PCA SVD LDA MDS, LLE, CCA. Data mining. Dimensionality reduction. University of Szeged. Data mining

Size: px
Start display at page:

Download "PCA SVD LDA MDS, LLE, CCA. Data mining. Dimensionality reduction. University of Szeged. Data mining"

Transcription

1 Dimesioality reductio Uiversity of Szeged

2 The role of dimesioality reductio We ca spare computatioal costs (or simply fit etire datasets ito mai memory) if we represet data i fewer dimesios Visualizatio of datasets (i 2 or 3 dimesios) Elimiatio of oise from data, feature selectio Key idea: try to represet data poits i lower dimesios Depedig our ojective fuctio with respect the lower dimesioal represetatio,,,...

3 ricipal Compoet Aalysis Trasform multidimesioal data ito lower dimesios i such a way that we lose as little proportio of the origial variatio of the data as possile Assumptio: data poits of the origial m-dimesioal space lie at (or at least very close to) a m -dimesioal suspace we shall express data poits with respect this suspace What that m -dimesioal suspace might e? We would like to miimize the recostructio error X k (xi xi ) k2 i=1, where xi is a approximatio for poit xi

4 Covariace Remider Quatifies how much radom variales Y ad Z chage together cov (Y, Z ) = E[(Y µy )(Z µz )] µy = 1 i=1 yi ad µz = 1 zi i=1 Colums i, j of data matrix X (i.e. X:,i, X:,j ) ca e regarded as oservatios from two radom variales

5 Scatter ad covariace matrix Scatter matrix: S = (xi µ)(xi µ) k=1 (U)iased covariace matrix: Σ = 1 S (Σ = 1 1 S) cov (X:,1, X:,1 ) cov (X:,1, X:,2 )... cov (X:,1, X:,m ) cov (X:,2, X:,1 ) cov (X:,2, X:,2 )... cov (X:,2, X:,m ) Σ= cov (X, X ). :,i :,j cov (X:,m, X:,1 ) cov (X:,m, X:,m ) Σi,j is the covariace of variales i ad j (cov (X:,i, X:,j )) What values are icluded i the mai diagoal?

6 Characteristics of scatter ad covariace matrices Claim: matrices S ad Σ are symmetric ad positive defiite Bizoyítás. S= (xi µ)(xi µ) =! (xi µ)(xi µ) = S k=1 k=1 a Sa = k=1 (a (xi µ))((xi µ) a) = (a (xi µ))2 k=1 Cosequece: the eigevalues of S ad C are λ1 λ2... λm The m -dimesioal projectio which preserves most of the variatio of the data ca e otaied y projectig data poits usig the eigevectors elogig to the m highest eigevalues of either matrix S (or C ) (proof: see tale)

7 Lagrage multipliers rovides a schema for solvig (o-)liear optimizatio prolems f (x) mi/max such that gi (x) = i {1,..., } Lagrage fuctio: L(x, λ) = f(x) X λi gi (x) i=1 Karush-Kuh-Tucker (KKT) coditios: ecessity coditios for a optimum L(x, λ) = (1) λi gi (x) = i {1,..., } (2) λi (3)

8 ractical issues Its worth hadlig all the features o similar scales mi-max ormalizatio: xi,j = stadardizatio: xi,j = xi,j mi(x,j ) max(x,j ) mi(x,j ) xi,j µj σj How to choose the reduced dimesioality (m )? m m si2 λi = Hit : i=1 i=1 k i=1 λi m = arg mi m t threshold 1 k m i=1 λi m 1 X λi > λj 1 i m m m = arg max j=1 m = arg max (λi λi+1 ) 1 i m 1

9 Summarizig Sutract the mea vector from data X ad also ormalize it somehow Calculate the scatter/covariace matrix of the ormalized data Calculate its eigevalues Form projectio matrix from the eigevectors correspodig to the m largest eigevalues X = X gives the trasformed data X 1 gives a approximatio o the origial positios of the data poits A useful tutorial o

10 Sigular Value Decompositio X = U x Sigma x V t rak(x ) σi ui vi i=1 s s rak(x m ) 2 xij2 = kx kf = σi X = UΣV = i=1 j=1 i=1 Low(er) rak approximatio of X is X = U Σ V We rely o the top m < m largest sigular value of Σ upo recostructig X This is the est possile m -dimesioal approximatio of X if we look for the approximatio which miimizes kx X kfroeius

11 Sigular Value Decompositio ad Eigedecompositio Remider Ay symmetric matrix A is decomposale as A = X ΛX 1, where X = [x1 x2... xm ] comprises of the orthogoal eigevectors of A ad Λ = diag ([λ1 λ2... λm ]) cotaiig the correspodig eigevalues i its mai diagoal. Why? Ay m matrix X ca e uiquely decomposed ito the product of three matrices of the form UΣV where U = [u1 u2... u ] is the orthoormal matrix cosistig of the eigevectors of XX Σ m = diag ( λ1, λ2,..., λm ) Vm m = [v1 v2... vm ] is the orthoormal matrix cosistig of the eigevectors of X X Why? Orthogoal matrices: M M = I (a trasformatio which preserves distace i the trasformed space as well) Why?

12 Relatio etwee ad Froeius-orm Suppose M = Q R, i.e. mij = k 58 M = = pik qkl rlj l 3 m32 = pik qkl rlj The kmk2f = (mij )2 = i j i j k l 2 Also pik qkl rlj = pik qkl rlj pi qm rmj k l k l m From where kmk2f = pik qkl rlj pi qm rmj i j k l m Give tha matrices, Q, R origiate from a decompositio, kmk2f = pik qkk rkj pi q rj = qkk rkj qkk rkj = (qkk )2. i,j,k, j,k Why? The error of the approximatig Xy X = U Σ V is kx X k2 = ku(σ Σ )V k2 = Data (σ miig σ )2 k

13 CUR The drawack of is that a typically sparse matrix is decomposed ito a products of dese matrices (i.e. U ad V ) Oe alterative is to use CUR decompositio This time oly matrix U happes to e dese Matrices C ad R are composed of the rows ad colums of the matrix X, thus they preserve the sparsity of X is uique ulike CUR

