Poisson summation and convergence of Fourier series. 1. Poisson summation

Size: px
Start display at page:

Download "Poisson summation and convergence of Fourier series. 1. Poisson summation"

Transcription

1 (August 29, 213) Poisson summation and convergence of Fourier series Paul Garrett garrett/ [This document is garrett/m/mfms/notes /2a Poisson summation.pdf] 1. Poisson summation 2. Pointwise convergence of Fourier series 1. Poisson summation The simplest form of the Poisson summation formula is f(n) = (for suitable functions f, with Fourier transform f) with Fourier transform Fourier transform of f = f(ξ) = e 2πiξ d R [1.1] The idea A good heuristic for the truth of the assertion of Poisson summation is the following. Given f a function on R, form the periodic version of f F () = f( + n) A periodic function should be represented by its Fourier series, so F () = e 2πil F () e 2πil d l Z The Fourier coefficients of F epand to be seen as the Fourier transform of f: = F () e 2πil d = n+1 n e 2πil d = f( + n) e 2πil d e 2πil d = f(l) R Evaluating at, we should have f(n) = F () = l Z f(l) [1.2] What would it take to legitimize this? Certainly f must be of sufficient decay so that the integral for its Fourier transform is convergent, and so that summing its translates by Z is convergent. We d want f to be continuous, probably differentiable, so that we can talk about pointwise values of F, and to make plausible the hope that the Fourier series of F converges to F pointwise. For f and several derivatives rapidly decreasing, the Fourier transform f will be of sufficient decay so that its sum over Z does converge. 1

2 Paul Garrett: Poisson summation and convergence of Fourier series (August 29, 213) A simple sufficient hypothesis for convergence is that f be in the Schwartz space of infinitely-differentiable functions all of whose derivatives are of rapid decay, that is, Schwartz space = {smooth f : sup (1 + 2 ) l f (i) () < for all i, l} Representability of a periodic function by its Fourier series is a serious question, with several possible senses. The following section gives a result sufficient for the moment. 2. Pointwise convergence of Fourier series A special, self-contained argument gives a good-enough result for immediate purposes. [1] Consider (Z-)periodic functions on R, that is, comple-valued functions f on R such that f( + n) = for all R, n Z. For periodic f sufficiently nice so that integrals = e 2πin d (n th Fourier coefficient of f) make sense, the Fourier epansion of f is e 2πin (Fourier epansion of f) We want simple sufficient conditions on f and on points so that f( ) = (as convergent double sum of comple numbers) Consider periodic piecewise-c o [2] functions which are left-continuous and right-continuous [3] at any discontinuities. [2..1] Theorem: For periodic f piecewise-c o functions left-continuous and right-continuous at its discontinuities, for points at which f is C and left-differentiable [4] and right-differentiable, the Fourier series of f evaluated at converges to : f( ) = [1] The virtue of the argument here is mainly its immediacy and lack of prerequisites. However, this approach is inadequate in most other situations. For eample, for many purposes, we want not mere pointwise convergence, but uniform pointwise convergence. [2] A function is piecewise-c o when it is C o ecept for a discrete set of points, at which it may fail to be continuous. [3] As usual, a function has a left-continuous at if the it of as approaches from the left eists. Similarly, f is right-continuous if the it approaching from the right eists. Note that there is no purpose in asking whether these its are the value f(), since if they had that common value, then the function would be continuous at, and the notion of one-sided continuity would be irrelevant. [4] As usual, a function f is left-differentiable at if the it of [ f()]/[ ] eists as approaches from the left. Right-differentiability at is similar. Admittedly, this is a clumsy notion, but is relevant to treatment of functions that are not entirely smooth, but not too badly behaved. 2

3 Paul Garrett: Poisson summation and convergence of Fourier series (August 29, 213) That is, for such functions, at such points, the Fourier series represents the function pointwise. [2..2] Remark: The most notable missing conclusion in the theorem is uniform pointwise convergence. For more serious applications, pointwise convergence not known to be uniform is often useless. Proof: First, treat the special case = and f() =. Representability of f() by the Fourier series is the assertion that = f() = M,N + Substituting the defining integral for the Fourier coefficients: e 2πin = M,N + = f(u) e 2πinu du = f(u) e 2πinu du = f(u) e2πimu e 2πiNu 1 e 2πiu du To prove the representability of f() by the Fourier series, we will show that We claim that the function f(u) e 2πilu l ± 1 e 2πiu du = g() = 1 e 2πi is piecewise-c o, and left-continuous and right-continuous at discontinuities. The only issue is at integers, and by the periodicity it suffices to prove continuity at. To prove continuity at, we can forget about periodicity for a moment, and write The two-sided it = 1 e 2πi 1 e 2πi 1 e 2πi = d d = eists, by differentiability. Similarly, we have left and right its 1 e 2πi = = left derivative at and + = left derivative at by the one-sided differentiability of f. Combining these two one-sided its, both its eist, proving the one-sided continuity of g at. 1 e 2πi + 1 e 2πi We want to prove an easy instance of a Riemann-Lebesgue lemma, namely, that that the Fourier coefficients of a periodic, piecewise-c o function g, with left and right its at discontinuities, go to. 3

