General Linear Model

Size: px
Start display at page:

Download "General Linear Model"

Transcription

1 GLM V1 V2 V3 V4 V5 V11 V12 V13 V14 V15 /WSFACTOR=placeholders 2 Polynomial target 5 Polynomial /METHOD=SSTYPE(3) /EMMEANS=TABLES(OVERALL) /EMMEANS=TABLES(placeholders) COMPARE ADJ(SIDAK) /EMMEANS=TABLES(target) COMPARE ADJ(SIDAK) /EMMEANS=TABLES(placeholders*target) COMPARE(placeholders) ADJ(SIDAK) /EMMEANS=TABLES(placeholders*target) COMPARE(target) ADJ(SIDAK) /PRINT=DESCRIPTIVE ETASQ OPOWER /CRITERIA=ALPHA(.05) /WSDESIGN=placeholders target placeholders*target. General Linear Model Output Created Comments Notes T11:12: Input Data /Users/jarrodblinch/Documents/1b_phd_4a/fitts /spss/wey_all.sav Missing Value Handling Syntax Active Dataset Filter Weight Split File N of Rows in Working Data File 20 Definition of Missing Cases Used DataSet1 <none> <none> <none> Resources Processor Time 0:00: Elapsed Time 0:00: User-defined missing values are treated as missing. Statistics are based on all cases with valid data for all variables in the model. GLM V1 V2 V3 V4 V5 V11 V12 V13 V14 V15 /WSFACTOR=placeholders 2 Polynomial target 5 Polynomial /METHOD=SSTYPE(3) /EMMEANS=TABLES(OVERALL) /EMMEANS=TABLES(placeholders) COMPARE ADJ(SIDAK) /EMMEANS=TABLES(target) COMPARE ADJ(SIDAK) /EMMEANS=TABLES(placeholders*target) COMPARE(placeholders) ADJ(SIDAK) /EMMEANS=TABLES(placeholders*target) COMPARE(target) ADJ(SIDAK) /PRINT=DESCRIPTIVE ETASQ OPOWER /CRITERIA=ALPHA(.05) /WSDESIGN=placeholders target placeholders*target. [DataSet1] /Users/jarrodblinch/Documents/1b_phd_4a/fitts/spss/wey_all.sav 1 of 16 03/09/10 11:25 AM

2 Within-Subjects Factors placeholders target 1 1 V1 2 V2 3 V3 4 V4 5 V5 2 1 V11 2 V12 3 V13 4 V14 5 V15 Dependent Variable Descriptive Statistics Mean Std. Deviation N V V V V V V V V V V Multivariate Tests c Effect Value F Hypothesis df Error df Sig. Partial Eta Squared Noncent. Parameter Observed Power b placeholders Pillai's Trace a Wilks' Lambda a Hotelling's Trace a Roy's Largest Root a target Pillai's Trace a Wilks' Lambda a Hotelling's Trace a Roy's Largest Root a placeholders * target Pillai's Trace a Wilks' Lambda a Hotelling's Trace a Roy's Largest Root a a. Exact statistic 2 of 16 03/09/10 11:25 AM

3 b. Computed using alpha =.05 c. Design: Intercept Within Subjects Design: placeholders + target + placeholders * target Mauchly's Test of Sphericity b Within Subjects Effect Mauchly's W Approx. Chi-Square df Sig. Epsilon a Greenhouse-Geisser Huynh-Feldt Lower-bound placeholders target placeholders * target Tests the null hypothesis that the error covariance matrix of the orthonormalized transformed dependent variables is proportional to an identity matrix. a. May be used to adjust the degrees of freedom for the averaged tests of significance. Corrected tests are displayed in the Tests of Within-Subjects Effects table. b. Design: Intercept Within Subjects Design: placeholders + target + placeholders * target Tests of Within-Subjects Effects Source Type III Sum of Squares df Mean Square F Sig. Partial Eta Squared Noncent. Parameter Observed Power a placeholders Sphericity Assumed Greenhouse-Geisser Huynh-Feldt Lower-bound Error(placeholders) Sphericity Assumed Greenhouse-Geisser Huynh-Feldt Lower-bound target Sphericity Assumed Greenhouse-Geisser Huynh-Feldt Lower-bound Error(target) Sphericity Assumed Greenhouse-Geisser Huynh-Feldt Lower-bound placeholders * target Sphericity Assumed Greenhouse-Geisser Huynh-Feldt Lower-bound Error(placeholders*target) Sphericity Assumed Greenhouse-Geisser Huynh-Feldt of 16 03/09/10 11:25 AM

4 a. Computed using alpha =.05 Lower-bound Tests of Within-Subjects Contrasts Source placeholders target Type III Sum of Squares df Mean Square F Sig. Partial Eta Squared Noncent. Parameter Observed Power a placeholders Linear target Error(placeholders) Linear target target placeholders * target Linear Quadratic Cubic Order Error(target) placeholders * target Linear Quadratic Cubic Order placeholders * target Linear Linear Quadratic Cubic Order Error(placeholders*target) Linear Linear Quadratic Cubic Order a. Computed using alpha =.05 Transformed Variable:Average Tests of Between-Subjects Effects Source Type III Sum of Squares df Mean Square F Sig. Partial Eta Squared Noncent. Parameter Observed Power a Intercept Error a. Computed using alpha =.05 Estimated Marginal Means 1. Grand Mean 4 of 16 03/09/10 11:25 AM

5 95% Confidence Interval Mean Std. Error Lower Bound Upper Bound placeholders Estimates 95% Confidence Interval placeholders Mean Std. Error Lower Bound Upper Bound (I) placeholders (J) placeholders Pairwise Comparisons Mean Difference (I-J) Std. Error Sig. a 95% Confidence Interval for Difference a Lower Bound Upper Bound Based on estimated marginal means a. Adjustment for multiple comparisons: Sidak. Multivariate Tests Value F Hypothesis df Error df Sig. Partial Eta Squared Noncent. Parameter Observed Power b Pillai's trace a Wilks' lambda a Hotelling's trace a Roy's largest root a Each F tests the multivariate effect of placeholders. These tests are based on the linearly independent pairwise comparisons among the estimated marginal means. a. Exact statistic b. Computed using alpha = target 5 of 16 03/09/10 11:25 AM

6 Estimates 95% Confidence Interval target Mean Std. Error Lower Bound Upper Bound (I) target (J) target Mean Difference (I-J) Pairwise Comparisons Std. Error Sig. a 95% Confidence Interval for Difference a Lower Bound Upper Bound Based on estimated marginal means a. Adjustment for multiple comparisons: Sidak. Multivariate Tests Value F Hypothesis df Error df Sig. Partial Eta Squared Noncent. Parameter Observed Power b Pillai's trace a Wilks' lambda a Hotelling's trace a Roy's largest root a Each F tests the multivariate effect of target. These tests are based on the linearly independent pairwise comparisons among the estimated marginal means. 6 of 16 03/09/10 11:25 AM

