Massachusetts Institute of Technology

Size: px
Start display at page:

Download "Massachusetts Institute of Technology"

Transcription

1 . (a) Massachusetts Institute of Technology Department of Electrical Engineering & omputer Science 6.0/6.: Probabilistic Systems nalysis (Fall 00) Problem Set : Solutions Due: September, 00 (b) ( c c ) ( c c ) ( c c ) ( c c c ) (c) ( ) c = c c c (d) (e) ( c c ) ( c c ) ( c c ) (f) c (g) ( c c ) (a) (b) (c) (d) (e) (f) (g). Since all outcomes are equally likely we apply the discrete uniform probability law to solve the problem. To solve for any event we simply count the number of elements in the event and divide by the total number of elements in the sample space. There are possible outcomes for each flip, and flips. Thus there are = 8 elements (or sequences) in the sample space. (a) ny sequence has probability of /8. Therefore P({H, H, H}) = /8. (b) This is still a single sequence, thus P({H, T, H}) = /8. (c) The event of interest has unique sequences, thus P({HHT, HTH, THH}) = /8. (d) The sequences where there are more heads than tails are : {HHH, HHT, HTH, THH}. unique sequences gives us P() = /.. The easiest way to solve this problem is to make a table of some sort, similar to the one below.

2 Department of Electrical Engineering & omputer Science 6.0/6.: Probabilistic Systems nalysis (Fall 00) Die Die Sum Total P(Sum) p p p p p p p 6p p p 6p 7p p 6p 7p 8p 80p and therefore (a) P(ll outcomes) = 80p (Total from the table) p = 80 P(Even sum) = p + p + p + 6p + p + 6p + 6p + 8p = 0p = / (b) P(Rolling a and a ) = P(,) + P(,) = p + p = 0p = /8. P() The shaded area in the following figure is the union of lice s pick being greater than / and ob s pick being greater than /. ob / 0 / lice

3 Department of Electrical Engineering & omputer Science 6.0/6.: Probabilistic Systems nalysis (Fall 00) P() = P(both numbers are smaller than /) area of small square = total sample area (/)(/) = = = /6 6 P() In the following figure, the diagonal line represents the set of points where the two selected numbers are equal. ob / 0 / lice The line has an area of 0. Thus, area of line 0 P() = = = 0 total sample area P( D) Overlapping the diagrams we would get for P() and P(D), ob / / lice

4 Department of Electrical Engineering & omputer Science 6.0/6.: Probabilistic Systems nalysis (Fall 00) P( D) = double shaded area total sample area = (/)(/)(/) + (/)(/)(/) /8 + 6/8 = = /7. (a) The probability of Mike scoring 0 points is proportional to the area of the inner disk. Hence, it is equal to απr = απ, where α is a constant to be determined. Since the probability of landing the dart on the board is equal to one, απ0 =, which implies that α = /(00π). Therefore, the probability that Mike scores 0 points is equal to π/(00π) = 0.0 (b) In order to score exactly 0 points, Mike needs to place the dart between and inches from the origin. n easy way to compute this probability is to look first at that of scoring more than 0 points, which is equal to απ = Next, since the 0 points ring is disjoint from the 0 points disc, probability of scoring more than 0 points is equal to the probability of scoring 0 points plus that of scoring exactly 0 points. Hence, the probability of Mike scoring exactly 0 points is equal to = 0.08 (c) For the part (a) question. The probability of John scoring 0 points is equal to the probability of throwing in the right half of the board and scoring 0 points plus that of throwing in the left half and scoring 0 points. The first term in the sum is proportional to the area of the right half of the inner disk and is equal to απr / = απ/, where α is a constant to be determined. Similarly, the probability of him throwing in the left half of the board and scoring 0 points is equal to βπ/, where β is a constant (not necessarily equal to α). In order to determine α and β, let us compute the probability of throwing the dart in the right half of the board. This probability is equal to απr / = απ0 / = α0π. Since that probability is equal to /, α = /(7π). In a similar fashion, β can be determined to be /(0π). onsequently, the total probability is equal to /0 + /00 = 0.0 For the part (b), The probability of scoring exactly 0 points is equal to that of scoring more than 0 points minus that of scoring exactly 0. y applying the same type of analysis as in (b) above, the probability is found to be equal to 0.08 These numbers suggest that John and Mike have similar skills, and are equally likely to win the game. The fact that Mike s better control (or worst, depending on how you look at it) of the direction of his throw does not increase his chances of winning can be explained by the observation that both players control over the distance from the origin is identical. 6. See the textbook, Problem. page, which proves the general version of onferroni s inequality. G. (a) If we define n = [a n, b n ] for all n, it is easy to see that the sequence,,... is monotonically decreasing, i.e., n+ n for all n:

5 Department of Electrical Engineering & omputer Science 6.0/6.: Probabilistic Systems nalysis (Fall 00) Omega... n Furthermore, n n = [a, b]. y the continuity property of probabilities (see Problem., page 6 of the text), lim P([a n, b n ]) = P([a, b]). n (b) No. onsider the following example. Let a n = a + n, b n = b n for all n. Then {a n } is a decreasing sequence that converges to a, and {b n } is an increasing sequence that converges to b. If we define a probability law that places non-zero probability only on points a and b, then lim n P([a n, b n ]) = 0, but P([a, b]) =. This example is closely related to the continuity property of probabilities. In this case, if we define n = [a n, b n ], then,,... is monotonically increasing, i.e., n n+, but = ( n n ) = (a, b), which is an open interval whose probability is 0 under our probability law.

