arxiv:gr-qc/ v1 11 Nov 1999

Size: px
Start display at page:

Download "arxiv:gr-qc/ v1 11 Nov 1999"

Transcription

1 Regular Black Hole in General Relativity Coupled to Nonlinear Electrodynaics Eloy Ayón Beato and Alberto García Departaento de Física, Centro de Investigación y Estudios Avanzados del IPN Apdo. Postal 4 74, 7 México DF, MEXICO The first regular exact black hole solution in General Relativity is presented. The source is a nonlinear electrodynaic field satisfying the weak energy condition, which in the liit of weak field becoes the Maxwell field. The solution corresponds to a charged black hole with q s c.6, having the etric, the curvature invariants, and the electric field regular everywhere. 4..Jb, 4.7.Bw, 4..Dw arxiv:gr-qc/9946v Nov 999 In General Relativity the existence of singularities appears to be a property inherent to ost of the physically relevant solutions of Einstein equations, in particular, to all known up to date black hole exact solutions []. The Penrose cosic censorship conjecture states that these singularities ust be dressed by event horizons; no causal connection could exist between the interior of a black hole with the exterior fields, thus pathologies occurring at the singular region would have no influence on the exterior region, and the Physics outside would be well behaved cf. [] for a review on the recent status of this conjecture). To avoid the black hole singularity proble, soe regular odels has been proposed [ 8]. All of the have been referred to as Bardeen black holes [9], since Bardeen was the first author producing a surprising regular black hole odel []. No one of these odels is an exact solution to Einstein equations; there are no known physical sources associated with any of the. The attepts to solve this proble have usually been addressed to the search of ore general gravity theories. The best candidate today to produce singularity free solutions, even at the classical level, due to its intrinsic non locality, is string theory []. There are exaples in other contexts, for instance, in N = supergravity doain wall solutions with horizons but no singularities have been found cf. [], and references therein), another exaple is given in exact conforal field theory []. We show in this Letter that in the fraework of the standard General Relativity one can find singularity free solutions of the Einstein field equations coupled to a suitable nonlinear electrodynaics, which in the weak field approxiation becoes the usual linear Maxwell theory. Previous efforts on this direction with nonlinear electrodynaics either have been totally unsuccessful or only partially solve the considered singularity proble [ 5]. We propose a new nonlinear electrodynaics which coupled to gravity actually produces a non singular exact black hole solution satisfying the weak energy condition. The gravitational field of our solution is described by the etric g = r r + q ) + q r ) / r + q ) dt + while the associated electric field E is given by r E = q r 4 5 q r + q ) r r + q ) + q r ) / r + q ) dr + r dω, ) ). ) r + q ) 7/ Notice that this solution asyptotically behaves as the Reissner Nordströ solution, i.e., g tt = /r + q /r + O/r ), E = q/r + O/r ), thus the paraeters and q are related correspondingly with the ass and the electric charge. For a certain range of the ass and charge our etric ) is a black hole, which in addition is regular everywhere. Accoplishing the substitutions x = r/ q and s = q /, we rewrite g tt as g tt = Ax, s) s x + x ) / + x + x ), ) which, for any nonvanishing value of s, has a single iniu; cf. Fig.. There exists a single real critical value of x, On leave fro Grupo de Física Teórica, CEMAFIT ICIMAF, Calle E # 9, esq. a 5, CP 4, Ciudad Habana, Cuba.

2 g tt q = s c r r + FIG.. Behavior of g tt for different values of charge. x c, and one of s, s c, to be deterined fro Ax c, s c ) = and x Ax c, s c ) =, naely t 4 t s + t + t s =, t s t t s + 4 =, where t x +. To solve these equations, one substitutes s = tt )/t 4) fro the second equation into the first one arriving at t 6 4t 4 + t =, which has only one real solution for t, thus the corresponding critical values are s c.7 and x c.58. For s < s c the quoted iniu is negative, for s = s c the iniu vanishes, and for s > s c the iniu is positive. Evaluating the curvature invariants R, R µν R µν, and R µναβ R µναβ for etric ) one establishes that they are all regular everywhere, cf. Fig. ; thus for s s c the singularities appearing in ) due to the vanishing of A are only coordinate singularities describing the existence of horizons, consequently, we are in the presence of black hole solutions for q s c.6. For these values of ass and charge we have, under q R q 4 R R q 4 R R q = s c q = s c q = s c FIG.. Regular behavior of the Ricci, q R, Ricci square, q 4 R µνr µν, and the Rieann square, q 4 R µναβ R µναβ, scalars for different values of charge; the abscissa is r/ q. the strict inequality q < s c, inner and event horizons for the Killing field k = / t, defined by the real solutions of the quartic equation k µ k µ = A =, which are given by r ± = q ) / fs) 6 4s + 9 ± s s s fs) 9s ) 6 fs) /, 4)