7 a. Exact statistic b. Computed using alpha = placeholders * target Estimates 95% Confidence Interval placeholders target Mean Std. Error Lower Bound Upper Bound target (I) placeholders (J) placeholders Pairwise Comparisons Mean Difference (I-J) Std. Error Sig. a 95% Confidence Interval for Difference a Lower Bound Upper Bound * * Based on estimated marginal means a. Adjustment for multiple comparisons: Sidak. *. The mean difference is significant at the.05 level. Multivariate Tests target Value F Hypothesis df Error df Sig. Partial Eta Squared Noncent. Parameter Observed Power b 7 of 16 03/09/10 11:25 AM

8 1 Pillai's trace a Wilks' lambda a Hotelling's trace a Roy's largest root a Pillai's trace a Wilks' lambda a Hotelling's trace a Roy's largest root a Pillai's trace a Wilks' lambda a Hotelling's trace a Roy's largest root a Pillai's trace a Wilks' lambda a Hotelling's trace a Roy's largest root a Pillai's trace a Wilks' lambda a Hotelling's trace a Roy's largest root a Each F tests the multivariate simple effects of placeholders within each level combination of the other effects shown. These tests are based on the linearly independent pairwise comparisons among the estimated marginal means. a. Exact statistic b. Computed using alpha = placeholders * target Estimates 95% Confidence Interval placeholders target Mean Std. Error Lower Bound Upper Bound of 16 03/09/10 11:25 AM

9 placeholders (I) target (J) target Pairwise Comparisons Mean Difference (I-J) Std. Error Sig. a 95% Confidence Interval for Difference a Lower Bound Upper Bound of 16 03/09/10 11:25 AM

10 Based on estimated marginal means a. Adjustment for multiple comparisons: Sidak. Multivariate Tests placeholders Value F Hypothesis df Error df Sig. Partial Eta Squared Noncent. Parameter Observed Power b 1 Pillai's trace a Wilks' lambda a Hotelling's trace a Roy's largest root a Pillai's trace a Wilks' lambda a Hotelling's trace a Roy's largest root a Each F tests the multivariate simple effects of target within each level combination of the other effects shown. These tests are based on the linearly independent pairwise comparisons among the estimated marginal means. a. Exact statistic b. Computed using alpha =.05 GLM V1 V2 V3 V4 V5 V11 V12 V13 V14 V15 /WSFACTOR=omnibus 10 Polynomial /METHOD=SSTYPE(3) /EMMEANS=TABLES(OVERALL) /EMMEANS=TABLES(omnibus) COMPARE ADJ(SIDAK) /PRINT=DESCRIPTIVE ETASQ OPOWER /CRITERIA=ALPHA(.05) /WSDESIGN=omnibus. General Linear Model Output Created Comments Notes T11:12: Input Data /Users/jarrodblinch/Documents/1b_phd_4a/fitts /spss/wey_all.sav Active Dataset Filter Weight Split File DataSet1 <none> <none> <none> 10 of 16 03/09/10 11:25 AM

11 Missing Value Handling Syntax N of Rows in Working Data File Definition of Missing Cases Used Resources Processor Time 0:00: Elapsed Time 0:00: User-defined missing values are treated as missing. Statistics are based on all cases with valid data for all variables in the model. GLM V1 V2 V3 V4 V5 V11 V12 V13 V14 V15 /WSFACTOR=omnibus 10 Polynomial /METHOD=SSTYPE(3) /EMMEANS=TABLES(OVERALL) /EMMEANS=TABLES(omnibus) COMPARE ADJ(SIDAK) /PRINT=DESCRIPTIVE ETASQ OPOWER /CRITERIA=ALPHA(.05) /WSDESIGN=omnibus. [DataSet1] /Users/jarrodblinch/Documents/1b_phd_4a/fitts/spss/wey_all.sav Within-Subjects Factors omnibus 1 V1 2 V2 3 V3 4 V4 5 V5 6 V11 7 V12 8 V13 9 V14 10 V15 Dependent Variable Descriptive Statistics Mean Std. Deviation N V V V V V V V V V V Multivariate Tests c Effect Value F Hypothesis df Error df Sig. Partial Eta Squared Noncent. Parameter Observed Power b 11 of 16 03/09/10 11:25 AM

12 omnibus Pillai's Trace a a. Exact statistic Wilks' Lambda a Hotelling's Trace a Roy's Largest Root a b. Computed using alpha =.05 c. Design: Intercept Within Subjects Design: omnibus Within Subjects Effect Mauchly's W Mauchly's Test of Sphericity b Approx. Chi-Square df Sig. Epsilon a Greenhouse-Geisser Huynh-Feldt Lower-bound omnibus Tests the null hypothesis that the error covariance matrix of the orthonormalized transformed dependent variables is proportional to an identity matrix. a. May be used to adjust the degrees of freedom for the averaged tests of significance. Corrected tests are displayed in the Tests of Within-Subjects Effects table. b. Design: Intercept Within Subjects Design: omnibus Tests of Within-Subjects Effects Source Type III Sum of Squares df Mean Square F Sig. Partial Eta Squared Noncent. Parameter Observed Power a omnibus Sphericity Assumed Greenhouse-Geisser Huynh-Feldt Lower-bound Error(omnibus) Sphericity Assumed Greenhouse-Geisser Huynh-Feldt Lower-bound a. Computed using alpha =.05 Tests of Within-Subjects Contrasts Source omnibus Type III Sum of Squares df Mean Square F Sig. Partial Eta Squared Noncent. Parameter Observed Power a omnibus Linear Quadratic Cubic Order Order Order Order Order of 16 03/09/10 11:25 AM

13 Order Error(omnibus) Linear Quadratic Cubic Order Order Order Order Order Order a. Computed using alpha =.05 Transformed Variable:Average Tests of Between-Subjects Effects Source Type III Sum of Squares df Mean Square F Sig. Partial Eta Squared Noncent. Parameter Observed Power a Intercept Error a. Computed using alpha =.05 Estimated Marginal Means 1. Grand Mean 95% Confidence Interval Mean Std. Error Lower Bound Upper Bound omnibus Estimates 95% Confidence Interval omnibus Mean Std. Error Lower Bound Upper Bound 13 of 16 03/09/10 11:25 AM

14 (I) omnibus (J) omnibus Mean Difference (I-J) Pairwise Comparisons Std. Error Sig. a 95% Confidence Interval for Difference a Lower Bound Upper Bound of 16 03/09/10 11:25 AM

