; 2) diffraction should not be taken into account.

Size: px
Start display at page:

Download "; 2) diffraction should not be taken into account."

Transcription

1 Problem of the IV International Olympiad, Mocow, 197 The publication i prepared by Prof. S. Kozel & Prof. V.Orlov (Mocow Intitute of Phyic and Technology) The IV International Olympiad in Phyic for choolchildren took place in Mocow (USSR) in July 197 on the bai of Mocow State Univerity. Team from 8 countrie participated in the competition, namely Bulgaria, Hungary, Poland, Romania, Czecholovakia, the DDR, the SFR Yugolavia, the USSR. The problem for the theoretical competition have been prepared by the group from Mocow Univerity tuff headed by profeor V.Zubov. The problem for the experimental competition ha been worked out by B. Zvorikin from the Academy of Pedagogical Science. It i pity that marking cheme were not preerved. Theoretical Problem Problem 1. A long bar with the ma M 1 kg i placed on a mooth horizontal urface of a table where it can move frictionle. A carriage equipped with a motor can lide along the upper horizontal panel of the bar, the ma of the carriage i m.1 kg. The friction coefficient of the carriage i μ.. The motor i winding a thread around a haft at a contant peed v.1 m/. The other end of the thread i tied up to a rather ditant tationary upport in one cae (Fig.1, a), wherea in the other cae it i attached to a picket at the edge of the bar (Fig.1, b). While holding the bar fixed one allow the carriage to tart moving at the velocity V then the bar i let looe. Fig. 1 Fig. By the moment the bar i releaed the front edge of the carriage i at the ditance l.5 m from the front edge of the bar. For both cae find the law of movement of both the bar and the carriage and the time during which the carriage will reach the front edge of the bar. 1

2 Problem. A unit cell of a crytal of natrium chloride (common alt- NaCl) i a cube with the edge length a m (Fig.). The black circle in the figure tand for the poition of natrium atom wherea the white one are chlorine atom. The entire crytal of common alt turn out to be a repetition of uch unit cell. The relative atomic ma of natrium i and that of chlorine i 5,5. The denity of the common alt ρ. 1 kg/m. Find the ma of a hydrogen atom. Problem. Inide a thin-walled metal phere with radiu R cm there i a metal ball with the radiu r 1 cm which ha a common centre with the phere. The ball i connected with a very long wire to the Earth via an opening in the phere (Fig. ). A charge Q 1-8 C i placed onto the outide phere. Calculate the potential of thi phere, electrical capacity of the obtained ytem of conducting bodie and draw out an equivalent electric cheme. Fig. Fig. 4 Problem 4. A pherical mirror i intalled into a telecope. It lateral diameter i D,5 m and the radiu of the curvature R m. In the main focu of the mirror there i an emiion receiver in the form of a round dik. The dik i placed perpendicular to the optical axi of the mirror (Fig.7). What hould the radiu r of the receiver be o that it could receive the entire flux of the emiion reflected by the mirror? How would the received flux of the emiion decreae if the detector dimenion decreaed by 8 time? Direction: 1) When calculating mall value α (α<<1) one may perform a ubtitution α 1 α 1 ; ) diffraction hould not be taken into account.

3 Experimental Problem Determine the focal ditance of lene. Lit of intrument: three different lene intalled on pot, a creen bearing an image of a geometric figure, ome vertical wiring alo fixed on the pot and a ruler. Solution of the problem of the IV International Olympiad, Mocow, 197 Theoretical Competition Problem 1. a) By the moment of releaing the bar the carriage ha a velocity v relative to the table and continue to move at the ame velocity. The bar, influenced by the friction force F fr μmg from the carriage, get an acceleration a F fr / M μmg/m ; a. m/, while the velocity of the bar change with time according to the law v b at.. Since the bar can not move fater than the carriage then at a moment of time t t it liding will top, that i v b v. Let u determine thi moment of time: t v v M a µ mg 5 By that moment the diplacement of the Sb bar and the carriage Sc relative to the table will be equal to v M Sc vt µ mg, S at v M. b µ mg The diplacement of the carriage relative to the bar i equal to S S v M µ mg c Sb.5m Since S<l, the carriage will not reach the edge of the bar until the bar i topped by an immovable upport. The ditance to the upport i not indicated in the problem condition o we can not calculate thi time. Thu, the carriage i moving evenly at the velocity v.1 m/, wherea the bar i moving for the firt 5 ec uniformly accelerated with an acceleration a. m/ and then the bar i moving with contant velocity together with the carriage. b) Since there i no friction between the bar and the table urface the ytem of the bodie bar-carriage i a cloed one. For thi ytem one can apply the law of conervation of momentum: mv + Mu mv (1)

4 where v and u are projection of velocitie of the carriage and the bar relative to the table onto the horizontal axi directed along the vector of the velocity v. The velocity of the thread winding v i equal to the velocity of the carriage relative to the bar (v-u), that i v v u () Solving the ytem of equation (1) and () we obtain: u, v v. Thu, being releaed the bar remain fixed relative to the table, wherea the carriage will be moving with the ame velocity v and will reach the edge of the bar within the time t equal to t l/v 5. Problem. Let calculate the quantitie of natrium atom (n 1 ) and chlorine atom (n ) embedded in a ingle NaCl unit crytal cell (Fig.). One atom of natrium occupie the middle of the cell and it entirely belong to the cell. 1 atom of natrium hold the edge of a large cube and they belong to three more cell o a 1/4 part of each belong to the firt cell. Thu we have n /4 4 atom of natrium per unit cell. In one cell there are 6 atom of chlorine placed on the ide of the cube and 8 placed in the vertice. Each atom from a ide belong to another cell and the atom in the vertex - to even other. Then for one cell we have n 6 1/ + 8 1/8 4 atom of chlorine. Thu 4 atom of natriun and 4 atom of chlorine belong to one unit cell of NaCl crytal. The ma m of uch a cell i equal m 4(m rna + m rcl ) (amu), where m rna and m rcl are relative atomic mae of natrium and clorine. Since the ma of hydrogen atom m H i approximately equal to one atomic ma unit: m H 1.8 amu 1 amu then the ma of an unit cell of NaCl i m 4(m rna + m rcl ) m H. On the other hand, it i equal m ρa, hence ρa 7 mh kg. 4 m + m ( ) Problem. Having no charge on the ball the phere ha the potential rna rcl 1 Q ϕ 45V. R 4

