Section 14 Forces in Circular Motion

Size: px
Start display at page:

Download "Section 14 Forces in Circular Motion"

Transcription

1 Secion 14 orces in Circular Moion Ouline 1 Unifor Circular Moion Non-unifor Circular Moion Phsics 04A Class Noes Wh do objecs do wha he do? The answer we have been invesigaing is forces If forces can eplain oion, hen he us be able o eplain circular oion 1 Unifor Circular Moion You have probabl never ried o swing a bucke of waer over our head, bu i can be done quie easil (hp://wwwouubeco/wach?v=bwivv--otya) Wh doesn he waer fall ou on our head? or ha aer, wh doesn he orbiing oon fall oward Earh? Wh do we keep orbiing he sun and no fall inward and ge burned o risp? The answer us be conained in Newon s Laws of Moion According o he irs Law, he waer will ove in a sraigh line unless a force acs on i Therefore, here us alwas be a force on an objec o keep i in circular oion According o he Second Law, he force and he acceleraion us poin in he sae direcion or objecs in unifor circular oion (consan speed) we alread learned ha here is acceleraion oward he cener called he cenripeal acceleraion, = v r Therefore, here us be a force acing oward he cener o keep an objec in circular oion In he case of he waer, i is he force of gravi cobined wih he noral force fro he bucke In he case of he oon orbiing Earh, i is he force of graviaion The poin is, objecs in circular oion can be reaed he sae wa we ve reaed oher objecs Here are soe eaples 14-1

2 Phsics 04A Class Noes Eaple 141: A 100g ball is wirled overhead on he end of a 400c sring a 100rp ind he ension in he cord Given: = 0100kg, = 0400, and f = 100rp ind: =? The onl force on he ball is he ension Choosing he -ais as shown and appling Newon s Second Law, = a = Using he cenripeal acceleraion, = v r Using he angenial speed, v = πr T = 1 πr r T = 4π r v T The period is he reciprocal of he frequenc, T = 1 f = 1 = 1in 100 rev in 100rev = 600s 100rev = 0600s, and he radius is he lengh of he sring inall, = 4π = (0100) 4π (0400) T (0600) = 439N Bu wai (weigh?) we forgo abou gravi The side view of he wirling ball is shown a he righ Noice ha he ball is oving in a plane slighl below he poin where he sring is held In his ore careful analsis, here are forces along wo direcions and onl he horizonal par of he ension causes he circular oion Appling he Second Law o each direcion separael, = a cosθ = v r = (1) rcosθ Σ = a sinθ = 0 sinθ = () Subsiuing for he speed in eq 1, = 1 πr = 4π r rcosθ T T cosθ Noice ha fro rigonoer, r = cosθ = 4π cos θ T cosθ v = 4π T = 439N The ension is he sae as before Since he coponen of he ension oward he cener of he circle is less, he ball us be oving slower In fac, he speed depends on he angle below horizonal, v = πr = π cosθ T T The faser i spins he saller he angle, as ou igh epec The angle below he horizonal can be found fro eq, sinθ = = g θ = arcsin g = arcsin (0100)(980) 439 θ =

3 Phsics 04A Class Noes Eaple 14: A car raveling a 500k/h rounds urve wih a 300 radius ind he iniu coefficien of fricion required o keep he car fro skidding Given: v = 500k/h = 139/s and r = 300 ind: µ =? The forces on he car are shown a he righ The are he weigh, noral and saic fricion The fricion is he force hauses he car o go in ircle and poins oward he cener You know his because urning corners on an ic road is dangerous Appling he Second Law o each direcion separael, = a sf = (1) Σ = a n = 0 n = () Using he definiion of he coefficien of saic fricion, n g sf r µ s sf,a sf µ s n µ s µ s n Appling he ass/weigh rule and he epression for cenripeal acceleraion, µ s / / g = v rg = (139) (300)(980) µ s 0657 Non-unifor Circular Moion If ou wirl a ball a he end of a sring slowl in a verical plane, insead of a horizonal plane, ou ll noice he speed isn consan The ball will be going slower a he op and faser a he boo Circular oion doesn alwas occur wih consan speed Nonunifor circular oion occurs in an cases Since he speed changes, he acceleraion us have oponen along he oion as well as he usual coponen oward he cener The coponen along he oion is called he angenial acceleraion This oo can be undersood using Newon s Laws While he ension force alwas poins oward he cener, he weigh has angenial coponens 14-3

4 Phsics 04A Class Noes Eaple 143: When he ball is 600 fro he verical oving downward, he ension is 500N ind (a)he cenripeal acceleraion, (b)he angenial acceleraion and (c)he angenial veloci Given: θ = 600 and = 500N ind: =?, a =?, and v =? Using he free bod diagra o appl he Second Law, = a cosθ = (1) Σ = a sin θ = a () (a)using he ass/weigh rule in eq 1 and solving for he cenripeal acceleraion, gcosθ = = + gcosθ Puing in he nubers, = (980)cos600 a = 549 c s The inus sign is because he -ais poins awa fro he cener of he circle ree Bod Diagra (b)the angenial acceleraion can be found using eq, / gsinθ = / a a = gsinθ = ( 980)sin600 a = 849 s Again he inus sign is due o he choice of aes (c)the angenial veloci is he veloci ha is relaed o he cenripeal acceleraion, = v r v = r = (549)(0400) v = 469 s In suar, Newon s Laws of Moion show us hircular oion requires a force oward he cener o creae he cenripeal acceleraion Tangenial forces change he speed of he circular oion Now, back o he quesion abou he oon saing in orbi Earh eers a graviaional force on he oon This force pulls i oward Earh If he oon were no oving, he graviaional force would cause he oon o fall direcl oward Earh However, he oon is no a res, i oving angeniall Think abou a baseball hrown horizonall, i falls oward Earh, bu doesn land direcl below he poin fro which i is hrown because of is horizonal oion If ou could hrow he ball faser, i will ravel farher before hiing he ground If ou could hrow i fas enough, i would fall oward Earh a eacl he sae rae he spherical shape of Earh causes he surface o fall awa fro he ball The ball would be in orbi So he oon is oving a jus he righ speed so ha as i falls oward Earh bu i never ges an closer This is wh here has o be a ver special relaionship beween he veloci, radius, and acceleraion for an objec in unifor circular oion You know his relaionship, = v r 14-4