14 CUR decompositio producig C ad R Choose k colums (rows) from the data matrix with replacemet A colum (row) ca e selected more tha oce ito C (R) The proaility of selectig a colum (row) should e proportioal to the sum of squared elemets i it Scale the elemets of the selected colum (row) y 1/ kpi

15 CUR decompositio producig U Create W Rkxk from the itersectio of the k selected rows ad colums erform o W such that W = X ΣY Let U = Y (Σ+ )2 X where Σ+ is the pseudoiverse of Σ Σ is diagoal, so calculatig its pseudoiverse is easy Just take the reciprocal of the o-zero elemets i the diagoal Zeros ca e left itact

16 Alie Matrix Casalaca Titaic CUR decompositio example aul Sam Martha Bo Sarah C = U= 7.1 R=

17 Liear Discrimiat Aalysis Trasform data poits ito lower dimesios i such a way that poits of the same class have as little dispersio as possile whereas poits of differet classes mix as little as possile How should we choose w, i.e. the directio of the projectio? µ ~i = w µi µ~1 µ~2 = w (µ1 µ2 ) X s i = (w x ~ µi )2 x with lael i w = arg max J(w) = arg max w w ~ µ1 ~ µ2 2 2 s 1 + s 22 (1)

18 Withi ad outer scatter matrices The withi-scatter matrix of poits with class lael i: X Si = (x µi )(x µi ) x with lael i Aggregated withi scatter matrix: SW = S1 + S2 Scatter of the poits with class lael i: X X s i 2 = (w x w µi )2 = w (x µi )(x µi ) w = w Si w x with lael i Scatter matrix of the poits etwee differet classes: SB = (µ1 µ2 )(µ1 µ2 ) Scatter of the poits etwee differet classes: (µ 1 µ 2 )2 = (w µ1 w µ2 )2 = w SB w

19 A equivalet ojective with Eq. (1) is w = arg maxw J(w) = arg maxw ww SSWB ww w SB w w SW w is the so-called geeralized Rayleigh-coefficiet J(w) is maximal ww SSWB ww = SB w = λsw w 1 1 SW SB w = λw w = SW (µ1 µ2 ) Remider f (x) (x)g (x) = f (x)g (x) f g (x) g 2 (x) x x Ax = 2Ax, give that A = A xx y = xi yi x (i.e. a vector poitig i=1 of x) i the directio

20 vs

21 Multi-Dimesioal Scalig (MDS) Goal: give cotaiig pair-wise cost/distaces of poits fid the positios of the poits for which k xi xj k δij Trasforms multidimesioal poits ito lower dimesios such that the pairwise distaces get preserved as much as possile

22 Locally Liear Emeddig (LLE), ad all assume liear relatioship etwee variales No-liear dimesioality reductio techique Idea: defie the earest eighors for all poits ad defie them as their liear comiatio Wij = 1, és Wij xj k2, such that kxi J(W ) = i=1 j=1 j=1 wij > xj eighors(xi )

23 Caoical Correlatio Aalysis (CCA) Our data poits have two distict represetatios (coordiate systems) Goal: fid a commo coordiate system (with reduced dimesioality) such that the correlatio etwee the trasformed poits get maximized E [xy ] = E [x 2 ] E [y 2 ] wx Cxy w y wx Cxx wx wy Cyy wy ρ= E[wx xy wy ] E[wx xx wx ] E [wy yy wy ] = arg max ρ is idepedet from the legth of wx ad wy arg max ρ = arg max wx Cxy wy " # " # Σxx Σxy x x Σ= =E y y Σyx Σyy

Machine Learning for Data Science (CS 4786)

Machine Learning for Data Science (CS 4786) Machie Learig for Data Sciece CS 4786) Lecture & 3: Pricipal Compoet Aalysis The text i black outlies high level ideas. The text i blue provides simple mathematical details to derive or get to the algorithm

More information

BIOINF 585: Machine Learning for Systems Biology & Clinical Informatics

BIOINF 585: Machine Learning for Systems Biology & Clinical Informatics BIOINF 585: Machie Learig for Systems Biology & Cliical Iformatics Lecture 14: Dimesio Reductio Jie Wag Departmet of Computatioal Medicie & Bioiformatics Uiversity of Michiga 1 Outlie What is feature reductio?

More information

For a 3 3 diagonal matrix we find. Thus e 1 is a eigenvector corresponding to eigenvalue λ = a 11. Thus matrix A has eigenvalues 2 and 3.

For a 3 3 diagonal matrix we find. Thus e 1 is a eigenvector corresponding to eigenvalue λ = a 11. Thus matrix A has eigenvalues 2 and 3. Closed Leotief Model Chapter 6 Eigevalues I a closed Leotief iput-output-model cosumptio ad productio coicide, i.e. V x = x = x Is this possible for the give techology matrix V? This is a special case

More information

Machine Learning for Data Science (CS 4786)

Machine Learning for Data Science (CS 4786) Machie Learig for Data Sciece CS 4786) Lecture 9: Pricipal Compoet Aalysis The text i black outlies mai ideas to retai from the lecture. The text i blue give a deeper uderstadig of how we derive or get

More information

Cov(aX, cy ) Var(X) Var(Y ) It is completely invariant to affine transformations: for any a, b, c, d R, ρ(ax + b, cy + d) = a.s. X i. as n.

Cov(aX, cy ) Var(X) Var(Y ) It is completely invariant to affine transformations: for any a, b, c, d R, ρ(ax + b, cy + d) = a.s. X i. as n. CS 189 Itroductio to Machie Learig Sprig 218 Note 11 1 Caoical Correlatio Aalysis The Pearso Correlatio Coefficiet ρ(x, Y ) is a way to measure how liearly related (i other words, how well a liear model

More information

Topics in Eigen-analysis

Topics in Eigen-analysis Topics i Eige-aalysis Li Zajiag 28 July 2014 Cotets 1 Termiology... 2 2 Some Basic Properties ad Results... 2 3 Eige-properties of Hermitia Matrices... 5 3.1 Basic Theorems... 5 3.2 Quadratic Forms & Noegative

More information

6. Kalman filter implementation for linear algebraic equations. Karhunen-Loeve decomposition

6. Kalman filter implementation for linear algebraic equations. Karhunen-Loeve decomposition 6. Kalma filter implemetatio for liear algebraic equatios. Karhue-Loeve decompositio 6.1. Solvable liear algebraic systems. Probabilistic iterpretatio. Let A be a quadratic matrix (ot obligatory osigular.