5 When connected with the Earth the ball inide the phere ha the potential equal to zero o there i an electric field between the ball and the phere. Thi field move a certain charge q from the Earth to the ball. Charge Q`, uniformly ditributed on the phere, doen t create any field inide thu the electric field inide the phere i defined by the ball charge q. The potential difference between the ball and the phere i equal 1 q q ϕ ϕ b ϕ, (1) r R Outide the phere the field i the ame a in the cae when all the charge were placed in it center. When the ball wa connected with the Earth the potential of the phere φ i equal Then the potential of the ball 1 q + Q ϕ. () 4 πε R 1 q + Q q q 1 Q q ϕ b ϕ + ϕ + + () R r R R r Which lead to r q Q. (4) R Subtituting (4) into () we obtain for potential of the phere to be found: 1 ϕ Q Q r R 1 Q ( R r) R R The electric capacity of whole ytem of conductor i Q C ϕ πε R r 4 R V. F 44pF The equivalent electric cheme conit of two parallel capacitor: 1) a pherical one with charge +q and q at the plate and ) a capacitor phere Earth with charge +(Q-q) and (Q q) at the plate (Fig.5). Fig. 5 Fig. 6 5

6 Problem 4. A known, ray parallel to the main optical axi of a pherical mirror, paing at little ditance from it after having been reflected, join at the main focu of the mirror F which i at the ditance R/ from the centre O of the pherical urface. Let u conider now the movement of the ray reflected near the edge of the pherical mirror of large diameter D (Fig. 6). The angle of incidence α of the ray onto the urface i equal to the angle of reflection. That i why the angle OAB within the triangle, formed by the radiu OA of the phere, traced to the incidence point of the ray by the reflected ray AB and an intercept BO of the main optical axi, i equal to α. The angle BOA and MAO are equal, that i the angle BOA i equal to α. Thu, the triangle AOB i iocele with it ide AB being equal to the ide BO. Since the um of the length of it two other ide exceed the length of it third ide, AB+BO>OAR, hence BO>R/. Thi mean that a ray parallel to the main optical axi of the pherical mirror and paing not too cloe to it, after having been reflected, croe the main optical axi at the point B lying between the focu F and the mirror. The focal urface i croed by thi ray at the point C which i at a certain ditance CF r from the main focu. Thu, when reflecting a parallel beam of ray by a pherical mirror finite in ize it doe not join at the focu of the mirror but form a beam with radiu r on the focal plane. From Δ BFC we can write : r BF tg β BF tg α, where α i the maximum angle of incidence of the extreme ray onto the mirror, while in α D/R: R R R 1 coα BF BO OF. coα coα 1 coα in α Thu, r R. Let u expre the value of co α, in α, co α via in α taking coα co α into account the mall value of the angle α: Then in coα 1 in α 1, α inα inαcoα, coα co α in α 1 in α. r R in α R D 1 in α 16R in α Subtituting numerical data we will obtain: r m mm.. 6

7 From the expreion D 16R r one can ee that if the radiu of the receiver i decreaed 8 time the tranveral diameter D of the mirror, from which the light come to the receiver, will be decreaed time and thu the effective area of the mirror will be decreaed 4 time. The radiation flux Φ reflected by the mirror and received by the receiver will alo be decreaed twice ince Φ S. Solution of the Experimental Problem While looking at object through lene it i eay to etablih that there were given two converging lene and a diverging one. The peculiarity of the given problem i the abence of a white creen on the lit of the equipment that i ued to oberve real image. The competitor were uppoed to determine the poition of the image by the parallance method oberving the image with their eye. The focal ditance of the converging len may be determined by the following method. Uing a len one can obtain a real image of a geometrical figure hown on the creen. The poition of the real image i regitered by the parallax method: if one place a vertical wire (Fig.7) to the point, in which the image i located, then at mall Fig. 7 diplacement of the eye from the main optical axi of the len the image of thi object and the wire will not diverge. We obtain the value of focal ditance F from the formula of thin len by the meaured ditance d and f : df + ; F1, F d f d + f. 1, In thi method the bet accuracy i achieved in the cae of f d. The competitor were not aked to make a concluion. The error of meauring the focal ditance for each of the two converging lene can be determined by multiple repeated meaurement. The total number of point wa given to thoe competitor who carried out not le fewer than n5 meaurement of the focal ditance and etimated the mean value of the focal ditance Fav: 7

8 F av 1 n Fi n 1 and the abolute error F or root mean quare error Frm 1 n Fi n 1 F, Fi Fi Fav 1 n ( ). Frm F i One could calculate the error by graphic method. Fig. 8 Determination of the focal ditance of the diverging len can be carried out by the method of compenation. With thi goal one ha to obtain a real image S of the object S uing a converging len. The poition of the image can be regitered uing the parallax method. If one place a diverging len between the image and the converging len the image will be diplaced. Let u find a new poition of the image S. Uing the reveribility property of the light ray, one can admit that the light ray leave the point S. Then point S i a virtual image of the point S, wherea the ditance from the optical centre of the concave len to the point S and S are, repectively, the ditance f to the image and d to the object (Fig.8). Uing the formula of a thin len we obtain ; F fd F f d d f <. Here F < i the focal ditance of the diverging len. In thi cae the error of meauring the focal ditance can alo be etimated by the method of repeated meaurement imilar to the cae of the 8

9 converging len. Typical reult are: F (,,4)cm, F (1,,) cm, F ( 8,4,4) cm. 1 ± ± ± Acknowledgement The author would like to thank Profeor Waldemar Gorzkowki (Poland) and Profeor Ivo Volf (Czech Republic) for their providing the material of the IV IPhO in the Polih and Czech language. Reference: 1. O.Kabardin, V.Orlov, International Phyic Olympiad for Pupil, Nauka, Mokva W.Gorzkowki, Zadania z fiziki z calego wiata lat. Miedzyna rodowych Olimpiad Fizycznych, WNT, Warzawa V.Urumov, Proventno Delo, Skopje D.Kluvanec, I.Volf, Mezinarodni Fyikalni Olympiady (metodycky material), MaFy, Hradec Kralowe 199 9

Chapter K - Problems

Chapter K - Problems Chapter K - Problem Blinn College - Phyic 2426 - Terry Honan Problem K. A He-Ne (helium-neon) laer ha a wavelength of 632.8 nm. If thi i hot at an incident angle of 55 into a gla block with index n =.52

More information

Physics 2212 G Quiz #2 Solutions Spring 2018

Physics 2212 G Quiz #2 Solutions Spring 2018 Phyic 2212 G Quiz #2 Solution Spring 2018 I. (16 point) A hollow inulating phere ha uniform volume charge denity ρ, inner radiu R, and outer radiu 3R. Find the magnitude of the electric field at a ditance