5 Phsics 04A Class Noes You igh ask how i has coe o pass ha he oon has his eac righ veloci or ha aer, wh does ever plane in he solar sse have he perfec veloci o ainain is orbi around he sun? Reeber, here are soe objecs in he solar sse ha don have circular orbis, such as coes In 1994 oe collided wih Jupier (hp://wwwjplnasagov/sl9/) This is he evenual fae of all objecs ha don have circular orbis The reason ha we onl reall see planes and oons wih circular orbis, is ha he solar sse is old enough ha os of he hings wih non-circular orbis have sashed ino soehing alread Speaking of falling oward earh wihou geing an closer, his is wh asronaus feel weighless The force of gravi on Space Shule asronaus is onl abou 10% less han he force of gravi on Earh The are falling oward Earh all he ie, bu so is he shule Tha is wh he can floa around inside - everhing is falling ogeher Do an inerne search for voi coe You ll find inforaion abou an airplane he use o rain asronaus (and ake ovies) The plane goes up o high aliude and hen falls in a parabolic rajecor Since he passengers are falling in he sae wa he plane is, he feel weighless Secion Suar Our goal is o undersand wha objecs do and wh he do i Now we have applied Newon s Laws o undersand he causes of circular oion A ne force oward he cener of he circle is required for circular oion An forces angenial o he circle cause changes in he orbial speed 14-5

x y θ = 31.8 = 48.0 N. a 3.00 m/s

x y θ = 31.8 = 48.0 N. a 3.00 m/s 4.5.IDENTIY: Vecor addiion. SET UP: Use a coordinae sse where he dog A. The forces are skeched in igure 4.5. EXECUTE: + -ais is in he direcion of, A he force applied b =+ 70 N, = 0 A B B A = cos60.0 =

More information

Physics 4A FINAL EXAM Chapters 1-16 Fall 1998

Physics 4A FINAL EXAM Chapters 1-16 Fall 1998 Name: Posing Code Solve he following problems in he space provided Use he back of he page if needed Each problem is worh 10 poins You mus show our work in a logical fashion saring wih he correcl applied

More information

Main Ideas in Class Today

Main Ideas in Class Today Main Ideas in Class Toda Inroducion o Falling Appl Consan a Equaions Graphing Free Fall Sole Free Fall Problems Pracice:.45,.47,.53,.59,.61,.63,.69, Muliple Choice.1 Freel Falling Objecs Refers o objecs

More information

s in boxe wers ans Put

s in boxe wers ans Put Pu answers in boxes Main Ideas in Class Toda Inroducion o Falling Appl Old Equaions Graphing Free Fall Sole Free Fall Problems Pracice:.45,.47,.53,.59,.61,.63,.69, Muliple Choice.1 Freel Falling Objecs

More information

and v y . The changes occur, respectively, because of the acceleration components a x and a y

and v y . The changes occur, respectively, because of the acceleration components a x and a y Week 3 Reciaion: Chaper3 : Problems: 1, 16, 9, 37, 41, 71. 1. A spacecraf is raveling wih a veloci of v0 = 5480 m/s along he + direcion. Two engines are urned on for a ime of 84 s. One engine gives he

More information

1. VELOCITY AND ACCELERATION

1. VELOCITY AND ACCELERATION 1. VELOCITY AND ACCELERATION 1.1 Kinemaics Equaions s = u + 1 a and s = v 1 a s = 1 (u + v) v = u + as 1. Displacemen-Time Graph Gradien = speed 1.3 Velociy-Time Graph Gradien = acceleraion Area under

More information

Chapter 3 Kinematics in Two Dimensions

Chapter 3 Kinematics in Two Dimensions Chaper 3 KINEMATICS IN TWO DIMENSIONS PREVIEW Two-dimensional moion includes objecs which are moing in wo direcions a he same ime, such as a projecile, which has boh horizonal and erical moion. These wo

More information

Page 1 o 13 1. The brighes sar in he nigh sky is α Canis Majoris, also known as Sirius. I lies 8.8 ligh-years away. Express his disance in meers. ( ligh-year is he disance coered by ligh in one year. Ligh

More information

Suggested Practice Problems (set #2) for the Physics Placement Test

Suggested Practice Problems (set #2) for the Physics Placement Test Deparmen of Physics College of Ars and Sciences American Universiy of Sharjah (AUS) Fall 014 Suggesed Pracice Problems (se #) for he Physics Placemen Tes This documen conains 5 suggesed problems ha are

More information

Today: Falling. v, a

Today: Falling. v, a Today: Falling. v, a Did you ge my es email? If no, make sure i s no in your junk box, and add sbs0016@mix.wvu.edu o your address book! Also please email me o le me know. I will be emailing ou pracice

More information

IB Physics Kinematics Worksheet

IB Physics Kinematics Worksheet IB Physics Kinemaics Workshee Wrie full soluions and noes for muliple choice answers. Do no use a calculaor for muliple choice answers. 1. Which of he following is a correc definiion of average acceleraion?

More information

Physics 240: Worksheet 16 Name

Physics 240: Worksheet 16 Name Phyic 4: Workhee 16 Nae Non-unifor circular oion Each of hee proble involve non-unifor circular oion wih a conan α. (1) Obain each of he equaion of oion for non-unifor circular oion under a conan acceleraion,

More information

Best test practice: Take the past test on the class website

Best test practice: Take the past test on the class website Bes es pracice: Take he pas es on he class websie hp://communiy.wvu.edu/~miholcomb/phys11.hml I have posed he key o he WebAssign pracice es. Newon Previous Tes is Online. Forma will be idenical. You migh

More information

Applications of the Basic Equations Chapter 3. Paul A. Ullrich

Applications of the Basic Equations Chapter 3. Paul A. Ullrich Applicaions of he Basic Equaions Chaper 3 Paul A. Ullrich paullrich@ucdavis.edu Par 1: Naural Coordinaes Naural Coordinaes Quesion: Why do we need anoher coordinae sysem? Our goal is o simplify he equaions

More information

Physics 180A Fall 2008 Test points. Provide the best answer to the following questions and problems. Watch your sig figs.