4 Paul Garrett: Poisson summation and convergence of Fourier series (August 29, 213) The essential property of g is that on [, 1] it is approimable by step functions [5] in the sense [6] that, given ε > there is a step function s() such that With such s, ŝ(n) ĝ(n) s() g() d < ε s(u) g(u) du < ε (for all ε > ) Thus, it suffices to prove that Fourier coefficients of step functions go to, and, thus, that Fourier coefficients of characteristic functions of intervals go to. The latter is an easy computation: b a e 2πil d = [ e 2πil 2πil ]b a = e 2πilb e 2πila 2πil (as l ± ) This proves a RIemann-Lebesgue lemma for any function L 1 -approimable by step functions. Thus, the Fourier coefficients of g go to, proving that the Fourier series of f converges to f() when f is C 1 at. For arbitrary [, 1], replacing f by f f( ) reduces to the case that f( ) =. Note that the continuity of f at is necessary for this reduction. Replacing by ϕ() = f( + ) reduces to the case, noting that the effect on the Fourier epansion is to multiply the Fourier coefficients by constants: ϕ(n) = f( + ) e 2πin d = +o e 2πin( o) d = e 2πino +o e 2πin d For any Z-periodic function h, using the periodicity, such a shifted integral can be converted back to an integral over [, 1]: +o h() d = h() d + +o 1 h() d = h() d + o h( + 1) d = h() d + h() d = h() d Thus, +o ϕ(n) = e 2πino e 2πin d = e 2πino e 2πin d = e 2πino o Thus, the result at = for ϕ() = f( + ) gives the general case: f( ) = ϕ() = n ϕ(n) = n [5] As usual, a step function ϕ is a function that assumes only finitely-many values, and is of the form ϕ() = y 1 (for < 1 ) y 2 (for 1 < 2 )... y k 1 (for k 2 < k 1 ) y k (for k 1 < k ) for some collection of intervals [, 1 ), [ 1, 2 ),..., [ k 1 ) and corresponding values y 1,..., y k. [6] In standard language, this assertion of approimability is that continuous functions on [, 1] can be approimated by step functions in L 1 -norm. The L 1 norm f L 1 of a function on [, 1] is simply the integral of the absolute value: d. 4

5 Paul Garrett: Poisson summation and convergence of Fourier series (August 29, 213) Thus, we have proven that piecewise-c 1 functions with left and right its at discontinuities are pointwise represented by their Fourier series at points where they re differentiable. /// [2..3] Remark: In fact, the argument above shows that for a function f and point such that f( ) e 2πi e 2πio is in L 1 [, 1], the Fourier series at converges to f( ). This holds, for eample, when f satisfies a Lipschitz condition f( ) α (as, with some α > ) and is in L 1 [, 1]. 5

Fourier series, Weyl equidistribution. 1. Dirichlet s pigeon-hole principle, approximation theorem

Fourier series, Weyl equidistribution. 1. Dirichlet s pigeon-hole principle, approximation theorem (October 4, 25) Fourier series, Weyl equidistribution Paul Garrett garrett@math.umn.edu http://www.math.umn.edu/ garrett/ [This document is http://www.math.umn.edu/ garrett/m/mfms/notes 25-6/8 Fourier-Weyl.pdf]

More information

FOURIER INVERSION. an additive character in each of its arguments. The Fourier transform of f is

FOURIER INVERSION. an additive character in each of its arguments. The Fourier transform of f is FOURIER INVERSION 1. The Fourier Transform and the Inverse Fourier Transform Consider functions f, g : R n C, and consider the bilinear, symmetric function ψ : R n R n C, ψ(, ) = ep(2πi ), an additive

More information

13. Fourier transforms

13. Fourier transforms (December 16, 2017) 13. Fourier transforms Paul Garrett garrett@math.umn.edu http://www.math.umn.edu/ garrett/ [This document is http://www.math.umn.edu/ garrett/m/real/notes 2017-18/13 Fourier transforms.pdf]

More information

Fourier transform of tempered distributions

Fourier transform of tempered distributions Fourier transform of tempered distributions 1 Test functions and distributions As we have seen before, many functions are not classical in the sense that they cannot be evaluated at any point. For eample,

More information

Here we used the multiindex notation:

Here we used the multiindex notation: Mathematics Department Stanford University Math 51H Distributions Distributions first arose in solving partial differential equations by duality arguments; a later related benefit was that one could always

More information

Taylor Series and Asymptotic Expansions

Taylor Series and Asymptotic Expansions Taylor Series and Asymptotic Epansions The importance of power series as a convenient representation, as an approimation tool, as a tool for solving differential equations and so on, is pretty obvious.

More information

Fourier transforms, I

Fourier transforms, I (November 28, 2016) Fourier transforms, I Paul Garrett garrett@math.umn.edu http://www.math.umn.edu/ garrett/ [This document is http://www.math.umn.edu/ garrett/m/fun/notes 2016-17/Fourier transforms I.pdf]

More information

Harmonic Analysis Homework 5

Harmonic Analysis Homework 5 Harmonic Analysis Homework 5 Bruno Poggi Department of Mathematics, University of Minnesota November 4, 6 Notation Throughout, B, r is the ball of radius r with center in the understood metric space usually

More information

Primes in arithmetic progressions

Primes in arithmetic progressions (September 26, 205) Primes in arithmetic progressions Paul Garrett garrett@math.umn.edu http://www.math.umn.edu/ garrett/ [This document is http://www.math.umn.edu/ garrett/m/mfms/notes 205-6/06 Dirichlet.pdf].