3 fs) = 6 4 s + s gs) / 4s s ) ), gs) / gs) = 4 9 s + 74 s + ) 74 s 6 s s 4). For q = s c, the horizons shrink into a single one, corresponding to an extree black hole ν k µ k µ ) = ). The extension of the etric beyond the horizons r ± becoes apparent by passing to the standard advanced and retarded Eddington Finkelstein coordinates, in ters of which the etric is sooth everywhere, even in the extree case. Following step by step the procedure presented in [6, Chap.V] to derive the global structure of the Reissner Nordströ black hole, one can arrive at the global structure of our solution and construct the Penrose diagras; nevertheless, because of journal length restrictions we oit here the corresponding calculations and diagras, leaving this issue for an extended publication. Briefly, what one encounters in the case of our non extree black hole solution, q < s c, is the splitting of the space tie into three regions, I: r > r +, II: r < r < r +, and III: r < r ; cf. Fig.. In each region one introduces advanced and retarded coordinates u and v, related with r through the so called tortoise coordinate r A dr, which in our case is quite involved. Further, by the inversion of u and v, u u, v v, one obtains the reaining regions I, II, and III. Introducing a new set of null coordinates one arrives at the axial extension of the non extree black hole. The Penrose diagra of the axial analytical extension of our solution is obtained by gluing appropriately copies of these six regions upward and downward ad infinitu. In the extree black hole case, q = s c, there arise two regions, I: r > r c and III: r < r c, cf. Fig., in which again one introduces advanced and retarded u and v coordinates to accoplish the axial analytical extension; these two region deterine the ain building block of the extension. To construct the Penrose diagra of the axial analytical extension, one glues copies of this block in a suitable way. In both cases, extree and non extree, there is no singularity at r =, which is now siply the origin of the spherical coordinates. Suarizing, our space tie possesses the sae global structure as the Reissner Nordströ black hole except that the singularity, at r =, of this last solution has been soothed out. For q > s c, there are no horizons and the corresponding exact solution represents a globally regular space tie. It is worthwhile to ention in this respect the existence of globally sooth solutions to the Einstein+atter Yang Mills, Yang Mills Higgs) equations; although there are deonstrations of the existence of these solutions [7,8], they are nuerically given and there are no analytical closed expressions for the [9]; cf. [], and references therein. The fields ) and ) arise as a solution of the Einstein nonlinear electrodynaic field equations derived fro the action proposed in Einstein dual nonlinear electrodynaic theory [], which in the studied case becoes S = dv 6π R ) 4π LF), 5) where R is scalar curvature, and L is a function of F 4 F µνf µν. Alternatively, one can describe the considered syste using another function obtained by eans of a Legendre transforation []: H F L F L. 6) Defining P µν L F F µν, it can be shown that H is a function of P 4 P µνp µν = L F ) F, i.e., dh = L F ) dl F ) F) = H P dp. With the help of H one expresses the nonlinear electroagnetic Lagrangian in the action 5) as L = P H P H, depending on the anti syetric tensor P µν. The specific function H, deterining the nonlinear electrodynaic source used, is given as ) HP) = P q P + q P ) q s q P + q P ) 5/, 7) where s = q / and the invariant P is a negative quantity. The corresponding Lagrangian occurs to be 8 ) q P 6 q P L = P + ) 4 q P) 5/4 ) q P q 4 q P s + ) 7/. 8) q P

4 The function 7) satisfies the plausible conditions, needed for a nonlinear electroagnetic odel, of i) correspondence to Maxwell theory, i.e., H P for weak fields P ), and ii) the weak energy condition, which requires H < and H P > ; cf. Fig.. We would like to point out that our solution, in addition to being regular and to satisfying the weak energy condition, is characterized by another feature: it does not adit a Cauchy surface. Hence, it does not contradict the Penrose singularity theore supported on the hypotheses of: fulfillent of the null energy condition, existence of a noncopact Cauchy surface, and existence of a closed trapped surface and concluding no null geodesically copleteness of the space tie q P H P - 4 q H q = s c q = s c q P FIG.. Behavior of q H and H P with respect to the positive abscissa q P for different values of charge. In what follows we shall briefly give the ain lines of the integration process yielding the studied solution. The Einstein and nonlinear electrodynaic equations arising fro action 5) are G ν µ = H PP µλ P νλ δ ν µ P H P H)), 9) µ P αµ =. ) In order to obtain the solution ), ), we consider the static and spherically syetric configuration g = r + Qr) ) r dt + r + Qr) ) r dr + r dω, ) and the following ansatz for the antisyetric field P µν = δ[µ t δr ν] Dr). With these choices the equations ) integrate as P µν = δ[µ t q δr ν] r P = D = q r 4, ) where we have chosen the integration constant as q since, as it was previously anticipated, it actually plays the role of the electric charge. The evaluation of the electric field E = F tr = H P D, using expression 7) for H, gives just the forula ). The t t coponent of Einstein equations 9) yields the basic equation Substituting H fro 7) with P = q /r 4 one can write the integral of ) as Q = q r r rq Q r 4 = HP). ) dy 6y y + q ) + y y q ) 5/ y + q ) ), 4) 4

5 the integrand above can be expressed as y y /q y + q ) / y /y + q ) ), thus one arrives at Q = r Substituting Q into g tt = /r + Q/r one finally gets Eq. ). r 4 r + q ) + q r 4 / r + q ). 5) ACKNOWLEDGMENTS This work was partially supported by the CONACyT Grant 69P E967, and a fellowship fro the Sistea Nacional de Investigadores SNI). One of the authors E.A.B. thanks the staff of the Physics Departent at CINVESTAV for support. [] Hawking, S.W., Ellis, G.F., The Large Scale Structure of Space Tie Cabridge Univ. Press 97). [] Wald, R.M., Gravitational Collapse and Cosic Censorship, preprint gr-qc/ ). [] Bardeen, J., in Proceedings of GR5, Tiflis, U.S.S.R. 968). [4] Ayón Beato, E., Asyptotic Behavior of Scalar Fields Coupled to Gravity, Graduate Dissertation, Faculty of Physics, Havana Univ. 99). [5] Borde, A., Phys. Rev., D5, 9 994). [6] Barrabès, C., Frolov, V.P., Phys. Rev., D5, 5 996). [7] Mars, M., Martín Prats, M.M., Senovilla, J.M.M., Class. Quant. Grav.,, L5 996). [8] Cabo, A., Ayón Beato, E., Int. J. Mod. Phys., A4, 999). [9] Borde, A., Phys. Rev., D55, ). [] Tseytlin, A.A., Phys. Lett., B6, 995). [] Cvetic, M. Phys. Rev. Lett., 7, 85 99). [] Horne, J.H., Horowitz, G.T. Nucl. Phys., B68, ). [] Oliveira, H.P., Class. Quant. Grav.,, ). [4] Soleng, H., Phys. Rev., D5, ). [5] Palatnik, D., Phys. Lett., B4, ). [6] Chandrasekhar, S., The Matheatical Theory of Black Holes Oxford Univ. Press 98). [7] Soller, J.A., Wasseran, A.G., Coun. Math. Phys., 5, 99). [8] Breitenlohner, P., Forgács, P., Maison, D., Coun. Math. Phys., 6, 4 994). [9] Bartnik, R., McKinnon, J., Phys. Rev. Lett., 6, 4 988). [] Bizoń, P., Acta Phys. Polon., B5, ). [] Salazar, H., García, A., Plebański, J., J. Math. Phys., 8, 7 987). 5

arxiv: v2 [gr-qc] 22 Jan 2014

arxiv: v2 [gr-qc] 22 Jan 2014 Regular black hole metrics and the weak energy condition Leonardo Balart 1,2 and Elias C. Vagenas 3 1 I.C.B. - Institut Carnot de Bourgogne UMR 5209 CNRS, Faculté des Sciences Mirande, Université de Bourgogne,

