers. Consider what is changing: speed, velocity, some part of velocity? Choose carefully. 1 A dragster maintains a speedometer reading of 100 km/h and passes through a curve with a constant radius. Which statement is true? 1. The dragster rounded the curve at a changing speed of 100 km/h. 2.

More information

Forces and Newton s Laws

Forces and Newton s Laws chapter 3 Forces and Newton s Laws section 3 Using Newton s Laws Before You Read Imagine riding on a sled, or in a wagon, or perhaps a school bus that stops quickly or suddenly. What happens to your body

More information

GALILEAN RELATIVITY. Projectile motion. The Principle of Relativity

GALILEAN RELATIVITY. Projectile motion. The Principle of Relativity GALILEAN RELATIVITY Projectile motion The Principle of Relativity When we think of the term relativity, the person who comes immediately to mind is of course Einstein. Galileo actually understood what

More information

AP PHYSICS B SUMMER ASSIGNMENT: Calculators allowed! 1

AP PHYSICS B SUMMER ASSIGNMENT: Calculators allowed! 1 P PHYSICS SUMME SSIGNMENT: Calculators allowed! 1 The Metric System Everything in physics is measured in the metric system. The only time that you will see English units is when you convert them to metric

More information

CONDITIONS OF EQUILIBRIUM

CONDITIONS OF EQUILIBRIUM CONDITIONS OF EQUILIBRIUM Introduction Aim: To investigate the conditions required for an object to be in equilibrium This exercise looks at a rigid object which is in both translational and rotational

More information

adjacent hypotenuse opposite adjacent Thursday January 25 opposite hypotenuse This lecture: 2-dimensional motion Vectors Components

adjacent hypotenuse opposite adjacent Thursday January 25 opposite hypotenuse This lecture: 2-dimensional motion Vectors Components Thursday January 25 Assignments 1&2 Friday, 11:59pm.like every Friday Pre-Class Assignment 15min before class like every class Bring your lab print-out to lab Office Hours: Wed. 10-11am, 204 EAL Or by

More information

A.5. Solving Equations. Equations and Solutions of Equations. Linear Equations in One Variable. What you should learn. Why you should learn it

A.5. Solving Equations. Equations and Solutions of Equations. Linear Equations in One Variable. What you should learn. Why you should learn it A46 Appendi A Review of Fundamental Concepts of Algebra A.5 Solving Equations What you should learn Identify different types of equations. Solve linear equations in one variable and equations that lead

More information

Physic 602 Conservation of Momentum. (Read objectives on screen.)

Physic 602 Conservation of Momentum. (Read objectives on screen.) Physic 602 Conservation of Momentum (Read objectives on screen.) Good. You re back. We re just about ready to start this lab on conservation of momentum during collisions and explosions. In the lab, we

More information

The Circular Motion Lab

The Circular Motion Lab Name Date Class Answer questions in complete sentences The Circular Motion Lab Introduction We have discussed motion in straight lines and parabolic arcs. But many things move in circles or near circles,

More information

General Physics I Lab (PHYS-2011) Experiment MECH-1: Projectile Motion

General Physics I Lab (PHYS-2011) Experiment MECH-1: Projectile Motion MECH-1: Projectile Motion Page 1 of 7 1 EQUIPMENT General Physics I Lab (PHYS-2011) Experiment MECH-1: Projectile Motion 1 Mini Launcher ME-6825 1 Time of Flight Accessory ME-6810 1 Phone Jack Extender

More information

Lab #2: Newton s Second Law

Lab #2: Newton s Second Law Physics 144 Chowdary How Things Work Spring 2006 Name: Partners Name(s): Lab #2: Newton s Second Law Introduction In today s exploration, we will investigate the consequences of what is one of the single

More information

MORE TRIGONOMETRY

MORE TRIGONOMETRY MORE TRIGONOMETRY 5.1.1 5.1.3 We net introduce two more trigonometric ratios: sine and cosine. Both of them are used with acute angles of right triangles, just as the tangent ratio is. Using the diagram

More information

Consider two students pushing with equal force on opposite sides of a desk. Looking top-down on the desk:

Consider two students pushing with equal force on opposite sides of a desk. Looking top-down on the desk: 1 Bodies in Equilibrium Recall Newton's First Law: if there is no unbalanced force on a body (i.e. if F Net = 0), the body is in equilibrium. That is, if a body is in equilibrium, then all the forces on

More information

General Physics I Spring Forces and Newton s Laws of Motion

General Physics I Spring Forces and Newton s Laws of Motion General Physics I Spring 2011 Forces and Newton s Laws of Motion 1 Forces and Interactions The central concept in understanding why things move is force. If a tractor pushes or pulls a trailer, the tractor

More information

AP Physics First Nine Weeks Review

AP Physics First Nine Weeks Review AP Physics First Nine Weeks Review 1. If F1 is the magnitude of the force exerted by the Earth on a satellite in orbit about the Earth and F2 is the magnitude of the force exerted by the satellite on the

More information

LAB 2: INTRODUCTION TO MOTION

LAB 2: INTRODUCTION TO MOTION Lab 2 - Introduction to Motion 3 Name Date Partners LAB 2: INTRODUCTION TO MOTION Slow and steady wins the race. Aesop s fable: The Hare and the Tortoise Objectives To explore how various motions are represented

More information

Lesson Plan by: Stephanie Miller

Lesson Plan by: Stephanie Miller Lesson: Pythagorean Theorem and Distance Formula Length: 45 minutes Grade: Geometry Academic Standards: MA.G.1.1 2000 Find the lengths and midpoints of line segments in one- or two-dimensional coordinate

More information

The children have already done several experiments with gravity from Functional

The children have already done several experiments with gravity from Functional 1. Purpose of Experiments with Gravity The children have already done several experiments with gravity from Functional Geography and learned about its importance in the formation of the universe. This

More information

Physics 8 Wednesday, September 30, 2015

Physics 8 Wednesday, September 30, 2015 Physics 8 Wednesday, September 30, 2015 You ve recently read Chapter 8 ( force ), Chapter 9 ( work ), and Chapter 10 ( motion in a plane ). In the coming weeks, class/hw will fall a bit behind the reading.

More information