More information

Physics 111. Exam #3. March 4, 2011

Physics 111. Exam #3. March 4, 2011 Phyic Exam #3 March 4, 20 Name Multiple Choice /6 Problem # /2 Problem #2 /2 Problem #3 /2 Problem #4 /2 Total /00 PartI:Multiple Choice:Circlethebetanwertoeachquetion.Anyothermark willnotbegivencredit.eachmultiple

More information

Lecture 15 - Current. A Puzzle... Advanced Section: Image Charge for Spheres. Image Charge for a Grounded Spherical Shell

Lecture 15 - Current. A Puzzle... Advanced Section: Image Charge for Spheres. Image Charge for a Grounded Spherical Shell Lecture 15 - Current Puzzle... Suppoe an infinite grounded conducting plane lie at z = 0. charge q i located at a height h above the conducting plane. Show in three different way that the potential below

More information

Physics 218: Exam 1. Class of 2:20pm. February 14th, You have the full class period to complete the exam.

Physics 218: Exam 1. Class of 2:20pm. February 14th, You have the full class period to complete the exam. Phyic 218: Exam 1 Cla of 2:20pm February 14th, 2012. Rule of the exam: 1. You have the full cla period to complete the exam. 2. Formulae are provided on the lat page. You may NOT ue any other formula heet.

More information

Physics 2. Angular Momentum. Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB

Physics 2. Angular Momentum. Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB Phyic Angular Momentum For Campu earning Angular Momentum Thi i the rotational equivalent of linear momentum. t quantifie the momentum of a rotating object, or ytem of object. To get the angular momentum,

More information

Constant Force: Projectile Motion

Constant Force: Projectile Motion Contant Force: Projectile Motion Abtract In thi lab, you will launch an object with a pecific initial velocity (magnitude and direction) and determine the angle at which the range i a maximum. Other tak,

More information

t α z t sin60 0, where you should be able to deduce that the angle between! r and! F 1

t α z t sin60 0, where you should be able to deduce that the angle between! r and! F 1 PART III Problem Problem1 A computer dik tart rotating from ret at contant angular acceleration. If it take 0.750 to complete it econd revolution: a) How long doe it take to complete the firt complete

More information

Elastic Collisions Definition Examples Work and Energy Definition of work Examples. Physics 201: Lecture 10, Pg 1

Elastic Collisions Definition Examples Work and Energy Definition of work Examples. Physics 201: Lecture 10, Pg 1 Phyic 131: Lecture Today Agenda Elatic Colliion Definition i i Example Work and Energy Definition of work Example Phyic 201: Lecture 10, Pg 1 Elatic Colliion During an inelatic colliion of two object,

More information

V = 4 3 πr3. d dt V = d ( 4 dv dt. = 4 3 π d dt r3 dv π 3r2 dv. dt = 4πr 2 dr

V = 4 3 πr3. d dt V = d ( 4 dv dt. = 4 3 π d dt r3 dv π 3r2 dv. dt = 4πr 2 dr 0.1 Related Rate In many phyical ituation we have a relationhip between multiple quantitie, and we know the rate at which one of the quantitie i changing. Oftentime we can ue thi relationhip a a convenient

More information

ME 141. Engineering Mechanics

ME 141. Engineering Mechanics ME 141 Engineering Mechanic Lecture 14: Plane motion of rigid bodie: Force and acceleration Ahmad Shahedi Shakil Lecturer, Dept. of Mechanical Engg, BUET E-mail: hakil@me.buet.ac.bd, hakil6791@gmail.com

More information

Math 273 Solutions to Review Problems for Exam 1

Math 273 Solutions to Review Problems for Exam 1 Math 7 Solution to Review Problem for Exam True or Fale? Circle ONE anwer for each Hint: For effective tudy, explain why if true and give a counterexample if fale (a) T or F : If a b and b c, then a c

More information

Sample Problems. Lecture Notes Related Rates page 1

Sample Problems. Lecture Notes Related Rates page 1 Lecture Note Related Rate page 1 Sample Problem 1. A city i of a circular hape. The area of the city i growing at a contant rate of mi y year). How fat i the radiu growing when it i exactly 15 mi? (quare

More information

Exam 1 Solutions. +4q +2q. +2q +2q

Exam 1 Solutions. +4q +2q. +2q +2q PHY6 9-8-6 Exam Solution y 4 3 6 x. A central particle of charge 3 i urrounded by a hexagonal array of other charged particle (>). The length of a ide i, and charge are placed at each corner. (a) [6 point]

More information

HSC PHYSICS ONLINE KINEMATICS EXPERIMENT

HSC PHYSICS ONLINE KINEMATICS EXPERIMENT HSC PHYSICS ONLINE KINEMATICS EXPERIMENT RECTILINEAR MOTION WITH UNIFORM ACCELERATION Ball rolling down a ramp Aim To perform an experiment and do a detailed analyi of the numerical reult for the rectilinear

More information

AP Physics Charge Wrap up

AP Physics Charge Wrap up AP Phyic Charge Wrap up Quite a few complicated euation for you to play with in thi unit. Here them babie i: F 1 4 0 1 r Thi i good old Coulomb law. You ue it to calculate the force exerted 1 by two charge

More information

303b Reducing the impact (Accelerometer & Light gate)

303b Reducing the impact (Accelerometer & Light gate) Senor: Logger: Accelerometer High g, Light gate Any EASYSENSE capable of fat logging Science in Sport Logging time: 1 econd 303b Reducing the impact (Accelerometer & Light gate) Read In many porting activitie

More information

KEY. D. 1.3 kg m. Solution: Using conservation of energy on the swing, mg( h) = 1 2 mv2 v = 2mg( h)

KEY. D. 1.3 kg m. Solution: Using conservation of energy on the swing, mg( h) = 1 2 mv2 v = 2mg( h) Phy 5 - Fall 206 Extra credit review eion - Verion A KEY Thi i an extra credit review eion. t will be worth 30 point of extra credit. Dicu and work on the problem with your group. You may ue your text

More information

Physics 6A. Angular Momentum. Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB

Physics 6A. Angular Momentum. Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB Phyic 6A Angular Momentum For Campu earning Angular Momentum Thi i the rotational equivalent of linear momentum. t quantifie the momentum of a rotating object, or ytem of object. f we imply tranlate the

More information

Bernoulli s equation may be developed as a special form of the momentum or energy equation.