More information

The Hilbert transform

The Hilbert transform The Hilbert transform Definition and properties ecall the distribution pv(, defined by pv(/(ϕ := lim ɛ ɛ ϕ( d. The Hilbert transform is defined via the convolution with pv(/, namely (Hf( := π lim f( t

More information

1.5 Approximate Identities

1.5 Approximate Identities 38 1 The Fourier Transform on L 1 (R) which are dense subspaces of L p (R). On these domains, P : D P L p (R) and M : D M L p (R). Show, however, that P and M are unbounded even when restricted to these

More information

MA2223 Tutorial solutions Part 1. Metric spaces

MA2223 Tutorial solutions Part 1. Metric spaces MA2223 Tutorial solutions Part 1. Metric spaces T1 1. Show that the function d(,y) = y defines a metric on R. The given function is symmetric and non-negative with d(,y) = 0 if and only if = y. It remains

More information

E = {x 0 < x < 1}. Z f(x) dx <.

E = {x 0 < x < 1}. Z f(x) dx <. Chapter Devastating Eamples Students of calculus develop an intuition for the subject typically based on geometric considerations. This intuition works adequately for problems in physics and engineering.

More information

Notions such as convergent sequence and Cauchy sequence make sense for any metric space. Convergent Sequences are Cauchy

Notions such as convergent sequence and Cauchy sequence make sense for any metric space. Convergent Sequences are Cauchy Banach Spaces These notes provide an introduction to Banach spaces, which are complete normed vector spaces. For the purposes of these notes, all vector spaces are assumed to be over the real numbers.

More information

Topics in Harmonic Analysis Lecture 1: The Fourier transform

Topics in Harmonic Analysis Lecture 1: The Fourier transform Topics in Harmonic Analysis Lecture 1: The Fourier transform Po-Lam Yung The Chinese University of Hong Kong Outline Fourier series on T: L 2 theory Convolutions The Dirichlet and Fejer kernels Pointwise

More information

Lecture 5: Finding limits analytically Simple indeterminate forms

Lecture 5: Finding limits analytically Simple indeterminate forms Lecture 5: Finding its analytically Simple indeterminate forms Objectives: (5.) Use algebraic techniques to resolve 0/0 indeterminate forms. (5.) Use the squeeze theorem to evaluate its. (5.3) Use trigonometric

More information

Tools from Lebesgue integration

Tools from Lebesgue integration Tools from Lebesgue integration E.P. van den Ban Fall 2005 Introduction In these notes we describe some of the basic tools from the theory of Lebesgue integration. Definitions and results will be given

More information

The Hilbert transform

The Hilbert transform (February 14, 217) The Hilbert transform Paul arrett garrett@math.umn.edu http://www.math.umn.edu/ garrett/ [This document is http://www.math.umn.edu/ garrett/m/fun/notes 216-17/hilbert transform.pdf]

More information

Riemann s Explicit/Exact formula

Riemann s Explicit/Exact formula (September 4, 5) Riemann s Explicit/Exact formula Paul Garrett garrett@math.umn.edu http://www.math.umn.edu/ garrett/ [This document is http://www.math.umn.edu/ garrett/m/mfms/notes 5-6/3 Riemann and zeta.pdf].

More information

01. Review of metric spaces and point-set topology. 1. Euclidean spaces

01. Review of metric spaces and point-set topology. 1. Euclidean spaces (October 3, 017) 01. Review of metric spaces and point-set topology Paul Garrett garrett@math.umn.edu http://www.math.umn.edu/ garrett/ [This document is http://www.math.umn.edu/ garrett/m/real/notes 017-18/01

More information

C.7. Numerical series. Pag. 147 Proof of the converging criteria for series. Theorem 5.29 (Comparison test) Let a k and b k be positive-term series

C.7. Numerical series. Pag. 147 Proof of the converging criteria for series. Theorem 5.29 (Comparison test) Let a k and b k be positive-term series C.7 Numerical series Pag. 147 Proof of the converging criteria for series Theorem 5.29 (Comparison test) Let and be positive-term series such that 0, for any k 0. i) If the series converges, then also

More information

Hilbert spaces. 1. Cauchy-Schwarz-Bunyakowsky inequality

Hilbert spaces. 1. Cauchy-Schwarz-Bunyakowsky inequality (October 29, 2016) Hilbert spaces Paul Garrett garrett@math.umn.edu http://www.math.umn.edu/ garrett/ [This document is http://www.math.umn.edu/ garrett/m/fun/notes 2016-17/03 hsp.pdf] Hilbert spaces are

More information

Outline of Fourier Series: Math 201B

Outline of Fourier Series: Math 201B Outline of Fourier Series: Math 201B February 24, 2011 1 Functions and convolutions 1.1 Periodic functions Periodic functions. Let = R/(2πZ) denote the circle, or onedimensional torus. A function f : C

More information

Average theorem, Restriction theorem and Strichartz estimates

Average theorem, Restriction theorem and Strichartz estimates Average theorem, Restriction theorem and trichartz estimates 2 August 27 Abstract We provide the details of the proof of the average theorem and the restriction theorem. Emphasis has been placed on the

More information

Quadratic reciprocity (after Weil) 1. Standard set-up and Poisson summation

Quadratic reciprocity (after Weil) 1. Standard set-up and Poisson summation (December 19, 010 Quadratic reciprocity (after Weil Paul Garrett garrett@math.umn.edu http://www.math.umn.edu/ garrett/ I show that over global fields k (characteristic not the quadratic norm residue symbol

More information

3 Integration and Expectation

3 Integration and Expectation 3 Integration and Expectation 3.1 Construction of the Lebesgue Integral Let (, F, µ) be a measure space (not necessarily a probability space). Our objective will be to define the Lebesgue integral R fdµ

More information

1 5 π 2. 5 π 3. 5 π π x. 5 π 4. Figure 1: We need calculus to find the area of the shaded region.