More information

Apply change-of-basis formula to rewrite x as a linear combination of eigenvectors v j.

Apply change-of-basis formula to rewrite x as a linear combination of eigenvectors v j. Eigevalue-Eigevector Istructor: Nam Su Wag eigemcd Ay vector i real Euclidea space of dimesio ca be uiquely epressed as a liear combiatio of liearly idepedet vectors (ie, basis) g j, j,,, α g α g α g α

More information

5.1 Review of Singular Value Decomposition (SVD)

5.1 Review of Singular Value Decomposition (SVD) MGMT 69000: Topics i High-dimesioal Data Aalysis Falll 06 Lecture 5: Spectral Clusterig: Overview (cotd) ad Aalysis Lecturer: Jiamig Xu Scribe: Adarsh Barik, Taotao He, September 3, 06 Outlie Review of

More information

Distributional Similarity Models (cont.)

Distributional Similarity Models (cont.) Distributioal Similarity Models (cot.) Regia Barzilay EECS Departmet MIT October 19, 2004 Sematic Similarity Vector Space Model Similarity Measures cosie Euclidea distace... Clusterig k-meas hierarchical

More information

Distributional Similarity Models (cont.)

Distributional Similarity Models (cont.) Sematic Similarity Vector Space Model Similarity Measures cosie Euclidea distace... Clusterig k-meas hierarchical Last Time EM Clusterig Soft versio of K-meas clusterig Iput: m dimesioal objects X = {

More information

Linear Classifiers III

Linear Classifiers III Uiversität Potsdam Istitut für Iformatik Lehrstuhl Maschielles Lere Liear Classifiers III Blaie Nelso, Tobias Scheffer Cotets Classificatio Problem Bayesia Classifier Decisio Liear Classifiers, MAP Models

More information

Introduction to Optimization Techniques. How to Solve Equations

Introduction to Optimization Techniques. How to Solve Equations Itroductio to Optimizatio Techiques How to Solve Equatios Iterative Methods of Optimizatio Iterative methods of optimizatio Solutio of the oliear equatios resultig form a optimizatio problem is usually

More information

Lecture 8: October 20, Applications of SVD: least squares approximation

Lecture 8: October 20, Applications of SVD: least squares approximation Mathematical Toolkit Autum 2016 Lecturer: Madhur Tulsiai Lecture 8: October 20, 2016 1 Applicatios of SVD: least squares approximatio We discuss aother applicatio of sigular value decompositio (SVD) of

More information

State Space Representation

State Space Representation Optimal Cotrol, Guidace ad Estimatio Lecture 2 Overview of SS Approach ad Matrix heory Prof. Radhakat Padhi Dept. of Aerospace Egieerig Idia Istitute of Sciece - Bagalore State Space Represetatio Prof.

More information

Outline. Linear regression. Regularization functions. Polynomial curve fitting. Stochastic gradient descent for regression. MLE for regression

Outline. Linear regression. Regularization functions. Polynomial curve fitting. Stochastic gradient descent for regression. MLE for regression REGRESSION 1 Outlie Liear regressio Regularizatio fuctios Polyomial curve fittig Stochastic gradiet descet for regressio MLE for regressio Step-wise forward regressio Regressio methods Statistical techiques

More information

Machine Learning for Data Science (CS4786) Lecture 4

Machine Learning for Data Science (CS4786) Lecture 4 Machie Learig for Data Sciece (CS4786) Lecture 4 Caoical Correlatio Aalysis (CCA) Course Webpage : http://www.cs.corell.edu/courses/cs4786/2016fa/ Aoucemet We are gradig HW0 ad you will be added to cms

More information

Machine Learning for Data Science (CS4786) Lecture 9

Machine Learning for Data Science (CS4786) Lecture 9 Machie Learig for Data Sciece (CS4786) Lecture 9 Pricipal Compoet Aalysis Course Webpage : http://www.cs.corell.eu/courses/cs4786/207fa/ DIM REDUCTION: LINEAR TRANSFORMATION x > y > Pick a low imesioal

More information

Abstract Vector Spaces. Abstract Vector Spaces

Abstract Vector Spaces. Abstract Vector Spaces Astract Vector Spaces The process of astractio is critical i egieerig! Physical Device Data Storage Vector Space MRI machie Optical receiver 0 0 1 0 1 0 0 1 Icreasig astractio 6.1 Astract Vector Spaces

More information

Mon Apr Second derivative test, and maybe another conic diagonalization example. Announcements: Warm-up Exercise:

Mon Apr Second derivative test, and maybe another conic diagonalization example. Announcements: Warm-up Exercise: Math 2270-004 Week 15 otes We will ot ecessarily iish the material rom a give day's otes o that day We may also add or subtract some material as the week progresses, but these otes represet a i-depth outlie

More information

Matrix Algebra from a Statistician s Perspective BIOS 524/ Scalar multiple: ka

Matrix Algebra from a Statistician s Perspective BIOS 524/ Scalar multiple: ka Matrix Algebra from a Statisticia s Perspective BIOS 524/546. Matrices... Basic Termiology a a A = ( aij ) deotes a m matrix of values. Whe =, this is a am a m colum vector. Whe m= this is a row vector..2.

More information

The Method of Least Squares. To understand least squares fitting of data.

The Method of Least Squares. To understand least squares fitting of data. The Method of Least Squares KEY WORDS Curve fittig, least square GOAL To uderstad least squares fittig of data To uderstad the least squares solutio of icosistet systems of liear equatios 1 Motivatio Curve

More information

Algebra of Least Squares

Algebra of Least Squares October 19, 2018 Algebra of Least Squares Geometry of Least Squares Recall that out data is like a table [Y X] where Y collects observatios o the depedet variable Y ad X collects observatios o the k-dimesioal

More information

Inverse Matrix. A meaning that matrix B is an inverse of matrix A.