More information

Non-Abelian Einstein-Born-Infeld Black Holes

Non-Abelian Einstein-Born-Infeld Black Holes Non-Abelian Einstein-Born-Infeld Black Holes arxiv:hep-th/0004130v1 18 Apr 2000 Marion Wirschins, Abha Sood and Jutta Kunz Fachbereich Physik, Universität Oldenburg, Postfach 2503 D-26111 Oldenburg, Germany

More information

Unification of Electromagnetism and Gravitation. Raymond J. Beach

Unification of Electromagnetism and Gravitation. Raymond J. Beach Preprints (www.preprints.org) NOT PEER-REVIEWED Posted: 1 Septeber 17 doi:1.944/preprints176.47.v3 Unification of Electroagnetis and Gravitation Rayond J. Beach Lawrence Liverore National Laboratory, L-465,

More information

2 Q 10. Likewise, in case of multiple particles, the corresponding density in 2 must be averaged over all

2 Q 10. Likewise, in case of multiple particles, the corresponding density in 2 must be averaged over all Lecture 6 Introduction to kinetic theory of plasa waves Introduction to kinetic theory So far we have been odeling plasa dynaics using fluid equations. The assuption has been that the pressure can be either

More information

Time-Periodic Solutions of the Einstein s Field Equations

Time-Periodic Solutions of the Einstein s Field Equations Tie-Periodic Solutions of the Einstein s Field Equations De-Xing Kong 1 and Kefeng Liu 1 Departent of Matheatics Zhejiang University Hangzhou 31007 China Departent of Matheatics University of California

More information

Black Strings and Classical Hair

Black Strings and Classical Hair UCSBTH-97-1 hep-th/97177 Black Strings and Classical Hair arxiv:hep-th/97177v1 17 Jan 1997 Gary T. Horowitz and Haisong Yang Department of Physics, University of California, Santa Barbara, CA 9316, USA

More information

arxiv: v2 [gr-qc] 30 Aug 2014

arxiv: v2 [gr-qc] 30 Aug 2014 arxiv:1408.3334v [gr-qc] 30 Aug 014 On a regular charged black hole with a nonlinear electric source Hristu Culetu, Ovidius University, Dept.of Physics, Mamaia Avenue 14, 90057 Constanta, Romania, e-mail

More information

Four-vector, Dirac spinor representation and Lorentz Transformations

Four-vector, Dirac spinor representation and Lorentz Transformations Available online at www.pelagiaresearchlibrary.co Advances in Applied Science Research, 2012, 3 (2):749-756 Four-vector, Dirac spinor representation and Lorentz Transforations S. B. Khasare 1, J. N. Rateke

More information

Introductory Course on Black Hole Physics and AdS/CFT Duality Lecturer: M.M. Sheikh-Jabbari

Introductory Course on Black Hole Physics and AdS/CFT Duality Lecturer: M.M. Sheikh-Jabbari Introductory Course on Black Hole Physics and AdS/CFT Duality Lecturer: M.M. Sheikh-Jabbari This is a PhD level course, designed for second year PhD students in Theoretical High Energy Physics (HEP-TH)

More information

arxiv:hep-th/ v2 7 Jun 2005

arxiv:hep-th/ v2 7 Jun 2005 Centro de Estudios Científicos CECS-PHY-05/05 arxiv:hep-th/0505086v 7 Jun 005 Gravitational Cheshire effect: Nonminimally coupled scalar fields may not curve spacetime Eloy Ayón Beato,, Cristián Martínez,

More information

EXTREMELY CHARGED STATIC DUST DISTRIBUTIONS IN GENERAL RELATIVITY

EXTREMELY CHARGED STATIC DUST DISTRIBUTIONS IN GENERAL RELATIVITY arxiv:gr-qc/9806038v1 8 Jun 1998 EXTREMELY CHARGED STATIC DUST DISTRIBUTIONS IN GENERAL RELATIVITY METÍN GÜRSES Mathematics department, Bilkent University, 06533 Ankara-TURKEY E-mail: gurses@fen.bilkent.edu.tr

More information

arxiv:gr-qc/ v2 9 Feb 2006

arxiv:gr-qc/ v2 9 Feb 2006 Gravitational field of charged gyratons arxiv:gr-qc/0512124 v2 9 Feb 2006 Valeri P. Frolov 1 and Andrei Zelnikov 1,2 1 Theoretical Physics Institute, University of Alberta, Edmonton, Alberta, Canada, T6G

More information

Work, Energy and Momentum

Work, Energy and Momentum Work, Energy and Moentu Work: When a body oves a distance d along straight line, while acted on by a constant force of agnitude F in the sae direction as the otion, the work done by the force is tered

More information

THE 2D ANALOGUE OF THE REISSNER-NORDSTROM SOLUTION. S. Monni and M. Cadoni ABSTRACT

THE 2D ANALOGUE OF THE REISSNER-NORDSTROM SOLUTION. S. Monni and M. Cadoni ABSTRACT INFNCA-TH9618 September 1996 THE 2D ANALOGUE OF THE REISSNER-NORDSTROM SOLUTION S. Monni and M. Cadoni Dipartimento di Scienze Fisiche, Università di Cagliari, Via Ospedale 72, I-09100 Cagliari, Italy.

More information

Holographic Description of 2-Dimensional Quantum Black Holes

Holographic Description of 2-Dimensional Quantum Black Holes Author: Facultat de Física, Universitat de Barcelona, Diagonal 645, 0808 Barcelona, Spain. Advisor: Crisitano Gerani Abstract: In this work we obtain and analyse a black hole solution on the 1-brane of

More information

arxiv: v1 [gr-qc] 14 May 2015

arxiv: v1 [gr-qc] 14 May 2015 arxiv:1505.03863v1 [gr-qc] 14 May 015 Sharp bounds on the radius of relativistic charged spheres: Guilfoyle s stars saturate the Buchdahl-Andréasson bound José P. S. Leos Centro Multidisciplinar de Astrofísica

More information

arxiv:gr-qc/ v1 24 Feb 2004

arxiv:gr-qc/ v1 24 Feb 2004 A poor man s positive energy theorem arxiv:gr-qc/0402106v1 24 Feb 2004 Piotr T. Chruściel Département de Mathématiques Faculté des Sciences Parc de Grandmont F37200 Tours, France Gregory J. Galloway Department

More information

Effect of Monopole Field on the Non-Spherical Gravitational Collapse of Radiating Dyon Solution.