Physics 180A Fall 2008 Test points. Provide the best answer to the following questions and problems. Watch your sig figs. Physics 180A Fall 2008 Tes 1-120 poins Name Provide he bes answer o he following quesions and problems. Wach your sig figs. 1) The number of meaningful digis in a number is called he number of. When numbers

More information

~v = x. ^x + ^y + ^x + ~a = vx. v = v 0 + at. ~v P=A = ~v P=B + ~v B=A. f k = k. W tot =KE. P av =W=t. W grav = mgy 1, mgy 2 = mgh =,U grav

~v = x. ^x + ^y + ^x + ~a = vx. v = v 0 + at. ~v P=A = ~v P=B + ~v B=A. f k = k. W tot =KE. P av =W=t. W grav = mgy 1, mgy 2 = mgh =,U grav PHYSICS 5A FALL 2001 FINAL EXAM v = x a = v x = 1 2 a2 + v 0 + x 0 v 2 = v 2 0 +2a(x, x 0) a = v2 r ~v = x ~a = vx v = v 0 + a y z ^x + ^y + ^z ^x + vy x, x 0 = 1 2 (v 0 + v) ~v P=A = ~v P=B + ~v B=A ^y

More information

WEEK-3 Recitation PHYS 131. of the projectile s velocity remains constant throughout the motion, since the acceleration a x

WEEK-3 Recitation PHYS 131. of the projectile s velocity remains constant throughout the motion, since the acceleration a x WEEK-3 Reciaion PHYS 131 Ch. 3: FOC 1, 3, 4, 6, 14. Problems 9, 37, 41 & 71 and Ch. 4: FOC 1, 3, 5, 8. Problems 3, 5 & 16. Feb 8, 018 Ch. 3: FOC 1, 3, 4, 6, 14. 1. (a) The horizonal componen of he projecile

More information

15. Bicycle Wheel. Graph of height y (cm) above the axle against time t (s) over a 6-second interval. 15 bike wheel

15. Bicycle Wheel. Graph of height y (cm) above the axle against time t (s) over a 6-second interval. 15 bike wheel 15. Biccle Wheel The graph We moun a biccle wheel so ha i is free o roae in a verical plane. In fac, wha works easil is o pu an exension on one of he axles, and ge a suden o sand on one side and hold he

More information

t A. 3. Which vector has the largest component in the y-direction, as defined by the axes to the right?

t A. 3. Which vector has the largest component in the y-direction, as defined by the axes to the right? Ke Name Insrucor Phsics 1210 Exam 1 Sepember 26, 2013 Please wrie direcl on he exam and aach oher shees of work if necessar. Calculaors are allowed. No noes or books ma be used. Muliple-choice problems

More information

v 1 a rad = v2 R = 4 2 R T 2 v 1 2 =v 0 2 2a x 1 x 0 1mi=5280 ft=1709m 1Calorie=4200 J = kx F f = m i m i t 1 2 =

v 1 a rad = v2 R = 4 2 R T 2 v 1 2 =v 0 2 2a x 1 x 0 1mi=5280 ft=1709m 1Calorie=4200 J = kx F f = m i m i t 1 2 = Name Secion Phsics 1210 Final Exam Ma 2011 v1.0 This es is closed-noe and closed-book. No wrien, prined, or recorded maerial is permied. Calculaors are permied bu compuers are no. No collaboraion, consulaion,

More information

Physics Notes - Ch. 2 Motion in One Dimension

Physics Notes - Ch. 2 Motion in One Dimension Physics Noes - Ch. Moion in One Dimension I. The naure o physical quaniies: scalars and ecors A. Scalar quaniy ha describes only magniude (how much), NOT including direcion; e. mass, emperaure, ime, olume,

More information

2. What is the displacement of the bug between t = 0.00 s and t = 20.0 s? A) cm B) 39.9 cm C) cm D) 16.1 cm E) +16.

2. What is the displacement of the bug between t = 0.00 s and t = 20.0 s? A) cm B) 39.9 cm C) cm D) 16.1 cm E) +16. 1. For which one of he following siuaions will he pah lengh equal he magniude of he displacemen? A) A jogger is running around a circular pah. B) A ball is rolling down an inclined plane. C) A rain ravels

More information

Physics 101 Fall 2006: Exam #1- PROBLEM #1

Physics 101 Fall 2006: Exam #1- PROBLEM #1 Physics 101 Fall 2006: Exam #1- PROBLEM #1 1. Problem 1. (+20 ps) (a) (+10 ps) i. +5 ps graph for x of he rain vs. ime. The graph needs o be parabolic and concave upward. ii. +3 ps graph for x of he person

More information

KINEMATICS IN ONE DIMENSION

KINEMATICS IN ONE DIMENSION KINEMATICS IN ONE DIMENSION PREVIEW Kinemaics is he sudy of how hings move how far (disance and displacemen), how fas (speed and velociy), and how fas ha how fas changes (acceleraion). We say ha an objec

More information

How to Solve System Dynamic s Problems

How to Solve System Dynamic s Problems How o Solve Sye Dynaic Proble A ye dynaic proble involve wo or ore bodie (objec) under he influence of everal exernal force. The objec ay uliaely re, ove wih conan velociy, conan acceleraion or oe cobinaion

More information

Review Equations. Announcements 9/8/09. Table Tennis

Review Equations. Announcements 9/8/09. Table Tennis Announcemens 9/8/09 1. Course homepage ia: phsics.bu.edu Class web pages Phsics 105 (Colon J). (Class-wide email sen) Iclicker problem from las ime scores didn ge recorded. Clicker quizzes from lecures

More information

Equations of motion for constant acceleration

Equations of motion for constant acceleration Lecure 3 Chaper 2 Physics I 01.29.2014 Equaions of moion for consan acceleraion Course websie: hp://faculy.uml.edu/andriy_danylo/teaching/physicsi Lecure Capure: hp://echo360.uml.edu/danylo2013/physics1spring.hml

More information

Physics 101: Lecture 03 Kinematics Today s lecture will cover Textbook Sections (and some Ch. 4)

Physics 101: Lecture 03 Kinematics Today s lecture will cover Textbook Sections (and some Ch. 4) Physics 101: Lecure 03 Kinemaics Today s lecure will coer Texbook Secions 3.1-3.3 (and some Ch. 4) Physics 101: Lecure 3, Pg 1 A Refresher: Deermine he force exered by he hand o suspend he 45 kg mass as

More information

Q.1 Define work and its unit?

