Garrett: `Bernstein's analytic continuation of complex powers' 2 Let f be a polynomial in x 1 ; : : : ; x n with real coecients. For complex s, let f

Size: px
Start display at page:

Download "Garrett: `Bernstein's analytic continuation of complex powers' 2 Let f be a polynomial in x 1 ; : : : ; x n with real coecients. For complex s, let f"

Transcription

1 1 Bernstein's analytic continuation of complex powers c1995, Paul Garrett, garrettmath.umn.edu version January 27, 1998 Analytic continuation of distributions Statement of the theorems on analytic continuation Bernstein's proofs Proof of the Lemma: the Bernstein polynomial Proof of the Proposition: estimates on zeros

2 Garrett: `Bernstein's analytic continuation of complex powers' 2 Let f be a polynomial in x 1 ; : : : ; x n with real coecients. For complex s, let f s + be the function dened by f s +(x) = f(x) s if f(x) 0 f s +(x) = 0 if f(x) 0 Certainly for <(s) 0 the function f s + is locally integrable. For s in this range, we can dened a distribution, denoted by the same symbol f s +, by f s +() := R n f s +(x) (x) dx where is in Cc 1 (R n ), the space of compactly-supported smooth real-valued functions on R n. The object is to analytically continue the distribution f+, s as a meromorphic (distribution-valued) function of s. This type of question was considered in several provocative examples in I.M. Gelfand and G.E. Shilov's Generalized Functions, volume I. (One should also ask about analytic continuation as a tempered distribution). In a lecture at the 1963 Amsterdam Congress, I.M. Gelfand rened this question to require further that one show that the `poles' lie in a nite number of arithmetic progressions. Bernstein proved the result in 1967, under a certain `regularity' hypothesis on the zero-set of the polynomial f. (Published in Journal of Functional Analysis and Its Applications, 1968, translated from Russian). The present discussion includes some background material from complex function theory and from the theory of distributions.

3 Garrett: `Bernstein's analytic continuation of complex powers' 3 1 Analytic continuation of distributions First we recall the nature of the topologies on test functions and on distributions. Let Cc 1 (U) be the collection of compactly-supported smooth functions with support inside a set U R n. As usual, for U compact, we have a countable family of seminorms on Cc 1 (U): (f) := sup jd fj x where for = ( 1 ; : : : ; n ) we write, as usual, D = 1 n : : : x 1 x n It is elementary to show that (for U compact) Cc 1 (U) is a complete, locally convex topological space (a Frechet space). To treat U not necessarily compact (e.g., R n itself) let U 1 U 2 : : : be compact subsets of U so that their union is all of U. Then Cc 1 (U) is the union of the spaces Cc 1 (U i ), and we give it with the locally convex direct limit topology. The spaces D (U) and D (R n ) of distributions on U and on R n, respectively, are the continuous duals of D(U) = Cc 1 (U) and D(R n ) = Cc 1 (R n ). For present purposes, the topology we put on the continuous dual space V of a topological vectorspace V is the weak- topology: a sub-basis near 0 in V is given by sets U v; := f 2 V : j(v)j < g In this context, a V -valued function f on an open subset of C is holomorphic on if, for every v 2 V, the C-valued function z! f(z)(v) on is holomorphic in the usual sense. This notion of holomorphy might be more pedantically termed `weak- holomorphy', since reference to the topology might be required. If z o 2 for an open subset of C and f is a holomorphic V -valued function on? z o, say that f is weakly meromorphic at z o if, for every v 2 V, the C-valued function z! f(z)(v) has a pole (as opposed to essential singularity) at z o. Say that f is strongly meromorphic at z o if the orders of these poles are bounded independently of v. That is, f is strongly meromorphic