Effect of Monopole Field on the Non-Spherical Gravitational Collapse of Radiating Dyon Solution. IOSR Journal of Mathematics (IOSR-JM) e-issn: 2278-5728, p-issn:2319-765x. Volume 10, Issue 1 Ver. III. (Feb. 2014), PP 46-52 Effect of Monopole Field on the Non-Spherical Gravitational Collapse of Radiating

More information

Colliding scalar pulses in the Einstein-Gauss-Bonnet gravity

Colliding scalar pulses in the Einstein-Gauss-Bonnet gravity Colliding scalar pulses in the Einstein-Gauss-Bonnet gravity Hisaaki Shinkai 1, and Takashi Torii 2, 1 Department of Information Systems, Osaka Institute of Technology, Hirakata City, Osaka 573-0196, Japan

More information

Curious Bounds for Floor Function Sums

Curious Bounds for Floor Function Sums 1 47 6 11 Journal of Integer Sequences, Vol. 1 (018), Article 18.1.8 Curious Bounds for Floor Function Sus Thotsaporn Thanatipanonda and Elaine Wong 1 Science Division Mahidol University International

More information

δ 12. We find a highly accurate analytic description of the functions δ 11 ( δ 0, n)

δ 12. We find a highly accurate analytic description of the functions δ 11 ( δ 0, n) Coplete-return spectru for a generalied Rosen-Zener two-state ter-crossing odel T.A. Shahverdyan, D.S. Mogilevtsev, V.M. Red kov, and A.M Ishkhanyan 3 Moscow Institute of Physics and Technology, 47 Dolgoprudni,

More information

arxiv: v1 [gr-qc] 28 Mar 2012

arxiv: v1 [gr-qc] 28 Mar 2012 Causality violation in plane wave spacetimes arxiv:103.6173v1 [gr-qc] 8 Mar 01 Keywords: vacuum spacetimes, closed null geodesics, plane wave spacetimes D. Sarma 1, M. Patgiri and F. Ahmed 3 Department

More information

Theoretical Aspects of Black Hole Physics

Theoretical Aspects of Black Hole Physics Les Chercheurs Luxembourgeois à l Etranger, Luxembourg-Ville, October 24, 2011 Hawking & Ellis Theoretical Aspects of Black Hole Physics Glenn Barnich Physique théorique et mathématique Université Libre

More information

Generalized r-modes of the Maclaurin spheroids

Generalized r-modes of the Maclaurin spheroids PHYSICAL REVIEW D, VOLUME 59, 044009 Generalized r-odes of the Maclaurin spheroids Lee Lindblo Theoretical Astrophysics 130-33, California Institute of Technology, Pasadena, California 9115 Jaes R. Ipser

More information

Hawking Radiation of Photons in a Vaidya-de Sitter Black Hole arxiv:gr-qc/ v1 15 Nov 2001

Hawking Radiation of Photons in a Vaidya-de Sitter Black Hole arxiv:gr-qc/ v1 15 Nov 2001 Hawking Radiation of Photons in a Vaidya-de Sitter Black Hole arxiv:gr-qc/0111045v1 15 Nov 2001 S. Q. Wu and X. Cai Institute of Particle Physics, Hua-Zhong Normal University, Wuhan 430079, P.R. China

More information

Does the third law of black hole thermodynamics really have a serious failure?

Does the third law of black hole thermodynamics really have a serious failure? Does the third law of black hole thermodynamics really have a serious failure? István Rácz KFKI Research Institute for Particle and Nuclear Physics H-1525 Budapest 114 P.O.B. 49, Hungary September 16,

More information

lecture 36: Linear Multistep Mehods: Zero Stability

lecture 36: Linear Multistep Mehods: Zero Stability 95 lecture 36: Linear Multistep Mehods: Zero Stability 5.6 Linear ultistep ethods: zero stability Does consistency iply convergence for linear ultistep ethods? This is always the case for one-step ethods,

More information

Kinetic Theory of Gases: Elementary Ideas

Kinetic Theory of Gases: Elementary Ideas Kinetic Theory of Gases: Eleentary Ideas 17th February 2010 1 Kinetic Theory: A Discussion Based on a Siplified iew of the Motion of Gases 1.1 Pressure: Consul Engel and Reid Ch. 33.1) for a discussion

More information

arxiv:hep-th/ v3 25 Sep 2006

arxiv:hep-th/ v3 25 Sep 2006 OCU-PHYS 46 AP-GR 33 Kaluza-Klein Multi-Black Holes in Five-Dimensional arxiv:hep-th/0605030v3 5 Sep 006 Einstein-Maxwell Theory Hideki Ishihara, Masashi Kimura, Ken Matsuno, and Shinya Tomizawa Department

More information

RIGIDITY OF QUASI-EINSTEIN METRICS

RIGIDITY OF QUASI-EINSTEIN METRICS RIGIDITY OF QUASI-EINSTEIN METRICS JEFFREY CASE, YU-JEN SHU, AND GUOFANG WEI Abstract. We call a etric quasi-einstein if the -Bakry-Eery Ricci tensor is a constant ultiple of the etric tensor. This is

More information

arxiv:gr-qc/ v1 7 Aug 2001

arxiv:gr-qc/ v1 7 Aug 2001 Modern Physics Letters A, Vol., No. (00) c World Scientific Publishing Company Non-existence of New Quantum Ergosphere Effect of a Vaidya-type Black Hole arxiv:gr-qc/00809v 7 Aug 00 S. Q. Wu Institute

More information

Kinetic Theory of Gases: Elementary Ideas

Kinetic Theory of Gases: Elementary Ideas Kinetic Theory of Gases: Eleentary Ideas 9th February 011 1 Kinetic Theory: A Discussion Based on a Siplified iew of the Motion of Gases 1.1 Pressure: Consul Engel and Reid Ch. 33.1) for a discussion of

More information

New Non-Diagonal Singularity-Free Cosmological Perfect-Fluid Solution

New Non-Diagonal Singularity-Free Cosmological Perfect-Fluid Solution New Non-Diagonal Singularity-Free Cosmological Perfect-Fluid Solution arxiv:gr-qc/0201078v1 23 Jan 2002 Marc Mars Departament de Física Fonamental, Universitat de Barcelona, Diagonal 647, 08028 Barcelona,