6 MIT OpenourseWare 6.0S Probabilistic Systems nalysis and pplied Probability Fall 0 For information about citing these materials or our Terms of Use, visit:

Probability: Terminology and Examples Class 2, Jeremy Orloff and Jonathan Bloom

Probability: Terminology and Examples Class 2, Jeremy Orloff and Jonathan Bloom 1 Learning Goals Probability: Terminology and Examples Class 2, 18.05 Jeremy Orloff and Jonathan Bloom 1. Know the definitions of sample space, event and probability function. 2. Be able to organize a

More information

P (A) = P (B) = P (C) = P (D) =

P (A) = P (B) = P (C) = P (D) = STAT 145 CHAPTER 12 - PROBABILITY - STUDENT VERSION The probability of a random event, is the proportion of times the event will occur in a large number of repititions. For example, when flipping a coin,

More information

What is Probability? Probability. Sample Spaces and Events. Simple Event

What is Probability? Probability. Sample Spaces and Events. Simple Event What is Probability? Probability Peter Lo Probability is the numerical measure of likelihood that the event will occur. Simple Event Joint Event Compound Event Lies between 0 & 1 Sum of events is 1 1.5

More information

Mathematics. ( : Focus on free Education) (Chapter 16) (Probability) (Class XI) Exercise 16.2

Mathematics. (  : Focus on free Education) (Chapter 16) (Probability) (Class XI) Exercise 16.2 ( : Focus on free Education) Exercise 16.2 Question 1: A die is rolled. Let E be the event die shows 4 and F be the event die shows even number. Are E and F mutually exclusive? Answer 1: When a die is

More information

2. Conditional Probability

2. Conditional Probability ENGG 2430 / ESTR 2004: Probability and Statistics Spring 2019 2. Conditional Probability Andrej Bogdanov Coins game Toss 3 coins. You win if at least two come out heads. S = { HHH, HHT, HTH, HTT, THH,

More information

4/17/2012. NE ( ) # of ways an event can happen NS ( ) # of events in the sample space

4/17/2012. NE ( ) # of ways an event can happen NS ( ) # of events in the sample space I. Vocabulary: A. Outcomes: the things that can happen in a probability experiment B. Sample Space (S): all possible outcomes C. Event (E): one outcome D. Probability of an Event (P(E)): the likelihood

More information

6.2 Introduction to Probability. The Deal. Possible outcomes: STAT1010 Intro to probability. Definitions. Terms: What are the chances of?

6.2 Introduction to Probability. The Deal. Possible outcomes: STAT1010 Intro to probability. Definitions. Terms: What are the chances of? 6.2 Introduction to Probability Terms: What are the chances of?! Personal probability (subjective) " Based on feeling or opinion. " Gut reaction.! Empirical probability (evidence based) " Based on experience

More information

Review of Probability. CS1538: Introduction to Simulations

Review of Probability. CS1538: Introduction to Simulations Review of Probability CS1538: Introduction to Simulations Probability and Statistics in Simulation Why do we need probability and statistics in simulation? Needed to validate the simulation model Needed

More information

Lecture Lecture 5

Lecture Lecture 5 Lecture 4 --- Lecture 5 A. Basic Concepts (4.1-4.2) 1. Experiment: A process of observing a phenomenon that has variation in its outcome. Examples: (E1). Rolling a die, (E2). Drawing a card form a shuffled

More information

Introduction Probability. Math 141. Introduction to Probability and Statistics. Albyn Jones

Introduction Probability. Math 141. Introduction to Probability and Statistics. Albyn Jones Math 141 to and Statistics Albyn Jones Mathematics Department Library 304 jones@reed.edu www.people.reed.edu/ jones/courses/141 September 3, 2014 Motivation How likely is an eruption at Mount Rainier in

More information

Deep Learning for Computer Vision

Deep Learning for Computer Vision Deep Learning for Computer Vision Lecture 3: Probability, Bayes Theorem, and Bayes Classification Peter Belhumeur Computer Science Columbia University Probability Should you play this game? Game: A fair

More information

First Digit Tally Marks Final Count

First Digit Tally Marks Final Count Benford Test () Imagine that you are a forensic accountant, presented with the two data sets on this sheet of paper (front and back). Which of the two sets should be investigated further? Why? () () ()