1 5 π 2. 5 π 3. 5 π π x. 5 π 4. Figure 1: We need calculus to find the area of the shaded region. . Area In order to quantify the size of a 2-dimensional object, we use area. Since we measure area in square units, we can think of the area of an object as the number of such squares it fills up. Using

More information

= 1 2 x (x 1) + 1 {x} (1 {x}). [t] dt = 1 x (x 1) + O (1), [t] dt = 1 2 x2 + O (x), (where the error is not now zero when x is an integer.

= 1 2 x (x 1) + 1 {x} (1 {x}). [t] dt = 1 x (x 1) + O (1), [t] dt = 1 2 x2 + O (x), (where the error is not now zero when x is an integer. Problem Sheet,. i) Draw the graphs for [] and {}. ii) Show that for α R, α+ α [t] dt = α and α+ α {t} dt =. Hint Split these integrals at the integer which must lie in any interval of length, such as [α,

More information

Abelian topological groups and (A/k) k. 1. Compact-discrete duality

Abelian topological groups and (A/k) k. 1. Compact-discrete duality (December 21, 2010) Abelian topological groups and (A/k) k Paul Garrett garrett@math.umn.edu http://www.math.umn.edu/ garrett/ 1. Compact-discrete duality 2. (A/k) k 3. Appendix: compact-open topology

More information

X n D X lim n F n (x) = F (x) for all x C F. lim n F n(u) = F (u) for all u C F. (2)

X n D X lim n F n (x) = F (x) for all x C F. lim n F n(u) = F (u) for all u C F. (2) 14:17 11/16/2 TOPIC. Convergence in distribution and related notions. This section studies the notion of the so-called convergence in distribution of real random variables. This is the kind of convergence

More information

Quadratic reciprocity (after Weil) 1. Standard set-up and Poisson summation

Quadratic reciprocity (after Weil) 1. Standard set-up and Poisson summation (September 17, 010) Quadratic reciprocity (after Weil) Paul Garrett garrett@math.umn.edu http://www.math.umn.edu/ garrett/ I show that over global fields (characteristic not ) the quadratic norm residue

More information

THE GAMMA FUNCTION AND THE ZETA FUNCTION

THE GAMMA FUNCTION AND THE ZETA FUNCTION THE GAMMA FUNCTION AND THE ZETA FUNCTION PAUL DUNCAN Abstract. The Gamma Function and the Riemann Zeta Function are two special functions that are critical to the study of many different fields of mathematics.

More information

LECTURE-15 : LOGARITHMS AND COMPLEX POWERS

LECTURE-15 : LOGARITHMS AND COMPLEX POWERS LECTURE-5 : LOGARITHMS AND COMPLEX POWERS VED V. DATAR The purpose of this lecture is twofold - first, to characterize domains on which a holomorphic logarithm can be defined, and second, to show that

More information

7: FOURIER SERIES STEVEN HEILMAN

7: FOURIER SERIES STEVEN HEILMAN 7: FOURIER SERIES STEVE HEILMA Contents 1. Review 1 2. Introduction 1 3. Periodic Functions 2 4. Inner Products on Periodic Functions 3 5. Trigonometric Polynomials 5 6. Periodic Convolutions 7 7. Fourier

More information

JUHA KINNUNEN. Partial Differential Equations

JUHA KINNUNEN. Partial Differential Equations JUHA KINNUNEN Partial Differential Equations Department of Mathematics and Systems Analysis, Aalto University 207 Contents INTRODUCTION 2 FOURIER SERIES AND PDES 5 2. Periodic functions*.............................

More information

Chapter IV Integration Theory

Chapter IV Integration Theory Chapter IV Integration Theory This chapter is devoted to the developement of integration theory. The main motivation is to extend the Riemann integral calculus to larger types of functions, thus leading

More information

CHAPTER 6 bis. Distributions

CHAPTER 6 bis. Distributions CHAPTER 6 bis Distributions The Dirac function has proved extremely useful and convenient to physicists, even though many a mathematician was truly horrified when the Dirac function was described to him:

More information

5.4 Continuity: Preliminary Notions

5.4 Continuity: Preliminary Notions 5.4. CONTINUITY: PRELIMINARY NOTIONS 181 5.4 Continuity: Preliminary Notions 5.4.1 Definitions The American Heritage Dictionary of the English Language defines continuity as an uninterrupted succession,

More information

Time-Frequency Analysis: Fourier Transforms and Wavelets

Time-Frequency Analysis: Fourier Transforms and Wavelets Chapter 4 Time-Frequenc Analsis: Fourier Transforms and Wavelets 4. Basics of Fourier Series 4.. Introduction Joseph Fourier (768-83) who gave his name to Fourier series, was not the first to use Fourier

More information

08a. Operators on Hilbert spaces. 1. Boundedness, continuity, operator norms

08a. Operators on Hilbert spaces. 1. Boundedness, continuity, operator norms (February 24, 2017) 08a. Operators on Hilbert spaces Paul Garrett garrett@math.umn.edu http://www.math.umn.edu/ garrett/ [This document is http://www.math.umn.edu/ garrett/m/real/notes 2016-17/08a-ops