Inverse Matrix. A meaning that matrix B is an inverse of matrix A. Iverse Matrix Two square matrices A ad B of dimesios are called iverses to oe aother if the followig holds, AB BA I (11) The otio is dual but we ofte write 1 B A meaig that matrix B is a iverse of matrix

More information

Introduction to Optimization Techniques

Introduction to Optimization Techniques Itroductio to Optimizatio Techiques Basic Cocepts of Aalysis - Real Aalysis, Fuctioal Aalysis 1 Basic Cocepts of Aalysis Liear Vector Spaces Defiitio: A vector space X is a set of elemets called vectors

More information

Factor Analysis. Lecture 10: Factor Analysis and Principal Component Analysis. Sam Roweis

Factor Analysis. Lecture 10: Factor Analysis and Principal Component Analysis. Sam Roweis Lecture 10: Factor Aalysis ad Pricipal Compoet Aalysis Sam Roweis February 9, 2004 Whe we assume that the subspace is liear ad that the uderlyig latet variable has a Gaussia distributio we get a model

More information

Symmetric Matrices and Quadratic Forms

Symmetric Matrices and Quadratic Forms 7 Symmetric Matrices ad Quadratic Forms 7.1 DIAGONALIZAION OF SYMMERIC MARICES SYMMERIC MARIX A symmetric matrix is a matrix A such that. A = A Such a matrix is ecessarily square. Its mai diagoal etries

More information

TMA4205 Numerical Linear Algebra. The Poisson problem in R 2 : diagonalization methods

TMA4205 Numerical Linear Algebra. The Poisson problem in R 2 : diagonalization methods TMA4205 Numerical Liear Algebra The Poisso problem i R 2 : diagoalizatio methods September 3, 2007 c Eiar M Røquist Departmet of Mathematical Scieces NTNU, N-749 Trodheim, Norway All rights reserved A

More information

R is a scalar defined as follows:

R is a scalar defined as follows: Math 8. Notes o Dot Product, Cross Product, Plaes, Area, ad Volumes This lecture focuses primarily o the dot product ad its may applicatios, especially i the measuremet of agles ad scalar projectio ad

More information

Summary and Discussion on Simultaneous Analysis of Lasso and Dantzig Selector

Summary and Discussion on Simultaneous Analysis of Lasso and Dantzig Selector Summary ad Discussio o Simultaeous Aalysis of Lasso ad Datzig Selector STAT732, Sprig 28 Duzhe Wag May 4, 28 Abstract This is a discussio o the work i Bickel, Ritov ad Tsybakov (29). We begi with a short

More information

A widely used display of protein shapes is based on the coordinates of the alpha carbons - - C α

A widely used display of protein shapes is based on the coordinates of the alpha carbons - - C α Nice plottig of proteis: I A widely used display of protei shapes is based o the coordiates of the alpha carbos - - C α -s. The coordiates of the C α -s are coected by a cotiuous curve that roughly follows

More information

Definitions and Theorems. where x are the decision variables. c, b, and a are constant coefficients.

Definitions and Theorems. where x are the decision variables. c, b, and a are constant coefficients. Defiitios ad Theorems Remember the scalar form of the liear programmig problem, Miimize, Subject to, f(x) = c i x i a 1i x i = b 1 a mi x i = b m x i 0 i = 1,2,, where x are the decisio variables. c, b,

More information

Lecture 22: Review for Exam 2. 1 Basic Model Assumptions (without Gaussian Noise)

Lecture 22: Review for Exam 2. 1 Basic Model Assumptions (without Gaussian Noise) Lecture 22: Review for Exam 2 Basic Model Assumptios (without Gaussia Noise) We model oe cotiuous respose variable Y, as a liear fuctio of p umerical predictors, plus oise: Y = β 0 + β X +... β p X p +

More information

FFTs in Graphics and Vision. The Fast Fourier Transform

FFTs in Graphics and Vision. The Fast Fourier Transform FFTs i Graphics ad Visio The Fast Fourier Trasform 1 Outlie The FFT Algorithm Applicatios i 1D Multi-Dimesioal FFTs More Applicatios Real FFTs 2 Computatioal Complexity To compute the movig dot-product

More information

LECTURE 8: ORTHOGONALITY (CHAPTER 5 IN THE BOOK)

LECTURE 8: ORTHOGONALITY (CHAPTER 5 IN THE BOOK) LECTURE 8: ORTHOGONALITY (CHAPTER 5 IN THE BOOK) Everythig marked by is ot required by the course syllabus I this lecture, all vector spaces is over the real umber R. All vectors i R is viewed as a colum

More information

Math 5311 Problem Set #5 Solutions

Math 5311 Problem Set #5 Solutions Math 5311 Problem Set #5 Solutios March 9, 009 Problem 1 O&S 11.1.3 Part (a) Solve with boudary coditios u = 1 0 x < L/ 1 L/ < x L u (0) = u (L) = 0. Let s refer to [0, L/) as regio 1 ad (L/, L] as regio.

More information

10-701/ Machine Learning Mid-term Exam Solution

10-701/ Machine Learning Mid-term Exam Solution 0-70/5-78 Machie Learig Mid-term Exam Solutio Your Name: Your Adrew ID: True or False (Give oe setece explaatio) (20%). (F) For a cotiuous radom variable x ad its probability distributio fuctio p(x), it

More information

36-755, Fall 2017 Homework 5 Solution Due Wed Nov 15 by 5:00pm in Jisu s mailbox

36-755, Fall 2017 Homework 5 Solution Due Wed Nov 15 by 5:00pm in Jisu s mailbox Poits: 00+ pts total for the assigmet 36-755, Fall 07 Homework 5 Solutio Due Wed Nov 5 by 5:00pm i Jisu s mailbox We first review some basic relatios with orms ad the sigular value decompositio o matrices

More information

Math E-21b Spring 2018 Homework #2

Math E-21b Spring 2018 Homework #2 Math E- Sprig 08 Homework # Prolems due Thursday, Feruary 8: Sectio : y = + 7 8 Fid the iverse of the liear trasformatio [That is, solve for, i terms of y, y ] y = + 0 Cosider the circular face i the accompayig

More information

Chapter 12 EM algorithms The Expectation-Maximization (EM) algorithm is a maximum likelihood method for models that have hidden variables eg. Gaussian

Chapter 12 EM algorithms The Expectation-Maximization (EM) algorithm is a maximum likelihood method for models that have hidden variables eg. Gaussian Chapter 2 EM algorithms The Expectatio-Maximizatio (EM) algorithm is a maximum likelihood method for models that have hidde variables eg. Gaussia Mixture Models (GMMs), Liear Dyamic Systems (LDSs) ad Hidde

More information

Section 14. Simple linear regression.