More information

Random Variables. Statistics 110. Summer Copyright c 2006 by Mark E. Irwin

Random Variables. Statistics 110. Summer Copyright c 2006 by Mark E. Irwin Random Variables Statistics 110 Summer 2006 Copyright c 2006 by Mark E. Irwin Random Variables A Random Variable (RV) is a response of a random phenomenon which is numeric. Examples: 1. Roll a die twice

More information

Problem Set 2 Due Feb, 1

Problem Set 2 Due Feb, 1 EE126: Probability and Random Processes SP 07 Problem Set 2 Due Feb, 1 Lecturer: Jean C. Walrand GSI: Daniel Preda, Assane Gueye Problem 2.1. Pick 3 balls from an urn containing 15 balls (7 red balls,

More information

ECE 302: Chapter 02 Probability Model

ECE 302: Chapter 02 Probability Model ECE 302: Chapter 02 Probability Model Fall 2018 Prof Stanley Chan School of Electrical and Computer Engineering Purdue University 1 / 35 1. Probability Model 2 / 35 What is Probability? It is a number.

More information

CSC Discrete Math I, Spring Discrete Probability

CSC Discrete Math I, Spring Discrete Probability CSC 125 - Discrete Math I, Spring 2017 Discrete Probability Probability of an Event Pierre-Simon Laplace s classical theory of probability: Definition of terms: An experiment is a procedure that yields

More information

Lecture 3 Probability Basics

Lecture 3 Probability Basics Lecture 3 Probability Basics Thais Paiva STA 111 - Summer 2013 Term II July 3, 2013 Lecture Plan 1 Definitions of probability 2 Rules of probability 3 Conditional probability What is Probability? Probability

More information

Chapter 14. From Randomness to Probability. Copyright 2012, 2008, 2005 Pearson Education, Inc.

Chapter 14. From Randomness to Probability. Copyright 2012, 2008, 2005 Pearson Education, Inc. Chapter 14 From Randomness to Probability Copyright 2012, 2008, 2005 Pearson Education, Inc. Dealing with Random Phenomena A random phenomenon is a situation in which we know what outcomes could happen,

More information

Probability Pearson Education, Inc. Slide

Probability Pearson Education, Inc. Slide Probability The study of probability is concerned with random phenomena. Even though we cannot be certain whether a given result will occur, we often can obtain a good measure of its likelihood, or probability.

More information

Probabilistic models

Probabilistic models Probabilistic models Kolmogorov (Andrei Nikolaevich, 1903 1987) put forward an axiomatic system for probability theory. Foundations of the Calculus of Probabilities, published in 1933, immediately became

More information

Events A and B are said to be independent if the occurrence of A does not affect the probability of B.

Events A and B are said to be independent if the occurrence of A does not affect the probability of B. Independent Events Events A and B are said to be independent if the occurrence of A does not affect the probability of B. Probability experiment of flipping a coin and rolling a dice. Sample Space: {(H,

More information

Probability. VCE Maths Methods - Unit 2 - Probability

Probability. VCE Maths Methods - Unit 2 - Probability Probability Probability Tree diagrams La ice diagrams Venn diagrams Karnough maps Probability tables Union & intersection rules Conditional probability Markov chains 1 Probability Probability is the mathematics

More information

Introduction to Probability and Sample Spaces

Introduction to Probability and Sample Spaces 2.2 2.3 Introduction to Probability and Sample Spaces Prof. Tesler Math 186 Winter 2019 Prof. Tesler Ch. 2.3-2.4 Intro to Probability Math 186 / Winter 2019 1 / 26 Course overview Probability: Determine

More information

V. RANDOM VARIABLES, PROBABILITY DISTRIBUTIONS, EXPECTED VALUE

V. RANDOM VARIABLES, PROBABILITY DISTRIBUTIONS, EXPECTED VALUE V. RANDOM VARIABLES, PROBABILITY DISTRIBUTIONS, EXPECTED VALUE A game of chance featured at an amusement park is played as follows: You pay $ to play. A penny a nickel are flipped. You win $ if either

More information

6.041/6.431 Spring 2009 Quiz 1 Wednesday, March 11, 7:30-9:30 PM. SOLUTIONS

6.041/6.431 Spring 2009 Quiz 1 Wednesday, March 11, 7:30-9:30 PM. SOLUTIONS 6.0/6.3 Spring 009 Quiz Wednesday, March, 7:30-9:30 PM. SOLUTIONS Name: Recitation Instructor: Question Part Score Out of 0 all 0 a 5 b c 5 d 5 e 5 f 5 3 a b c d 5 e 5 f 5 g 5 h 5 Total 00 Write your solutions

More information

the time it takes until a radioactive substance undergoes a decay

the time it takes until a radioactive substance undergoes a decay 1 Probabilities 1.1 Experiments with randomness Wewillusethetermexperimentinaverygeneralwaytorefertosomeprocess that produces a random outcome. Examples: (Ask class for some first) Here are some discrete

More information

(i) Given that a student is female, what is the probability of having a GPA of at least 3.0?

