8.022 (E&M) - Lecture 1

Size: px
Start display at page:

Download "8.022 (E&M) - Lecture 1"

Transcription

1 8.0 (E&M) - Lecture 1 Topics: Gabriella Sciolla How is 8.0 organized? Brief math recap Introduction to Electrostatics Welcome to 8.0! 8.0: advanced electricity and magnetism for freshmen or electricity and magnetism for advanced freshmen? Advanced! Both integral and differential formulation of E&M Goal: look at Maxwell s equations and be able to tell what they really mean! Familiar with math and very interested in physics Fun class but pretty hard: 8.0 or 8.0T? 1

2

3 Textbook E. M. Purcell Electricity and Magnetism Volume - Second edition Advantages: Bible for introductory E&M for generations of physicists Disadvantage: cgs units!!! 5 Problem sets Posted on the 8.0 web page on Thu night and due on Thu at 4:30 PM of the following week Leave them in the 8.0 lockbox at PEO Exceptions: Pset 0 (Math assessment) due on Monday Sep. 13 Pset 1 (Electrostatiscs) due on Friday Sep. 17 How to work on psets? Try to solve them by yourself first Discuss problems with friends and study group Write your own solution 6 3

4 Grades How do we grade 8.0? Homeworks and Recitations (5%) Two quizzes (0% each) Final (35%) Laboratory ( out of 3 needed to pass) NB: You may not pass the course without completing the laborator ies! More info on exams: Two in-class (6-100) quiz during normal class hours: Tuesday October 5 (Quiz #1) Tuesday November 9 (Quiz #) Final exam Tuesday, December 14 (9 AM - 1 Noon), location TBD All grades are available online through the 8.0 web page 7 Last but not least Come and talk to us if you have problems or questions 8.0 course material I attended class and sections and read the book but I still don t understand concept xyz and I am stuck on the pset! Math I can t understand how Taylor expansions work or why I should care about them Curriculum is 8.0 right for me or should I switch to TEAL? Physics in general! Questions about matter-antimatter asymmetry of the Universe, elementary constituents of matter (Sciolla) or gravitational waves (Kats) are welcome! 8 4

5 Your best friend in 8.0: math Math is an essential ingredient in 8.0 Basic knowledge of multivariable calculus is essential You must be enrolled in 18.0 or 18.0 (or even more advanced) To be proficient in 8.0, you don t need an A+ in 18.0 Basic concepts are used! Assumption: you are familiar with these concepts already but are a bit rusty Let s review some basic concepts right now! NB: excellent reference: D. Griffiths, Introduction to electrodynamics, Chapter

6 Derivative Given a function f(x), what is it s derivative? f df = dx x f The derivative tells us how fast f varies when x varies. x The derivative is the proportionality factor between a change in x and a change in f. What if f=f(x,y,z)? f f f df = dx + dy + dz x y z 11 Gradient Let s define the infinitesimal displacement f f f f f f df = dx + dy + dz =,,,, x y z x y z dl = dxx ˆ + dyy ˆ + dzz ˆ ( dx dy dz ) Definition of Gradient: f f f f f f grad f f ˆ x + ˆ + y ˆ z,, x y z x y z = f dl Conclusions: f measures how fast f(x,y,z) varies when x, y and z vary Logical extension of the concept of derivative! f is a scalar function but is a vector! f 1 6

7 The del operator Definition: x ˆ ˆ y ˆ z + +,, x y z x y z Properties: It looks like a vector It works like a vector But it s not a real vector because it s meaningless by itself. It s an operator. How it works: It can act on both scalar and vector functions: Acting on a sca l ar function: gradient f (vector) f Acting on a vector function with dot product: divergence (scalar) Acting on a sca l ar function with cross product: curl f (vector) 13 Divergence Given a vector function vxyz (,, ) vxyz (,, ) vx ˆ + vy ˆ + vz ˆ (, v, v ) v x y z x y z we define its divergence as: v v x y v z div v v + + x y z Observations: The divergence is a scalar Geometrical interpretat i on: it measures how much the funct i on spreads around a point. vxyz (,, ) 14 7

8 Divergence: interpretation Calculate the divergence for the following functions: v( x, y, z ) = xx ˆ + yy ˆ + ˆz v( x, y, z ) = zˆ v( x, y, z ) = x ˆ x y ˆ zˆ z div v=3>0 (faucet) div v=0 div v = -3 (sink) 15 Does this remind you of anything? Electric field around a charge has divergence.ne. 0! + - div E>0 for + charge: faucet div E <0 for charge: sink 16 8

9 Curl Given a vector function vxyz (,, ) vxyz (,, ) vx ˆ + vy y ˆ + vz ˆ (v, v, v ) x z x y z we define its curl as: xˆ ŷ ẑ v x y z Observations: The curl is a vector v v v x y z (,, Geometrical interpretation: it measures how much the function vxyz curls around a point. ) 17 Curl: interpretation Calculate the curl for the following function: vxy (,, z ) = yxˆ + xyˆ y x ˆ ˆ y ˆ z v = = x x y z y x 0 k ˆ This is a vortex: non zero curl! 18 9

10 Does this sound familiar? Magnetic fil ed around a wire : B I B 0 19 An now, our feature presentation: Electricity and Magnetism 10

11 The electromagnetic force: Ancient history 500 B.C. Ancient Greece Amber ( ελεχτρον= electron ) attracts light objects Iron rich rocks from µαγνεσια (Magnesia) attract iron C. F. du Fay: Two flavors of charges Positive and negative Priestley/Cavendish/Coulomb EM interactions follow an inverse square law: q Actual precision better than / q! F em r 1800 Volta Invention of the electric battery N.B.: Till now Electricity and Magnetism are disconnected! 1 The electromagnetic force: History (cont.) 180 Oersted and Ampere Established first connection between electricity and magnetism 1831 Faraday Discovery of magnetic induction 1873 Maxwell: Maxwell s equations The birth of modern Electro-Magnetism 1887 Hertz Established connection between EM and radiation 1905 Einstein Special relativity makes connection between Electricity and Magnetism as natural as it can be! 11