Q.1 Define work and its unit? CHP # 6 ORK AND ENERGY Q.1 Define work and is uni? A. ORK I can be define as when we applied a force on a body and he body covers a disance in he direcion of force, hen we say ha work is done. I is a scalar

More information

x i v x t a dx dt t x

x i v x t a dx dt t x Physics 3A: Basic Physics I Shoup - Miderm Useful Equaions A y A sin A A A y an A y A A = A i + A y j + A z k A * B = A B cos(θ) A B = A B sin(θ) A * B = A B + A y B y + A z B z A B = (A y B z A z B y

More information

Homework 2 Solutions

Homework 2 Solutions Mah 308 Differenial Equaions Fall 2002 & 2. See he las page. Hoework 2 Soluions 3a). Newon s secon law of oion says ha a = F, an we know a =, so we have = F. One par of he force is graviy, g. However,

More information

0 time. 2 Which graph represents the motion of a car that is travelling along a straight road with a uniformly increasing speed?

0 time. 2 Which graph represents the motion of a car that is travelling along a straight road with a uniformly increasing speed? 1 1 The graph relaes o he moion of a falling body. y Which is a correc descripion of he graph? y is disance and air resisance is negligible y is disance and air resisance is no negligible y is speed and

More information

Summary:Linear Motion

Summary:Linear Motion Summary:Linear Moion D Saionary objec V Consan velociy D Disance increase uniformly wih ime D = v. a Consan acceleraion V D V = a. D = ½ a 2 Velociy increases uniformly wih ime Disance increases rapidly

More information

AP Calculus BC Chapter 10 Part 1 AP Exam Problems

AP Calculus BC Chapter 10 Part 1 AP Exam Problems AP Calculus BC Chaper Par AP Eam Problems All problems are NO CALCULATOR unless oherwise indicaed Parameric Curves and Derivaives In he y plane, he graph of he parameric equaions = 5 + and y= for, is a

More information

1. Kinematics I: Position and Velocity

1. Kinematics I: Position and Velocity 1. Kinemaics I: Posiion and Velociy Inroducion The purpose of his eperimen is o undersand and describe moion. We describe he moion of an objec by specifying is posiion, velociy, and acceleraion. In his

More information

Lecture 2-1 Kinematics in One Dimension Displacement, Velocity and Acceleration Everything in the world is moving. Nothing stays still.

Lecture 2-1 Kinematics in One Dimension Displacement, Velocity and Acceleration Everything in the world is moving. Nothing stays still. Lecure - Kinemaics in One Dimension Displacemen, Velociy and Acceleraion Everyhing in he world is moving. Nohing says sill. Moion occurs a all scales of he universe, saring from he moion of elecrons in

More information

University Physics with Modern Physics 14th Edition Young TEST BANK

University Physics with Modern Physics 14th Edition Young TEST BANK Universi Phsics wih Modern Phsics 14h Ediion Young SOLUTIONS MANUAL Full clear download (no formaing errors) a: hps://esbankreal.com/download/universi-phsics-modern-phsics- 14h-ediion-oung-soluions-manual-/

More information

Exam I. Name. Answer: a. W B > W A if the volume of the ice cubes is greater than the volume of the water.

Exam I. Name. Answer: a. W B > W A if the volume of the ice cubes is greater than the volume of the water. Name Exam I 1) A hole is punched in a full milk caron, 10 cm below he op. Wha is he iniial veloci of ouflow? a. 1.4 m/s b. 2.0 m/s c. 2.8 m/s d. 3.9 m/s e. 2.8 m/s Answer: a 2) In a wind unnel he pressure

More information

Motion along a Straight Line

Motion along a Straight Line chaper 2 Moion along a Sraigh Line verage speed and average velociy (Secion 2.2) 1. Velociy versus speed Cone in he ebook: fer Eample 2. Insananeous velociy and insananeous acceleraion (Secions 2.3, 2.4)

More information

Giambattista, Ch 3 Problems: 9, 15, 21, 27, 35, 37, 42, 43, 47, 55, 63, 76

Giambattista, Ch 3 Problems: 9, 15, 21, 27, 35, 37, 42, 43, 47, 55, 63, 76 Giambaisa, Ch 3 Problems: 9, 15, 21, 27, 35, 37, 42, 43, 47, 55, 63, 76 9. Sraeg Le be direced along he +x-axis and le be 60.0 CCW from Find he magniude of 6.0 B 60.0 4.0 A x 15. (a) Sraeg Since he angle

More information

v x + v 0 x v y + a y + v 0 y + 2a y + v y Today: Projectile motion Soccer problem Firefighter example

v x + v 0 x v y + a y + v 0 y + 2a y + v y Today: Projectile motion Soccer problem Firefighter example Thurs Sep 10 Assign 2 Friday SI Sessions: Moron 227 Mon 8:10-9:10 PM Tues 8:10-9:10 PM Thur 7:05-8:05 PM Read Read Draw/Image lay ou coordinae sysem Wha know? Don' know? Wan o know? Physical Processes?

More information

Conservation of Momentum. The purpose of this experiment is to verify the conservation of momentum in two dimensions.