15 of 16 03/09/10 11:25 AM

16 Based on estimated marginal means a. Adjustment for multiple comparisons: Sidak. Multivariate Tests Value F Hypothesis df Error df Sig. Partial Eta Squared Noncent. Parameter Observed Power b Pillai's trace a Wilks' lambda a Hotelling's trace a Roy's largest root a Each F tests the multivariate effect of omnibus. These tests are based on the linearly independent pairwise comparisons among the estimated marginal means. a. Exact statistic b. Computed using alpha = of 16 03/09/10 11:25 AM

General Linear Model. Notes Output Created Comments Input. 19-Dec :09:44

General Linear Model. Notes Output Created Comments Input. 19-Dec :09:44 GET ILE='G:\lare\Data\Accuracy_Mixed.sav'. DATASET NAME DataSet WINDOW=RONT. GLM Jigsaw Decision BY CMCTools /WSACTOR= Polynomial /METHOD=SSTYPE(3) /PLOT=PROILE(CMCTools*) /EMMEANS=TABLES(CMCTools) COMPARE

More information

Descriptive Statistics

Descriptive Statistics *following creates z scores for the ydacl statedp traitdp and rads vars. *specifically adding the /SAVE subcommand to descriptives will create z. *scores for whatever variables are in the command. DESCRIPTIVES

More information

Correlations. Notes. Output Created Comments 04-OCT :34:52

Correlations. Notes. Output Created Comments 04-OCT :34:52 Correlations Output Created Comments Input Missing Value Handling Syntax Resources Notes Data Active Dataset Filter Weight Split File N of Rows in Working Data File Definition of Missing Cases Used Processor

More information

Multivariate Tests. Mauchly's Test of Sphericity

Multivariate Tests. Mauchly's Test of Sphericity General Model Within-Sujects Factors Dependent Variale IDLS IDLF IDHS IDHF IDHCLS IDHCLF Descriptive Statistics IDLS IDLF IDHS IDHF IDHCLS IDHCLF Mean Std. Deviation N.0.70.0.0..8..88.8...97 Multivariate

More information

Prepared by: Prof. Dr Bahaman Abu Samah Department of Professional Development and Continuing Education Faculty of Educational Studies Universiti

Prepared by: Prof. Dr Bahaman Abu Samah Department of Professional Development and Continuing Education Faculty of Educational Studies Universiti Prepared by: Prof. Dr Bahaman Abu Samah Department of Professional Development and Continuing Education Faculty of Educational Studies Universiti Putra Malaysia Serdang Use in experiment, quasi-experiment

More information

Univariate Analysis of Variance

Univariate Analysis of Variance Univariate Analysis of Variance Output Created Comments Input Missing Value Handling Syntax Resources Notes Data Active Dataset Filter Weight Split File N of Rows in Working Data File Definition of Missing

More information

T. Mark Beasley One-Way Repeated Measures ANOVA handout

T. Mark Beasley One-Way Repeated Measures ANOVA handout T. Mark Beasley One-Way Repeated Measures ANOVA handout Profile Analysis Example In the One-Way Repeated Measures ANOVA, two factors represent separate sources of variance. Their interaction presents an

More information

Repeated-Measures ANOVA in SPSS Correct data formatting for a repeated-measures ANOVA in SPSS involves having a single line of data for each

Repeated-Measures ANOVA in SPSS Correct data formatting for a repeated-measures ANOVA in SPSS involves having a single line of data for each Repeated-Measures ANOVA in SPSS Correct data formatting for a repeated-measures ANOVA in SPSS involves having a single line of data for each participant, with the repeated measures entered as separate

More information

GLM Repeated-measures designs: One within-subjects factor

GLM Repeated-measures designs: One within-subjects factor GLM Repeated-measures designs: One within-subjects factor Reading: SPSS dvanced Models 9.0: 2. Repeated Measures Homework: Sums of Squares for Within-Subject Effects Download: glm_withn1.sav (Download

More information

GLM Repeated Measures

GLM Repeated Measures GLM Repeated Measures Notation The GLM (general linear model) procedure provides analysis of variance when the same measurement or measurements are made several times on each subject or case (repeated

More information

Stevens 2. Aufl. S Multivariate Tests c

Stevens 2. Aufl. S Multivariate Tests c Stevens 2. Aufl. S. 200 General Linear Model Between-Subjects Factors 1,00 2,00 3,00 N 11 11 11 Effect a. Exact statistic Pillai's Trace Wilks' Lambda Hotelling's Trace Roy's Largest Root Pillai's Trace

More information

ANOVA in SPSS. Hugo Quené. opleiding Taalwetenschap Universiteit Utrecht Trans 10, 3512 JK Utrecht.

ANOVA in SPSS. Hugo Quené. opleiding Taalwetenschap Universiteit Utrecht Trans 10, 3512 JK Utrecht. ANOVA in SPSS Hugo Quené hugo.quene@let.uu.nl opleiding Taalwetenschap Universiteit Utrecht Trans 10, 3512 JK Utrecht 7 Oct 2005 1 introduction In this example I ll use fictitious data, taken from http://www.ruf.rice.edu/~mickey/psyc339/notes/rmanova.html.

More information

Psy 420 Final Exam Fall 06 Ainsworth. Key Name

Psy 420 Final Exam Fall 06 Ainsworth. Key Name Psy 40 Final Exam Fall 06 Ainsworth Key Name Psy 40 Final A researcher is studying the effect of Yoga, Meditation, Anti-Anxiety Drugs and taking Psy 40 and the anxiety levels of the participants. Twenty

More information

ANCOVA. Psy 420 Andrew Ainsworth

ANCOVA. Psy 420 Andrew Ainsworth ANCOVA Psy 420 Andrew Ainsworth What is ANCOVA? Analysis of covariance an extension of ANOVA in which main effects and interactions are assessed on DV scores after the DV has been adjusted for by the DV

More information

MANOVA is an extension of the univariate ANOVA as it involves more than one Dependent Variable (DV). The following are assumptions for using MANOVA:

MANOVA is an extension of the univariate ANOVA as it involves more than one Dependent Variable (DV). The following are assumptions for using MANOVA: MULTIVARIATE ANALYSIS OF VARIANCE MANOVA is an extension of the univariate ANOVA as it involves more than one Dependent Variable (DV). The following are assumptions for using MANOVA: 1. Cell sizes : o

More information

ANOVA Longitudinal Models for the Practice Effects Data: via GLM

ANOVA Longitudinal Models for the Practice Effects Data: via GLM Psyc 943 Lecture 25 page 1 ANOVA Longitudinal Models for the Practice Effects Data: via GLM Model 1. Saturated Means Model for Session, E-only Variances Model (BP) Variances Model: NO correlation, EQUAL

More information

Regression. Notes. Page 1. Output Created Comments 25-JAN :29:55

Regression. Notes. Page 1. Output Created Comments 25-JAN :29:55 REGRESSION /MISSING LISTWISE /STATISTICS COEFF OUTS CI(95) BCOV R ANOVA /CRITERIA=PIN(.05) POUT(.10) /NOORIGIN /DEPENDENT favorability /METHOD=ENTER Zcontemp ZAnxious6 zallcontact. Regression Notes Output

More information

UV Absorbance by Fish Slime

UV Absorbance by Fish Slime Data Set 1: UV Absorbance by Fish Slime Statistical Setting This handout describes a repeated-measures ANOVA, with two crossed amongsubjects factors and repeated-measures on a third (within-subjects) factor.