12 The electromagnetic force: Modern Physics! The Standard Model of Particle Physics Elementary constituents: 6 quarks and 6 leptons QUARKS u up d down c charm s strange t top b bottom LEPTONS νe electron neutrino e electron ν muon neutrino µ muon µ ντ tau neutrino τ tau Four elementary forces mediated by 5 bosons: Interaction Medi ator Relative Strength Range (cm) Strong Gluon El ectromagnetic Photon Infinite Weak Gravity W +/-, Z 0 Graviton? Infi nite 3 The electric charge The EM force acts on charges flavors: positive and negative Positive: obtained rubbing glass with silk Negative: obtained rubbing resin with fur Electric charge is quantized (Millikan) D1, D, D4 Multiples of the e = el ementary charge e = C (SI), esu (cgs) Q electron = -e; Q proton =+e Electric charge is conserved In any isolated system, the total charge cannot change If the total charge of a system changes, then it means the system is not isolated and charges came in or escaped. 4 1

13 Coulomb s law q q F = k ˆ r 1 r 1 1 Where: F ˆr 1 is the force that the charge q feels due to q is the unit vector going from q 1 to q Consequences: Newton s third law: F = F 1 1 Like signs repel, opposite signs attract 5 Units: cgs vs SI Units in cgs and SI (Sisteme Internationale) Length Mass Time Charge Current cgs cm g s electrostatic units (e.s.u.) e.s.u./s SI m Kg s Coulomb (C) Ampere (A) In cgs the esu is defined so that k=1 in Coulomb s law (1esu) 1 dyne = 1 esu = cm dyne (1cm) In SI, the Ampere is a fundamental constant k=1/(4πε 9 0 )= N C - m ε 0 =8.8x10-1 C N -1 m - is the permittivity of free space 6 13

14 Practical info: cgs - SI conversion table 3 =.9979 =c FAQ: why do we use cgs? Honest answer: because Purcell does 7 The superposition principle: discrete charges q 3 q q 1 q N Q q 4 q 5 The force on the charge Q due to all the other charges is equal to the vector sum of the forces created by the individual charges: qq q Q q Q q Q F r r r r i= N 1 N i ˆ ˆ ˆ ˆ Q = N = i r 1 r r N i = 1 r i 8 14

15 The superposition principle: continuous distribution of charges What happens when the distribution of charges is continuous? Take the limit for q dq and Σ integral: i q i r V Q q Q dq Q ρ dv Q ˆ ˆ r ˆ i=n i F Q = r i r = V V r i r i=1 r where ρ = charge per unit volume: volume charge density 9 The superposition principle: continuous distribution of charges (cont.) Charges are distributed inside a volume V: F Charges are distributed on a surface A: σ da Q F Q = ˆr A r Q = V ρ dv Q ˆr r Charges are distributed on a line L: λ dl Q F Q = ˆr L r Where: ρ = charge per un i t vo l ume: vo l ume charge dens i ty σ = charge per un i t area: surface charge dens i ty λ = charge per un it l ength: li ne charge dens i ty 30 15

16 Application: charged rod P: A rod of length L has a charge Q uniformly spread over i t. A test charge q is positioned at a distance a from the rod s midpoint. Q: What is the force F that the rod exerts on the charge q? a q L Qq Answer: F = y ˆ L a a + 31 Solution: charged rod Look at the symmetry of the problem and choose appropr ate coordinate system: rod on x axis, symmetric wrt x=0; a on y axis: i λ r L/ θ x dq=λdx q a L/ Symmetry of the problem: F // y axis; define =Q/L linear charge density Trigonometric relations: x/a=tg θ ; a=r cos θ dx=d θ /cos θ ; r=a/cos θ Consider the infinitesimal charge df y produced by the element dx: ad θ λ dx λq df y = df cos θ = q cos θ = λ q cos θ cosθ = cos θd θ r a a cos θ L / Now integrate between L/ and L/: λ q Qq F = ˆ y cos θ d θ = yˆ a L / L a a

17 Infinite rod? Taylor expansion! Q: What if the rod length is infinite? P: What does infinite mean? For al l practical purposes, infinite means >> than the other d i stances in the problem: L>>a: Qq Let s look at the solution: F = y ˆ L a a + l Tay or expand using (a/l) as expansion coefficient remembering that n nx n ( n 1) x (1 ± x ) = 1 ± + ±... for x <1 1!! and n nx n ( n + 1) x (1 ± x ) = for x <1 1!! λ Lq 1 a λ q a λ q 1 a λ q F = = 1 + = 1 + ~ 1 L a a L a... L a 1+ L 33 Rusty about Taylor expansions? Here are some useful reminders 34 17

PHYS 241 Electricity & Optics

PHYS 241 Electricity & Optics PHYS 241 Electricity & Optics Physics Department Home page: http://www.physics.purdue.edu/ Course Home page: http://www.physics.purdue.edu/phys241/ CHIP Home page: http://chip.physics.purdue.edu/public/241/spring2014/

More information

Introduction to Electromagnetic Theory

Introduction to Electromagnetic Theory Introduction to Electromagnetic Theory Lecture topics Laws of magnetism and electricity Meaning of Maxwell s equations Solution of Maxwell s equations Electromagnetic radiation: wave model James Clerk

More information

Chapter 23. Electric Fields

Chapter 23. Electric Fields Chapter 23 Electric Fields Electricity and Magnetism The laws of electricity and magnetism play a central role in the operation of many modern devices. The interatomic and intermolecular forces responsible

More information

Announcements. From now on, the problem sets from each week s homework assignments will be the following Wednesday.