Bernoulli s equation may be developed as a special form of the momentum or energy equation. BERNOULLI S EQUATION Bernoulli equation may be developed a a pecial form of the momentum or energy equation. Here, we will develop it a pecial cae of momentum equation. Conider a teady incompreible flow

More information

Tarzan s Dilemma for Elliptic and Cycloidal Motion

Tarzan s Dilemma for Elliptic and Cycloidal Motion Tarzan Dilemma or Elliptic and Cycloidal Motion Yuji Kajiyama National Intitute o Technology, Yuge College, Shimo-Yuge 000, Yuge, Kamijima, Ehime, 794-593, Japan kajiyama@gen.yuge.ac.jp btract-in thi paper,

More information

MCB4UW Handout 4.11 Related Rates of Change

MCB4UW Handout 4.11 Related Rates of Change MCB4UW Handout 4. Related Rate of Change. Water flow into a rectangular pool whoe dimenion are m long, 8 m wide, and 0 m deep. If water i entering the pool at the rate of cubic metre per econd (hint: thi

More information

ELECTROMAGNETIC WAVES AND PHOTONS

ELECTROMAGNETIC WAVES AND PHOTONS CHAPTER ELECTROMAGNETIC WAVES AND PHOTONS Problem.1 Find the magnitude and direction of the induced electric field of Example.1 at r = 5.00 cm if the magnetic field change at a contant rate from 0.500

More information

Molecular Dynamics Simulations of Nonequilibrium Effects Associated with Thermally Activated Exothermic Reactions

Molecular Dynamics Simulations of Nonequilibrium Effects Associated with Thermally Activated Exothermic Reactions Original Paper orma, 5, 9 7, Molecular Dynamic Simulation of Nonequilibrium Effect ociated with Thermally ctivated Exothermic Reaction Jerzy GORECKI and Joanna Natalia GORECK Intitute of Phyical Chemitry,

More information

PHYSICSBOWL March 29 April 14, 2017

PHYSICSBOWL March 29 April 14, 2017 PHYSICSBOWL 2017 March 29 April 14, 2017 40 QUESTIONS 45 MINUTES The ponor of the 2017 PhyicBowl, including the American Aociation of Phyic Teacher, are providing ome of the prize to recognize outtanding

More information

two equations that govern the motion of the fluid through some medium, like a pipe. These two equations are the

two equations that govern the motion of the fluid through some medium, like a pipe. These two equations are the Fluid and Fluid Mechanic Fluid in motion Dynamic Equation of Continuity After having worked on fluid at ret we turn to a moving fluid To decribe a moving fluid we develop two equation that govern the motion

More information

2015 PhysicsBowl Solutions Ans Ans Ans Ans Ans B 2. C METHOD #1: METHOD #2: 3. A 4.

2015 PhysicsBowl Solutions Ans Ans Ans Ans Ans B 2. C METHOD #1: METHOD #2: 3. A 4. 05 PhyicBowl Solution # An # An # An # An # An B B B 3 D 4 A C D A 3 D 4 C 3 A 3 C 3 A 33 C 43 B 4 B 4 D 4 C 34 A 44 E 5 E 5 E 5 E 35 E 45 B 6 D 6 A 6 A 36 B 46 E 7 A 7 D 7 D 37 A 47 C 8 E 8 C 8 B 38 D

More information

The Electric Potential Energy

The Electric Potential Energy Lecture 6 Chapter 28 Phyic II The Electric Potential Energy Coure webite: http://aculty.uml.edu/andriy_danylov/teaching/phyicii New Idea So ar, we ued vector quantitie: 1. Electric Force (F) Depreed! 2.

More information

EP225 Note No. 5 Mechanical Waves

EP225 Note No. 5 Mechanical Waves EP5 Note No. 5 Mechanical Wave 5. Introduction Cacade connection of many ma-pring unit conitute a medium for mechanical wave which require that medium tore both kinetic energy aociated with inertia (ma)

More information

DYNAMICS OF ROTATIONAL MOTION

DYNAMICS OF ROTATIONAL MOTION DYNAMICS OF ROTATIONAL MOTION 10 10.9. IDENTIFY: Apply I. rad/rev SET UP: 0 0. (400 rev/min) 419 rad/ 60 /min EXECUTE: 0 419 rad/ I I (0 kg m ) 11 N m. t 800 EVALUATE: In I, mut be in rad/. 10.. IDENTIFY:

More information

Emittance limitations due to collective effects for the TOTEM beams

Emittance limitations due to collective effects for the TOTEM beams LHC Project ote 45 June 0, 004 Elia.Metral@cern.ch Andre.Verdier@cern.ch Emittance limitation due to collective effect for the TOTEM beam E. Métral and A. Verdier, AB-ABP, CER Keyword: TOTEM, collective

More information

v 2,p = v 3,p. The total energy at P is then mv 2 p = 6.68mv 2 p 4.49Gm2 d. (3) P 2 O 3 r o Gm = v2 p d2 P 3

v 2,p = v 3,p. The total energy at P is then mv 2 p = 6.68mv 2 p 4.49Gm2 d. (3) P 2 O 3 r o Gm = v2 p d2 P 3 Nordic-Baltic hyic Olympiad 08 Solution GRAVITATIONAL RACING i) a) Since all three bodie move along the ame trajectory, they mut be T 3 away from each other at any moment of time Thu, it take T 3 to get

More information

Physics Exam 3 Formulas

Physics Exam 3 Formulas Phyic 10411 Exam III November 20, 2009 INSTRUCTIONS: Write your NAME on the front of the blue exam booklet. The exam i cloed book, and you may have only pen/pencil and a calculator (no tored equation or

More information

Linear Motion, Speed & Velocity

Linear Motion, Speed & Velocity Add Important Linear Motion, Speed & Velocity Page: 136 Linear Motion, Speed & Velocity NGSS Standard: N/A MA Curriculum Framework (006): 1.1, 1. AP Phyic 1 Learning Objective: 3.A.1.1, 3.A.1.3 Knowledge/Undertanding

More information

Cumulative Review of Calculus

Cumulative Review of Calculus Cumulative Review of Calculu. Uing the limit definition of the lope of a tangent, determine the lope of the tangent to each curve at the given point. a. f 5,, 5 f,, f, f 5,,,. The poition, in metre, of

More information

Assessment Schedule 2017 Scholarship Physics (93103)

Assessment Schedule 2017 Scholarship Physics (93103) Scholarhip Phyic (93103) 201 page 1 of 5 Aement Schedule 201 Scholarhip Phyic (93103) Evidence Statement Q Evidence 1-4 mark 5-6 mark -8 mark ONE (a)(i) Due to the motion of the ource, there are compreion