(i) Given that a student is female, what is the probability of having a GPA of at least 3.0? MATH 382 Conditional Probability Dr. Neal, WKU We now shall consider probabilities of events that are restricted within a subset that is smaller than the entire sample space Ω. For example, let Ω be the

More information

SDS 321: Introduction to Probability and Statistics

SDS 321: Introduction to Probability and Statistics SDS 321: Introduction to Probability and Statistics Lecture 2: Conditional probability Purnamrita Sarkar Department of Statistics and Data Science The University of Texas at Austin www.cs.cmu.edu/ psarkar/teaching

More information

Lecture 3 - Axioms of Probability

Lecture 3 - Axioms of Probability Lecture 3 - Axioms of Probability Sta102 / BME102 January 25, 2016 Colin Rundel Axioms of Probability What does it mean to say that: The probability of flipping a coin and getting heads is 1/2? 3 What

More information

Conditional Probability

Conditional Probability Conditional Probability Idea have performed a chance experiment but don t know the outcome (ω), but have some partial information (event A) about ω. Question: given this partial information what s the

More information

27 Binary Arithmetic: An Application to Programming

27 Binary Arithmetic: An Application to Programming 27 Binary Arithmetic: An Application to Programming In the previous section we looked at the binomial distribution. The binomial distribution is essentially the mathematics of repeatedly flipping a coin

More information

Probability: Part 1 Naima Hammoud

Probability: Part 1 Naima Hammoud Probability: Part 1 Naima ammoud Feb 7, 2017 Motivation ossing a coin Rolling a die Outcomes: eads or ails Outcomes: 1, 2, 3, 4, 5 or 6 Defining Probability If I toss a coin, there is a 50% chance I will

More information

Chapter 35 out of 37 from Discrete Mathematics for Neophytes: Number Theory, Probability, Algorithms, and Other Stuff by J. M. Cargal.

Chapter 35 out of 37 from Discrete Mathematics for Neophytes: Number Theory, Probability, Algorithms, and Other Stuff by J. M. Cargal. 35 Mixed Chains In this chapter we learn how to analyze Markov chains that consists of transient and absorbing states. Later we will see that this analysis extends easily to chains with (nonabsorbing)

More information

Mean, Median and Mode. Lecture 3 - Axioms of Probability. Where do they come from? Graphically. We start with a set of 21 numbers, Sta102 / BME102

Mean, Median and Mode. Lecture 3 - Axioms of Probability. Where do they come from? Graphically. We start with a set of 21 numbers, Sta102 / BME102 Mean, Median and Mode Lecture 3 - Axioms of Probability Sta102 / BME102 Colin Rundel September 1, 2014 We start with a set of 21 numbers, ## [1] -2.2-1.6-1.0-0.5-0.4-0.3-0.2 0.1 0.1 0.2 0.4 ## [12] 0.4

More information

2018 Best Student Exam Solutions Texas A&M High School Students Contest October 20, 2018

2018 Best Student Exam Solutions Texas A&M High School Students Contest October 20, 2018 08 Best Student Exam Solutions Texas A&M High School Students Contest October 0, 08. You purchase a stock and later sell it for $44 per share. When you do, you notice that the percent increase was the

More information

Expected Value 7/7/2006

Expected Value 7/7/2006 Expected Value 7/7/2006 Definition Let X be a numerically-valued discrete random variable with sample space Ω and distribution function m(x). The expected value E(X) is defined by E(X) = x Ω x m(x), provided

More information

Conditional Probability and Bayes Theorem (2.4) Independence (2.5)

Conditional Probability and Bayes Theorem (2.4) Independence (2.5) Conditional Probability and Bayes Theorem (2.4) Independence (2.5) Prof. Tesler Math 186 Winter 2019 Prof. Tesler Conditional Probability and Bayes Theorem Math 186 / Winter 2019 1 / 38 Scenario: Flip

More information

Discrete distribution. Fitting probability models to frequency data. Hypotheses for! 2 test. ! 2 Goodness-of-fit test

Discrete distribution. Fitting probability models to frequency data. Hypotheses for! 2 test. ! 2 Goodness-of-fit test Discrete distribution Fitting probability models to frequency data A probability distribution describing a discrete numerical random variable For example,! Number of heads from 10 flips of a coin! Number

More information

Introduction to Probability

Introduction to Probability Introduction to Probability Gambling at its core 16th century Cardano: Books on Games of Chance First systematic treatment of probability 17th century Chevalier de Mere posed a problem to his friend Pascal.