Announcements. From now on, the problem sets from each week s homework assignments will be the following Wednesday. Announcements From now on, the problem sets from each week s homework assignments will be the following Wednesday. Late assignments will not be accepted. I will post the solutions on line after class on

More information

Electromagnetism. Electricity Electromagnetism Magnetism Optics. In this course we are going to discuss the fundamental concepts of electromagnetism:

Electromagnetism. Electricity Electromagnetism Magnetism Optics. In this course we are going to discuss the fundamental concepts of electromagnetism: Electromagnetism Electromagnetism is one of the fundamental forces in nature, and the the dominant force in a vast range of natural and technological phenomena The electromagnetic force is solely responsible

More information

PHYS 241 Electricity, Magnetism & Optics Syllabus

PHYS 241 Electricity, Magnetism & Optics Syllabus PHYS 241 Electricity, Magnetism & Optics Syllabus Questions about grades, grade checks, absences, course withdrawal, etc please see Prof. Laura Pyrak-Nolte 1 PHYS 241 Electricity & Optics Physics & Astronomy

More information

Electric & Magnetic Fields

Electric & Magnetic Fields Electric & Magnetic Fields Electric and magnetic fields manifest their existence through interactions with matter. Differential Form dive E div B B 0 o Maxwell s Equations Integral Form Q E da S S B da

More information

Electromagnetic Theory PHYS 401/402

Electromagnetic Theory PHYS 401/402 Electromagnetic Theory PHYS 401/402 Fall 2017 Lalith Perera, lpperera@olemiss.edu Office: Kennon 1 Office hours: M,Tu Th 3:00-4:00 PM Web page: http://www.phy.olemiss.edu/~perera/em 1 Electromagnetic Theory

More information

Chapter 23. Electric Fields

Chapter 23. Electric Fields Chapter 23 Electric Fields Electric Charges There are two kinds of electric charges Called positive and negative Negative charges are the type possessed by electrons Positive charges are the type possessed

More information

PHYS 241 Electricity & Optics

PHYS 241 Electricity & Optics PHYS 41 Electricity & Optics Physics & Astronomy Department Home page: http://www.physics.purdue.edu/ Course Home page: http://www.physics.purdue.edu/phys41/ CHIP Home page: http://chip.physics.purdue.edu/public/41/fall016/

More information

Today in Physics 217: begin electrostatics

Today in Physics 217: begin electrostatics Today in Physics 217: begin electrostatics Fields and potentials, and the Helmholtz theorem The empirical basis of electrostatics Coulomb s Law At right: the classic hand-to-thevan-de-graaf experiment.

More information

Today in Physics 217: electric potential

Today in Physics 217: electric potential Today in Physics 17: electric potential Finish Friday s discussion of the field from a uniformly-charged sphere, and the gravitational analogue of Gauss Law. Electric potential Example: a field and its

More information

Essential Physics II. Lecture 14:

Essential Physics II. Lecture 14: Essential Physics II E II Lecture 14: 18-01-16 Last lecture of EP2! Congratulations! This was a hard course. Be proud! Next week s exam Next Monday! All lecture slides on course website: http://astro3.sci.hokudai.ac.jp/~tasker/teaching/ep2

More information

( E ) = Lecture 1 Electric Charges & Coulomb s Law. Electric & Magnetic Fields. Electric Charge. Electric Charge

( E ) = Lecture 1 Electric Charges & Coulomb s Law. Electric & Magnetic Fields. Electric Charge. Electric Charge Electric & Magnetic Fields Lecture 1 Electric Charges & Coulomb s Law Electric and magnetic fields manifest their existence through interactions with matter. Differential Form div E E = ( ) = div( B )

More information

Welcome. to Physics 2135.

Welcome. to Physics 2135. Welcome to Physics 2135. PHYSICS 2135 Engineering Physics II Dr. S. Thomas Vojta Instructor in charge Office: 204 Physics, Phone: 341-4793 vojtat@mst.edu www.mst.edu/~vojtat Office hours: Mon+ Wed 11am-12pm

More information

PHYS 241D Electricity & Optics

PHYS 241D Electricity & Optics PHYS 241D Electricity & Optics Physics Department Home page: http://www.physics.purdue.edu/ Course Home page: http://www.physics.purdue.edu/phys241d/ CHIP Home page: http://chip.physics.purdue.edu/public/241d/fall2014/

More information

B.Sc. in Electronics and Communication Engineering, Cairo University, Cairo, Egypt with Distinction (honors), 1992

B.Sc. in Electronics and Communication Engineering, Cairo University, Cairo, Egypt with Distinction (honors), 1992 EE3FK4 Electromagnetics II Dr. Mohamed Bakr, ITB A219, ext. 24079 mbakr@mail.ece.mcmaster.ca http://www.ece.mcmaster.ca/faculty/bakr/ ece3fk4/ece3fk4_main_2008.htm Lecture 0 0-1 Info About Myself B.Sc.

More information

Electricity and Magnetism Coulomb s Law

Electricity and Magnetism Coulomb s Law Electricity and Magnetism Coulomb s Law Lana Sheridan De Anza College Jan 10, 2018 Last time introduced charge conductors insulators induced charge Warm Up. Do both balloons A and B have a charge? ntry

More information

Coordinate systems and vectors in three spatial dimensions

Coordinate systems and vectors in three spatial dimensions PHYS2796 Introduction to Modern Physics (Spring 2015) Notes on Mathematics Prerequisites Jim Napolitano, Department of Physics, Temple University January 7, 2015 This is a brief summary of material on

More information

Learning Outcomes from Last Time. Class 3. Learning Outcomes. What Causes Forces -Two Experiments. What Causes Forces -Two Experiments

Learning Outcomes from Last Time. Class 3. Learning Outcomes. What Causes Forces -Two Experiments. What Causes Forces -Two Experiments Learning Outcomes from Last Time Class 3 Electrostatic Forces Physics 106 Winter 2018 Press CTRL-L to view as a slide show. You should be able to answer these questions: What is science? What is physics?