More information

Introduction. Introduction

Introduction. Introduction Introduction Multivariate procedures in R Peter Dalgaard Department of Biostatistics University of Copenhagen user 2006, Vienna Until version 2.1.0, R had limited support for multivariate tests Repeated

More information

WITHIN-PARTICIPANT EXPERIMENTAL DESIGNS

WITHIN-PARTICIPANT EXPERIMENTAL DESIGNS 1 WITHIN-PARTICIPANT EXPERIMENTAL DESIGNS I. Single-factor designs: the model is: yij i j ij ij where: yij score for person j under treatment level i (i = 1,..., I; j = 1,..., n) overall mean βi treatment

More information

Repeated Measures Analysis of Variance

Repeated Measures Analysis of Variance Repeated Measures Analysis of Variance Review Univariate Analysis of Variance Group A Group B Group C Repeated Measures Analysis of Variance Condition A Condition B Condition C Repeated Measures Analysis

More information

Research Design - - Topic 12 MRC Analysis and Two Factor Designs: Completely Randomized and Repeated Measures 2010 R.C. Gardner, Ph.D.

Research Design - - Topic 12 MRC Analysis and Two Factor Designs: Completely Randomized and Repeated Measures 2010 R.C. Gardner, Ph.D. esearch Design - - Topic MC nalysis and Two Factor Designs: Completely andomized and epeated Measures C Gardner, PhD General overview Completely andomized Two Factor Designs Model I Effect Coding egression

More information

Advanced Quantitative Data Analysis

Advanced Quantitative Data Analysis Chapter 24 Advanced Quantitative Data Analysis Daniel Muijs Doing Regression Analysis in SPSS When we want to do regression analysis in SPSS, we have to go through the following steps: 1 As usual, we choose

More information

*************NO YOGA!!!!!!!************************************.

*************NO YOGA!!!!!!!************************************. *************NO YOGA!!!!!!!************************************. temporary. select if human gt 1 and Q_TotalDuration gt 239 and subjectnum ne 672 and subj ectnum ne 115 and subjectnum ne 104 and subjectnum

More information

Chapter 14: Repeated-measures designs

Chapter 14: Repeated-measures designs Chapter 14: Repeated-measures designs Oliver Twisted Please, Sir, can I have some more sphericity? The following article is adapted from: Field, A. P. (1998). A bluffer s guide to sphericity. Newsletter

More information

SPSS Guide For MMI 409

SPSS Guide For MMI 409 SPSS Guide For MMI 409 by John Wong March 2012 Preface Hopefully, this document can provide some guidance to MMI 409 students on how to use SPSS to solve many of the problems covered in the D Agostino

More information

BIOL 458 BIOMETRY Lab 8 - Nested and Repeated Measures ANOVA

BIOL 458 BIOMETRY Lab 8 - Nested and Repeated Measures ANOVA BIOL 458 BIOMETRY Lab 8 - Nested and Repeated Measures ANOVA PART 1: NESTED ANOVA Nested designs are used when levels of one factor are not represented within all levels of another factor. Often this is

More information

M A N O V A. Multivariate ANOVA. Data

M A N O V A. Multivariate ANOVA. Data M A N O V A Multivariate ANOVA V. Čekanavičius, G. Murauskas 1 Data k groups; Each respondent has m measurements; Observations are from the multivariate normal distribution. No outliers. Covariance matrices

More information

1 DV is normally distributed in the population for each level of the within-subjects factor 2 The population variances of the difference scores

1 DV is normally distributed in the population for each level of the within-subjects factor 2 The population variances of the difference scores One-way Prepared by: Prof. Dr Bahaman Abu Samah Department of Professional Development and Continuing Education Faculty of Educational Studies Universiti Putra Malaysia Serdang The purpose is to test the

More information

Other hypotheses of interest (cont d)

Other hypotheses of interest (cont d) Other hypotheses of interest (cont d) In addition to the simple null hypothesis of no treatment effects, we might wish to test other hypothesis of the general form (examples follow): H 0 : C k g β g p

More information

Neuendorf MANOVA /MANCOVA. Model: X1 (Factor A) X2 (Factor B) X1 x X2 (Interaction) Y4. Like ANOVA/ANCOVA:

Neuendorf MANOVA /MANCOVA. Model: X1 (Factor A) X2 (Factor B) X1 x X2 (Interaction) Y4. Like ANOVA/ANCOVA: 1 Neuendorf MANOVA /MANCOVA Model: X1 (Factor A) X2 (Factor B) X1 x X2 (Interaction) Y1 Y2 Y3 Y4 Like ANOVA/ANCOVA: 1. Assumes equal variance (equal covariance matrices) across cells (groups defined by

More information

Three Factor Completely Randomized Design with One Continuous Factor: Using SPSS GLM UNIVARIATE R. C. Gardner Department of Psychology

Three Factor Completely Randomized Design with One Continuous Factor: Using SPSS GLM UNIVARIATE R. C. Gardner Department of Psychology Data_Analysis.calm Three Factor Completely Randomized Design with One Continuous Factor: Using SPSS GLM UNIVARIATE R. C. Gardner Department of Psychology This article considers a three factor completely

More information

Checking model assumptions with regression diagnostics

Checking model assumptions with regression diagnostics @graemeleehickey www.glhickey.com graeme.hickey@liverpool.ac.uk Checking model assumptions with regression diagnostics Graeme L. Hickey University of Liverpool Conflicts of interest None Assistant Editor

More information

Entering and recoding variables

Entering and recoding variables Entering and recoding variables To enter: You create a New data file Define the variables on Variable View Enter the values on Data View To create the dichotomies: Transform -> Recode into Different Variable

More information

Chapter 9. Multivariate and Within-cases Analysis. 9.1 Multivariate Analysis of Variance