More information

CS 361: Probability & Statistics

CS 361: Probability & Statistics February 12, 2018 CS 361: Probability & Statistics Random Variables Monty hall problem Recall the setup, there are 3 doors, behind two of them are indistinguishable goats, behind one is a car. You pick

More information

ELEG 3143 Probability & Stochastic Process Ch. 1 Experiments, Models, and Probabilities

ELEG 3143 Probability & Stochastic Process Ch. 1 Experiments, Models, and Probabilities Department of Electrical Engineering University of Arkansas ELEG 3143 Probability & Stochastic Process Ch. 1 Experiments, Models, and Probabilities Dr. Jing Yang jingyang@uark.edu OUTLINE 2 Applications

More information

MATH 3C: MIDTERM 1 REVIEW. 1. Counting

MATH 3C: MIDTERM 1 REVIEW. 1. Counting MATH 3C: MIDTERM REVIEW JOE HUGHES. Counting. Imagine that a sports betting pool is run in the following way: there are 20 teams, 2 weeks, and each week you pick a team to win. However, you can t pick

More information

STAT:5100 (22S:193) Statistical Inference I

STAT:5100 (22S:193) Statistical Inference I STAT:5100 (22S:193) Statistical Inference I Week 3 Luke Tierney University of Iowa Fall 2015 Luke Tierney (U Iowa) STAT:5100 (22S:193) Statistical Inference I Fall 2015 1 Recap Matching problem Generalized

More information

Lecture Notes 1 Basic Probability. Elements of Probability. Conditional probability. Sequential Calculation of Probability

Lecture Notes 1 Basic Probability. Elements of Probability. Conditional probability. Sequential Calculation of Probability Lecture Notes 1 Basic Probability Set Theory Elements of Probability Conditional probability Sequential Calculation of Probability Total Probability and Bayes Rule Independence Counting EE 178/278A: Basic

More information

What is a random variable

What is a random variable OKAN UNIVERSITY FACULTY OF ENGINEERING AND ARCHITECTURE MATH 256 Probability and Random Processes 04 Random Variables Fall 20 Yrd. Doç. Dr. Didem Kivanc Tureli didemk@ieee.org didem.kivanc@okan.edu.tr

More information

Term Definition Example Random Phenomena

Term Definition Example Random Phenomena UNIT VI STUDY GUIDE Probabilities Course Learning Outcomes for Unit VI Upon completion of this unit, students should be able to: 1. Apply mathematical principles used in real-world situations. 1.1 Demonstrate

More information

Lower bound for sorting/probability Distributions

Lower bound for sorting/probability Distributions Lower bound for sorting/probability Distributions CSE21 Winter 2017, Day 20 (B00), Day 14 (A00) March 3, 2017 http://vlsicad.ucsd.edu/courses/cse21-w17 Another application of counting lower bounds Sorting

More information

Lecture 1 : The Mathematical Theory of Probability

Lecture 1 : The Mathematical Theory of Probability Lecture 1 : The Mathematical Theory of Probability 0/ 30 1. Introduction Today we will do 2.1 and 2.2. We will skip Chapter 1. We all have an intuitive notion of probability. Let s see. What is the probability

More information

STAT 430/510 Probability

STAT 430/510 Probability STAT 430/510 Probability Hui Nie Lecture 3 May 28th, 2009 Review We have discussed counting techniques in Chapter 1. Introduce the concept of the probability of an event. Compute probabilities in certain

More information

Business Statistics MBA Pokhara University

Business Statistics MBA Pokhara University Business Statistics MBA Pokhara University Chapter 3 Basic Probability Concept and Application Bijay Lal Pradhan, Ph.D. Review I. What s in last lecture? Descriptive Statistics Numerical Measures. Chapter

More information

CS4705. Probability Review and Naïve Bayes. Slides from Dragomir Radev

CS4705. Probability Review and Naïve Bayes. Slides from Dragomir Radev CS4705 Probability Review and Naïve Bayes Slides from Dragomir Radev Classification using a Generative Approach Previously on NLP discriminative models P C D here is a line with all the social media posts

More information

Introduction to Probability 2017/18 Supplementary Problems

Introduction to Probability 2017/18 Supplementary Problems Introduction to Probability 2017/18 Supplementary Problems Problem 1: Let A and B denote two events with P(A B) 0. Show that P(A) 0 and P(B) 0. A A B implies P(A) P(A B) 0, hence P(A) 0. Similarly B A

More information

CISC 1100/1400 Structures of Comp. Sci./Discrete Structures Chapter 7 Probability. Outline. Terminology and background. Arthur G.

CISC 1100/1400 Structures of Comp. Sci./Discrete Structures Chapter 7 Probability. Outline. Terminology and background. Arthur G. CISC 1100/1400 Structures of Comp. Sci./Discrete Structures Chapter 7 Probability Arthur G. Werschulz Fordham University Department of Computer and Information Sciences Copyright Arthur G. Werschulz, 2017.