More information

(January 6, 2006) Paul Garrett garrett/

(January 6, 2006) Paul Garrett  garrett/ (January 6, 2006)! "$# % & '!)( *+,.-0/%&1,3234)5 * (6# Paul Garrett garrett@math.umn.edu http://www.math.umn.edu/ garrett/ To communicate clearly in mathematical writing, it is helpful to clearly express

More information

0.1. Linear transformations

0.1. Linear transformations Suggestions for midterm review #3 The repetitoria are usually not complete; I am merely bringing up the points that many people didn t now on the recitations Linear transformations The following mostly

More information

Topological vectorspaces

Topological vectorspaces (July 25, 2011) Topological vectorspaces Paul Garrett garrett@math.umn.edu http://www.math.umn.edu/ garrett/ Natural non-fréchet spaces Topological vector spaces Quotients and linear maps More topological

More information

THS Step By Step Calculus Chapter 1

THS Step By Step Calculus Chapter 1 Name: Class Period: Throughout this packet there will be blanks you are epected to fill in prior to coming to class. This packet follows your Larson Tetbook. Do NOT throw away! Keep in 3 ring binder until

More information

n 1 f = f m, m=0 n 1 k=0 Note that if n = 2, we essentially get example (i) (but for complex functions).

n 1 f = f m, m=0 n 1 k=0 Note that if n = 2, we essentially get example (i) (but for complex functions). Chapter 4 Fourier Analysis 4.0.1 Intuition This discussion is borrowed from [T. Tao, Fourier Transform]. Fourier transform/series can be viewed as a way to decompose a function from some given space V

More information

Generalizing the Hardy-Littlewood Method for Primes

Generalizing the Hardy-Littlewood Method for Primes Generalizing the Hardy-Littlewood Method for Primes Ben Green (reporting on joint work with Terry Tao) Clay Institute/University of Cambridge August 20, 2006 Ben Green (Clay/Cambridge) Generalizing Hardy-Littlewood

More information

Size properties of wavelet packets generated using finite filters

Size properties of wavelet packets generated using finite filters Rev. Mat. Iberoamericana, 18 (2002, 249 265 Size properties of wavelet packets generated using finite filters Morten Nielsen Abstract We show that asymptotic estimates for the growth in L p (R- norm of

More information

LEBESGUE INTEGRATION. Introduction

LEBESGUE INTEGRATION. Introduction LEBESGUE INTEGATION EYE SJAMAA Supplementary notes Math 414, Spring 25 Introduction The following heuristic argument is at the basis of the denition of the Lebesgue integral. This argument will be imprecise,

More information

Garrett: `Bernstein's analytic continuation of complex powers' 2 Let f be a polynomial in x 1 ; : : : ; x n with real coecients. For complex s, let f

Garrett: `Bernstein's analytic continuation of complex powers' 2 Let f be a polynomial in x 1 ; : : : ; x n with real coecients. For complex s, let f 1 Bernstein's analytic continuation of complex powers c1995, Paul Garrett, garrettmath.umn.edu version January 27, 1998 Analytic continuation of distributions Statement of the theorems on analytic continuation

More information

DR.RUPNATHJI( DR.RUPAK NATH )

DR.RUPNATHJI( DR.RUPAK NATH ) Contents 1 Sets 1 2 The Real Numbers 9 3 Sequences 29 4 Series 59 5 Functions 81 6 Power Series 105 7 The elementary functions 111 Chapter 1 Sets It is very convenient to introduce some notation and terminology

More information

Harmonic Analysis. 1. Hermite Polynomials in Dimension One. Recall that if L 2 ([0 2π] ), then we can write as

Harmonic Analysis. 1. Hermite Polynomials in Dimension One. Recall that if L 2 ([0 2π] ), then we can write as Harmonic Analysis Recall that if L 2 ([0 2π] ), then we can write as () Z e ˆ (3.) F:L where the convergence takes place in L 2 ([0 2π] ) and ˆ is the th Fourier coefficient of ; that is, ˆ : (2π) [02π]

More information

Divergent Series: why = 1/12. Bryden Cais

Divergent Series: why = 1/12. Bryden Cais Divergent Series: why + + 3 + = /. Bryden Cais Divergent series are the invention of the devil, and it is shameful to base on them any demonstration whatsoever.. H. Abel. Introduction The notion of convergence

More information

Hartogs Theorem: separate analyticity implies joint Paul Garrett garrett/

Hartogs Theorem: separate analyticity implies joint Paul Garrett  garrett/ (February 9, 25) Hartogs Theorem: separate analyticity implies joint Paul Garrett garrett@math.umn.edu http://www.math.umn.edu/ garrett/ (The present proof of this old result roughly follows the proof

More information

Bernstein s analytic continuation of complex powers

Bernstein s analytic continuation of complex powers (April 3, 20) Bernstein s analytic continuation of complex powers Paul Garrett garrett@math.umn.edu http://www.math.umn.edu/ garrett/. Analytic continuation of distributions 2. Statement of the theorems

More information

Taylor Series and Series Convergence (Online)

Taylor Series and Series Convergence (Online) 7in 0in Felder c02_online.te V3 - February 9, 205 9:5 A.M. Page CHAPTER 2 Taylor Series and Series Convergence (Online) 2.8 Asymptotic Epansions In introductory calculus classes the statement this series

More information

A COUNTEREXAMPLE TO AN ENDPOINT BILINEAR STRICHARTZ INEQUALITY TERENCE TAO. t L x (R R2 ) f L 2 x (R2 )

A COUNTEREXAMPLE TO AN ENDPOINT BILINEAR STRICHARTZ INEQUALITY TERENCE TAO. t L x (R R2 ) f L 2 x (R2 ) Electronic Journal of Differential Equations, Vol. 2006(2006), No. 5, pp. 6. ISSN: 072-669. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu (login: ftp) A COUNTEREXAMPLE

More information

We denote the space of distributions on Ω by D ( Ω) 2.