Conservation of Momentum. The purpose of this experiment is to verify the conservation of momentum in two dimensions. Conseraion of Moenu Purose The urose of his exerien is o erify he conseraion of oenu in wo diensions. Inroducion and Theory The oenu of a body ( ) is defined as he roduc of is ass () and elociy ( ): When

More information

Thus the force is proportional but opposite to the displacement away from equilibrium.

Thus the force is proportional but opposite to the displacement away from equilibrium. Chaper 3 : Siple Haronic Moion Hooe s law saes ha he force (F) eered by an ideal spring is proporional o is elongaion l F= l where is he spring consan. Consider a ass hanging on a he spring. In equilibriu

More information

Answers, Even-Numbered Problems, Chapter 5

Answers, Even-Numbered Problems, Chapter 5 5 he ension in each sring is w (= mg) Answers, Even-Numbered Problems, Chaper 5 54 (a) 540 N (b) The θ = 0 58 (a) (b) 4 53 0 N 4 336 0 N 50 (a) The free-body diagram for he car is given in Figure 50 The

More information

1. The graph below shows the variation with time t of the acceleration a of an object from t = 0 to t = T. a

1. The graph below shows the variation with time t of the acceleration a of an object from t = 0 to t = T. a Kinemaics Paper 1 1. The graph below shows he ariaion wih ime of he acceleraion a of an objec from = o = T. a T The shaded area under he graph represens change in A. displacemen. B. elociy. C. momenum.

More information

Angular Motion, Speed and Velocity

Angular Motion, Speed and Velocity Add Imporan Angular Moion, Speed and Velociy Page: 163 Noe/Cue Here Angular Moion, Speed and Velociy NGSS Sandard: N/A MA Curriculum Framework (006): 1.1, 1. AP Phyic 1 Learning Objecive: 3.A.1.1, 3.A.1.3

More information

Math Wednesday March 3, , 4.3: First order systems of Differential Equations Why you should expect existence and uniqueness for the IVP

Math Wednesday March 3, , 4.3: First order systems of Differential Equations Why you should expect existence and uniqueness for the IVP Mah 2280 Wednesda March 3, 200 4., 4.3: Firs order ssems of Differenial Equaions Wh ou should epec eisence and uniqueness for he IVP Eample: Consider he iniial value problem relaed o page 4 of his eserda

More information

2002 November 14 Exam III Physics 191

2002 November 14 Exam III Physics 191 November 4 Exam III Physics 9 Physical onsans: Earh s free-fall acceleraion = g = 9.8 m/s ircle he leer of he single bes answer. quesion is worh poin Each 3. Four differen objecs wih masses: m = kg, m

More information

Physics 131- Fundamentals of Physics for Biologists I

Physics 131- Fundamentals of Physics for Biologists I 10/3/2012 - Fundamenals of Physics for iologiss I Professor: Wolfgang Loser 10/3/2012 Miderm review -How can we describe moion (Kinemaics) - Wha is responsible for moion (Dynamics) wloser@umd.edu Movie

More information

Kinematics Vocabulary. Kinematics and One Dimensional Motion. Position. Coordinate System in One Dimension. Kinema means movement 8.

Kinematics Vocabulary. Kinematics and One Dimensional Motion. Position. Coordinate System in One Dimension. Kinema means movement 8. Kinemaics Vocabulary Kinemaics and One Dimensional Moion 8.1 WD1 Kinema means movemen Mahemaical descripion of moion Posiion Time Inerval Displacemen Velociy; absolue value: speed Acceleraion Averages

More information

Kinematics in two dimensions

Kinematics in two dimensions Lecure 5 Phsics I 9.18.13 Kinemaics in wo dimensions Course websie: hp://facul.uml.edu/andri_danlo/teaching/phsicsi Lecure Capure: hp://echo36.uml.edu/danlo13/phsics1fall.hml 95.141, Fall 13, Lecure 5

More information

Check in: 1 If m = 2(x + 1) and n = find y when. b y = 2m n 2

Check in: 1 If m = 2(x + 1) and n = find y when. b y = 2m n 2 7 Parameric equaions This chaer will show ou how o skech curves using heir arameric equaions conver arameric equaions o Caresian equaions find oins of inersecion of curves and lines using arameric equaions

More information

Displacement ( x) x x x

Displacement ( x) x x x Kinemaics Kinemaics is he branch of mechanics ha describes he moion of objecs wihou necessarily discussing wha causes he moion. 1-Dimensional Kinemaics (or 1- Dimensional moion) refers o moion in a sraigh

More information

MOMENTUM CONSERVATION LAW

MOMENTUM CONSERVATION LAW 1 AAST/AEDT AP PHYSICS B: Impulse and Momenum Le us run an experimen: The ball is moving wih a velociy of V o and a force of F is applied on i for he ime inerval of. As he resul he ball s velociy changes

More information

Physics 3A: Basic Physics I Shoup Sample Midterm. Useful Equations. x f. x i v x. a x. x i. v xi v xf. 2a x f x i. y f. a r.

Physics 3A: Basic Physics I Shoup Sample Midterm. Useful Equations. x f. x i v x. a x. x i. v xi v xf. 2a x f x i. y f. a r. Physics 3A: Basic Physics I Shoup Sample Miderm Useful Equaions A y Asin A A x A y an A y A x A = A x i + A y j + A z k A * B = A B cos(θ) A x B = A B sin(θ) A * B = A x B x + A y B y + A z B z A x B =

More information

d = ½(v o + v f) t distance = ½ (initial velocity + final velocity) time

d = ½(v o + v f) t distance = ½ (initial velocity + final velocity) time BULLSEYE Lab Name: ANSWER KEY Dae: Pre-AP Physics Lab Projecile Moion Weigh = 1 DIRECTIONS: Follow he insrucions below, build he ramp, ake your measuremens, and use your measuremens o make he calculaions

More information

One-Dimensional Kinematics

One-Dimensional Kinematics One-Dimensional Kinemaics One dimensional kinemaics refers o moion along a sraigh line. Een hough we lie in a 3-dimension world, moion can ofen be absraced o a single dimension. We can also describe moion