More information

PHYS 110B - HW #2 Spring 2004, Solutions by David Pace Any referenced equations are from Griffiths Problem statements are paraphrased

PHYS 110B - HW #2 Spring 2004, Solutions by David Pace Any referenced equations are from Griffiths Problem statements are paraphrased PHYS 11B - HW # Spring 4, Solution by David Pace Any referenced equation are from Griffith Problem tatement are paraphraed [1.] Problem 7. from Griffith A capacitor capacitance, C i charged to potential

More information

Mechanics. Free rotational oscillations. LD Physics Leaflets P Measuring with a hand-held stop-clock. Oscillations Torsion pendulum

Mechanics. Free rotational oscillations. LD Physics Leaflets P Measuring with a hand-held stop-clock. Oscillations Torsion pendulum Mechanic Ocillation Torion pendulum LD Phyic Leaflet P.5.. Free rotational ocillation Meauring with a hand-held top-clock Object of the experiment g Meauring the amplitude of rotational ocillation a function

More information

The Hand of God, Building the Universe and Multiverse

The Hand of God, Building the Universe and Multiverse 1.0 Abtract What i the mathematical bai for the contruction of the univere? Thi paper intend to how a tart of how the univere i contructed. It alo anwer the quetion, did the hand of God build the univere?

More information

arxiv: v1 [math.ca] 23 Sep 2017

arxiv: v1 [math.ca] 23 Sep 2017 arxiv:709.08048v [math.ca] 3 Sep 07 On the unit ditance problem A. Ioevich Abtract. The Erdő unit ditance conjecture in the plane ay that the number of pair of point from a point et of ize n eparated by

More information

III.9. THE HYSTERESIS CYCLE OF FERROELECTRIC SUBSTANCES

III.9. THE HYSTERESIS CYCLE OF FERROELECTRIC SUBSTANCES III.9. THE HYSTERESIS CYCLE OF FERROELECTRIC SBSTANCES. Work purpoe The analyi of the behaviour of a ferroelectric ubtance placed in an eternal electric field; the dependence of the electrical polariation

More information

Halliday/Resnick/Walker 7e Chapter 6

Halliday/Resnick/Walker 7e Chapter 6 HRW 7e Chapter 6 Page of Halliday/Renick/Walker 7e Chapter 6 3. We do not conider the poibility that the bureau might tip, and treat thi a a purely horizontal motion problem (with the peron puh F in the

More information

Basic parts of an AC motor : rotor, stator, The stator and the rotor are electrical

Basic parts of an AC motor : rotor, stator, The stator and the rotor are electrical INDUCTION MOTO 1 CONSTUCTION Baic part of an AC motor : rotor, tator, encloure The tator and the rotor are electrical circuit that perform a electromagnet. CONSTUCTION (tator) The tator - tationary part

More information

Prof. Dr. Ibraheem Nasser Examples_6 October 13, Review (Chapter 6)

Prof. Dr. Ibraheem Nasser Examples_6 October 13, Review (Chapter 6) Prof. Dr. Ibraheem Naer Example_6 October 13, 017 Review (Chapter 6) cceleration of a loc againt Friction (1) cceleration of a bloc on horizontal urface When body i moving under application of force P,

More information

Math Skills. Scientific Notation. Uncertainty in Measurements. Appendix A5 SKILLS HANDBOOK

Math Skills. Scientific Notation. Uncertainty in Measurements. Appendix A5 SKILLS HANDBOOK ppendix 5 Scientific Notation It i difficult to work with very large or very mall number when they are written in common decimal notation. Uually it i poible to accommodate uch number by changing the SI

More information

a = f s,max /m = s g. 4. We first analyze the forces on the pig of mass m. The incline angle is.

a = f s,max /m = s g. 4. We first analyze the forces on the pig of mass m. The incline angle is. Chapter 6 1. The greatet deceleration (of magnitude a) i provided by the maximum friction force (Eq. 6-1, with = mg in thi cae). Uing ewton econd law, we find a = f,max /m = g. Eq. -16 then give the hortet

More information

=

= Coordinator: Saleem Rao Saturday, December 02, 2017 Page: 1 Q1. Two charge q1 = + 6.00 µc and q2 = 12.0 µc are placed at (2.00 cm, 0) and (4.00 cm, 0), repectively. If a third unknown charge q3 i to be

More information

( kg) (410 m/s) 0 m/s J. W mv mv m v v. 4 mv

( kg) (410 m/s) 0 m/s J. W mv mv m v v. 4 mv PHYS : Solution to Chapter 6 Home ork. RASONING a. The work done by the gravitational orce i given by quation 6. a = (F co θ). The gravitational orce point downward, oppoite to the upward vertical diplacement

More information

1. Basic introduction to electromagnetic field. wave properties and particulate properties.

1. Basic introduction to electromagnetic field. wave properties and particulate properties. Lecture Baic Radiometric Quantitie. The Beer-Bouguer-Lambert law. Concept of extinction cattering plu aborption and emiion. Schwarzchild equation. Objective:. Baic introduction to electromagnetic field:

More information

Moment of Inertia of an Equilateral Triangle with Pivot at one Vertex

Moment of Inertia of an Equilateral Triangle with Pivot at one Vertex oment of nertia of an Equilateral Triangle with Pivot at one Vertex There are two wa (at leat) to derive the expreion f an equilateral triangle that i rotated about one vertex, and ll how ou both here.

More information

Frames of Reference and Relative Velocity

Frames of Reference and Relative Velocity 1.5 frame of reference coordinate ytem relative to which motion i oberved Frame of Reference and Relative Velocity Air how provide element of both excitement and danger. When high-peed airplane fly in

More information

HELICAL TUBES TOUCHING ONE ANOTHER OR THEMSELVES

HELICAL TUBES TOUCHING ONE ANOTHER OR THEMSELVES 15 TH INTERNATIONAL CONFERENCE ON GEOMETRY AND GRAPHICS 0 ISGG 1-5 AUGUST, 0, MONTREAL, CANADA HELICAL TUBES TOUCHING ONE ANOTHER OR THEMSELVES Peter MAYRHOFER and Dominic WALTER The Univerity of Innbruck,

More information

Determination of Flow Resistance Coefficients Due to Shrubs and Woody Vegetation

Determination of Flow Resistance Coefficients Due to Shrubs and Woody Vegetation ERDC/CL CETN-VIII-3 December 000 Determination of Flow Reitance Coefficient Due to hrub and Woody Vegetation by Ronald R. Copeland PURPOE: The purpoe of thi Technical Note i to tranmit reult of an experimental