More information

Part (A): Review of Probability [Statistics I revision]

Part (A): Review of Probability [Statistics I revision] Part (A): Review of Probability [Statistics I revision] 1 Definition of Probability 1.1 Experiment An experiment is any procedure whose outcome is uncertain ffl toss a coin ffl throw a die ffl buy a lottery

More information

STA Module 4 Probability Concepts. Rev.F08 1

STA Module 4 Probability Concepts. Rev.F08 1 STA 2023 Module 4 Probability Concepts Rev.F08 1 Learning Objectives Upon completing this module, you should be able to: 1. Compute probabilities for experiments having equally likely outcomes. 2. Interpret

More information

Probability (Devore Chapter Two)

Probability (Devore Chapter Two) Probability (Devore Chapter Two) 1016-345-01: Probability and Statistics for Engineers Fall 2012 Contents 0 Administrata 2 0.1 Outline....................................... 3 1 Axiomatic Probability 3

More information

Lectures Conditional Probability and Independence

Lectures Conditional Probability and Independence Lectures 5 11 Conditional Probability and Independence Purpose: Calculate probabilities under restrictions, conditions or partial information on the random experiment. Break down complex probabilistic

More information

CPSC340. Probability. Nando de Freitas September, 2012 University of British Columbia

CPSC340. Probability. Nando de Freitas September, 2012 University of British Columbia CPSC340 Probability Nando de Freitas September, 2012 University of British Columbia Outline of the lecture This lecture is intended at revising probabilistic concepts that play an important role in the

More information

Probability (10A) Young Won Lim 6/12/17

Probability (10A) Young Won Lim 6/12/17 Probability (10A) Copyright (c) 2017 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later

More information

Basic Probability. Introduction

Basic Probability. Introduction Basic Probability Introduction The world is an uncertain place. Making predictions about something as seemingly mundane as tomorrow s weather, for example, is actually quite a difficult task. Even with

More information

Probability Distributions. Conditional Probability.

Probability Distributions. Conditional Probability. Probability Distributions. Conditional Probability. CSE21 Winter 2017, Day 21 (B00), Day 14 (A00) March 6, 2017 http://vlsicad.ucsd.edu/courses/cse21-w17 Probability Rosen p. 446, 453 Sample space, S:

More information

Probability deals with modeling of random phenomena (phenomena or experiments whose outcomes may vary)

Probability deals with modeling of random phenomena (phenomena or experiments whose outcomes may vary) Chapter 14 From Randomness to Probability How to measure a likelihood of an event? How likely is it to answer correctly one out of two true-false questions on a quiz? Is it more, less, or equally likely

More information

Lecture 6 - Random Variables and Parameterized Sample Spaces

Lecture 6 - Random Variables and Parameterized Sample Spaces Lecture 6 - Random Variables and Parameterized Sample Spaces 6.042 - February 25, 2003 We ve used probablity to model a variety of experiments, games, and tests. Throughout, we have tried to compute probabilities

More information

Conditional Probability P( )

Conditional Probability P( ) Conditional Probability P( ) 1 conditional probability where P(F) > 0 Conditional probability of E given F: probability that E occurs given that F has occurred. Conditioning on F Written as P(E F) Means

More information

Question 2 We saw in class that if we flip a coin K times, the the distribution in runs of success in the resulting sequence is equal to

Question 2 We saw in class that if we flip a coin K times, the the distribution in runs of success in the resulting sequence is equal to Homework 7, Math070, Spring 205 Question The following table show the split statistics from the ESPN website for Basketball player Stephen Curry for the 204-205 season so far (a) Using relative frequency

More information

Probabilistic models

Probabilistic models Kolmogorov (Andrei Nikolaevich, 1903 1987) put forward an axiomatic system for probability theory. Foundations of the Calculus of Probabilities, published in 1933, immediately became the definitive formulation

More information

Analyzing a Tennis Game with Markov Chains

Analyzing a Tennis Game with Markov Chains Analyzing a Tennis Game with Markov Chains What is a Markov Chain? A Markov chain is a way to model a system in which: 1) The system itself consists of a number of states, and the system can only be in

More information

Discrete Random Variable

Discrete Random Variable Discrete Random Variable Outcome of a random experiment need not to be a number. We are generally interested in some measurement or numerical attribute of the outcome, rather than the outcome itself. n

More information

Conditional Probability and Bayes

Conditional Probability and Bayes Conditional Probability and Bayes Chapter 2 Lecture 5 Yiren Ding Shanghai Qibao Dwight High School March 9, 2016 Yiren Ding Conditional Probability and Bayes 1 / 13 Outline 1 Independent Events Definition

More information

MATH 19B FINAL EXAM PROBABILITY REVIEW PROBLEMS SPRING, 2010

MATH 19B FINAL EXAM PROBABILITY REVIEW PROBLEMS SPRING, 2010 MATH 9B FINAL EXAM PROBABILITY REVIEW PROBLEMS SPRING, 00 This handout is meant to provide a collection of exercises that use the material from the probability and statistics portion of the course The

More information

ECE 450 Lecture 2. Recall: Pr(A B) = Pr(A) + Pr(B) Pr(A B) in general = Pr(A) + Pr(B) if A and B are m.e. Lecture Overview

ECE 450 Lecture 2. Recall: Pr(A B) = Pr(A) + Pr(B) Pr(A B) in general = Pr(A) + Pr(B) if A and B are m.e. Lecture Overview ECE 450 Lecture 2 Recall: Pr(A B) = Pr(A) + Pr(B) Pr(A B) in general = Pr(A) + Pr(B) if A and B are m.e. Lecture Overview Conditional Probability, Pr(A B) Total Probability Bayes Theorem Independent Events