More information

Chapter 5 Kinematics

Chapter 5 Kinematics Chaper 5 Kinemaics In he firs place, wha do we mean b ime and space? I urns ou ha hese deep philosophical quesions have o be analzed ver carefull in phsics, and his is no eas o do. The heor of relaivi

More information

PHYSICS 149: Lecture 9

PHYSICS 149: Lecture 9 PHYSICS 149: Lecure 9 Chaper 3 3.2 Velociy and Acceleraion 3.3 Newon s Second Law of Moion 3.4 Applying Newon s Second Law 3.5 Relaive Velociy Lecure 9 Purdue Universiy, Physics 149 1 Velociy (m/s) The

More information

Solution: b All the terms must have the dimension of acceleration. We see that, indeed, each term has the units of acceleration

Solution: b All the terms must have the dimension of acceleration. We see that, indeed, each term has the units of acceleration PHYS 54 Tes Pracice Soluions Spring 8 Q: [4] Knowing ha in he ne epression a is acceleraion, v is speed, is posiion and is ime, from a dimensional v poin of view, he equaion a is a) incorrec b) correc

More information

TP A.14 The effects of cut angle, speed, and spin on object ball throw

TP A.14 The effects of cut angle, speed, and spin on object ball throw echnical proof echnical proof TP A.14 The effecs of cu angle, speed, and spin on objec ball hrow supporing: The Illusraed Principles of Pool and illiards hp://billiards.colosae.edu by Daid G. Alciaore,

More information

Ground Rules. PC1221 Fundamentals of Physics I. Kinematics. Position. Lectures 3 and 4 Motion in One Dimension. A/Prof Tay Seng Chuan

Ground Rules. PC1221 Fundamentals of Physics I. Kinematics. Position. Lectures 3 and 4 Motion in One Dimension. A/Prof Tay Seng Chuan Ground Rules PC11 Fundamenals of Physics I Lecures 3 and 4 Moion in One Dimension A/Prof Tay Seng Chuan 1 Swich off your handphone and pager Swich off your lapop compuer and keep i No alking while lecure

More information

2.1: What is physics? Ch02: Motion along a straight line. 2.2: Motion. 2.3: Position, Displacement, Distance

2.1: What is physics? Ch02: Motion along a straight line. 2.2: Motion. 2.3: Position, Displacement, Distance Ch: Moion along a sraigh line Moion Posiion and Displacemen Average Velociy and Average Speed Insananeous Velociy and Speed Acceleraion Consan Acceleraion: A Special Case Anoher Look a Consan Acceleraion

More information

Velocity is a relative quantity

Velocity is a relative quantity Veloci is a relaie quani Disenangling Coordinaes PHY2053, Fall 2013, Lecure 6 Newon s Laws 2 PHY2053, Fall 2013, Lecure 6 Newon s Laws 3 R. Field 9/6/2012 Uniersi of Florida PHY 2053 Page 8 Reference Frames

More information

2001 November 15 Exam III Physics 191

2001 November 15 Exam III Physics 191 1 November 15 Eam III Physics 191 Physical Consans: Earh s free-fall acceleraion = g = 9.8 m/s 2 Circle he leer of he single bes answer. quesion is worh 1 poin Each 3. Four differen objecs wih masses:

More information

Farr High School NATIONAL 5 PHYSICS. Unit 3 Dynamics and Space. Exam Questions

Farr High School NATIONAL 5 PHYSICS. Unit 3 Dynamics and Space. Exam Questions Farr High School NATIONAL 5 PHYSICS Uni Dynamics and Space Exam Quesions VELOCITY AND DISPLACEMENT D B D 4 E 5 B 6 E 7 E 8 C VELOCITY TIME GRAPHS (a) I is acceleraing Speeding up (NOT going down he flume

More information

Exam #2 PHYSICS 211 Monday July 6 th, 2009 Please write down your name also on the back page of this exam

Exam #2 PHYSICS 211 Monday July 6 th, 2009 Please write down your name also on the back page of this exam Exa #2 PHYSICS 211 Monday July 6 h, 29 NME Please wrie down your nae also on he back pae of his exa 1. The fiure ives how he force varies as a funcion of he posiion. Such force is acin on a paricle, which

More information

Version 053 Midterm 1 OConnor (05141) 1

Version 053 Midterm 1 OConnor (05141) 1 Version 053 Miderm 1 OConnor (05141) 1 This prin-ou should have 36 quesions. Muliple-choice quesions ma coninue on he ne column or pae find all choices before answerin. V1:1, V:1, V3:3, V4:1, V5:4. 001

More information

k 1 k 2 x (1) x 2 = k 1 x 1 = k 2 k 1 +k 2 x (2) x k series x (3) k 2 x 2 = k 1 k 2 = k 1+k 2 = 1 k k 2 k series

k 1 k 2 x (1) x 2 = k 1 x 1 = k 2 k 1 +k 2 x (2) x k series x (3) k 2 x 2 = k 1 k 2 = k 1+k 2 = 1 k k 2 k series Final Review A Puzzle... Consider wo massless springs wih spring consans k 1 and k and he same equilibrium lengh. 1. If hese springs ac on a mass m in parallel, hey would be equivalen o a single spring

More information

4 3 a b (C) (a 2b) (D) (2a 3b)

4 3 a b (C) (a 2b) (D) (2a 3b) * A balloon is moving verically pwards wih a velociy of 9 m/s. A sone is dropped from i and i reaches he grond in 10 sec. The heigh of he balloon when he sone was dropped is (ake g = 9.8 ms - ) (a) 100

More information

Energy Problems 9/3/2009. W F d mgh m s 196J 200J. Understanding. Understanding. Understanding. W F d. sin 30

Energy Problems 9/3/2009. W F d mgh m s 196J 200J. Understanding. Understanding. Understanding. W F d. sin 30 9/3/009 nderanding Energy Proble Copare he work done on an objec o a.0 kg a) In liing an objec 0.0 b) Puhing i up a rap inclined a 30 0 o he ae inal heigh 30 0 puhing 0.0 liing nderanding Copare he work