More information

Electromagnetic Theory-I (PHY F212)

Electromagnetic Theory-I (PHY F212) Electromagnetic Theory-I (PHY F212) Kaushar Vaidya Ph.D. (Astronomy) Office: 3242-N, Physics Department, FD III Building Email: kaushar@bits-pilani.ac.in Electromagnetic Theory-I (PHY F212) Textbook: Introduction

More information

ENERGY IN ELECTROSTATICS

ENERGY IN ELECTROSTATICS ENERGY IN ELECTROSTATICS We now turn to the question of energy in electrostatics. The first question to consider is whether or not the force is conservative. You will recall from last semester that a conservative

More information

Welcome. to Electrostatics

Welcome. to Electrostatics Welcome to Electrostatics Outline 1. Coulomb s Law 2. The Electric Field - Examples 3. Gauss Law - Examples 4. Conductors in Electric Field Coulomb s Law Coulomb s law quantifies the magnitude of the electrostatic

More information

Modern Physics: Standard Model of Particle Physics (Invited Lecture)

Modern Physics: Standard Model of Particle Physics (Invited Lecture) 261352 Modern Physics: Standard Model of Particle Physics (Invited Lecture) Pichet Vanichchapongjaroen The Institute for Fundamental Study, Naresuan University 1 Informations Lecturer Pichet Vanichchapongjaroen

More information

Chapter Electric Forces and Electric Fields. Prof. Armen Kocharian

Chapter Electric Forces and Electric Fields. Prof. Armen Kocharian Chapter 25-26 Electric Forces and Electric Fields Prof. Armen Kocharian First Observations Greeks Observed electric and magnetic phenomena as early as 700 BC Found that amber, when rubbed, became electrified

More information

Welcome to Physics 202

Welcome to Physics 202 Welcome to Physics 202 Todays Topics The Physics 202 Team Course Formality and Course Overview Q&A Ch 21: Electric Charges Physics 202 Homepage http://www.physics.wisc.edu/undergrads/courses/fall2011/202/index.html

More information

Electricity and Magnetism Coulomb s Law

Electricity and Magnetism Coulomb s Law Electricity and Magnetism Coulomb s Law Lana Sheridan De Anza College Jan 10, 2018 Last time introduced charge conductors insulators induced charge Overview Force from a point charge Quantization of charge

More information

xkcd.com It IS about physics. It ALL is.

xkcd.com It IS about physics. It ALL is. xkcd.com It IS about physics. It ALL is. Introduction to Space Plasmas The Plasma State What is a plasma? Basic plasma properties: Qualitative & Quantitative Examples of plasmas Single particle motion

More information

Electricity and Magnetism Overview of Course Charge and Conduction

Electricity and Magnetism Overview of Course Charge and Conduction Electricity and Magnetism Overview of Course Charge and Conduction Lana Sheridan De Anza College Jan 8, 2018 Overview of the Course Topics charge static electric interactions electric fields electric potential

More information

Review Chap. 18: Particle Physics

Review Chap. 18: Particle Physics Final Exam: Sat. Dec. 18, 2:45-4:45 pm, 1300 Sterling Exam is cumulative, covering all material Review Chap. 18: Particle Physics Particles and fields: a new picture Quarks and leptons: the particle zoo

More information

Electromagnetism Physics 15b

Electromagnetism Physics 15b Electromagnetism Physics 15b Lecture #2 Guass s Law Electric Field and Flux Purcell 1.7 1.15 Administravia Online sectioning due Wednesday (tudy Card Day) Go to http://www.section.fas.harvard.edu/ Do both

More information

Exam Results. Force between charges. Electric field lines. Other particles and fields

Exam Results. Force between charges. Electric field lines. Other particles and fields Exam: Exam scores posted on Learn@UW No homework due next week Exam Results F D C BC B AB A Phy107 Fall 2006 1 Particles and fields We have talked about several particles Electron,, proton, neutron, quark

More information

Physics 217, Fall September 2002

Physics 217, Fall September 2002 Toda in Phsics 217: vector derivatives First derivatives: Gradient ( ) Divergence ( ) Curl ( ) Second derivatives: the Laplacian ( 2 ) and its relatives Vector-derivative identities: relatives of the chain

More information

Electricity and Magnetism PHYS-340:

Electricity and Magnetism PHYS-340: Electricity and Magnetism PHYS-340: 2013 (2:35-3:25 Monday, Wednesday, Friday, Rutherford 114) http://www.physics.mcgill.ca/~gang/phys340/phys340.home.htm Instructor: Shaun Lovejoy, Rutherford Physics,

More information

Physics 142 Electrostatics 1 Page 1. Electrostatics 1. The covers of this book are too far apart. Ambrose Bierce

Physics 142 Electrostatics 1 Page 1. Electrostatics 1. The covers of this book are too far apart. Ambrose Bierce Physics 142 Electrostatics 1 Page 1 Electrostatics 1 The covers of this book are too far apart. Ambrose Bierce Overview: the mechanical model yields to the field model In the previous course the description

More information

Notes 3 Review of Vector Calculus

Notes 3 Review of Vector Calculus ECE 3317 Applied Electromagnetic Waves Prof. David R. Jackson Fall 2018 A ˆ Notes 3 Review of Vector Calculus y ya ˆ y x xa V = x y ˆ x Adapted from notes by Prof. Stuart A. Long 1 Overview Here we present