More information

arxiv: v1 [gr-qc] 14 Apr 2010

arxiv: v1 [gr-qc] 14 Apr 2010 Regular black holes and energy conditions O. B. Zaslavskii Astronomical Institute of Kharkov V.N. Karazin National University, 35 Sumskaya St., Kharkov, 61022, Ukraine arxiv:1004.2362v1 [gr-qc] 14 Apr

More information

The Methods of Solution for Constrained Nonlinear Programming

The Methods of Solution for Constrained Nonlinear Programming Research Inventy: International Journal Of Engineering And Science Vol.4, Issue 3(March 2014), PP 01-06 Issn (e): 2278-4721, Issn (p):2319-6483, www.researchinventy.co The Methods of Solution for Constrained

More information

arxiv: v2 [gr-qc] 21 Oct 2009

arxiv: v2 [gr-qc] 21 Oct 2009 On the equilibrium of two oppositely charged masses in general relativity V. S. Manko and E. Ruiz Departamento de Física, Centro de Investigación y de Estudios Avanzados del IPN, A.P. 14-740, 07000 México

More information

+ -d-t-' )=1. = vpi. Aportaciones Matematicas Comunicaciones 17 (1996) 5-10.

+ -d-t-' )=1. = vpi. Aportaciones Matematicas Comunicaciones 17 (1996) 5-10. Aportaciones Mateaticas Counicaciones 17 (1996) 5-10. 1. A suary of the proble Much of the processing that is used in the petroleu industry requires the consideration of a large nuber of cheical reactions.

More information

Causality and the Kramers Kronig relations

Causality and the Kramers Kronig relations Causality and the Kraers Kronig relations Causality describes the teporal relationship between cause and effect. A bell rings after you strike it, not before you strike it. This eans that the function

More information

Algebraic Montgomery-Yang problem: the log del Pezzo surface case

Algebraic Montgomery-Yang problem: the log del Pezzo surface case c 2014 The Matheatical Society of Japan J. Math. Soc. Japan Vol. 66, No. 4 (2014) pp. 1073 1089 doi: 10.2969/jsj/06641073 Algebraic Montgoery-Yang proble: the log del Pezzo surface case By DongSeon Hwang

More information

arxiv:hep-th/ v1 15 Mar 1996

arxiv:hep-th/ v1 15 Mar 1996 RUSSIAN GRAVITATIONAL SOCIETY INSTITUTE OF METROLOGICAL SERVICE CENTER OF GRAVITATION AND FUNDAMENTAL METROLOGY RGS-CSVR-002/96 hep-th/9603xxx arxiv:hep-th/9603107v1 15 Mar 1996 Multidimensional Extremal

More information

arxiv:gr-qc/ v1 20 Apr 2006

arxiv:gr-qc/ v1 20 Apr 2006 Black Holes in Brans-Dicke Theory with a Cosmological Constant Chang Jun Gao and Shuang Nan Zhang,2,3,4 Department of Physics and Center for Astrophysics, Tsinghua University, Beijing 84, Chinamailaddress)

More information

A rotating charged black hole solution in f (R) gravity

A rotating charged black hole solution in f (R) gravity PRAMANA c Indian Academy of Sciences Vol. 78, No. 5 journal of May 01 physics pp. 697 703 A rotating charged black hole solution in f R) gravity ALEXIS LARRAÑAGA National Astronomical Observatory, National

More information

Partial Differential Equations of Physics

Partial Differential Equations of Physics Partial Differential Equations of Physics arxiv:gr-qc/9602055v1 27 Feb 1996 Robert Geroch Enrico Feri Institute, 5640 Ellis Ave, Chicago, Il - 60637 1 Introduction February 3, 2008 The physical world is

More information

arxiv:gr-qc/ v1 16 Apr 2002

arxiv:gr-qc/ v1 16 Apr 2002 Local continuity laws on the phase space of Einstein equations with sources arxiv:gr-qc/0204054v1 16 Apr 2002 R. Cartas-Fuentevilla Instituto de Física, Universidad Autónoma de Puebla, Apartado Postal

More information

8.1 Force Laws Hooke s Law

8.1 Force Laws Hooke s Law 8.1 Force Laws There are forces that don't change appreciably fro one instant to another, which we refer to as constant in tie, and forces that don't change appreciably fro one point to another, which

More information

ON THE TWO-LEVEL PRECONDITIONING IN LEAST SQUARES METHOD

ON THE TWO-LEVEL PRECONDITIONING IN LEAST SQUARES METHOD PROCEEDINGS OF THE YEREVAN STATE UNIVERSITY Physical and Matheatical Sciences 04,, p. 7 5 ON THE TWO-LEVEL PRECONDITIONING IN LEAST SQUARES METHOD M a t h e a t i c s Yu. A. HAKOPIAN, R. Z. HOVHANNISYAN

More information

What happens at the horizon of an extreme black hole?

What happens at the horizon of an extreme black hole? What happens at the horizon of an extreme black hole? Harvey Reall DAMTP, Cambridge University Lucietti and HSR arxiv:1208.1437 Lucietti, Murata, HSR and Tanahashi arxiv:1212.2557 Murata, HSR and Tanahashi,

More information

m potential kinetic forms of energy.

m potential kinetic forms of energy. Spring, Chapter : A. near the surface of the earth. The forces of gravity and an ideal spring are conservative forces. With only the forces of an ideal spring and gravity acting on a ass, energy F F will

More information

arxiv:gr-qc/ v1 19 Feb 2004

arxiv:gr-qc/ v1 19 Feb 2004 On the construction of global models describing isolated rotating charged bodies; uniqueness of the exterior gravitational field Raül Vera Dublin City University, Ireland. arxiv:gr-qc/0402086v1 19 Feb

More information

A Summary of the Black Hole Perturbation Theory. Steven Hochman

A Summary of the Black Hole Perturbation Theory. Steven Hochman A Summary of the Black Hole Perturbation Theory Steven Hochman Introduction Many frameworks for doing perturbation theory The two most popular ones Direct examination of the Einstein equations -> Zerilli-Regge-Wheeler

More information

An exact solution for 2+1 dimensional critical collapse

An exact solution for 2+1 dimensional critical collapse An exact solution for + dimensional critical collapse David Garfinkle Department of Physics, Oakland University, Rochester, Michigan 839 We find an exact solution in closed form for the critical collapse