Section 14. Simple linear regression. Sectio 14 Simple liear regressio. Let us look at the cigarette dataset from [1] (available to dowload from joural s website) ad []. The cigarette dataset cotais measuremets of tar, icotie, weight ad carbo

More information

Supplemental Material: Proofs

Supplemental Material: Proofs Proof to Theorem Supplemetal Material: Proofs Proof. Let be the miimal umber of traiig items to esure a uique solutio θ. First cosider the case. It happes if ad oly if θ ad Rak(A) d, which is a special

More information

Math 778S Spectral Graph Theory Handout #3: Eigenvalues of Adjacency Matrix

Math 778S Spectral Graph Theory Handout #3: Eigenvalues of Adjacency Matrix Math 778S Spectral Graph Theory Hadout #3: Eigevalues of Adjacecy Matrix The Cartesia product (deoted by G H) of two simple graphs G ad H has the vertex-set V (G) V (H). For ay u, v V (G) ad x, y V (H),

More information

CEE 522 Autumn Uncertainty Concepts for Geotechnical Engineering

CEE 522 Autumn Uncertainty Concepts for Geotechnical Engineering CEE 5 Autum 005 Ucertaity Cocepts for Geotechical Egieerig Basic Termiology Set A set is a collectio of (mutually exclusive) objects or evets. The sample space is the (collectively exhaustive) collectio

More information

Bivariate Sample Statistics Geog 210C Introduction to Spatial Data Analysis. Chris Funk. Lecture 7

Bivariate Sample Statistics Geog 210C Introduction to Spatial Data Analysis. Chris Funk. Lecture 7 Bivariate Sample Statistics Geog 210C Itroductio to Spatial Data Aalysis Chris Fuk Lecture 7 Overview Real statistical applicatio: Remote moitorig of east Africa log rais Lead up to Lab 5-6 Review of bivariate/multivariate

More information

Session 5. (1) Principal component analysis and Karhunen-Loève transformation

Session 5. (1) Principal component analysis and Karhunen-Loève transformation 200 Autum semester Patter Iformatio Processig Topic 2 Image compressio by orthogoal trasformatio Sessio 5 () Pricipal compoet aalysis ad Karhue-Loève trasformatio Topic 2 of this course explais the image

More information

Notes The Incremental Motion Model:

Notes The Incremental Motion Model: The Icremetal Motio Model: The Jacobia Matrix I the forward kiematics model, we saw that it was possible to relate joit agles θ, to the cofiguratio of the robot ed effector T I this sectio, we will see

More information

5.1. The Rayleigh s quotient. Definition 49. Let A = A be a self-adjoint matrix. quotient is the function. R(x) = x,ax, for x = 0.

5.1. The Rayleigh s quotient. Definition 49. Let A = A be a self-adjoint matrix. quotient is the function. R(x) = x,ax, for x = 0. 40 RODICA D. COSTIN 5. The Rayleigh s priciple ad the i priciple for the eigevalues of a self-adjoit matrix Eigevalues of self-adjoit matrices are easy to calculate. This sectio shows how this is doe usig

More information

EECS 442 Computer vision. Multiple view geometry Affine structure from Motion

EECS 442 Computer vision. Multiple view geometry Affine structure from Motion EECS 442 Computer visio Multiple view geometry Affie structure from Motio - Affie structure from motio problem - Algebraic methods - Factorizatio methods Readig: [HZ] Chapters: 6,4,8 [FP] Chapter: 2 Some

More information

1 1 2 = show that: over variables x and y. [2 marks] Write down necessary conditions involving first and second-order partial derivatives for ( x0, y

1 1 2 = show that: over variables x and y. [2 marks] Write down necessary conditions involving first and second-order partial derivatives for ( x0, y Questio (a) A square matrix A= A is called positive defiite if the quadratic form waw > 0 for every o-zero vector w [Note: Here (.) deotes the traspose of a matrix or a vector]. Let 0 A = 0 = show that:

More information

Soo King Lim Figure 1: Figure 2: Figure 3: Figure 4: Figure 5: Figure 6: Figure 7:

Soo King Lim Figure 1: Figure 2: Figure 3: Figure 4: Figure 5: Figure 6: Figure 7: 0 Multivariate Cotrol Chart 3 Multivariate Normal Distributio 5 Estimatio of the Mea ad Covariace Matrix 6 Hotellig s Cotrol Chart 6 Hotellig s Square 8 Average Value of k Subgroups 0 Example 3 3 Value

More information

NBHM QUESTION 2007 Section 1 : Algebra Q1. Let G be a group of order n. Which of the following conditions imply that G is abelian?