4 Garrett: `Bernstein's analytic continuation of complex powers' 4 at z o if there is an integer n and an open set containing z o so that, for all v 2 V the C-valued function z! (z? z o ) n f(z)(v) is holomorphic on. If n is the least integer f so that (z?z o ) n f is holomorphic at z o, then f is of order?n at z o, etc. To say that f is strongly meromorphic on an open set is to require that there be a set S of points of with no accumulation point in so that f is holomorphic on? S, and so that f is strongly meromorphic at each point of S. For brevity, but risking some confusion, we will often say `meromorphic' instead of `strongly meromorphic'. 2 Statement of the theorems on analytic continuation Let O be the polynomial ring R[x 1 ; : : : ; x n ]. For z 2 R n, let O z be the local ring at z, i.e., the ring of ratios P=Q of polynomials where the denominator does not vanish at z. Let m z be the maximal ideal of O z consisting of elements of O z whose numerator vanishes at z. Let I z (depending upon f) be the ideal in O z generated by f ; : : : ; f x 1 x n A point z 2 R n is simple with respect to the polynomial f if f(z) = 0 for some N we have I z m N z There are i 2 m z so that f = P i i f xi Remarks: The second condition is equivalent to the assertion that O z =I z is nite-dimensional. The simplest situation in which the second condition holds is when I z = O z, i.e., some partial derivative of f is non-zero at z. The third condition does not follow from the rst two. For example, Bernstein points out that with f(x; y) = x 5 + y 5 + x 2 y 2 the rst two conditions hold but the third does not. Theorem (local version): If z is a simple point with respect to f, then there is a neighborhood U of x so that the distribution f s +;U() := f s +(x) (x) dx

5 Garrett: `Bernstein's analytic continuation of complex powers' 5 on test functions 2 Cc 1 (U) on U has an analytic continuation to a meromorphic element in the continuous dual of Cc 1 (U). Theorem (global version): If all real zeros of f(x) are simple (with respect to f), then f s + is a meromorphic (distribution-valued) function of s 2 C. 3 Bernstein's proof Let R z be the ring of linear dierential operators with coecients in O z. Note that R z is both a left and a right O-module: for D 2 R z, for f; g 2 O and a smooth function near z, the denition is (fdg)() := f D(g) Lemma: There is a dierential operator D 2 R z and a non-zero `Bernstein polynomial' H in a single variable so that D(f n+1 ) = H(n)f n for any natural number n. (Proof below.) Proof of Local Theorem from Lemma: Let U be a small-enough neighborhood of z so that on it all coecients of D are holomorphic on U. For suciently large natural numbers n the function f n+1 + is continuously dierentiable, so we have For each xed 2 C 1 c Df n+1 + = H(n)f n + (U) consider the function g(s) := (Df s+1 +? H(s)f s +)() The hypotheses of the proposition below are satised, so the equality for all large-enough natural numbers implies equality everywhere: This gives us Df s+1 + = H(s)f s + f s + = Df s+1 + H(s) Now we claim that for any 0 n 2 the distribution f s + on Cc 1 (U) is meromorphic for <(s) >?n. For n = 0 this is certain. The formula just derived then gives the induction step. Further, this argument makes clear that the `poles' of f s + restricted to C1 c (U) are concentrated on the nite collection of arithmetic progressions i ; i? 1; i? 2; : : :

6 Garrett: `Bernstein's analytic continuation of complex powers' 6 where the i are the roots of H(s). In particular, the order of the pole of f s + at a point s o is equal to the number of roots i so that s o lies among i ; i? 1; i? 2; : : : In particular, the distribution f s + really is (strongly) meromorphic. This proves the Theorem, granting the Lemma and granting the Proposition. Proposition (attributed by Bernstein to `Carlson'): If g is an analytic function for <s > 0 and jg(s)j < be c<s and if g(n) = 0 for all suciently large natural numbers n, then g 0. Proof of Global Theorem: Invoking the Local Theorem and its proof above, for each z 2 R n we choose a neighborhood U z of z in which f s + is meromorphic, so that U z is ariski-open, i.e., is the complement of a nite union of zero sets of polynomials. Indeed, writing f(x) = X i f with i 2 O z, as in the proof of the Local Theorem, let i = g i =h i with polynomials g i and h i, and take U z to be the complement of the union of the zero-sets of the denominators h i. Then Hilbert's Basis Theorem implies that the whole R n is covered by nitely-many U z1 ; : : : ; U zn of these ariski-opens. Then make a partition of unity P subordinate to this nite cover, i.e., take 1 ; : : : ; n so that i 0, i 1, and spt i U zi. Then f s + = X i if s + By choice of the neighborhoods U zi, the right-hand side is a nite sum of meromorphic (distribution-valued) functions. 4 Proof of the Lemma: the Bernstein polynomial Now we prove existence of the dierential operator D and the 'Bernstein polynomial' H. This is the most serious part of this proof. (The complex function theory proposition is not entirely trivial, but is approximately standard). Proof of Lemma: Let where the i 2 m z are so that P := X i 2 R z f = X i f 2 R z