More information

Welcome to Physics 202

Welcome to Physics 202 Welcome to Physics 202 Todays Topics The Physics 202 Team Course Formality and Course Overview Q&A Ch 23: Electric Charges Physics 202 Homepage http://www.physics.wisc.edu/undergrads/courses/fall2012/202/index.html

More information

Module 2 : Electrostatics Lecture 6 : Quantization Of Charge

Module 2 : Electrostatics Lecture 6 : Quantization Of Charge Module 2 : Electrostatics Lecture 6 : Quantization Of Charge Objectives In this lecture you will learn the following Quantization Of Charge and its measunement Coulomb's Law of force between electric charge

More information

Electricity and Magnetism Electric Field

Electricity and Magnetism Electric Field Electricity and Magnetism Electric Field Lana Sheridan De Anza College Jan 11, 2018 Last time Coulomb s Law force from many charges R/2 +8Q Warm Up Question (c) articles. p Fig. 21-19 Question 9. 10 In

More information

Time-Varying Systems; Maxwell s Equations

Time-Varying Systems; Maxwell s Equations Time-Varying Systems; Maxwell s Equations 1. Faraday s law in differential form 2. Scalar and vector potentials; the Lorenz condition 3. Ampere s law with displacement current 4. Maxwell s equations 5.

More information

Physics II (PH2223) Physics for Scientists and Engineers, with Modern Physics, 4th edition, Giancoli

Physics II (PH2223) Physics for Scientists and Engineers, with Modern Physics, 4th edition, Giancoli Physics II (PH2223) Physics for Scientists and Engineers, with Modern Physics, 4th edition, Giancoli Topics Covered Electric Charge & Electric Field Electric Potential Capacitance, Dielectric, Electric

More information

Take-Home Exam 1: pick up on Thursday, June 8, return Monday,

Take-Home Exam 1: pick up on Thursday, June 8, return Monday, SYLLABUS FOR 18.089 1. Overview This course is a review of calculus. We will start with a week-long review of single variable calculus, and move on for the remaining five weeks to multivariable calculus.

More information

Chapter 15. Electric Forces and Electric Fields

Chapter 15. Electric Forces and Electric Fields Chapter 15 Electric Forces and Electric Fields First Observations Greeks Observed electric and magnetic phenomena as early as 700 BC Found that amber, when rubbed, became electrified and attracted pieces

More information

Welcome to Physics 122

Welcome to Physics 122 Welcome to Physics 122 122A: Paul A. Wiggins 122B: Miguel Morales 122C: Arka Majumdar Content: Electricity & Magnetism Here Format: Active Learning (Learn from Participation)» PreLectures & Checkpoints

More information

Chapter 15. Electric Forces and Electric Fields

Chapter 15. Electric Forces and Electric Fields Chapter 15 Electric Forces and Electric Fields First Studies Greeks Observed electric and magnetic phenomena as early as 700 BC Found that amber, when rubbed, became electrified and attracted pieces of

More information

2.20 Fall 2018 Math Review

2.20 Fall 2018 Math Review 2.20 Fall 2018 Math Review September 10, 2018 These notes are to help you through the math used in this class. This is just a refresher, so if you never learned one of these topics you should look more

More information

Elementary Particles - Quarks, Bosons, Leptons. The three types of subatomic particles are: Protons Neutrons Electrons.

Elementary Particles - Quarks, Bosons, Leptons. The three types of subatomic particles are: Protons Neutrons Electrons. Elementary Particles - Quarks, Bosons, Leptons You have already learned about atoms and their parts. Atoms are made of subatomic particles. The three types of subatomic particles are: Protons Neutrons

More information

Definition: Electricity at rest (stationary)

Definition: Electricity at rest (stationary) Electrostatics Definition: Electricity at rest (stationary) Static means to stand and is used in Mechanical Engineering to study forces on bridges and other structures. Statue, stasis, stationary, ecstatic,

More information

Electromagnetism and Light

Electromagnetism and Light Electromagnetism and Light Monday Properties of waves (sound and light) interference, diffraction [Hewitt 12] Tuesday Light waves, diffraction, refraction, Snell's Law. [Hewitt 13, 14] Wednesday Lenses,

More information

PHYS 1444 Section 004 Lecture #22

PHYS 1444 Section 004 Lecture #22 PHYS 1444 Section 004 Lecture #22 Monday, April 23, 2012 Dr. Extension of Ampere s Law Gauss Law of Magnetism Maxwell s Equations Production of Electromagnetic Waves Today s homework is #13, due 10pm,

More information

Welcome to PHY2054C. Office hours: MoTuWeTh 10:00-11:00am (and after class) at PS140

Welcome to PHY2054C. Office hours: MoTuWeTh 10:00-11:00am (and after class) at PS140 Welcome to PHY2054C Office hours: MoTuWeTh 10:00-11:00am (and after class) at PS140 Book: Physics 8 ed. by Cutnell & Johnson, Volume 2 and PHY2054 Lab manual for your labs. One Midterm (July 14) and final

More information

Physics 4213/5213 Lecture 1

Physics 4213/5213 Lecture 1 August 28, 2002 1 INTRODUCTION 1 Introduction Physics 4213/5213 Lecture 1 There are four known forces: gravity, electricity and magnetism (E&M), the weak force, and the strong force. Each is responsible

More information

Electrostatics. Electrical properties generated by static charges. Introduction

Electrostatics. Electrical properties generated by static charges. Introduction Electrostatics Electrical properties generated by static charges Introduction First Greek discovery Found that amber, when rubbed, became electrified and attracted pieces of straw or feathers Introduction

More information

Physics 1302W.400 Lecture 2 Introductory Physics for Scientists and Engineering II