More information

s much time does it take for the dog to run a distance of 10.0m

s much time does it take for the dog to run a distance of 10.0m ATTENTION: All Diviion I tudent, START HERE. All Diviion II tudent kip the firt 0 quetion, begin on #.. Of the following, which quantity i a vector? Energy (B) Ma Average peed (D) Temperature (E) Linear

More information

Critical behavior of slider-block model. (Short title: Critical ) S G Abaimov

Critical behavior of slider-block model. (Short title: Critical ) S G Abaimov Critical behavior of lider-bloc model (Short title: Critical ) S G Abaimov E-mail: gabaimov@gmail.com. Abtract. Thi paper applie the theory of continuou phae tranition of tatitical mechanic to a lider-bloc

More information

Fair Game Review. Chapter 7 A B C D E Name Date. Complete the number sentence with <, >, or =

Fair Game Review. Chapter 7 A B C D E Name Date. Complete the number sentence with <, >, or = Name Date Chapter 7 Fair Game Review Complete the number entence with , or =. 1. 3.4 3.45 2. 6.01 6.1 3. 3.50 3.5 4. 0.84 0.91 Find three decimal that make the number entence true. 5. 5.2 6. 2.65 >

More information

Estimating floor acceleration in nonlinear multi-story moment-resisting frames

Estimating floor acceleration in nonlinear multi-story moment-resisting frames Etimating floor acceleration in nonlinear multi-tory moment-reiting frame R. Karami Mohammadi Aitant Profeor, Civil Engineering Department, K.N.Tooi Univerity M. Mohammadi M.Sc. Student, Civil Engineering

More information

μ + = σ = D 4 σ = D 3 σ = σ = All units in parts (a) and (b) are in V. (1) x chart: Center = μ = 0.75 UCL =

μ + = σ = D 4 σ = D 3 σ = σ = All units in parts (a) and (b) are in V. (1) x chart: Center = μ = 0.75 UCL = Our online Tutor are available 4*7 to provide Help with Proce control ytem Homework/Aignment or a long term Graduate/Undergraduate Proce control ytem Project. Our Tutor being experienced and proficient

More information

Final Comprehensive Exam Physical Mechanics Friday December 15, Total 100 Points Time to complete the test: 120 minutes

Final Comprehensive Exam Physical Mechanics Friday December 15, Total 100 Points Time to complete the test: 120 minutes Final Comprehenive Exam Phyical Mechanic Friday December 15, 000 Total 100 Point Time to complete the tet: 10 minute Pleae Read the Quetion Carefully and Be Sure to Anwer All Part! In cae that you have

More information

New bounds for Morse clusters

New bounds for Morse clusters New bound for More cluter Tamá Vinkó Advanced Concept Team, European Space Agency, ESTEC Keplerlaan 1, 2201 AZ Noordwijk, The Netherland Tama.Vinko@ea.int and Arnold Neumaier Fakultät für Mathematik, Univerität

More information

Calculation of the temperature of boundary layer beside wall with time-dependent heat transfer coefficient

Calculation of the temperature of boundary layer beside wall with time-dependent heat transfer coefficient Ŕ periodica polytechnica Mechanical Engineering 54/1 21 15 2 doi: 1.3311/pp.me.21-1.3 web: http:// www.pp.bme.hu/ me c Periodica Polytechnica 21 RESERCH RTICLE Calculation of the temperature of boundary

More information

Quark-Gluon Plasma in Proton-Proton Scattering at the LHC?

Quark-Gluon Plasma in Proton-Proton Scattering at the LHC? Quark-Gluon Plama in Proton-Proton Scattering at the LHC? K. Werner (a), Iu. Karpenko (b), T. Pierog (c) (a) SUBATECH, Univerity of Nante INP/CNRS EMN, Nante, France (b) Bogolyubov Intitute for Theoretical

More information

AP Physics Quantum Wrap Up

AP Physics Quantum Wrap Up AP Phyic Quantum Wrap Up Not too many equation in thi unit. Jut a few. Here they be: E hf pc Kmax hf Thi i the equation for the energy of a photon. The hf part ha to do with Planck contant and frequency.

More information

List coloring hypergraphs

List coloring hypergraphs Lit coloring hypergraph Penny Haxell Jacque Vertraete Department of Combinatoric and Optimization Univerity of Waterloo Waterloo, Ontario, Canada pehaxell@uwaterloo.ca Department of Mathematic Univerity

More information

Solving Differential Equations by the Laplace Transform and by Numerical Methods

Solving Differential Equations by the Laplace Transform and by Numerical Methods 36CH_PHCalter_TechMath_95099 3//007 :8 PM Page Solving Differential Equation by the Laplace Tranform and by Numerical Method OBJECTIVES When you have completed thi chapter, you hould be able to: Find the

More information

PHYSICS 211 MIDTERM II 12 May 2004

PHYSICS 211 MIDTERM II 12 May 2004 PHYSIS IDTER II ay 004 Exa i cloed boo, cloed note. Ue only your forula heet. Write all wor and anwer in exa boolet. The bac of page will not be graded unle you o requet on the front of the page. Show

More information

= 16.7 m. Using constant acceleration kinematics then yields a = v v E The expression for the resistance of a resistor is given as R = ρl 4 )

= 16.7 m. Using constant acceleration kinematics then yields a = v v E The expression for the resistance of a resistor is given as R = ρl 4 ) 016 PhyicBowl Solution # An # An # An # An # An 1 C 11 C 1 B 31 E 41 D A 1 B E 3 D 4 B 3 D 13 A 3 C 33 B 43 C 4 D 14 E 4 B 34 C 44 E 5 B 15 B 5 A 35 A 45 D 6 D 16 C 6 C 36 B 46 A 7 E 17 A 7 D 37 E 47 C

More information

MAE 101A. Homework 3 Solutions 2/5/2018

MAE 101A. Homework 3 Solutions 2/5/2018 MAE 101A Homework 3 Solution /5/018 Munon 3.6: What preure gradient along the treamline, /d, i required to accelerate water upward in a vertical pipe at a rate of 30 ft/? What i the anwer if the flow i

More information

Physics 741 Graduate Quantum Mechanics 1 Solutions to Final Exam, Fall 2014

Physics 741 Graduate Quantum Mechanics 1 Solutions to Final Exam, Fall 2014 Phyic 7 Graduate Quantum Mechanic Solution to inal Eam all 0 Each quetion i worth 5 point with point for each part marked eparately Some poibly ueful formula appear at the end of the tet In four dimenion

More information

Pulsed Magnet Crimping

Pulsed Magnet Crimping Puled Magnet Crimping Fred Niell 4/5/00 1 Magnetic Crimping Magnetoforming i a metal fabrication technique that ha been in ue for everal decade. A large capacitor bank i ued to tore energy that i ued to

More information

Lecture 3 Basic radiometric quantities.