More information

Formation and Evaporation of Regular Black Holes in New 2d Gravity BIRS, 2016

Formation and Evaporation of Regular Black Holes in New 2d Gravity BIRS, 2016 Formation and Evaporation of Regular Black Holes in New 2d Gravity BIRS, 2016 G. Kunstatter University of Winnipeg Based on PRD90,2014 and CQG-102342.R1, 2016 Collaborators: Hideki Maeda (Hokkai-Gakuen

More information

An Approximate Model for the Theoretical Prediction of the Velocity Increase in the Intermediate Ballistics Period

An Approximate Model for the Theoretical Prediction of the Velocity Increase in the Intermediate Ballistics Period An Approxiate Model for the Theoretical Prediction of the Velocity... 77 Central European Journal of Energetic Materials, 205, 2(), 77-88 ISSN 2353-843 An Approxiate Model for the Theoretical Prediction

More information

arxiv:hep-th/ v2 15 Jan 2004

arxiv:hep-th/ v2 15 Jan 2004 hep-th/0311240 A Note on Thermodynamics of Black Holes in Lovelock Gravity arxiv:hep-th/0311240v2 15 Jan 2004 Rong-Gen Cai Institute of Theoretical Physics, Chinese Academy of Sciences, P.O. Box 2735,

More information

Hamilton-Jacobi Approach for Power-Law Potentials

Hamilton-Jacobi Approach for Power-Law Potentials Brazilian Journal of Physics, vol. 36, no. 4A, Deceber, 26 1257 Hailton-Jacobi Approach for Power-Law Potentials R. C. Santos 1, J. Santos 1, J. A. S. Lia 2 1 Departaento de Física, UFRN, 5972-97, Natal,

More information

UNIQUENESS OF STATIC BLACK-HOLES WITHOUT ANALYTICITY. Piotr T. Chruściel & Gregory J. Galloway

UNIQUENESS OF STATIC BLACK-HOLES WITHOUT ANALYTICITY. Piotr T. Chruściel & Gregory J. Galloway UNIQUENESS OF STATIC BLACK-HOLES WITHOUT ANALYTICITY by Piotr T. Chruściel & Gregory J. Galloway Abstract. We show that the hypothesis of analyticity in the uniqueness theory of vacuum, or electrovacuum,

More information

TRAVELING WAVE SOLUTIONS OF THE POROUS MEDIUM EQUATION. Laxmi P. Paudel. Dissertation Prepared for the Degree of DOCTOR OF PHILOSOPHY

TRAVELING WAVE SOLUTIONS OF THE POROUS MEDIUM EQUATION. Laxmi P. Paudel. Dissertation Prepared for the Degree of DOCTOR OF PHILOSOPHY TRAVELING WAVE SOLUTIONS OF THE POROUS MEDIUM EQUATION Laxi P Paudel Dissertation Prepared for the Degree of DOCTOR OF PHILOSOPHY UNIVERSITY OF NORTH TEXAS May 013 APPROVED: Joseph Iaia, Major Professor

More information

ma x = -bv x + F rod.

ma x = -bv x + F rod. Notes on Dynaical Systes Dynaics is the study of change. The priary ingredients of a dynaical syste are its state and its rule of change (also soeties called the dynaic). Dynaical systes can be continuous

More information

PhysicsAndMathsTutor.com

PhysicsAndMathsTutor.com . A raindrop falls vertically under gravity through a cloud. In a odel of the otion the raindrop is assued to be spherical at all ties and the cloud is assued to consist of stationary water particles.

More information

Gauss-Bonnet Black Holes in ds Spaces. Abstract

Gauss-Bonnet Black Holes in ds Spaces. Abstract USTC-ICTS-03-5 Gauss-Bonnet Black Holes in ds Spaces Rong-Gen Cai Institute of Theoretical Physics, Chinese Academy of Sciences, P.O. Box 735, Beijing 00080, China Interdisciplinary Center for Theoretical

More information

IN modern society that various systems have become more

IN modern society that various systems have become more Developent of Reliability Function in -Coponent Standby Redundant Syste with Priority Based on Maxiu Entropy Principle Ryosuke Hirata, Ikuo Arizono, Ryosuke Toohiro, Satoshi Oigawa, and Yasuhiko Takeoto

More information

arxiv:hep-th/ v1 8 Mar 1996

arxiv:hep-th/ v1 8 Mar 1996 INJE TP 96 New divergences of tachyon in the two-dimensional charged black holes H.W. Lee and Y. S. Myung arxiv:hep-th/9603044v1 8 Mar 1996 Department of Physics, Inje University, Kimhae 61-749, Korea

More information

Using EM To Estimate A Probablity Density With A Mixture Of Gaussians

Using EM To Estimate A Probablity Density With A Mixture Of Gaussians Using EM To Estiate A Probablity Density With A Mixture Of Gaussians Aaron A. D Souza adsouza@usc.edu Introduction The proble we are trying to address in this note is siple. Given a set of data points

More information

Do semiclassical zero temperature black holes exist?

Do semiclassical zero temperature black holes exist? Do semiclassical zero temperature black holes exist? Paul R. Anderson Department of Physics, Wake Forest University, Winston-Salem, North Carolina 7109 William A. Hiscock, Brett E. Taylor Department of

More information

BLACK HOLES (ADVANCED GENERAL RELATIV- ITY)

BLACK HOLES (ADVANCED GENERAL RELATIV- ITY) Imperial College London MSc EXAMINATION May 2015 BLACK HOLES (ADVANCED GENERAL RELATIV- ITY) For MSc students, including QFFF students Wednesday, 13th May 2015: 14:00 17:00 Answer Question 1 (40%) and

More information

NB1140: Physics 1A - Classical mechanics and Thermodynamics Problem set 2 - Forces and energy Week 2: November 2016

NB1140: Physics 1A - Classical mechanics and Thermodynamics Problem set 2 - Forces and energy Week 2: November 2016 NB1140: Physics 1A - Classical echanics and Therodynaics Proble set 2 - Forces and energy Week 2: 21-25 Noveber 2016 Proble 1. Why force is transitted uniforly through a assless string, a assless spring,

More information

SOLUTIONS. PROBLEM 1. The Hamiltonian of the particle in the gravitational field can be written as, x 0, + U(x), U(x) =

SOLUTIONS. PROBLEM 1. The Hamiltonian of the particle in the gravitational field can be written as, x 0, + U(x), U(x) = SOLUTIONS PROBLEM 1. The Hailtonian of the particle in the gravitational field can be written as { Ĥ = ˆp2, x 0, + U(x), U(x) = (1) 2 gx, x > 0. The siplest estiate coes fro the uncertainty relation. If

More information

arxiv: v2 [gr-qc] 7 Jan 2019

arxiv: v2 [gr-qc] 7 Jan 2019 Classical Double Copy: Kerr-Schild-Kundt metrics from Yang-Mills Theory arxiv:1810.03411v2 [gr-qc] 7 Jan 2019 Metin Gürses 1, and Bayram Tekin 2, 1 Department of Mathematics, Faculty of Sciences Bilkent

More information

On the Geometry of Planar Domain Walls. F. M. Paiva and Anzhong Wang y. Abstract. The Geometry of planar domain walls is studied.