We denote the space of distributions on Ω by D ( Ω) 2. Sep. 1 0, 008 Distributions Distributions are generalized functions. Some familiarity with the theory of distributions helps understanding of various function spaces which play important roles in the study

More information

A Symbolic Operator Approach to Several Summation Formulas for Power Series

A Symbolic Operator Approach to Several Summation Formulas for Power Series A Symbolic Operator Approach to Several Summation Formulas for Power Series T. X. He, L. C. Hsu 2, P. J.-S. Shiue 3, and D. C. Torney 4 Department of Mathematics and Computer Science Illinois Wesleyan

More information

Representations of moderate growth Paul Garrett 1. Constructing norms on groups

Representations of moderate growth Paul Garrett 1. Constructing norms on groups (December 31, 2004) Representations of moderate growth Paul Garrett Representations of reductive real Lie groups on Banach spaces, and on the smooth vectors in Banach space representations,

More information

MA651 Topology. Lecture 9. Compactness 2.

MA651 Topology. Lecture 9. Compactness 2. MA651 Topology. Lecture 9. Compactness 2. This text is based on the following books: Topology by James Dugundgji Fundamental concepts of topology by Peter O Neil Elements of Mathematics: General Topology

More information

BOUNDARY VALUE PROBLEMS ON A HALF SIERPINSKI GASKET

BOUNDARY VALUE PROBLEMS ON A HALF SIERPINSKI GASKET BOUNDARY VALUE PROBLEMS ON A HALF SIERPINSKI GASKET WEILIN LI AND ROBERT S. STRICHARTZ Abstract. We study boundary value problems for the Laplacian on a domain Ω consisting of the left half of the Sierpinski

More information

Integration. 5.1 Antiderivatives and Indefinite Integration. Suppose that f(x) = 5x 4. Can we find a function F (x) whose derivative is f(x)?

Integration. 5.1 Antiderivatives and Indefinite Integration. Suppose that f(x) = 5x 4. Can we find a function F (x) whose derivative is f(x)? 5 Integration 5. Antiderivatives and Indefinite Integration Suppose that f() = 5 4. Can we find a function F () whose derivative is f()? Definition. A function F is an antiderivative of f on an interval

More information

Normed and Banach Spaces

Normed and Banach Spaces (August 30, 2005) Normed and Banach Spaces Paul Garrett garrett@math.umn.edu http://www.math.umn.edu/ garrett/ We have seen that many interesting spaces of functions have natural structures of Banach spaces:

More information

Fall f(x)g(x) dx. The starting place for the theory of Fourier series is that the family of functions {e inx } n= is orthonormal, that is

Fall f(x)g(x) dx. The starting place for the theory of Fourier series is that the family of functions {e inx } n= is orthonormal, that is 18.103 Fall 2013 1. Fourier Series, Part 1. We will consider several function spaces during our study of Fourier series. When we talk about L p ((, π)), it will be convenient to include the factor 1/ in

More information

Calculus in Gauss Space

Calculus in Gauss Space Calculus in Gauss Space 1. The Gradient Operator The -dimensional Lebesgue space is the measurable space (E (E )) where E =[0 1) or E = R endowed with the Lebesgue measure, and the calculus of functions

More information

Fourier Analysis Fourier Series C H A P T E R 1 1

Fourier Analysis Fourier Series C H A P T E R 1 1 C H A P T E R Fourier Analysis 474 This chapter on Fourier analysis covers three broad areas: Fourier series in Secs...4, more general orthonormal series called Sturm iouville epansions in Secs..5 and.6

More information

Entrance Exam, Real Analysis September 1, 2017 Solve exactly 6 out of the 8 problems

Entrance Exam, Real Analysis September 1, 2017 Solve exactly 6 out of the 8 problems September, 27 Solve exactly 6 out of the 8 problems. Prove by denition (in ɛ δ language) that f(x) = + x 2 is uniformly continuous in (, ). Is f(x) uniformly continuous in (, )? Prove your conclusion.

More information

Dangerous and Illegal Operations in Calculus Do we avoid differentiating discontinuous functions because it s impossible, unwise, or simply out of

Dangerous and Illegal Operations in Calculus Do we avoid differentiating discontinuous functions because it s impossible, unwise, or simply out of Dangerous and Illegal Operations in Calculus Do we avoid differentiating discontinuous functions because it s impossible, unwise, or simply out of ignorance and fear? Despite the risks, many natural phenomena

More information

LECTURE Fourier Transform theory

LECTURE Fourier Transform theory LECTURE 3 3. Fourier Transform theory In section (2.2) we introduced the Discrete-time Fourier transform and developed its most important properties. Recall that the DTFT maps a finite-energy sequence

More information

Chapter 6 Expectation and Conditional Expectation. Lectures Definition 6.1. Two random variables defined on a probability space are said to be