NBHM QUESTION 2007 Section 1 : Algebra Q1. Let G be a group of order n. Which of the following conditions imply that G is abelian? NBHM QUESTION 7 NBHM QUESTION 7 NBHM QUESTION 7 Sectio : Algebra Q Let G be a group of order Which of the followig coditios imply that G is abelia? 5 36 Q Which of the followig subgroups are ecesarily

More information

Geometry of LS. LECTURE 3 GEOMETRY OF LS, PROPERTIES OF σ 2, PARTITIONED REGRESSION, GOODNESS OF FIT

Geometry of LS. LECTURE 3 GEOMETRY OF LS, PROPERTIES OF σ 2, PARTITIONED REGRESSION, GOODNESS OF FIT OCTOBER 7, 2016 LECTURE 3 GEOMETRY OF LS, PROPERTIES OF σ 2, PARTITIONED REGRESSION, GOODNESS OF FIT Geometry of LS We ca thik of y ad the colums of X as members of the -dimesioal Euclidea space R Oe ca

More information

1 Last time: similar and diagonalizable matrices

1 Last time: similar and diagonalizable matrices Last time: similar ad diagoalizable matrices Let be a positive iteger Suppose A is a matrix, v R, ad λ R Recall that v a eigevector for A with eigevalue λ if v ad Av λv, or equivaletly if v is a ozero

More information

Chimica Inorganica 3

Chimica Inorganica 3 himica Iorgaica Irreducible Represetatios ad haracter Tables Rather tha usig geometrical operatios, it is ofte much more coveiet to employ a ew set of group elemets which are matrices ad to make the rule

More information

Last time: Moments of the Poisson distribution from its generating function. Example: Using telescope to measure intensity of an object

Last time: Moments of the Poisson distribution from its generating function. Example: Using telescope to measure intensity of an object 6.3 Stochastic Estimatio ad Cotrol, Fall 004 Lecture 7 Last time: Momets of the Poisso distributio from its geeratig fuctio. Gs () e dg µ e ds dg µ ( s) µ ( s) µ ( s) µ e ds dg X µ ds X s dg dg + ds ds

More information

LINEAR REGRESSION ANALYSIS. MODULE IX Lecture Multicollinearity

LINEAR REGRESSION ANALYSIS. MODULE IX Lecture Multicollinearity LINEAR REGRESSION ANALYSIS MODULE IX Lecture - 9 Multicolliearity Dr Shalabh Departmet of Mathematics ad Statistics Idia Istitute of Techology Kapur Multicolliearity diagostics A importat questio that

More information

Why learn matrix algebra? Vectors & Matrices with statistical applications. Brief history of linear algebra

Why learn matrix algebra? Vectors & Matrices with statistical applications. Brief history of linear algebra R Vectors & Matrices with statistical applicatios x RXX RXY y RYX RYY Why lear matrix algebra? Simple way to express liear combiatios of variables ad geeral solutios of equatios. Liear statistical models

More information

ECON 3150/4150, Spring term Lecture 3

ECON 3150/4150, Spring term Lecture 3 Itroductio Fidig the best fit by regressio Residuals ad R-sq Regressio ad causality Summary ad ext step ECON 3150/4150, Sprig term 2014. Lecture 3 Ragar Nymoe Uiversity of Oslo 21 Jauary 2014 1 / 30 Itroductio

More information

AH Checklist (Unit 3) AH Checklist (Unit 3) Matrices

AH Checklist (Unit 3) AH Checklist (Unit 3) Matrices AH Checklist (Uit 3) AH Checklist (Uit 3) Matrices Skill Achieved? Kow that a matrix is a rectagular array of umbers (aka etries or elemets) i paretheses, each etry beig i a particular row ad colum Kow

More information

Module 3 LOSSY IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur

Module 3 LOSSY IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur Module 3 LOSSY IMAGE COMPRESSION SYSEMS Versio ECE II, Kharagpur Lesso 8 rasform Codig & K-L rasforms Versio ECE II, Kharagpur Istructioal Oectives At the ed of this lesso, the studets should e ale to:.

More information

18.S096: Homework Problem Set 1 (revised)

18.S096: Homework Problem Set 1 (revised) 8.S096: Homework Problem Set (revised) Topics i Mathematics of Data Sciece (Fall 05) Afoso S. Badeira Due o October 6, 05 Exteded to: October 8, 05 This homework problem set is due o October 6, at the

More information

Physics 324, Fall Dirac Notation. These notes were produced by David Kaplan for Phys. 324 in Autumn 2001.

Physics 324, Fall Dirac Notation. These notes were produced by David Kaplan for Phys. 324 in Autumn 2001. Physics 324, Fall 2002 Dirac Notatio These otes were produced by David Kapla for Phys. 324 i Autum 2001. 1 Vectors 1.1 Ier product Recall from liear algebra: we ca represet a vector V as a colum vector;

More information

Slide Set 13 Linear Model with Endogenous Regressors and the GMM estimator

Slide Set 13 Linear Model with Endogenous Regressors and the GMM estimator Slide Set 13 Liear Model with Edogeous Regressors ad the GMM estimator Pietro Coretto pcoretto@uisa.it Ecoometrics Master i Ecoomics ad Fiace (MEF) Uiversità degli Studi di Napoli Federico II Versio: Friday

More information

4. Hypothesis testing (Hotelling s T 2 -statistic)

4. Hypothesis testing (Hotelling s T 2 -statistic) 4. Hypothesis testig (Hotellig s T -statistic) Cosider the test of hypothesis H 0 : = 0 H A = 6= 0 4. The Uio-Itersectio Priciple W accept the hypothesis H 0 as valid if ad oly if H 0 (a) : a T = a T 0

More information

Linear regression. Daniel Hsu (COMS 4771) (y i x T i β)2 2πσ. 2 2σ 2. 1 n. (x T i β y i ) 2. 1 ˆβ arg min. β R n d

Linear regression. Daniel Hsu (COMS 4771) (y i x T i β)2 2πσ. 2 2σ 2. 1 n. (x T i β y i ) 2. 1 ˆβ arg min. β R n d Liear regressio Daiel Hsu (COMS 477) Maximum likelihood estimatio Oe of the simplest liear regressio models is the followig: (X, Y ),..., (X, Y ), (X, Y ) are iid radom pairs takig values i R d R, ad Y

More information

PAPER : IIT-JAM 2010

PAPER : IIT-JAM 2010 MATHEMATICS-MA (CODE A) Q.-Q.5: Oly oe optio is correct for each questio. Each questio carries (+6) marks for correct aswer ad ( ) marks for icorrect aswer.. Which of the followig coditios does NOT esure

More information

Problem Set 2 Solutions

Problem Set 2 Solutions CS271 Radomess & Computatio, Sprig 2018 Problem Set 2 Solutios Poit totals are i the margi; the maximum total umber of poits was 52. 1. Probabilistic method for domiatig sets 6pts Pick a radom subset S

More information

GRAPHING LINEAR EQUATIONS. Linear Equations ( 3,1 ) _x-axis. Origin ( 0, 0 ) Slope = change in y change in x. Equation for l 1.