Physics 1302W.400 Lecture 2 Introductory Physics for Scientists and Engineering II Physics 1302W.400 Lecture 2 Introductory Physics for Scientists and Engineering II In today s lecture, we will start to cover Chapter 23, with the goal to develop the force field concept for the long-range

More information

General Physics (PHY 2140)

General Physics (PHY 2140) General Physics (PHY 2140) Introduction Syllabus and teaching strategy Electricity and Magnetism Properties of electric charges Insulators and conductors Coulomb s law Lecture 1. Chapter 15 1 Lecturer:

More information

1. Overview of the relations among charge, field and potential Gauss law Integrate charge to get potential More about energy Laplace and Poisson

1. Overview of the relations among charge, field and potential Gauss law Integrate charge to get potential More about energy Laplace and Poisson 1. Overview of the relations among charge, field and potential Gauss law Integrate charge to get potential More about energy Laplace and Poisson equations 2. Intro to conductors Field inside is zero BEFORE

More information

Electricity and Magnetism

Electricity and Magnetism Electricity and Magnetism From Parlor Games to Maxwell s Equations Electrical children, 1748 E & M as finalized physics Four moments in any topic of physics Identify the relevant phenomena Quantity relevant

More information

1 Introduction. 1.1 The Standard Model of particle physics The fundamental particles

1 Introduction. 1.1 The Standard Model of particle physics The fundamental particles 1 Introduction The purpose of this chapter is to provide a brief introduction to the Standard Model of particle physics. In particular, it gives an overview of the fundamental particles and the relationship

More information

Maxwell Equations Dr. Anurag Srivastava

Maxwell Equations Dr. Anurag Srivastava Maxwell Equations Dr. Anurag Srivastava Web address: http://tiiciiitm.com/profanurag Email: profanurag@gmail.com Visit me: Room-110, Block-E, IIITM Campus Syllabus Electrodynamics: Maxwell s equations:

More information

INTRODUCTION TO THE STANDARD MODEL OF PARTICLE PHYSICS

INTRODUCTION TO THE STANDARD MODEL OF PARTICLE PHYSICS INTRODUCTION TO THE STANDARD MODEL OF PARTICLE PHYSICS Class Mechanics My office (for now): Dantziger B Room 121 My Phone: x85200 Office hours: Call ahead, or better yet, email... Even better than office

More information

Physics 2D Lecture Slides Sep 26. Vivek Sharma UCSD Physics

Physics 2D Lecture Slides Sep 26. Vivek Sharma UCSD Physics Physics 2D Lecture Slides Sep 26 Vivek Sharma UCSD Physics Modern Physics (PHYS 2D) Exploration of physical ideas and phenomena related to High velocities and acceleration ( Einstein s Theory of Relativity)

More information

Electromagnetic Theory Prof. D. K. Ghosh Department of Physics Indian Institute of Technology, Bombay

Electromagnetic Theory Prof. D. K. Ghosh Department of Physics Indian Institute of Technology, Bombay Electromagnetic Theory Prof. D. K. Ghosh Department of Physics Indian Institute of Technology, Bombay Lecture -1 Element of vector calculus: Scalar Field and its Gradient This is going to be about one

More information

HW Chapter 16 Q 6,8,10,18,19,21 P 1,2,3,4. Chapter 16. Part 1: Electric Forces and Electric Fields. Dr. Armen Kocharian

HW Chapter 16 Q 6,8,10,18,19,21 P 1,2,3,4. Chapter 16. Part 1: Electric Forces and Electric Fields. Dr. Armen Kocharian HW Chapter 16 Q 6,8,10,18,19,21 P 1,2,3,4 Chapter 16 Part 1: Electric Forces and Electric Fields Dr. Armen Kocharian First Observations Greeks Observed electric and magnetic phenomena as early as 700 BC

More information

Lecture 2 [Chapter 21] Tuesday, Jan 17th

Lecture 2 [Chapter 21] Tuesday, Jan 17th Lecture 2 [Chapter 21] Tuesday, Jan 17th Administrative Items Assignments this week: read Ch 21 and Ch 22 in the textbook complete Pre-Lecture Ch22 HW assignment complete Ch 21 HW assignment [Pre-Lecture

More information

PH 222-2C Fall 2012 ELECTRIC CHARGE. Lecture 1. Chapter 21 (Halliday/Resnick/Walker, Fundamentals of Physics 8 th edition)

PH 222-2C Fall 2012 ELECTRIC CHARGE. Lecture 1. Chapter 21 (Halliday/Resnick/Walker, Fundamentals of Physics 8 th edition) PH 222-2C Fall 2012 ELECTRIC CHARGE Lecture 1 Chapter 21 (Halliday/Resnick/Walker, Fundamentals of Physics 8 th edition) 1 Chapter 21 Electric Charge In this chapter we will introduce a new property of

More information

3. Maxwell's Equations and Light Waves

3. Maxwell's Equations and Light Waves 3. Maxwell's Equations and Light Waves Vector fields, vector derivatives and the 3D Wave equation Derivation of the wave equation from Maxwell's Equations Why light waves are transverse waves Why is the

More information

History. The word electricity comes from the Greek elektron which means amber. The amber effect is what we call static electricity.

History. The word electricity comes from the Greek elektron which means amber. The amber effect is what we call static electricity. Electrostatics 1 History The word electricity comes from the Greek elektron which means amber. The amber effect is what we call static electricity. 2 ELECTROSTATICS the study of electric charges, forces

More information

Physics 240 Fall 2003: Exam #1. Please print your name: Please list your discussion section number: Please list your discussion instructor:

Physics 240 Fall 2003: Exam #1. Please print your name: Please list your discussion section number: Please list your discussion instructor: Physics 4 Fall 3: Exam #1 Please print your name: Please list your discussion section number: Please list your discussion instructor: Form #1 Instructions 1. Fill in your name above. This will be a 1.5

More information

Physics 225 Relativity and Math Applications. Fall Unit 10 The Line Element and Grad, Div, Curl

Physics 225 Relativity and Math Applications. Fall Unit 10 The Line Element and Grad, Div, Curl Physics 225 Relativity and Math Applications Fall 2012 Unit 10 The Line Element and Grad, Div, Curl N.C.R. Makins University of Illinois at Urbana-Champaign 2010 Physics 225 10.2 10.2 Physics 225 10.3

More information

General and Inorganic Chemistry I.