On the Geometry of Planar Domain Walls. F. M. Paiva and Anzhong Wang y. Abstract. The Geometry of planar domain walls is studied. On the Geometry of Planar Domain Walls F. M. Paiva and Anzhong Wang y Departmento de Astrofsica, Observatorio Nacional { CNPq, Rua General Jose Cristino 77, 091-400 Rio de Janeiro { RJ, Brazil Abstract

More information

A simple proof of the recent generalisations of Hawking s black hole topology theorem

A simple proof of the recent generalisations of Hawking s black hole topology theorem A simple proof of the recent generalisations of Hawking s black hole topology theorem arxiv:0806.4373v3 [gr-qc] 25 Jun 2010 István Rácz RMKI, H-1121 Budapest, Konkoly Thege Miklós út 29-33. Hungary June

More information

arxiv:gr-qc/ v1 23 Jun 1998

arxiv:gr-qc/ v1 23 Jun 1998 Superluminal travel requires negative energies Ken D. Olum Institute of Cosmology Department of Physics and Astronomy Tufts University Medford, MA 02155 (June 1998) arxiv:gr-qc/9806091v1 23 Jun 1998 Abstract

More information

Principles of Optimal Control Spring 2008

Principles of Optimal Control Spring 2008 MIT OpenCourseWare http://ocw.it.edu 16.323 Principles of Optial Control Spring 2008 For inforation about citing these aterials or our Ters of Use, visit: http://ocw.it.edu/ters. 16.323 Lecture 10 Singular

More information

2 Carter Penrose diagrams

2 Carter Penrose diagrams 2 Carter Penrose diagrams In this section Cater Penrose diagrams (conformal compactifications) are introduced. For a more detailed account in two spacetime dimensions see section 3.2 in hep-th/0204253;

More information

arxiv:gr-qc/ v1 24 Dec 2001

arxiv:gr-qc/ v1 24 Dec 2001 CIRI/01-swkg02 Naked Singularities in Spherically Symmetric, Self-Similar Spacetimes Sanjay M. Wagh Central India Research Institute, Post Box 606, Laxminagar, Nagpur 440 022, India E-mail:ciri@vsnl.com

More information

e = n 1 ( ) 3 [ m 3] = n [ m 3] n

e = n 1 ( ) 3 [ m 3] = n [ m 3] n Magnetospheric Physics - Hoework Solutions, /7/4 7. Plasa definition Can a plasa be aintained at teperatures of T e K Hint: Calculate the density liit using the plasa paraeter and explain your result).

More information

ON REGULARITY, TRANSITIVITY, AND ERGODIC PRINCIPLE FOR QUADRATIC STOCHASTIC VOLTERRA OPERATORS MANSOOR SABUROV

ON REGULARITY, TRANSITIVITY, AND ERGODIC PRINCIPLE FOR QUADRATIC STOCHASTIC VOLTERRA OPERATORS MANSOOR SABUROV ON REGULARITY TRANSITIVITY AND ERGODIC PRINCIPLE FOR QUADRATIC STOCHASTIC VOLTERRA OPERATORS MANSOOR SABUROV Departent of Coputational & Theoretical Sciences Faculty of Science International Islaic University

More information

DEPARTMENT OF ECONOMETRICS AND BUSINESS STATISTICS

DEPARTMENT OF ECONOMETRICS AND BUSINESS STATISTICS ISSN 1440-771X AUSTRALIA DEPARTMENT OF ECONOMETRICS AND BUSINESS STATISTICS An Iproved Method for Bandwidth Selection When Estiating ROC Curves Peter G Hall and Rob J Hyndan Working Paper 11/00 An iproved

More information

The cosmic censorship conjectures in classical general relativity

The cosmic censorship conjectures in classical general relativity The cosmic censorship conjectures in classical general relativity Mihalis Dafermos University of Cambridge and Princeton University Gravity and black holes Stephen Hawking 75th Birthday conference DAMTP,

More information

Now multiply the left-hand-side by ω and the right-hand side by dδ/dt (recall ω= dδ/dt) to get:

Now multiply the left-hand-side by ω and the right-hand side by dδ/dt (recall ω= dδ/dt) to get: Equal Area Criterion.0 Developent of equal area criterion As in previous notes, all powers are in per-unit. I want to show you the equal area criterion a little differently than the book does it. Let s

More information

In this chapter, we consider several graph-theoretic and probabilistic models

In this chapter, we consider several graph-theoretic and probabilistic models THREE ONE GRAPH-THEORETIC AND STATISTICAL MODELS 3.1 INTRODUCTION In this chapter, we consider several graph-theoretic and probabilistic odels for a social network, which we do under different assuptions

More information

Completeness of Bethe s states for generalized XXZ model, II.

Completeness of Bethe s states for generalized XXZ model, II. Copleteness of Bethe s states for generalized XXZ odel, II Anatol N Kirillov and Nadejda A Liskova Steklov Matheatical Institute, Fontanka 27, StPetersburg, 90, Russia Abstract For any rational nuber 2

More information

PHY 171. Lecture 14. (February 16, 2012)

PHY 171. Lecture 14. (February 16, 2012) PHY 171 Lecture 14 (February 16, 212) In the last lecture, we looked at a quantitative connection between acroscopic and icroscopic quantities by deriving an expression for pressure based on the assuptions

More information

Theoretical Astrophysics and Cosmology Master Degree in Astronomy and Erasmus-Mundus A.A. 2016/17 Alberto Franceschini Cosmology Course