Chapter 9. Multivariate and Within-cases Analysis. 9.1 Multivariate Analysis of Variance Chapter 9 Multivariate and Within-cases Analysis 9.1 Multivariate Analysis of Variance Multivariate means more than one response variable at once. Why do it? Primarily because if you do parallel analyses

More information

Repeated Measures ANOVA Multivariate ANOVA and Their Relationship to Linear Mixed Models

Repeated Measures ANOVA Multivariate ANOVA and Their Relationship to Linear Mixed Models Repeated Measures ANOVA Multivariate ANOVA and Their Relationship to Linear Mixed Models EPSY 905: Multivariate Analysis Spring 2016 Lecture #12 April 20, 2016 EPSY 905: RM ANOVA, MANOVA, and Mixed Models

More information

Neuendorf MANOVA /MANCOVA. Model: X1 (Factor A) X2 (Factor B) X1 x X2 (Interaction) Y4. Like ANOVA/ANCOVA:

Neuendorf MANOVA /MANCOVA. Model: X1 (Factor A) X2 (Factor B) X1 x X2 (Interaction) Y4. Like ANOVA/ANCOVA: 1 Neuendorf MANOVA /MANCOVA Model: X1 (Factor A) X2 (Factor B) X1 x X2 (Interaction) Y1 Y2 Y3 Y4 Like ANOVA/ANCOVA: 1. Assumes equal variance (equal covariance matrices) across cells (groups defined by

More information

Topic 12. The Split-plot Design and its Relatives (continued) Repeated Measures

Topic 12. The Split-plot Design and its Relatives (continued) Repeated Measures 12.1 Topic 12. The Split-plot Design and its Relatives (continued) Repeated Measures 12.9 Repeated measures analysis Sometimes researchers make multiple measurements on the same experimental unit. We have

More information

International Journal of Current Research in Biosciences and Plant Biology ISSN: Volume 2 Number 5 (May-2015) pp

International Journal of Current Research in Biosciences and Plant Biology ISSN: Volume 2 Number 5 (May-2015) pp Original Research Article International Journal of Current Research in Biosciences and Plant Biology ISSN: 349-00 Volume Number (May-01) pp. -19 www.ijcrbp.com Graphical Approaches to Support Mixed Model

More information

Using the GLM Procedure in SPSS

Using the GLM Procedure in SPSS Using the GLM Procedure in SPSS Alan Taylor, Department of Psychology Macquarie University 2002-2011 Macquarie University 2002-2011 Contents i Introduction 1 1. General 3 1.1 Factors and Covariates 3

More information

Analysis of Longitudinal Data: Comparison Between PROC GLM and PROC MIXED. Maribeth Johnson Medical College of Georgia Augusta, GA

Analysis of Longitudinal Data: Comparison Between PROC GLM and PROC MIXED. Maribeth Johnson Medical College of Georgia Augusta, GA Analysis of Longitudinal Data: Comparison Between PROC GLM and PROC MIXED Maribeth Johnson Medical College of Georgia Augusta, GA Overview Introduction to longitudinal data Describe the data for examples

More information

ANOVA approaches to Repeated Measures. repeated measures MANOVA (chapter 3)

ANOVA approaches to Repeated Measures. repeated measures MANOVA (chapter 3) ANOVA approaches to Repeated Measures univariate repeated-measures ANOVA (chapter 2) repeated measures MANOVA (chapter 3) Assumptions Interval measurement and normally distributed errors (homogeneous across

More information

Analysis of Repeated Measures Data of Iraqi Awassi Lambs Using Mixed Model

Analysis of Repeated Measures Data of Iraqi Awassi Lambs Using Mixed Model American Journal of Applied Scientific Research 01; 1(): 1-6 Published online November 1, 01 (http://www.sciencepublishinggroup.com/j/ajasr) doi: 10.64/j.ajasr.00.13 Analysis of Repeated Measures Data

More information

Statistics Lab One-way Within-Subject ANOVA

Statistics Lab One-way Within-Subject ANOVA Statistics Lab One-way Within-Subject ANOVA PSYCH 710 9 One-way Within-Subjects ANOVA Section 9.1 reviews the basic commands you need to perform a one-way, within-subject ANOVA and to evaluate a linear

More information

Notes on Maxwell & Delaney

Notes on Maxwell & Delaney Notes on Maxwell & Delaney PSY710 12 higher-order within-subject designs Chapter 11 discussed the analysis of data collected in experiments that had a single, within-subject factor. Here we extend those

More information

MANOVA MANOVA,$/,,# ANOVA ##$%'*!# 1. $!;' *$,$!;' (''

MANOVA MANOVA,$/,,# ANOVA ##$%'*!# 1. $!;' *$,$!;' ('' 14 3! "#!$%# $# $&'('$)!! (Analysis of Variance : ANOVA) *& & "#!# +, ANOVA -& $ $ (+,$ ''$) *$#'$)!!#! (Multivariate Analysis of Variance : MANOVA).*& ANOVA *+,'$)$/*! $#/#-, $(,!0'%1)!', #($!#$ # *&,

More information

Chapter 7, continued: MANOVA

Chapter 7, continued: MANOVA Chapter 7, continued: MANOVA The Multivariate Analysis of Variance (MANOVA) technique extends Hotelling T 2 test that compares two mean vectors to the setting in which there are m 2 groups. We wish to

More information

Neuendorf MANOVA /MANCOVA. Model: MAIN EFFECTS: X1 (Factor A) X2 (Factor B) INTERACTIONS : X1 x X2 (A x B Interaction) Y4. Like ANOVA/ANCOVA:

Neuendorf MANOVA /MANCOVA. Model: MAIN EFFECTS: X1 (Factor A) X2 (Factor B) INTERACTIONS : X1 x X2 (A x B Interaction) Y4. Like ANOVA/ANCOVA: 1 Neuendorf MANOVA /MANCOVA Model: MAIN EFFECTS: X1 (Factor A) X2 (Factor B) Y1 Y2 INTERACTIONS : Y3 X1 x X2 (A x B Interaction) Y4 Like ANOVA/ANCOVA: 1. Assumes equal variance (equal covariance matrices)

More information

H0: Tested by k-grp ANOVA

H0: Tested by k-grp ANOVA Pairwise Comparisons ANOVA for multiple condition designs Pairwise comparisons and RH Testing Alpha inflation & Correction LSD & HSD procedures Alpha estimation reconsidered H0: Tested by k-grp ANOVA Regardless

More information

Application of Ghosh, Grizzle and Sen s Nonparametric Methods in. Longitudinal Studies Using SAS PROC GLM