General and Inorganic Chemistry I. General and Inorganic Chemistry I. Lecture 2 István Szalai Eötvös University István Szalai (Eötvös University) Lecture 2 1 / 44 Outline 1 Introduction 2 Standard Model 3 Nucleus 4 Electron István Szalai

More information

Intro to Particle Physics and The Standard Model. Robert Clare UCR

Intro to Particle Physics and The Standard Model. Robert Clare UCR Intro to Particle Physics and The Standard Model Robert Clare UCR Timeline of particle physics Ancient Greeks Rutherford 1911 Rutherford Chadwick Heisenberg 1930 s Hofstader Gell-Mann Ne eman 1960 s Timeline

More information

PHYS 1441 Section 001 Lecture #2 Tuesday, June 7, 2016

PHYS 1441 Section 001 Lecture #2 Tuesday, June 7, 2016 PHYS 1441 Section 001 Lecture #2 Tuesday, June 7, 2016 Brief history of physics Some basics Chapter 21 Static Electricity and Charge Conservation Charges in Atom, Insulators and Conductors & Induced Charge

More information

2 The science of electricity and magnetism

2 The science of electricity and magnetism 1 Introduction Electromagnetism is one of the fundamental interactions in nature. Its physical origin lies in a property possessed by elementary particles of matter electrons and protons called electric

More information

PH Welcome to IIT Madras and welcome to PH 1010 Course. A few Dos and Don ts in this Course

PH Welcome to IIT Madras and welcome to PH 1010 Course. A few Dos and Don ts in this Course PH 1010 A Batch Teacher : Dr.A.Subrahmanyam Welcome to IIT Madras and welcome to PH 1010 Course A bit of Introduction about the Course A few Dos and Don ts in this Course 1 Please remember that ALL of

More information

1040 Phys Lecture 1. Electric Force. The electromagnetic force between charged particles is one of the fundamental forces of nature.

1040 Phys Lecture 1. Electric Force. The electromagnetic force between charged particles is one of the fundamental forces of nature. Electric Force The electromagnetic force between charged particles is one of the fundamental forces of nature. 1- Properties of Electric Charges A number of simple experiments demonstrate the existence

More information

Toward Completing Classical Physics

Toward Completing Classical Physics Toward Completing Classical Physics Intro to waves Intro to electro-magnetism HW3 due on Thursday, Feb 8 th. Quiz next Thursday, Feb 15 th on relativity: short answers. 20 mins. Closed book. Materials

More information

Notes 19 Gradient and Laplacian

Notes 19 Gradient and Laplacian ECE 3318 Applied Electricity and Magnetism Spring 218 Prof. David R. Jackson Dept. of ECE Notes 19 Gradient and Laplacian 1 Gradient Φ ( x, y, z) =scalar function Φ Φ Φ grad Φ xˆ + yˆ + zˆ x y z We can

More information

Physics 2D Lecture Slides Lecture 1: Jan

Physics 2D Lecture Slides Lecture 1: Jan Physics 2D Lecture Slides Lecture 1: Jan 5 2004 Vivek Sharma UCSD Physics Modern Physics (PHYS 2D) Exploration of physical ideas and phenomena related to High velocities and acceleration ( Einstein s Theory

More information

Physics Lecture 01: MON 25 AUG

Physics Lecture 01: MON 25 AUG Physics 2113 Jonathan Dowling Isaac Newton (1642 1727) Physics 2113 Lecture 01: MON 25 AUG CH13: Gravitation I Version: 8/24/14 Michael Faraday (1791 1867) Who am I & Why am I Here? Office hours: Nicholson

More information

Joy of Science Discovering the matters and the laws of the universe

Joy of Science Discovering the matters and the laws of the universe Joy of Science Discovering the matters and the laws of the universe Key Words Universe, Energy, Quantum mechanics, Chemical reaction, Structure of matter Unless otherwise noted, copied pictures are taken

More information

Chapter 21. Electric Charge and Electric Field

Chapter 21. Electric Charge and Electric Field 1.1 Electric Charge Chapter 1 Electric Charge and Electric Field Only varieties of electric charges exist in nature; positive and negative charges. Like charges repel each other, while opposite charges

More information

Multiple Integrals and Vector Calculus (Oxford Physics) Synopsis and Problem Sets; Hilary 2015

Multiple Integrals and Vector Calculus (Oxford Physics) Synopsis and Problem Sets; Hilary 2015 Multiple Integrals and Vector Calculus (Oxford Physics) Ramin Golestanian Synopsis and Problem Sets; Hilary 215 The outline of the material, which will be covered in 14 lectures, is as follows: 1. Introduction

More information

Introduction and Review Lecture 1

Introduction and Review Lecture 1 Introduction and Review Lecture 1 1 Fields 1.1 Introduction This class deals with classical electrodynamics. Classical electrodynamics is the exposition of electromagnetic interactions between the develoment

More information

This exam will be over material covered in class from Monday 14 February through Tuesday 8 March, corresponding to sections in the text.