GRAPHING LINEAR EQUATIONS. Linear Equations ( 3,1 ) _x-axis. Origin ( 0, 0 ) Slope = change in y change in x. Equation for l 1. GRAPHING LINEAR EQUATIONS Quadrat II Quadrat I ORDERED PAIR: The first umer i the ordered pair is the -coordiate ad the secod umer i the ordered pair is the y-coordiate. (,1 ) Origi ( 0, 0 ) _-ais Liear

More information

Orthogonal transformations

Orthogonal transformations Orthogoal trasformatios October 12, 2014 1 Defiig property The squared legth of a vector is give by takig the dot product of a vector with itself, v 2 v v g ij v i v j A orthogoal trasformatio is a liear

More information

V. Nollau Institute of Mathematical Stochastics, Technical University of Dresden, Germany

V. Nollau Institute of Mathematical Stochastics, Technical University of Dresden, Germany PROBABILITY AND STATISTICS Vol. III - Correlatio Aalysis - V. Nollau CORRELATION ANALYSIS V. Nollau Istitute of Mathematical Stochastics, Techical Uiversity of Dresde, Germay Keywords: Radom vector, multivariate

More information

A) is empty. B) is a finite set. C) can be a countably infinite set. D) can be an uncountable set.

A) is empty. B) is a finite set. C) can be a countably infinite set. D) can be an uncountable set. M.A./M.Sc. (Mathematics) Etrace Examiatio 016-17 Max Time: hours Max Marks: 150 Istructios: There are 50 questios. Every questio has four choices of which exactly oe is correct. For correct aswer, 3 marks

More information

CLRM estimation Pietro Coretto Econometrics

CLRM estimation Pietro Coretto Econometrics Slide Set 4 CLRM estimatio Pietro Coretto pcoretto@uisa.it Ecoometrics Master i Ecoomics ad Fiace (MEF) Uiversità degli Studi di Napoli Federico II Versio: Thursday 24 th Jauary, 2019 (h08:41) P. Coretto

More information

The Jordan Normal Form: A General Approach to Solving Homogeneous Linear Systems. Mike Raugh. March 20, 2005

The Jordan Normal Form: A General Approach to Solving Homogeneous Linear Systems. Mike Raugh. March 20, 2005 The Jorda Normal Form: A Geeral Approach to Solvig Homogeeous Liear Sstems Mike Raugh March 2, 25 What are we doig here? I this ote, we describe the Jorda ormal form of a matrix ad show how it ma be used

More information

11 Correlation and Regression

11 Correlation and Regression 11 Correlatio Regressio 11.1 Multivariate Data Ofte we look at data where several variables are recorded for the same idividuals or samplig uits. For example, at a coastal weather statio, we might record

More information

Mathematics 3 Outcome 1. Vectors (9/10 pers) Lesson, Outline, Approach etc. This is page number 13. produced for TeeJay Publishers by Tom Strang

Mathematics 3 Outcome 1. Vectors (9/10 pers) Lesson, Outline, Approach etc. This is page number 13. produced for TeeJay Publishers by Tom Strang Vectors (9/0 pers) Mathematics 3 Outcome / Revise positio vector, PQ = q p, commuicative, associative, zero vector, multiplicatio by a scalar k, compoets, magitude, uit vector, (i, j, ad k) as well as

More information

The Basic Space Model

The Basic Space Model The Basic Space Model Let x i be the ith idividual s (i=,, ) reported positio o the th issue ( =,, m) ad let X 0 be the by m matrix of observed data here the 0 subscript idicates that elemets are missig

More information

CHAPTER 5. Theory and Solution Using Matrix Techniques

CHAPTER 5. Theory and Solution Using Matrix Techniques A SERIES OF CLASS NOTES FOR 2005-2006 TO INTRODUCE LINEAR AND NONLINEAR PROBLEMS TO ENGINEERS, SCIENTISTS, AND APPLIED MATHEMATICIANS DE CLASS NOTES 3 A COLLECTION OF HANDOUTS ON SYSTEMS OF ORDINARY DIFFERENTIAL

More information

Questions and answers, kernel part

Questions and answers, kernel part Questios ad aswers, kerel part October 8, 205 Questios. Questio : properties of kerels, PCA, represeter theorem. [2 poits] Let F be a RK defied o some domai X, with feature map φ(x) x X ad reproducig kerel

More information

Where do eigenvalues/eigenvectors/eigenfunctions come from, and why are they important anyway?

Where do eigenvalues/eigenvectors/eigenfunctions come from, and why are they important anyway? Where do eigevalues/eigevectors/eigeuctios come rom, ad why are they importat ayway? I. Bacgroud (rom Ordiary Dieretial Equatios} Cosider the simplest example o a harmoic oscillator (thi o a vibratig strig)

More information

Affine Structure from Motion

Affine Structure from Motion Affie Structure from Motio EECS 598-8 Fall 24! Foudatios of Computer Visio!! Istructor: Jaso Corso (jjcorso)! web.eecs.umich.edu/~jjcorso/t/598f4!! Readigs: FP 8.2! Date: /5/4!! Materials o these slides

More information

Variable selection in principal components analysis of qualitative data using the accelerated ALS algorithm

Variable selection in principal components analysis of qualitative data using the accelerated ALS algorithm Variable selectio i pricipal compoets aalysis of qualitative data usig the accelerated ALS algorithm Masahiro Kuroda Yuichi Mori Masaya Iizuka Michio Sakakihara (Okayama Uiversity of Sciece) (Okayama Uiversity

More information

Matrix Representation of Data in Experiment

Matrix Representation of Data in Experiment Matrix Represetatio of Data i Experimet Cosider a very simple model for resposes y ij : y ij i ij, i 1,; j 1,,..., (ote that for simplicity we are assumig the two () groups are of equal sample size ) Y

More information

Assumptions. Motivation. Linear Transforms. Standard measures. Correlation. Cofactor. γ k

Assumptions. Motivation. Linear Transforms. Standard measures. Correlation. Cofactor. γ k Outlie Pricipal Compoet Aalysis Yaju Ya Itroductio of PCA Mathematical basis Calculatio of PCA Applicatios //04 ELE79, Sprig 004 What is PCA? Pricipal Compoets Pricipal Compoet Aalysis, origially developed

More information

ALGEBRAIC GEOMETRY COURSE NOTES, LECTURE 5: SINGULARITIES.