Chapter 6 Expectation and Conditional Expectation. Lectures Definition 6.1. Two random variables defined on a probability space are said to be Chapter 6 Expectation and Conditional Expectation Lectures 24-30 In this chapter, we introduce expected value or the mean of a random variable. First we define expectation for discrete random variables

More information

MATH 51H Section 4. October 16, Recall what it means for a function between metric spaces to be continuous:

MATH 51H Section 4. October 16, Recall what it means for a function between metric spaces to be continuous: MATH 51H Section 4 October 16, 2015 1 Continuity Recall what it means for a function between metric spaces to be continuous: Definition. Let (X, d X ), (Y, d Y ) be metric spaces. A function f : X Y is

More information

Solutions to Complex Analysis Prelims Ben Strasser

Solutions to Complex Analysis Prelims Ben Strasser Solutions to Complex Analysis Prelims Ben Strasser In preparation for the complex analysis prelim, I typed up solutions to some old exams. This document includes complete solutions to both exams in 23,

More information

MAT 257, Handout 13: December 5-7, 2011.

MAT 257, Handout 13: December 5-7, 2011. MAT 257, Handout 13: December 5-7, 2011. The Change of Variables Theorem. In these notes, I try to make more explicit some parts of Spivak s proof of the Change of Variable Theorem, and to supply most

More information

1. Characterization and uniqueness of products

1. Characterization and uniqueness of products (March 16, 2014) Example of characterization by mapping properties: the product topology Paul Garrett garrett@math.umn.edu http://www.math.umn.edu/ garrett/ [This document is http://www.math.umn.edu/ garrett/m/mfms/notes

More information

1 Continuity Classes C m (Ω)

1 Continuity Classes C m (Ω) 0.1 Norms 0.1 Norms A norm on a linear space X is a function : X R with the properties: Positive Definite: x 0 x X (nonnegative) x = 0 x = 0 (strictly positive) λx = λ x x X, λ C(homogeneous) x + y x +

More information

Section 7.2: One-to-One, Onto and Inverse Functions

Section 7.2: One-to-One, Onto and Inverse Functions Section 7.2: One-to-One, Onto and Inverse Functions In this section we shall developed the elementary notions of one-to-one, onto and inverse functions, similar to that developed in a basic algebra course.

More information

Problem List MATH 5143 Fall, 2013

Problem List MATH 5143 Fall, 2013 Problem List MATH 5143 Fall, 2013 On any problem you may use the result of any previous problem (even if you were not able to do it) and any information given in class up to the moment the problem was

More information

Positive definite functions, completely monotone functions, the Bernstein-Widder theorem, and Schoenberg s theorem

Positive definite functions, completely monotone functions, the Bernstein-Widder theorem, and Schoenberg s theorem Positive definite functions, completely monotone functions, the Bernstein-Widder theorem, and Schoenberg s theorem Jordan Bell jordan.bell@gmail.com Department of Mathematics, University of Toronto June

More information

HARMONIC ANALYSIS TERENCE TAO

HARMONIC ANALYSIS TERENCE TAO HARMONIC ANALYSIS TERENCE TAO Analysis in general tends to revolve around the study of general classes of functions (often real-valued or complex-valued) and operators (which take one or more functions

More information

SOLUTIONS. Math 130 Midterm Spring True-False: Circle T if the statement is always true. Otherwise circle F.

SOLUTIONS. Math 130 Midterm Spring True-False: Circle T if the statement is always true. Otherwise circle F. SOLUTIONS Math 13 Midterm Spring 16 Directions: True-False: Circle T if the statement is always true. Otherwise circle F. Partial-Credit: Please show all work and fully justify each step. No credit will

More information

A Short Journey Through the Riemann Integral

A Short Journey Through the Riemann Integral A Short Journey Through the Riemann Integral Jesse Keyton April 23, 2014 Abstract An introductory-level theory of integration was studied, focusing primarily on the well-known Riemann integral and ending

More information

Chapter One. The Real Number System

Chapter One. The Real Number System Chapter One. The Real Number System We shall give a quick introduction to the real number system. It is imperative that we know how the set of real numbers behaves in the way that its completeness and

More information

Three hours THE UNIVERSITY OF MANCHESTER. 24th January

Three hours THE UNIVERSITY OF MANCHESTER. 24th January Three hours MATH41011 THE UNIVERSITY OF MANCHESTER FOURIER ANALYSIS AND LEBESGUE INTEGRATION 24th January 2013 9.45 12.45 Answer ALL SIX questions in Section A (25 marks in total). Answer THREE of the

More information

FUNDAMENTALS OF REAL ANALYSIS by. IV.1. Differentiation of Monotonic Functions

FUNDAMENTALS OF REAL ANALYSIS by. IV.1. Differentiation of Monotonic Functions FUNDAMNTALS OF RAL ANALYSIS by Doğan Çömez IV. DIFFRNTIATION AND SIGND MASURS IV.1. Differentiation of Monotonic Functions Question: Can we calculate f easily? More eplicitly, can we hope for a result

More information

Sequences. Chapter 3. n + 1 3n + 2 sin n n. 3. lim (ln(n + 1) ln n) 1. lim. 2. lim. 4. lim (1 + n)1/n. Answers: 1. 1/3; 2. 0; 3. 0; 4. 1.