Application of Ghosh, Grizzle and Sen s Nonparametric Methods in. Longitudinal Studies Using SAS PROC GLM Application of Ghosh, Grizzle and Sen s Nonparametric Methods in Longitudinal Studies Using SAS PROC GLM Chan Zeng and Gary O. Zerbe Department of Preventive Medicine and Biometrics University of Colorado

More information

Applied Multivariate Analysis

Applied Multivariate Analysis Department of Mathematics and Statistics, University of Vaasa, Finland Spring 2017 Discriminant Analysis Background 1 Discriminant analysis Background General Setup for the Discriminant Analysis Descriptive

More information

An Introduction to Multivariate Statistical Analysis

An Introduction to Multivariate Statistical Analysis An Introduction to Multivariate Statistical Analysis Third Edition T. W. ANDERSON Stanford University Department of Statistics Stanford, CA WILEY- INTERSCIENCE A JOHN WILEY & SONS, INC., PUBLICATION Contents

More information

Applied Multivariate Statistical Modeling Prof. J. Maiti Department of Industrial Engineering and Management Indian Institute of Technology, Kharagpur

Applied Multivariate Statistical Modeling Prof. J. Maiti Department of Industrial Engineering and Management Indian Institute of Technology, Kharagpur Applied Multivariate Statistical Modeling Prof. J. Maiti Department of Industrial Engineering and Management Indian Institute of Technology, Kharagpur Lecture - 29 Multivariate Linear Regression- Model

More information

Chapter 5: Multivariate Analysis and Repeated Measures

Chapter 5: Multivariate Analysis and Repeated Measures Chapter 5: Multivariate Analysis and Repeated Measures Multivariate -- More than one dependent variable at once. Why do it? Primarily because if you do parallel analyses on lots of outcome measures, the

More information

1998, Gregory Carey Repeated Measures ANOVA - 1. REPEATED MEASURES ANOVA (incomplete)

1998, Gregory Carey Repeated Measures ANOVA - 1. REPEATED MEASURES ANOVA (incomplete) 1998, Gregory Carey Repeated Measures ANOVA - 1 REPEATED MEASURES ANOVA (incomplete) Repeated measures ANOVA (RM) is a specific type of MANOVA. When the within group covariance matrix has a special form,

More information

Research Design - - Topic 8 Hierarchical Designs in Analysis of Variance (Kirk, Chapter 11) 2008 R.C. Gardner, Ph.D.

Research Design - - Topic 8 Hierarchical Designs in Analysis of Variance (Kirk, Chapter 11) 2008 R.C. Gardner, Ph.D. Research Design - - Topic 8 Hierarchical Designs in nalysis of Variance (Kirk, Chapter 11) 008 R.C. Gardner, Ph.D. Experimental Design pproach General Rationale and pplications Rules for Determining Sources

More information

Multivariate analysis of variance and covariance

Multivariate analysis of variance and covariance Introduction Multivariate analysis of variance and covariance Univariate ANOVA: have observations from several groups, numerical dependent variable. Ask whether dependent variable has same mean for each

More information

STAT 501 Assignment 2 NAME Spring Chapter 5, and Sections in Johnson & Wichern.

STAT 501 Assignment 2 NAME Spring Chapter 5, and Sections in Johnson & Wichern. STAT 01 Assignment NAME Spring 00 Reading Assignment: Written Assignment: Chapter, and Sections 6.1-6.3 in Johnson & Wichern. Due Monday, February 1, in class. You should be able to do the first four problems

More information

Analysis of repeated measurements (KLMED8008)

Analysis of repeated measurements (KLMED8008) Analysis of repeated measurements (KLMED8008) Eirik Skogvoll, MD PhD Professor and Consultant Institute of Circulation and Medical Imaging Dept. of Anaesthesiology and Emergency Medicine 1 Day 2 Practical

More information

SAVE OUTFILE='C:\Documents and Settings\ddelgad1\Desktop\FactorAnalysis.sav' /COMPRESSED.

SAVE OUTFILE='C:\Documents and Settings\ddelgad1\Desktop\FactorAnalysis.sav' /COMPRESSED. SAVE OUTFILE='C:\Documents and Settings\ddelgad\Desktop\FactorAnalysis.sav' /COMPRESSED. SAVE TRANSLATE OUTFILE='C:\Documents and Settings\ddelgad\Desktop\FactorAnaly sis.xls' /TYPE=XLS /VERSION=8 /MAP

More information

4:3 LEC - PLANNED COMPARISONS AND REGRESSION ANALYSES

4:3 LEC - PLANNED COMPARISONS AND REGRESSION ANALYSES 4:3 LEC - PLANNED COMPARISONS AND REGRESSION ANALYSES FOR SINGLE FACTOR BETWEEN-S DESIGNS Planned or A Priori Comparisons We previously showed various ways to test all possible pairwise comparisons for

More information

TWO-FACTOR AGRICULTURAL EXPERIMENT WITH REPEATED MEASURES ON ONE FACTOR IN A COMPLETE RANDOMIZED DESIGN

TWO-FACTOR AGRICULTURAL EXPERIMENT WITH REPEATED MEASURES ON ONE FACTOR IN A COMPLETE RANDOMIZED DESIGN Libraries Annual Conference on Applied Statistics in Agriculture 1995-7th Annual Conference Proceedings TWO-FACTOR AGRICULTURAL EXPERIMENT WITH REPEATED MEASURES ON ONE FACTOR IN A COMPLETE RANDOMIZED

More information

Longitudinal data: simple univariate methods of analysis

Longitudinal data: simple univariate methods of analysis Longitudinal data: simple univariate methods of analysis Danish version by Henrik Stryhn, June 1996 Department of Mathematcis and Physics, KVL Translation (and rewriting) by Ib Skovgaard, March 1998 (the

More information

Construct factor from dummy variables Group 1 Group 2 Group 3 Group 4

Construct factor from dummy variables Group 1 Group 2 Group 3 Group 4 THE UNIVERSITY OF MINNESOTA Statistics 5401 October 10, 2005 Multi-group Profile Analysis Example This handout provides an analysis of some artificial data from Example 5.9 on p. 240 of Multivariate Statistical

More information

M M Cross-Over Designs

M M Cross-Over Designs Chapter 568 Cross-Over Designs Introduction This module calculates the power for an x cross-over design in which each subject receives a sequence of treatments and is measured at periods (or time points).

More information

Topic 12. The Split-plot Design and its Relatives (Part II) Repeated Measures [ST&D Ch. 16] 12.9 Repeated measures analysis

Topic 12. The Split-plot Design and its Relatives (Part II) Repeated Measures [ST&D Ch. 16] 12.9 Repeated measures analysis Topic 12. The Split-plot Design and its Relatives (Part II) Repeated Measures [ST&D Ch. 16] 12.9 Repeated measures analysis Sometimes researchers make multiple measurements on the same experimental unit.