More information

P [(E and F )] P [F ]

P [(E and F )] P [F ] CONDITIONAL PROBABILITY AND INDEPENDENCE WORKSHEET MTH 1210 This worksheet supplements our textbook material on the concepts of conditional probability and independence. The exercises at the end of each

More information

NLP: Probability. 1 Basics. Dan Garrette December 27, E : event space (sample space)

NLP: Probability. 1 Basics. Dan Garrette December 27, E : event space (sample space) NLP: Probability Dan Garrette dhg@cs.utexas.edu December 27, 2013 1 Basics E : event space (sample space) We will be dealing with sets of discrete events. Example 1: Coin Trial: flipping a coin Two possible

More information

Lecture notes for probability. Math 124

Lecture notes for probability. Math 124 Lecture notes for probability Math 124 What is probability? Probabilities are ratios, expressed as fractions, decimals, or percents, determined by considering results or outcomes of experiments whose result

More information

Lecture 3: Random variables, distributions, and transformations

Lecture 3: Random variables, distributions, and transformations Lecture 3: Random variables, distributions, and transformations Definition 1.4.1. A random variable X is a function from S into a subset of R such that for any Borel set B R {X B} = {ω S : X(ω) B} is an

More information

18.600: Lecture 3 What is probability?

18.600: Lecture 3 What is probability? 18.600: Lecture 3 What is probability? Scott Sheffield MIT Outline Formalizing probability Sample space DeMorgan s laws Axioms of probability Outline Formalizing probability Sample space DeMorgan s laws

More information

Chapter 13, Probability from Applied Finite Mathematics by Rupinder Sekhon was developed by OpenStax College, licensed by Rice University, and is

Chapter 13, Probability from Applied Finite Mathematics by Rupinder Sekhon was developed by OpenStax College, licensed by Rice University, and is Chapter 13, Probability from Applied Finite Mathematics by Rupinder Sekhon was developed by OpenStax College, licensed by Rice University, and is available on the Connexions website. It is used under a

More information

Business Statistics. Lecture 3: Random Variables and the Normal Distribution

Business Statistics. Lecture 3: Random Variables and the Normal Distribution Business Statistics Lecture 3: Random Variables and the Normal Distribution 1 Goals for this Lecture A little bit of probability Random variables The normal distribution 2 Probability vs. Statistics Probability:

More information

State Math Contest (Senior)

State Math Contest (Senior) Name: Student I: State Math ontest (Senior) Instructions: o not turn this page until your proctor tells you. nter your name, grade, and school information following the instructions given by your proctor.

More information

Great Theoretical Ideas in Computer Science

Great Theoretical Ideas in Computer Science 15-251 Great Theoretical Ideas in Computer Science Probability Theory: Counting in Terms of Proportions Lecture 10 (September 27, 2007) Some Puzzles Teams A and B are equally good In any one game, each

More information

Steve Smith Tuition: Maths Notes

Steve Smith Tuition: Maths Notes Maths Notes : Discrete Random Variables Version. Steve Smith Tuition: Maths Notes e iπ + = 0 a + b = c z n+ = z n + c V E + F = Discrete Random Variables Contents Intro The Distribution of Probabilities

More information

Probability (continued)

Probability (continued) DS-GA 1002 Lecture notes 2 September 21, 15 Probability (continued) 1 Random variables (continued) 1.1 Conditioning on an event Given a random variable X with a certain distribution, imagine that it is

More information

Thus, P(F or L) = P(F) + P(L) - P(F & L) = = 0.553

Thus, P(F or L) = P(F) + P(L) - P(F & L) = = 0.553 Test 2 Review: Solutions 1) The following outcomes have at least one Head: HHH, HHT, HTH, HTT, THH, THT, TTH Thus, P(at least one head) = 7/8 2) The following outcomes have a sum of 9: (6,3), (5,4), (4,5),

More information

Lecture 4 An Introduction to Stochastic Processes

Lecture 4 An Introduction to Stochastic Processes Lecture 4 An Introduction to Stochastic Processes Prof. Massimo Guidolin Prep Course in Quantitative Methods for Finance August-September 2017 Plan of the lecture Motivation and definitions Filtrations

More information

Sec$on Summary. Assigning Probabilities Probabilities of Complements and Unions of Events Conditional Probability

Sec$on Summary. Assigning Probabilities Probabilities of Complements and Unions of Events Conditional Probability Section 7.2 Sec$on Summary Assigning Probabilities Probabilities of Complements and Unions of Events Conditional Probability Independence Bernoulli Trials and the Binomial Distribution Random Variables

More information

The enumeration of all possible outcomes of an experiment is called the sample space, denoted S. E.g.: S={head, tail}