Lecture 3 Basic radiometric quantities. Lecture 3 Baic radiometric quantitie. The Beer-Bouguer-Lambert law. Concept of extinction cattering plu aborption and emiion. Schwarzchild equation.. Baic introduction to electromagnetic field: Definition,

More information

Department of Mechanical Engineering Massachusetts Institute of Technology Modeling, Dynamics and Control III Spring 2002

Department of Mechanical Engineering Massachusetts Institute of Technology Modeling, Dynamics and Control III Spring 2002 Department of Mechanical Engineering Maachuett Intitute of Technology 2.010 Modeling, Dynamic and Control III Spring 2002 SOLUTIONS: Problem Set # 10 Problem 1 Etimating tranfer function from Bode Plot.

More information

Advanced Smart Cruise Control with Safety Distance Considered Road Friction Coefficient

Advanced Smart Cruise Control with Safety Distance Considered Road Friction Coefficient International Journal of Computer Theory and Engineering, Vol. 8, No. 3, June 06 Advanced Smart Cruie Control with Safety Ditance Conidered Road Friction Coefficient Doui Hong, Chanho Park, Yongho Yoo,

More information

arxiv: v1 [math.mg] 25 Aug 2011

arxiv: v1 [math.mg] 25 Aug 2011 ABSORBING ANGLES, STEINER MINIMAL TREES, AND ANTIPODALITY HORST MARTINI, KONRAD J. SWANEPOEL, AND P. OLOFF DE WET arxiv:08.5046v [math.mg] 25 Aug 20 Abtract. We give a new proof that a tar {op i : i =,...,

More information

SIMPLIFIED MODEL FOR EPICYCLIC GEAR INERTIAL CHARACTERISTICS

SIMPLIFIED MODEL FOR EPICYCLIC GEAR INERTIAL CHARACTERISTICS UNIVERSITY OF PITESTI SCIENTIFIC BULLETIN FACULTY OF ECHANICS AND TECHNOLOGY AUTOOTIVE erie, year XVII, no. ( 3 ) SIPLIFIED ODEL FOR EPICYCLIC GEAR INERTIAL CHARACTERISTICS Ciobotaru, Ticuşor *, Feraru,

More information

A Group Theoretic Approach to Generalized Harmonic Vibrations in a One Dimensional Lattice

A Group Theoretic Approach to Generalized Harmonic Vibrations in a One Dimensional Lattice Virginia Commonwealth Univerity VCU Scholar Compa Mathematic and Applied Mathematic Publication Dept. of Mathematic and Applied Mathematic 984 A Group Theoretic Approach to Generalized Harmonic Vibration

More information

Riemann s Functional Equation is Not Valid and its Implication on the Riemann Hypothesis. Armando M. Evangelista Jr.

Riemann s Functional Equation is Not Valid and its Implication on the Riemann Hypothesis. Armando M. Evangelista Jr. Riemann Functional Equation i Not Valid and it Implication on the Riemann Hypothei By Armando M. Evangelita Jr. On November 4, 28 ABSTRACT Riemann functional equation wa formulated by Riemann that uppoedly

More information

The Study of the Kinematic Parameters of a Vehicle Using the Accelerometer of a Smartphone

The Study of the Kinematic Parameters of a Vehicle Using the Accelerometer of a Smartphone The Study of the Kinematic Parameter of a Vehicle Uing the Accelerometer of a Smartphone Marin Oprea Faculty of Phyic, Univerity of Bucharet, Bucharet-Magurele, Romania E-mail: opreamarin007@yahoo.com

More information

3pt3pt 3pt3pt0pt 1.5pt3pt3pt Honors Physics Impulse-Momentum Theorem. Name: Answer Key Mr. Leonard

3pt3pt 3pt3pt0pt 1.5pt3pt3pt Honors Physics Impulse-Momentum Theorem. Name: Answer Key Mr. Leonard 3pt3pt 3pt3pt0pt 1.5pt3pt3pt Honor Phyic Impule-Momentum Theorem Spring, 2017 Intruction: Complete the following workheet. Show all of you work. Name: Anwer Key Mr. Leonard 1. A 0.500 kg ball i dropped

More information

High-field behavior: the law of approach to saturation (Is there an equation for the magnetization at high fields?)

High-field behavior: the law of approach to saturation (Is there an equation for the magnetization at high fields?) High-field behavior: the law of approach to aturation (I there an equation for the magnetization at high field? In the high-field region the magnetization approache aturation. The firt attempt to give

More information

Uniform Acceleration Problems Chapter 2: Linear Motion

Uniform Acceleration Problems Chapter 2: Linear Motion Name Date Period Uniform Acceleration Problem Chapter 2: Linear Motion INSTRUCTIONS: For thi homework, you will be drawing a coordinate axi (in math lingo: an x-y board ) to olve kinematic (motion) problem.

More information

Riemann s Functional Equation is Not a Valid Function and Its Implication on the Riemann Hypothesis. Armando M. Evangelista Jr.

Riemann s Functional Equation is Not a Valid Function and Its Implication on the Riemann Hypothesis. Armando M. Evangelista Jr. Riemann Functional Equation i Not a Valid Function and It Implication on the Riemann Hypothei By Armando M. Evangelita Jr. armando78973@gmail.com On Augut 28, 28 ABSTRACT Riemann functional equation wa

More information

Appendix. Proof of relation (3) for α 0.05.

Appendix. Proof of relation (3) for α 0.05. Appendi. Proof of relation 3 for α.5. For the argument, we will need the following reult that follow from Lemma 1 Bakirov 1989 and it proof. Lemma 1 Let g,, 1 be a continuouly differentiable function uch

More information

Source slideplayer.com/fundamentals of Analytical Chemistry, F.J. Holler, S.R.Crouch. Chapter 6: Random Errors in Chemical Analysis

Source slideplayer.com/fundamentals of Analytical Chemistry, F.J. Holler, S.R.Crouch. Chapter 6: Random Errors in Chemical Analysis Source lideplayer.com/fundamental of Analytical Chemitry, F.J. Holler, S.R.Crouch Chapter 6: Random Error in Chemical Analyi Random error are preent in every meaurement no matter how careful the experimenter.