More information

8/28/2017. Repeated-Measures ANOVA. 1. Situation/hypotheses. 2. Test statistic. 3.Distribution. 4. Assumptions

8/28/2017. Repeated-Measures ANOVA. 1. Situation/hypotheses. 2. Test statistic. 3.Distribution. 4. Assumptions PSY 5101: Advanced Statistics for Psychological and Behavioral Research 1 Rationale of Repeated Measures ANOVA One-way and two-way Benefits Partitioning Variance Statistical Problems with Repeated- Measures

More information

One-Way ANOVA Source Table J - 1 SS B / J - 1 MS B /MS W. Pairwise Post-Hoc Comparisons of Means

One-Way ANOVA Source Table J - 1 SS B / J - 1 MS B /MS W. Pairwise Post-Hoc Comparisons of Means One-Way ANOVA Source Table ANOVA MODEL: ij = µ* + α j + ε ij H 0 : µ 1 = µ =... = µ j or H 0 : Σα j = 0 Source Sum of Squares df Mean Squares F Between Groups n j ( j - * ) J - 1 SS B / J - 1 MS B /MS

More information

Levene's Test of Equality of Error Variances a

Levene's Test of Equality of Error Variances a BUTTERFAT DATA: INTERACTION MODEL Levene's Test of Equality of Error Variances a Dependent Variable: Butterfat (%) F df1 df2 Sig. 2.711 9 90.008 Tests the null hypothesis that the error variance of the

More information

sphericity, 5-29, 5-32 residuals, 7-1 spread and level, 2-17 t test, 1-13 transformations, 2-15 violations, 1-19

sphericity, 5-29, 5-32 residuals, 7-1 spread and level, 2-17 t test, 1-13 transformations, 2-15 violations, 1-19 additive tree structure, 10-28 ADDTREE, 10-51, 10-53 EXTREE, 10-31 four point condition, 10-29 ADDTREE, 10-28, 10-51, 10-53 adjusted R 2, 8-7 ALSCAL, 10-49 ANCOVA, 9-1 assumptions, 9-5 example, 9-7 MANOVA

More information

SPSS LAB FILE 1

SPSS LAB FILE  1 SPSS LAB FILE www.mcdtu.wordpress.com 1 www.mcdtu.wordpress.com 2 www.mcdtu.wordpress.com 3 OBJECTIVE 1: Transporation of Data Set to SPSS Editor INPUTS: Files: group1.xlsx, group1.txt PROCEDURE FOLLOWED:

More information

Introduction to Power and Sample Size Analysis

Introduction to Power and Sample Size Analysis Four chapters from SAS/STAT User's Guide 13.2: (18) Introduction to Power and Sample Size Analysis (47) The GLMPOWER Procedure (77) The POWER Procedure (78) The Power and Sample Size Application Chapter

More information

Example 1 describes the results from analyzing these data for three groups and two variables contained in test file manova1.tf3.

Example 1 describes the results from analyzing these data for three groups and two variables contained in test file manova1.tf3. Simfit Tutorials and worked examples for simulation, curve fitting, statistical analysis, and plotting. http://www.simfit.org.uk MANOVA examples From the main SimFIT menu choose [Statistcs], [Multivariate],

More information

Repeated Measures Part 2: Cartoon data

Repeated Measures Part 2: Cartoon data Repeated Measures Part 2: Cartoon data /*********************** cartoonglm.sas ******************/ options linesize=79 noovp formdlim='_'; title 'Cartoon Data: STA442/1008 F 2005'; proc format; /* value

More information

Stats fest Analysis of variance. Single factor ANOVA. Aims. Single factor ANOVA. Data

Stats fest Analysis of variance. Single factor ANOVA. Aims. Single factor ANOVA. Data 1 Stats fest 2007 Analysis of variance murray.logan@sci.monash.edu.au Single factor ANOVA 2 Aims Description Investigate differences between population means Explanation How much of the variation in response

More information

same hypothesis Assumptions N = subjects K = groups df 1 = between (numerator) df 2 = within (denominator)

same hypothesis Assumptions N = subjects K = groups df 1 = between (numerator) df 2 = within (denominator) compiled by Janine Lim, EDRM 61, Spring 008 This file is copyrighted (010) and a part of my Leadership Portfolio found at http://www.janinelim.com/leadportfolio. It is shared for your learning use only.

More information

Lecture 5: Hypothesis tests for more than one sample

Lecture 5: Hypothesis tests for more than one sample 1/23 Lecture 5: Hypothesis tests for more than one sample Måns Thulin Department of Mathematics, Uppsala University thulin@math.uu.se Multivariate Methods 8/4 2011 2/23 Outline Paired comparisons Repeated

More information

N J SS W /df W N - 1

N J SS W /df W N - 1 One-Way ANOVA Source Table ANOVA MODEL: ij = µ* + α j + ε ij H 0 : µ = µ =... = µ j or H 0 : Σα j = 0 Source Sum of Squares df Mean Squares F J Between Groups nj( j * ) J - SS B /(J ) MS B /MS W = ( N

More information

N Utilization of Nursing Research in Advanced Practice, Summer 2008

N Utilization of Nursing Research in Advanced Practice, Summer 2008 University of Michigan Deep Blue deepblue.lib.umich.edu 2008-07 536 - Utilization of ursing Research in Advanced Practice, Summer 2008 Tzeng, Huey-Ming Tzeng, H. (2008, ctober 1). Utilization of ursing

More information

Dependent Variable Q83: Attended meetings of your town or city council (0=no, 1=yes)

Dependent Variable Q83: Attended meetings of your town or city council (0=no, 1=yes) Logistic Regression Kristi Andrasik COM 731 Spring 2017. MODEL all data drawn from the 2006 National Community Survey (class data set) BLOCK 1 (Stepwise) Lifestyle Values Q7: Value work Q8: Value friends

More information

More Accurately Analyze Complex Relationships

More Accurately Analyze Complex Relationships SPSS Advanced Statistics 17.0 Specifications More Accurately Analyze Complex Relationships Make your analysis more accurate and reach more dependable conclusions with statistics designed to fit the inherent

More information

STAT 501 EXAM I NAME Spring 1999

STAT 501 EXAM I NAME Spring 1999 STAT 501 EXAM I NAME Spring 1999 Instructions: You may use only your calculator and the attached tables and formula sheet. You can detach the tables and formula sheet from the rest of this exam. Show your

More information

Research Methodology: Tools

Research Methodology: Tools MSc Business Administration Research Methodology: Tools Applied Data Analysis (with SPSS) Lecture 09: Introduction to Analysis of Variance (ANOVA) April 2014 Prof. Dr. Jürg Schwarz Lic. phil. Heidi Bruderer