More information

In this chapter the model of free motion under gravity is extended to objects projected at an angle. When you have completed it, you should

In this chapter the model of free motion under gravity is extended to objects projected at an angle. When you have completed it, you should Cambridge Universiy Press 978--36-60033-7 Cambridge Inernaional AS and A Level Mahemaics: Mechanics Coursebook Excerp More Informaion Chaper The moion of projeciles In his chaper he model of free moion

More information

Chapter 12: Velocity, acceleration, and forces

Chapter 12: Velocity, acceleration, and forces To Feel a Force Chaper Spring, Chaper : A. Saes of moion For moion on or near he surface of he earh, i is naural o measure moion wih respec o objecs fixed o he earh. The 4 hr. roaion of he earh has a measurable

More information

PHYSICS 220 Lecture 02 Motion, Forces, and Newton s Laws Textbook Sections

PHYSICS 220 Lecture 02 Motion, Forces, and Newton s Laws Textbook Sections PHYSICS 220 Lecure 02 Moion, Forces, and Newon s Laws Texbook Secions 2.2-2.4 Lecure 2 Purdue Universiy, Physics 220 1 Overview Las Lecure Unis Scienific Noaion Significan Figures Moion Displacemen: Δx

More information

Lab #2: Kinematics in 1-Dimension

Lab #2: Kinematics in 1-Dimension Reading Assignmen: Chaper 2, Secions 2-1 hrough 2-8 Lab #2: Kinemaics in 1-Dimension Inroducion: The sudy of moion is broken ino wo main areas of sudy kinemaics and dynamics. Kinemaics is he descripion

More information

CLASS XI SET A PHYSICS. 1. If and Let. The correct order of % error in. (a) (b) x = y > z (c) x < z < y (d) x > z < y

CLASS XI SET A PHYSICS. 1. If and Let. The correct order of % error in. (a) (b) x = y > z (c) x < z < y (d) x > z < y PHYSICS 1. If and Le. The correc order of % error in (a) (b) x = y > z x < z < y x > z < y. A hollow verical cylinder of radius r and heigh h has a smooh inernal surface. A small paricle is placed in conac

More information

Of all of the intellectual hurdles which the human mind has confronted and has overcome in the last fifteen hundred years, the one which seems to me

Of all of the intellectual hurdles which the human mind has confronted and has overcome in the last fifteen hundred years, the one which seems to me Of all of he inellecual hurdles which he human mind has confroned and has overcome in he las fifeen hundred years, he one which seems o me o have been he mos amazing in characer and he mos supendous in

More information

PROBLEMS FOR MATH 162 If a problem is starred, all subproblems are due. If only subproblems are starred, only those are due. SLOPES OF TANGENT LINES

PROBLEMS FOR MATH 162 If a problem is starred, all subproblems are due. If only subproblems are starred, only those are due. SLOPES OF TANGENT LINES PROBLEMS FOR MATH 6 If a problem is sarred, all subproblems are due. If onl subproblems are sarred, onl hose are due. 00. Shor answer quesions. SLOPES OF TANGENT LINES (a) A ball is hrown ino he air. Is

More information

Fourier Series & The Fourier Transform. Joseph Fourier, our hero. Lord Kelvin on Fourier s theorem. What do we want from the Fourier Transform?

Fourier Series & The Fourier Transform. Joseph Fourier, our hero. Lord Kelvin on Fourier s theorem. What do we want from the Fourier Transform? ourier Series & The ourier Transfor Wha is he ourier Transfor? Wha do we wan fro he ourier Transfor? We desire a easure of he frequencies presen in a wave. This will lead o a definiion of he er, he specru.

More information

2. The following diagram shows a circular loop of wire in a uniform magnetic field that points out of the page.

2. The following diagram shows a circular loop of wire in a uniform magnetic field that points out of the page. 1. Two elecromagneic waves ravel hrough emp space. Wave A as a wavelengh of 700 nm (red ligh), while Wave B has a wavelengh of 400 nm (blue ligh). Which saemen is rue? A) Wave A ravels faser because i

More information

Welcome Back to Physics 215!

Welcome Back to Physics 215! Welcome Back o Physics 215! (General Physics I) Thurs. Jan 19 h, 2017 Lecure01-2 1 Las ime: Syllabus Unis and dimensional analysis Today: Displacemen, velociy, acceleraion graphs Nex ime: More acceleraion

More information

2.5. The equation of the spring

2.5. The equation of the spring 2.5. The equaion of he spring I moun a spring wih a weigh on i. I ie he op of he spring o a sick projecing ou he op end of a cupboard door, and fasen a ruler down he edge of he door, so ha as he spring

More information

A B C D September 25 Exam I Physics 105. Circle the letter of the single best answer. Each question is worth 1 point

A B C D September 25 Exam I Physics 105. Circle the letter of the single best answer. Each question is worth 1 point 2012 Sepember 25 Eam I Physics 105 Circle he leer of he single bes answer. Each uesion is worh 1 poin Physical Consans: Earh s free-fall acceleraion = g = 9.80 m/s 2 3. (Mark wo leers!) The below graph

More information

Viscous Damping Summary Sheet No Damping Case: Damped behaviour depends on the relative size of ω o and b/2m 3 Cases: 1.