More information

Overflow from last lecture: Ewald construction and Brillouin zones Structure factor

Overflow from last lecture: Ewald construction and Brillouin zones Structure factor Lecture 5: Overflow from lat lecture: Ewald contruction and Brillouin zone Structure factor Review Conider direct lattice defined by vector R = u 1 a 1 + u 2 a 2 + u 3 a 3 where u 1, u 2, u 3 are integer

More information

AN INTEGRAL FORMULA FOR COMPACT HYPERSURFACES IN SPACE FORMS AND ITS APPLICATIONS

AN INTEGRAL FORMULA FOR COMPACT HYPERSURFACES IN SPACE FORMS AND ITS APPLICATIONS J. Aut. ath. Soc. 74 (2003), 239 248 AN INTEGRAL FORULA FOR COPACT HYPERSURFACES IN SPACE FORS AND ITS APPLICATIONS LUIS J. ALÍAS (Received 5 December 2000; revied 8 arch 2002) Communicated by K. Wyocki

More information

ρ water = 1000 kg/m 3 = 1.94 slugs/ft 3 γ water = 9810 N/m 3 = 62.4 lbs/ft 3

ρ water = 1000 kg/m 3 = 1.94 slugs/ft 3 γ water = 9810 N/m 3 = 62.4 lbs/ft 3 CEE 34 Aut 004 Midterm # Anwer all quetion. Some data that might be ueful are a follow: ρ water = 1000 kg/m 3 = 1.94 lug/ft 3 water = 9810 N/m 3 = 6.4 lb/ft 3 1 kw = 1000 N-m/ 1. (10) A 1-in. and a 4-in.

More information

Study of a Freely Falling Ellipse with a Variety of Aspect Ratios and Initial Angles

Study of a Freely Falling Ellipse with a Variety of Aspect Ratios and Initial Angles Study of a Freely Falling Ellipe with a Variety of Apect Ratio and Initial Angle Dedy Zulhidayat Noor*, Ming-Jyh Chern*, Tzyy-Leng Horng** *Department of Mechanical Engineering, National Taiwan Univerity

More information

THEORETICAL CONSIDERATIONS AT CYLINDRICAL DRAWING AND FLANGING OUTSIDE OF EDGE ON THE DEFORMATION STATES

THEORETICAL CONSIDERATIONS AT CYLINDRICAL DRAWING AND FLANGING OUTSIDE OF EDGE ON THE DEFORMATION STATES THEOETICAL CONSIDEATIONS AT CYLINDICAL DAWING AND FLANGING OUTSIDE OF EDGE ON THE DEFOMATION STATES Lucian V. Severin 1, Dorin Grădinaru, Traian Lucian Severin 3 1,,3 Stefan cel Mare Univerity of Suceava,

More information

Clustering Methods without Given Number of Clusters

Clustering Methods without Given Number of Clusters Clutering Method without Given Number of Cluter Peng Xu, Fei Liu Introduction A we now, mean method i a very effective algorithm of clutering. It mot powerful feature i the calability and implicity. However,

More information

Lecture 17: Analytic Functions and Integrals (See Chapter 14 in Boas)

Lecture 17: Analytic Functions and Integrals (See Chapter 14 in Boas) Lecture 7: Analytic Function and Integral (See Chapter 4 in Boa) Thi i a good point to take a brief detour and expand on our previou dicuion of complex variable and complex function of complex variable.

More information

Physics Sp Exam #4 Name:

Physics Sp Exam #4 Name: Phyic 160-0 Sp. 017 Ea #4 Nae: 1) A coputer hard dik tart ro ret. It peed up with contant angular acceleration until it ha an angular peed o 700 rp. I it coplete 150 revolution while peeding up, what i

More information

FRICTION. k 9) For a body moving up a rough inclined plane under the action of a force F,

FRICTION. k 9) For a body moving up a rough inclined plane under the action of a force F, FRICTION POINTS TO REMEMBER ) The force that alway oppoe the relative motion between two urface in contact and parallel to the urface, oppoite to the direction of motion i called frictional force. ) The

More information

Design of a Portable Emittance Measurement System for Spacecraft Thermal Design and Quality Control

Design of a Portable Emittance Measurement System for Spacecraft Thermal Design and Quality Control Deign of a Portable Emittance Meaurement Sytem for Spacecraft Thermal Deign and Quality Control H. Yamana 1, S. Katuki 2, A. Ohnihi 3, 5 and Y. Nagaaka 4 1 School of Integrated Deign Engineering, Keio

More information

Discover the answer to this question in this chapter.

Discover the answer to this question in this chapter. Erwan, whoe ma i 65 kg, goe Bungee jumping. He ha been in free-fall for 0 m when the bungee rope begin to tretch. hat will the maximum tretching of the rope be if the rope act like a pring with a 100 N/m

More information

Midterm Review - Part 1

Midterm Review - Part 1 Honor Phyic Fall, 2016 Midterm Review - Part 1 Name: Mr. Leonard Intruction: Complete the following workheet. SHOW ALL OF YOUR WORK. 1. Determine whether each tatement i True or Fale. If the tatement i

More information

A Comparison of Correlations for Heat Transfer from Inclined Pipes

A Comparison of Correlations for Heat Transfer from Inclined Pipes A Comparion of Correlation for Heat Tranfer from Inclined Pipe Krihperad Manohar Department of Mechanical and Manufacturing Engineering The Univerity of the Wet Indie St. Augutine, Trinidad and Tobago

More information

SOLVING THE KONDO PROBLEM FOR COMPLEX MESOSCOPIC SYSTEMS

SOLVING THE KONDO PROBLEM FOR COMPLEX MESOSCOPIC SYSTEMS SOLVING THE KONDO POBLEM FO COMPLEX MESOSCOPIC SYSTEMS V. DINU and M. ÞOLEA National Intitute of Material Phyic, Bucharet-Magurele P.O. Box MG-7, omania eceived February 21, 2005 Firt we preent the calculation

More information

Social Studies 201 Notes for November 14, 2003

Social Studies 201 Notes for November 14, 2003 1 Social Studie 201 Note for November 14, 2003 Etimation of a mean, mall ample ize Section 8.4, p. 501. When a reearcher ha only a mall ample ize available, the central limit theorem doe not apply to the

More information

USPAS Course on Recirculated and Energy Recovered Linear Accelerators

USPAS Course on Recirculated and Energy Recovered Linear Accelerators USPAS Coure on Recirculated and Energy Recovered Linear Accelerator G. A. Krafft and L. Merminga Jefferon Lab I. Bazarov Cornell Lecture 6 7 March 005 Lecture Outline. Invariant Ellipe Generated by a Unimodular

More information