More information

Least Squares Analyses of Variance and Covariance

Least Squares Analyses of Variance and Covariance Least Squares Analyses of Variance and Covariance One-Way ANOVA Read Sections 1 and 2 in Chapter 16 of Howell. Run the program ANOVA1- LS.sas, which can be found on my SAS programs page. The data here

More information

Hotelling s One- Sample T2

Hotelling s One- Sample T2 Chapter 405 Hotelling s One- Sample T2 Introduction The one-sample Hotelling s T2 is the multivariate extension of the common one-sample or paired Student s t-test. In a one-sample t-test, the mean response

More information

Mixed- Model Analysis of Variance. Sohad Murrar & Markus Brauer. University of Wisconsin- Madison. Target Word Count: Actual Word Count: 2755

Mixed- Model Analysis of Variance. Sohad Murrar & Markus Brauer. University of Wisconsin- Madison. Target Word Count: Actual Word Count: 2755 Mixed- Model Analysis of Variance Sohad Murrar & Markus Brauer University of Wisconsin- Madison The SAGE Encyclopedia of Educational Research, Measurement and Evaluation Target Word Count: 3000 - Actual

More information

Covariance Structure Approach to Within-Cases

Covariance Structure Approach to Within-Cases Covariance Structure Approach to Within-Cases Remember how the data file grapefruit1.data looks: Store sales1 sales2 sales3 1 62.1 61.3 60.8 2 58.2 57.9 55.1 3 51.6 49.2 46.2 4 53.7 51.5 48.3 5 61.4 58.7

More information

ANOVA continued. Chapter 10

ANOVA continued. Chapter 10 ANOVA continued Chapter 10 Zettergren (003) School adjustment in adolescence for previously rejected, average, and popular children. Effect of peer reputation on academic performance and school adjustment

More information

ANOVA continued. Chapter 11

ANOVA continued. Chapter 11 ANOVA continued Chapter 11 Zettergren (003) School adjustment in adolescence for previously rejected, average, and popular children. Effect of peer reputation on academic performance and school adjustment

More information

Frequency Distribution Cross-Tabulation

Frequency Distribution Cross-Tabulation Frequency Distribution Cross-Tabulation 1) Overview 2) Frequency Distribution 3) Statistics Associated with Frequency Distribution i. Measures of Location ii. Measures of Variability iii. Measures of Shape

More information

Lecture Notes #12: MANOVA & Canonical Correlation 12-1

Lecture Notes #12: MANOVA & Canonical Correlation 12-1 Lecture Notes #12: MANOVA & Canonical Correlation 12-1 Richard Gonzalez Psych 614 Version 2.7 (Mar 2017) LECTURE NOTES #12: MANOVA & Canonical Correlation Reading Assignment T&F chapters (or the J&W chapter)

More information

Logbook Authors: Rens van de Schoot, Joris J. Broere, Koen H. Perryck, Mariëlle Zondervan - Zwijnenburg, Nancy E.E. van Loey

Logbook Authors: Rens van de Schoot, Joris J. Broere, Koen H. Perryck, Mariëlle Zondervan - Zwijnenburg, Nancy E.E. van Loey Logbook Authors: Rens van de Schoot, Joris J. Broere, Koen H. Perryck, Mariëlle Zondervan - Zwijnenburg, Nancy E.E. van Loey Contents Data... 2 Empirical data analysis... 3 SPSS analyses repeated measure...

More information

Interactions between Binary & Quantitative Predictors

Interactions between Binary & Quantitative Predictors Interactions between Binary & Quantitative Predictors The purpose of the study was to examine the possible joint effects of the difficulty of the practice task and the amount of practice, upon the performance

More information

Analysis of Covariance (ANCOVA) Lecture Notes

Analysis of Covariance (ANCOVA) Lecture Notes 1 Analysis of Covariance (ANCOVA) Lecture Notes Overview: In experimental methods, a central tenet of establishing significant relationships has to do with the notion of random assignment. Random assignment

More information

Degrees of freedom df=1. Limitations OR in SPSS LIM: Knowing σ and µ is unlikely in large

Degrees of freedom df=1. Limitations OR in SPSS LIM: Knowing σ and µ is unlikely in large Z Test Comparing a group mean to a hypothesis T test (about 1 mean) T test (about 2 means) Comparing mean to sample mean. Similar means = will have same response to treatment Two unknown means are different

More information

Aligned Rank Tests for Interactions in Split-Plot Designs: Distributional Assumptions and Stochastic Heterogeneity

Aligned Rank Tests for Interactions in Split-Plot Designs: Distributional Assumptions and Stochastic Heterogeneity Journal of Modern Applied Statistical Methods Volume 8 Issue 1 Article 4 5-1-2009 Aligned Rank Tests for Interactions in Split-Plot Designs: Distributional Assumptions and Stochastic Heterogeneity T. Mark

More information

You can compute the maximum likelihood estimate for the correlation

You can compute the maximum likelihood estimate for the correlation Stat 50 Solutions Comments on Assignment Spring 005. (a) _ 37.6 X = 6.5 5.8 97.84 Σ = 9.70 4.9 9.70 75.05 7.80 4.9 7.80 4.96 (b) 08.7 0 S = Σ = 03 9 6.58 03 305.6 30.89 6.58 30.89 5.5 (c) You can compute

More information

The SAS System 18:28 Saturday, March 10, Plot of Canonical Variables Identified by Cluster

The SAS System 18:28 Saturday, March 10, Plot of Canonical Variables Identified by Cluster The SAS System 18:28 Saturday, March 10, 2018 1 The FASTCLUS Procedure Replace=FULL Radius=0 Maxclusters=2 Maxiter=10 Converge=0.02 Initial Seeds Cluster SepalLength SepalWidth PetalLength PetalWidth 1

More information

ANOVA continued. Chapter 10

ANOVA continued. Chapter 10 ANOVA continued Chapter 10 Zettergren (003) School adjustment in adolescence for previously rejected, average, and popular children. Effect of peer reputation on academic performance and school adjustment

More information

Postgraduate course: Anova and Repeated measurements Day 2 (part 2) Mogens Erlandsen, Department of Biostatistics, Aarhus University, November 2010

Postgraduate course: Anova and Repeated measurements Day 2 (part 2) Mogens Erlandsen, Department of Biostatistics, Aarhus University, November 2010 30 CVP (mean and sd) Postgraduate course in ANOVA and Repeated Measurements Day Repeated measurements (part ) Mogens Erlandsen Deptartment of Biostatistics Aarhus University 5 0 15 10 0 1 3 4 5 6 7 8 9

More information