This exam will be over material covered in class from Monday 14 February through Tuesday 8 March, corresponding to sections in the text. Math 275, section 002 (Ultman) Spring 2011 MIDTERM 2 REVIEW The second midterm will be held in class (1:40 2:30pm) on Friday 11 March. You will be allowed one half of one side of an 8.5 11 sheet of paper

More information

Chapter 23. Electric Fields Properties of Electric Charges Coulomb s Law The Electric Field Electric Field Lines

Chapter 23. Electric Fields Properties of Electric Charges Coulomb s Law The Electric Field Electric Field Lines Chapter 23 Electric Fields 23.1 Properties of Electric Charges 23.3 Coulomb s Law 23.4 The Electric Field 23.6 Electric Field Lines 1 23.1 Properties of Electric Charges Experiments 1-After running a comb

More information

Week 4. Outline Review electric Forces Review electric Potential

Week 4. Outline Review electric Forces Review electric Potential Week 4 Outline Review electric Forces Review electric Potential Electric Charge - A property of matter Matter is made up of two kinds of electric charges (positive and negative). Like charges repel, unlike

More information

Electromagnetic Theory Prof. D. K. Ghosh Department of Physics Indian Institute of Technology, Bombay

Electromagnetic Theory Prof. D. K. Ghosh Department of Physics Indian Institute of Technology, Bombay Electromagnetic Theory Prof. D. K. Ghosh Department of Physics Indian Institute of Technology, Bombay Module - 4 Time Varying Field Lecture - 30 Maxwell s Equations In the last lecture we had introduced

More information

5. Electric field (theoretical approach) and Gauss s law

5. Electric field (theoretical approach) and Gauss s law 5. Electric field (theoretical approach) and Gauss s law Announcement: Lab schedule will be posted later today I went to the tutorial session yesterday A. yes B. No C. I don t remember The tutorial session

More information

Particle Physics Outline the concepts of particle production and annihilation and apply the conservation laws to these processes.

Particle Physics Outline the concepts of particle production and annihilation and apply the conservation laws to these processes. Particle Physics 12.3.1 Outline the concept of antiparticles and give examples 12.3.2 Outline the concepts of particle production and annihilation and apply the conservation laws to these processes. Every

More information

Physics Fall Semester. Sections 1 5. Please find a seat. Keep all walkways free for safety reasons and to comply with the fire code.

Physics Fall Semester. Sections 1 5. Please find a seat. Keep all walkways free for safety reasons and to comply with the fire code. Physics 222 2018 Fall Semester Sections 1 5 Please find a seat. Keep all walkways free for safety reasons and to comply with the fire code. Electronic Devices Please separate your professional from your

More information

Particle physics: what is the world made of?

Particle physics: what is the world made of? Particle physics: what is the world made of? From our experience from chemistry has told us about: Name Mass (kg) Mass (atomic mass units) Decreasing mass Neutron Proton Electron Previous lecture on stellar

More information

12:40-2:40 3:00-4:00 PM

12:40-2:40 3:00-4:00 PM PHY294H l Professor: Joey Huston l email:huston@msu.edu l office: BPS3230 l Homework will be with Mastering Physics (and an average of 1 handwritten problem per week) Help-room hours: 12:40-2:40 Monday

More information

Quiz 4 (Discussion Session) Phys 1302W.400 Spring 2018

Quiz 4 (Discussion Session) Phys 1302W.400 Spring 2018 Quiz 4 (Discussion ession) Phys 1302W.400 pring 2018 This group quiz consists of one problem that, together with the individual problems on Friday, will determine your grade for quiz 4. For the group problem,

More information

Chapter 21. Electric Fields. Lecture 2. Dr. Armen Kocharian

Chapter 21. Electric Fields. Lecture 2. Dr. Armen Kocharian Chapter 21 Electric Fields Lecture 2 Dr. Armen Kocharian Electric Field Introduction The electric force is a field force Field forces can act through space The effect is produced even with no physical

More information

Beyond the standard model? From last time. What does the SM say? Grand Unified Theories. Unifications: now and the future

Beyond the standard model? From last time. What does the SM say? Grand Unified Theories. Unifications: now and the future From last time Quantum field theory is a relativistic quantum theory of fields and interactions. Fermions make up matter, and bosons mediate the forces by particle exchange. Lots of particles, lots of

More information

Elementary (?) Particles

Elementary (?) Particles Elementary (?) Particles Dan Styer; 12 December 2018 This document summarizes the so-called standard model of elementary particle physics. It cannot, in seven pages, even touch upon the copious experimental

More information

DIVERGENCE AND CURL THEOREMS

DIVERGENCE AND CURL THEOREMS This document is stored in Documents/4C/Gausstokes.tex. with LaTex. Compile it November 29, 2014 Hans P. Paar DIVERGENCE AND CURL THEOREM 1 Introduction We discuss the theorems of Gauss and tokes also

More information

Today in Physics 218: the Maxwell equations

Today in Physics 218: the Maxwell equations Today in Physics 218: the Maxwell equations Beyond magnetoquasistatics Displacement current, and Maxwell s repair of Ampère s Law The Maxwell equations Symmetry of the equations: magnetic monopoles? Rainbow

More information

Part I Electrostatics. 1: Charge and Coulomb s Law July 6, 2008

Part I Electrostatics. 1: Charge and Coulomb s Law July 6, 2008 Part I Electrostatics 1: Charge and Coulomb s Law July 6, 2008 1.1 What is Electric Charge? 1.1.1 History Before 1600CE, very little was known about electric properties of materials, or anything to do

More information

Today s Topics. The Physics 202 Team Course Formality and Overview. Physics 202 Homepage

Today s Topics. The Physics 202 Team Course Formality and Overview. Physics 202 Homepage Today s Topics The Physics 202 Team Course Formality and Overview Ch. 21.1-21.5: Electric Charge, Coulomb's Law Text: Giancoli, Physics for Scientists and Engineers, 4th ed., Volume II. Physics 202 Homepage

More information