The enumeration of all possible outcomes of an experiment is called the sample space, denoted S. E.g.: S={head, tail} Random Experiment In random experiments, the result is unpredictable, unknown prior to its conduct, and can be one of several choices. Examples: The Experiment of tossing a coin (head, tail) The Experiment

More information

Probability, Random Processes and Inference

Probability, Random Processes and Inference INSTITUTO POLITÉCNICO NACIONAL CENTRO DE INVESTIGACION EN COMPUTACION Laboratorio de Ciberseguridad Probability, Random Processes and Inference Dr. Ponciano Jorge Escamilla Ambrosio pescamilla@cic.ipn.mx

More information

Probability Theory and Applications

Probability Theory and Applications Probability Theory and Applications Videos of the topics covered in this manual are available at the following links: Lesson 4 Probability I http://faculty.citadel.edu/silver/ba205/online course/lesson

More information

Expected Value. Lecture A Tiefenbruck MWF 9-9:50am Center 212 Lecture B Jones MWF 2-2:50pm Center 214 Lecture C Tiefenbruck MWF 11-11:50am Center 212

Expected Value. Lecture A Tiefenbruck MWF 9-9:50am Center 212 Lecture B Jones MWF 2-2:50pm Center 214 Lecture C Tiefenbruck MWF 11-11:50am Center 212 Expected Value Lecture A Tiefenbruck MWF 9-9:50am Center 212 Lecture B Jones MWF 2-2:50pm Center 214 Lecture C Tiefenbruck MWF 11-11:50am Center 212 http://cseweb.ucsd.edu/classes/wi16/cse21-abc/ March

More information

Lesson 9: Examples of Functions from Geometry

Lesson 9: Examples of Functions from Geometry Lesson 9: Examples of Functions from Geometry Classwork Exercises As you complete Exercises 1 4, record the information in the table below. Side length (s) Area (A) Expression that describes area of border

More information

Name: Firas Rassoul-Agha

Name: Firas Rassoul-Agha Midterm 1 - Math 5010 - Spring 016 Name: Firas Rassoul-Agha Solve the following 4 problems. You have to clearly explain your solution. The answer carries no points. Only the work does. CALCULATORS ARE

More information

Notation: X = random variable; x = particular value; P(X = x) denotes probability that X equals the value x.

Notation: X = random variable; x = particular value; P(X = x) denotes probability that X equals the value x. Ch. 16 Random Variables Def n: A random variable is a numerical measurement of the outcome of a random phenomenon. A discrete random variable is a random variable that assumes separate values. # of people

More information

Quantitative Methods for Decision Making

Quantitative Methods for Decision Making January 14, 2012 Lecture 3 Probability Theory Definition Mutually exclusive events: Two events A and B are mutually exclusive if A B = φ Definition Special Addition Rule: Let A and B be two mutually exclusive

More information

Notes 1 Autumn Sample space, events. S is the number of elements in the set S.)

Notes 1 Autumn Sample space, events. S is the number of elements in the set S.) MAS 108 Probability I Notes 1 Autumn 2005 Sample space, events The general setting is: We perform an experiment which can have a number of different outcomes. The sample space is the set of all possible

More information

Chapter 2: Probability Part 1

Chapter 2: Probability Part 1 Engineering Probability & Statistics (AGE 1150) Chapter 2: Probability Part 1 Dr. O. Phillips Agboola Sample Space (S) Experiment: is some procedure (or process) that we do and it results in an outcome.

More information

I - Probability. What is Probability? the chance of an event occuring. 1classical probability. 2empirical probability. 3subjective probability

I - Probability. What is Probability? the chance of an event occuring. 1classical probability. 2empirical probability. 3subjective probability What is Probability? the chance of an event occuring eg 1classical probability 2empirical probability 3subjective probability Section 2 - Probability (1) Probability - Terminology random (probability)

More information

Probability- describes the pattern of chance outcomes

Probability- describes the pattern of chance outcomes Chapter 6 Probability the study of randomness Probability- describes the pattern of chance outcomes Chance behavior is unpredictable in the short run, but has a regular and predictable pattern in the long

More information

If S = {O 1, O 2,, O n }, where O i is the i th elementary outcome, and p i is the probability of the i th elementary outcome, then

If S = {O 1, O 2,, O n }, where O i is the i th elementary outcome, and p i is the probability of the i th elementary outcome, then 1.1 Probabilities Def n: A random experiment is a process that, when performed, results in one and only one of many observations (or outcomes). The sample space S is the set of all elementary outcomes

More information

Solutionbank S1 Edexcel AS and A Level Modular Mathematics

Solutionbank S1 Edexcel AS and A Level Modular Mathematics Heinemann Solutionbank: Statistics S Page of Solutionbank S Exercise A, Question Write down whether or not each of the following is a discrete random variable. Give a reason for your answer. a The average

More information

1 The Basic Counting Principles

1 The Basic Counting Principles 1 The Basic Counting Principles The Multiplication Rule If an operation consists of k steps and the first step can be performed in n 1 ways, the second step can be performed in n ways [regardless of how

More information