ALGEBRAIC GEOMETRY COURSE NOTES, LECTURE 5: SINGULARITIES. ALGEBRAIC GEOMETRY COURSE NOTES, LECTURE 5: SINGULARITIES. ANDREW SALCH 1. The Jacobia criterio for osigularity. You have probably oticed by ow that some poits o varieties are smooth i a sese somethig

More information

Tridiagonal reduction redux

Tridiagonal reduction redux Week 15: Moday, Nov 27 Wedesday, Nov 29 Tridiagoal reductio redux Cosider the problem of computig eigevalues of a symmetric matrix A that is large ad sparse Usig the grail code i LAPACK, we ca compute

More information

Correlation Regression

Correlation Regression Correlatio Regressio While correlatio methods measure the stregth of a liear relatioship betwee two variables, we might wish to go a little further: How much does oe variable chage for a give chage i aother

More information

Stochastic Matrices in a Finite Field

Stochastic Matrices in a Finite Field Stochastic Matrices i a Fiite Field Abstract: I this project we will explore the properties of stochastic matrices i both the real ad the fiite fields. We first explore what properties 2 2 stochastic matrices

More information

ACO Comprehensive Exam 9 October 2007 Student code A. 1. Graph Theory

ACO Comprehensive Exam 9 October 2007 Student code A. 1. Graph Theory 1. Graph Theory Prove that there exist o simple plaar triagulatio T ad two distict adjacet vertices x, y V (T ) such that x ad y are the oly vertices of T of odd degree. Do ot use the Four-Color Theorem.

More information

MATH10212 Linear Algebra B Proof Problems

MATH10212 Linear Algebra B Proof Problems MATH22 Liear Algebra Proof Problems 5 Jue 26 Each problem requests a proof of a simple statemet Problems placed lower i the list may use the results of previous oes Matrices ermiats If a b R the matrix

More information

Nonlinear regression

Nonlinear regression oliear regressio How to aalyse data? How to aalyse data? Plot! How to aalyse data? Plot! Huma brai is oe the most powerfull computatioall tools Works differetly tha a computer What if data have o liear

More information

Filter banks. Separately, the lowpass and highpass filters are not invertible. removes the highest frequency 1/ 2and

Filter banks. Separately, the lowpass and highpass filters are not invertible. removes the highest frequency 1/ 2and Filter bas Separately, the lowpass ad highpass filters are ot ivertible T removes the highest frequecy / ad removes the lowest frequecy Together these filters separate the sigal ito low-frequecy ad high-frequecy

More information

Classification of DT signals

Classification of DT signals Comlex exoetial A discrete time sigal may be comlex valued I digital commuicatios comlex sigals arise aturally A comlex sigal may be rereseted i two forms: jarg { z( ) } { } z ( ) = Re { z ( )} + jim {

More information

10/2/ , 5.9, Jacob Hays Amit Pillay James DeFelice

10/2/ , 5.9, Jacob Hays Amit Pillay James DeFelice 0//008 Liear Discrimiat Fuctios Jacob Hays Amit Pillay James DeFelice 5.8, 5.9, 5. Miimum Squared Error Previous methods oly worked o liear separable cases, by lookig at misclassified samples to correct

More information

15.083J/6.859J Integer Optimization. Lecture 3: Methods to enhance formulations

15.083J/6.859J Integer Optimization. Lecture 3: Methods to enhance formulations 15.083J/6.859J Iteger Optimizatio Lecture 3: Methods to ehace formulatios 1 Outlie Polyhedral review Slide 1 Methods to geerate valid iequalities Methods to geerate facet defiig iequalities Polyhedral

More information

Machine Learning Regression I Hamid R. Rabiee [Slides are based on Bishop Book] Spring

Machine Learning Regression I Hamid R. Rabiee [Slides are based on Bishop Book] Spring Machie Learig Regressio I Hamid R. Rabiee [Slides are based o Bishop Book] Sprig 015 http://ce.sharif.edu/courses/93-94//ce717-1 Liear Regressio Liear regressio: ivolves a respose variable ad a sigle predictor

More information

Chapter 3 Inner Product Spaces. Hilbert Spaces

Chapter 3 Inner Product Spaces. Hilbert Spaces Chapter 3 Ier Product Spaces. Hilbert Spaces 3. Ier Product Spaces. Hilbert Spaces 3.- Defiitio. A ier product space is a vector space X with a ier product defied o X. A Hilbert space is a complete ier

More information

CMSE 820: Math. Foundations of Data Sci.

CMSE 820: Math. Foundations of Data Sci. Lecture 17 8.4 Weighted path graphs Take from [10, Lecture 3] As alluded to at the ed of the previous sectio, we ow aalyze weighted path graphs. To that ed, we prove the followig: Theorem 6 (Fiedler).

More information

Brief Review of Functions of Several Variables

Brief Review of Functions of Several Variables Brief Review of Fuctios of Several Variables Differetiatio Differetiatio Recall, a fuctio f : R R is differetiable at x R if ( ) ( ) lim f x f x 0 exists df ( x) Whe this limit exists we call it or f(

More information

Review Problems 1. ICME and MS&E Refresher Course September 19, 2011 B = C = AB = A = A 2 = A 3... C 2 = C 3 = =

Review Problems 1. ICME and MS&E Refresher Course September 19, 2011 B = C = AB = A = A 2 = A 3... C 2 = C 3 = = Review Problems ICME ad MS&E Refresher Course September 9, 0 Warm-up problems. For the followig matrices A = 0 B = C = AB = 0 fid all powers A,A 3,(which is A times A),... ad B,B 3,... ad C,C 3,... Solutio:

More information