Theoretical Astrophysics and Cosmology Master Degree in Astronomy and Erasmus-Mundus A.A. 2016/17 Alberto Franceschini Cosmology Course Theoretical Astrophysics and Cosology Master Degree in Astronoy and Erasus-Mundus A.A. 16/17 Alberto Franceschini Cosology Course Hoogeneous Friedan Universe.1 PROGRAMME FOR THE COSMOLOGY COURSE. The Hoogeneous

More information

arxiv:gr-qc/ v1 23 Sep 1996

arxiv:gr-qc/ v1 23 Sep 1996 Negative Pressure and Naked Singularities in Spherical Gravitational Collapse TIFR-TAP Preprint arxiv:gr-qc/9609051v1 23 Sep 1996 F. I. Cooperstock 1, S. Jhingan, P. S. Joshi and T. P. Singh Theoretical

More information

arxiv:gr-qc/ v1 2 Mar 1999

arxiv:gr-qc/ v1 2 Mar 1999 Universal Upper Bound to the Entropy of a Charged System Shahar Hod The Racah Institute for Physics, The Hebrew University, Jerusalem 91904, Israel (June 6, 2018) arxiv:gr-qc/9903010v1 2 Mar 1999 Abstract

More information

Rigidity of Black Holes

Rigidity of Black Holes Rigidity of Black Holes Sergiu Klainerman Princeton University February 24, 2011 Rigidity of Black Holes PREAMBLES I, II PREAMBLE I General setting Assume S B two different connected, open, domains and

More information

arxiv:gr-qc/ v2 22 Mar 1999

arxiv:gr-qc/ v2 22 Mar 1999 On the existence of Killing vector fields arxiv:gr-qc/9811031v2 22 Mar 1999 István Rácz Yukawa Institute for Theoretical Physics Kyoto University, Kyoto 606-01, Japan September 27, 2018 Abstract In covariant

More information

Charge, geometry, and effective mass

Charge, geometry, and effective mass Gerald E. Marsh Argonne National Laboratory (Ret) 5433 East View Park Chicago, IL 60615 E-mail: geraldemarsh63@yahoo.com Abstract. Charge, like mass in Newtonian mechanics, is an irreducible element of

More information

arxiv:gr-qc/ v2 18 Feb 2003

arxiv:gr-qc/ v2 18 Feb 2003 arxiv:gr-qc/0205129v2 18 Feb 2003 BULK SHAPE OF BRANE-WORLD BLACK HOLES ROBERTO CASADIO Dipartimento di Fisica, Università di Bologna and I.N.F.N., Sezione di Bologna, via Irnerio 46, 40126 Bologna, Italy

More information

2.003 Engineering Dynamics Problem Set 2 Solutions

2.003 Engineering Dynamics Problem Set 2 Solutions .003 Engineering Dynaics Proble Set Solutions This proble set is priarily eant to give the student practice in describing otion. This is the subject of kineatics. It is strongly recoended that you study

More information

arxiv: v3 [gr-qc] 22 Mar 2016

arxiv: v3 [gr-qc] 22 Mar 2016 Destroying Kerr-Sen black holes arxiv:1512.01654v3 [gr-qc] 22 Mar 2016 Haryanto M. Siahaan Physics Department, Parahyangan Catholic University, Jalan Ciumbuleuit 94, Bandung 40141, Indonesia Abstract By

More information

arxiv: v2 [gr-qc] 31 Aug 2009

arxiv: v2 [gr-qc] 31 Aug 2009 Dressing a Naked Singularity: an Example C. F. C. Brandt Departamento de Física Teórica, Universidade do Estado do io de Janeiro UEJ), ua São Francisco Xavier 524, Maracanã, CEP 20550-013, io de Janeiro,

More information

So the question remains how does the blackhole still display information on mass?

So the question remains how does the blackhole still display information on mass? THE ZERO POINT NON-LOCAL FRAME AND BLACKHOLES By: Doctor Paul Karl Hoiland Abstract: I will show that my own zero point Model supports not only the no-hair proposals, but also the Bekenstein bound on information

More information

On Hidden Symmetries of d > 4 NHEK-N-AdS Geometry

On Hidden Symmetries of d > 4 NHEK-N-AdS Geometry Commun. Theor. Phys. 63 205) 3 35 Vol. 63 No. January 205 On Hidden ymmetries of d > 4 NHEK-N-Ad Geometry U Jie ) and YUE Rui-Hong ) Faculty of cience Ningbo University Ningbo 352 China Received eptember

More information

On the PPN 1+2 Body Problem

On the PPN 1+2 Body Problem On the PPN 1 Body Proble arxiv:gr-qc/971039v1 8 Dec 1997 D Şelaru, I Dobrescu Gravitational esearch Laboratory, 1-5 Mendeleev str, 70168 Bucharest, oania e-ail: dselaru@scou1ctro, idobrescu@scou1ctro June

More information

Brane-World Black Holes

Brane-World Black Holes Brane-World Black Holes A. Chamblin, S.W. Hawking and H.S. Reall DAMTP University of Cambridge Silver Street, Cambridge CB3 9EW, United Kingdom. Preprint DAMTP-1999-133 arxiv:hep-th/990905v 1 Oct 1999

More information

The D 2 Limit of General Relativity

The D 2 Limit of General Relativity arxiv:gr-qc/908004v1 13 Aug 199 The D Limit of General Relativity R.B. Mann and S.F. Ross Department of Physics University of Waterloo Waterloo, Ontario NL 3G1 August 11, 199 WATPHYS TH 9/06 Abstract A

More information

Formation of Higher-dimensional Topological Black Holes

Formation of Higher-dimensional Topological Black Holes Formation of Higher-dimensional Topological Black Holes José Natário (based on arxiv:0906.3216 with Filipe Mena and Paul Tod) CAMGSD, Department of Mathematics Instituto Superior Técnico Talk at Granada,

More information

ENGI 3424 Engineering Mathematics Problem Set 1 Solutions (Sections 1.1 and 1.2)

ENGI 3424 Engineering Mathematics Problem Set 1 Solutions (Sections 1.1 and 1.2) ENGI 344 Engineering Matheatics Proble Set 1 Solutions (Sections 1.1 and 1.) 1. Find the general solution of the ordinary differential equation y 0 This ODE is not linear (due to the product y ). However,

More information

Gravitational collapse and the vacuum energy

Gravitational collapse and the vacuum energy Journal of Physics: Conference Series OPEN ACCESS Gravitational collapse and the vacuum energy To cite this article: M Campos 2014 J. Phys.: Conf. Ser. 496 012021 View the article online for updates and

More information