Sequences. Chapter 3. n + 1 3n + 2 sin n n. 3. lim (ln(n + 1) ln n) 1. lim. 2. lim. 4. lim (1 + n)1/n. Answers: 1. 1/3; 2. 0; 3. 0; 4. 1. Chapter 3 Sequences Both the main elements of calculus (differentiation and integration) require the notion of a limit. Sequences will play a central role when we work with limits. Definition 3.. A Sequence

More information

The Process of Mathematical Proof

The Process of Mathematical Proof 1 The Process of Mathematical Proof Introduction. Mathematical proofs use the rules of logical deduction that grew out of the work of Aristotle around 350 BC. In previous courses, there was probably an

More information

1. When applied to an affected person, the test comes up positive in 90% of cases, and negative in 10% (these are called false negatives ).

1. When applied to an affected person, the test comes up positive in 90% of cases, and negative in 10% (these are called false negatives ). CS 70 Discrete Mathematics for CS Spring 2006 Vazirani Lecture 8 Conditional Probability A pharmaceutical company is marketing a new test for a certain medical condition. According to clinical trials,

More information

02. Measure and integral. 1. Borel-measurable functions and pointwise limits

02. Measure and integral. 1. Borel-measurable functions and pointwise limits (October 3, 2017) 02. Measure and integral Paul Garrett garrett@math.umn.edu http://www.math.umn.edu/ garrett/ [This document is http://www.math.umn.edu/ garrett/m/real/notes 2017-18/02 measure and integral.pdf]

More information

Seminorms and locally convex spaces

Seminorms and locally convex spaces (April 23, 2014) Seminorms and locally convex spaces Paul Garrett garrett@math.umn.edu http://www.math.umn.edu/ garrett/ [This document is http://www.math.umn.edu/ garrett/m/fun/notes 2012-13/07b seminorms.pdf]

More information

Hyperbolic Systems of Conservation Laws. in One Space Dimension. II - Solutions to the Cauchy problem. Alberto Bressan

Hyperbolic Systems of Conservation Laws. in One Space Dimension. II - Solutions to the Cauchy problem. Alberto Bressan Hyperbolic Systems of Conservation Laws in One Space Dimension II - Solutions to the Cauchy problem Alberto Bressan Department of Mathematics, Penn State University http://www.math.psu.edu/bressan/ 1 Global

More information

Compact operators on Banach spaces

Compact operators on Banach spaces Compact operators on Banach spaces Jordan Bell jordan.bell@gmail.com Department of Mathematics, University of Toronto November 12, 2017 1 Introduction In this note I prove several things about compact

More information

5 Set Operations, Functions, and Counting

5 Set Operations, Functions, and Counting 5 Set Operations, Functions, and Counting Let N denote the positive integers, N 0 := N {0} be the non-negative integers and Z = N 0 ( N) the positive and negative integers including 0, Q the rational numbers,

More information

Overview of normed linear spaces

Overview of normed linear spaces 20 Chapter 2 Overview of normed linear spaces Starting from this chapter, we begin examining linear spaces with at least one extra structure (topology or geometry). We assume linearity; this is a natural

More information

Harmonic Analysis: from Fourier to Haar. María Cristina Pereyra Lesley A. Ward

Harmonic Analysis: from Fourier to Haar. María Cristina Pereyra Lesley A. Ward Harmonic Analysis: from Fourier to Haar María Cristina Pereyra Lesley A. Ward Department of Mathematics and Statistics, MSC03 2150, 1 University of New Mexico, Albuquerque, NM 87131-0001, USA E-mail address:

More information

Math 121 Homework 2 Solutions

Math 121 Homework 2 Solutions Math 121 Homework 2 Solutions Problem 13.2 #16. Let K/F be an algebraic extension and let R be a ring contained in K that contains F. Prove that R is a subfield of K containing F. We will give two proofs.

More information

Problems for Chapter 3.

Problems for Chapter 3. Problems for Chapter 3. Let A denote a nonempty set of reals. The complement of A, denoted by A, or A C is the set of all points not in A. We say that belongs to the interior of A, Int A, if there eists

More information

L p -boundedness of the Hilbert transform

L p -boundedness of the Hilbert transform L p -boundedness of the Hilbert transform Kunal Narayan Chaudhury Abstract The Hilbert transform is essentially the only singular operator in one dimension. This undoubtedly makes it one of the the most

More information

Math 229: Introduction to Analytic Number Theory The product formula for ξ(s) and ζ(s); vertical distribution of zeros

Math 229: Introduction to Analytic Number Theory The product formula for ξ(s) and ζ(s); vertical distribution of zeros Math 9: Introduction to Analytic Number Theory The product formula for ξs) and ζs); vertical distribution of zeros Behavior on vertical lines. We next show that s s)ξs) is an entire function of order ;

More information

TADAHIRO OH 0, 3 8 (T R), (1.5) The result in [2] is in fact stated for time-periodic functions: 0, 1 3 (T 2 ). (1.4)

TADAHIRO OH 0, 3 8 (T R), (1.5) The result in [2] is in fact stated for time-periodic functions: 0, 1 3 (T 2 ). (1.4) PERIODIC L 4 -STRICHARTZ ESTIMATE FOR KDV TADAHIRO OH 1. Introduction In [], Bourgain proved global well-posedness of the periodic KdV in L T): u t + u xxx + uu x 0, x, t) T R. 1.1) The key ingredient

More information

The harmonic map flow

The harmonic map flow Chapter 2 The harmonic map flow 2.1 Definition of the flow The harmonic map flow was introduced by Eells-Sampson in 1964; their work could be considered the start of the field of geometric flows. The flow

More information