Viscous Damping Summary Sheet No Damping Case: Damped behaviour depends on the relative size of ω o and b/2m 3 Cases: 1. Viscous Daping: && + & + ω Viscous Daping Suary Shee No Daping Case: & + ω solve A ( ω + α ) Daped ehaviour depends on he relaive size of ω o and / 3 Cases:. Criical Daping Wee 5 Lecure solve sae BC s

More information

MA Study Guide #1

MA Study Guide #1 MA 66 Su Guide #1 (1) Special Tpes of Firs Order Equaions I. Firs Order Linear Equaion (FOL): + p() = g() Soluion : = 1 µ() [ ] µ()g() + C, where µ() = e p() II. Separable Equaion (SEP): dx = h(x) g()

More information

Linear Motion, Speed & Velocity

Linear Motion, Speed & Velocity Add Iporan Linear Moion, Speed & Velociy Page: 136 Linear Moion, Speed & Velociy NGSS Sandard: N/A MA Curriculu Fraework (2006): 1.1, 1.2 AP Phyic 1 Learning Objecive: 3.A.1.1, 3.A.1.3 Knowledge/Underanding

More information

Physics 20 Lesson 5 Graphical Analysis Acceleration

Physics 20 Lesson 5 Graphical Analysis Acceleration Physics 2 Lesson 5 Graphical Analysis Acceleraion I. Insananeous Velociy From our previous work wih consan speed and consan velociy, we know ha he slope of a posiion-ime graph is equal o he velociy of

More information

!!"#"$%&#'()!"#&'(*%)+,&',-)./0)1-*23)

!!#$%&#'()!#&'(*%)+,&',-)./0)1-*23) "#"$%&#'()"#&'(*%)+,&',-)./)1-*) #$%&'()*+,&',-.%,/)*+,-&1*#$)()5*6$+$%*,7&*-'-&1*(,-&*6&,7.$%$+*&%'(*8$&',-,%'-&1*(,-&*6&,79*(&,%: ;..,*&1$&$.$%&'()*1$$.,'&',-9*(&,%)?%*,('&5

More information

Today: Graphing. Note: I hope this joke will be funnier (or at least make you roll your eyes and say ugh ) after class. v (miles per hour ) Time

Today: Graphing. Note: I hope this joke will be funnier (or at least make you roll your eyes and say ugh ) after class. v (miles per hour ) Time +v Today: Graphing v (miles per hour ) 9 8 7 6 5 4 - - Time Noe: I hope his joke will be funnier (or a leas make you roll your eyes and say ugh ) afer class. Do yourself a favor! Prof Sarah s fail-safe

More information

A man pushes a 500 kg block along the x axis by a constant force. Find the power required to maintain a speed of 5.00 m/s.

A man pushes a 500 kg block along the x axis by a constant force. Find the power required to maintain a speed of 5.00 m/s. Coordinaor: Dr. F. hiari Wednesday, July 16, 2014 Page: 1 Q1. The uniform solid block in Figure 1 has mass 0.172 kg and edge lenghs a = 3.5 cm, b = 8.4 cm, and c = 1.4 cm. Calculae is roaional ineria abou

More information

SOLUTIONS TO CONCEPTS CHAPTER 3

SOLUTIONS TO CONCEPTS CHAPTER 3 SOLUTIONS TO ONEPTS HPTER 3. a) Disance ravelled = 50 + 40 + 0 = 0 m b) F = F = D = 50 0 = 30 M His displacemen is D D = F DF 30 40 50m In ED an = DE/E = 30/40 = 3/4 = an (3/4) His displacemen from his

More information

Solutions from Chapter 9.1 and 9.2

Solutions from Chapter 9.1 and 9.2 Soluions from Chaper 9 and 92 Secion 9 Problem # This basically boils down o an exercise in he chain rule from calculus We are looking for soluions of he form: u( x) = f( k x c) where k x R 3 and k is

More information

(π 3)k. f(t) = 1 π 3 sin(t)

(π 3)k. f(t) = 1 π 3 sin(t) Mah 6 Fall 6 Dr. Lil Yen Tes Show all our work Name: Score: /6 No Calculaor permied in his par. Read he quesions carefull. Show all our work and clearl indicae our final answer. Use proper noaion. Problem

More information

INSTANTANEOUS VELOCITY

INSTANTANEOUS VELOCITY INSTANTANEOUS VELOCITY I claim ha ha if acceleraion is consan, hen he elociy is a linear funcion of ime and he posiion a quadraic funcion of ime. We wan o inesigae hose claims, and a he same ime, work

More information

x(m) t(sec ) Homework #2. Ph 231 Introductory Physics, Sp-03 Page 1 of 4

x(m) t(sec ) Homework #2. Ph 231 Introductory Physics, Sp-03 Page 1 of 4 Homework #2. Ph 231 Inroducory Physics, Sp-03 Page 1 of 4 2-1A. A person walks 2 miles Eas (E) in 40 minues and hen back 1 mile Wes (W) in 20 minues. Wha are her average speed and average velociy (in ha

More information

Physics 5A Review 1. Eric Reichwein Department of Physics University of California, Santa Cruz. October 31, 2012

Physics 5A Review 1. Eric Reichwein Department of Physics University of California, Santa Cruz. October 31, 2012 Physics 5A Review 1 Eric Reichwein Deparmen of Physics Universiy of California, Sana Cruz Ocober 31, 2012 Conens 1 Error, Sig Figs, and Dimensional Analysis 1 2 Vecor Review 2 2.1 Adding/Subracing Vecors.............................

More information

Week 1 Lecture 2 Problems 2, 5. What if something oscillates with no obvious spring? What is ω? (problem set problem)

Week 1 Lecture 2 Problems 2, 5. What if something oscillates with no obvious spring? What is ω? (problem set problem) Week 1 Lecure Problems, 5 Wha if somehing oscillaes wih no obvious spring? Wha is ω? (problem se problem) Sar wih Try and ge o SHM form E. Full beer can in lake, oscillaing F = m & = ge rearrange: F =

More information

LAB 05 Projectile Motion

LAB 05 Projectile Motion PHYS 154 Universi Phsics Laboraor Pre-Lab Spring 18 LAB 5 Projecile Moion CONTENT: 1. Inroducion. Projecile moion A. Seup B. Various characerisics 3. Pre-lab: A. Aciviies B. Preliminar info C. Quiz 1.

More information

dt = C exp (3 ln t 4 ). t 4 W = C exp ( ln(4 t) 3) = C(4 t) 3.

dt = C exp (3 ln t 4 ). t 4 W = C exp ( ln(4 t) 3) = C(4 t) 3. Mah Rahman Exam Review Soluions () Consider he IVP: ( 4)y 3y + 4y = ; y(3) = 0, y (3) =. (a) Please deermine he longes inerval for which he IVP is guaraneed o have a unique soluion. Soluion: The disconinuiies

More information