7 Garrett: `Bernstein's analytic continuation of complex powers' 7 Also put Then we have S i := f P? f = f (P + 1)? Q P (f) = X i i f = f Thus, by Leibniz' formula, S i f = f f? f f = 0 P (f n ) = nf n S i (f n ) = 0 Sublemma: There is a non-zero polynomial M in one variable so that M(P ) can be written in the form M(P ) = X i for some J i 2 R z. Proof of Sublemma: Write, as usual, For a natural number m, write J i f jj = 1 + : : : + n P m = X jjm D m; where m; 2 O z. That is, we move all the coecients to the right of the dierential operators. That this is possible is easy to see: for example, x i? x i x j x j is 0 or?1 as i = j or not. Further, the coecients m; are polynomials in the i. Thus, Then taking M(P ) of the form m; 2 m jj z M(P ) = X mq b m P m = X m; D b m m;

8 Garrett: `Bernstein's analytic continuation of complex powers' 8 with b m 2 R, the condition of the sublemma will be met if X m b m m; 2 I z for all indices. If jj N, where I m N, then this condition is automatically fullled. Thus, there are nitely-many conditions X m b m m; = 0 where m; is the image of m; in O z =m N z. Since the latter quotient is, by hypothesis, a nite-dimensional vector space, the collection of such conditions gives a nite collection of homogeneous equations in the coecients b m. More specically, there are dim O z =m N z cardf : jj < Ng such conditions. By taking q large enough we assure the existence of a nontrivial solution fb m g. This proves the Sublemma. Returning to the proof of the Lemma: as an equation in R z Now put Then we have M(P )(P + 1) = X J i (P + 1) = X J i S i + X J i X D = J i H(P ) = M(P )(P + 1) X D(f n+1 ) = ( J i f)(f n ) = = H(P )(f n ) = H(n)f n f as desired. This proves the Lemma, constructing the dierential operator D. 5 Proof of the Proposition: estimates on zeros The result we need is a standard one from complex function theory, although it is not so elementary as to be an immediate corollary of Cauchy's Theorem: Proposition: If g is an analytic function for <s > 0 and jg(s)j < be c<s and if g(n) = 0 for all suciently large natural numbers n, then g 0. Proof of Proposition: Consider G(z) := e?c g( z + 1 z? 1 )

9 Garrett: `Bernstein's analytic continuation of complex powers' 9 Then g is turned into a bounded function G on the disc, with zeros at points (n? 1)=(n + 1) for suciently large natural numbers n. We claim that, for a bounded function G on the unit disc with zeros i, either G 0 or X (1? j i j) < +1 i If we prove this, then in the situation at hand the natural numbers are mapped to n := (n? 1)=(n + 1) = 1? 1 n + 1 so here X n (1? j n j) = X n 1 n + 1 = +1 Thus, we would conclude G 0 as desired. We recall Jensen's formula: for any holomorphic function G on the unit disc with G(0) 6= 0 and with zeros 1 ; : : :, for 0 < r < 1 we have jg(0)j jijr r 1 j i j = exp 2? log jg(re i )j d Granting this, our assumed boundedness of G on the disc gives us an absolute constant C so that for all N jg(0)j jijr r j i j C (We can harmlessly divide by a suitable power of z to guarantee that G(0) 6= 0.) Then, letting r! 1, j i j jg(0)j?1 C?1 For an innite product of positive real numbers j i j less than 1 to have a value > 0, it is elementary that we must have X i (1? j i j) < +1 as claimed. This proves the proposition. While we're here, let's recall the proof of Jensen's formula (e.g., as in Rudin's Real and Complex Analysis, page 308). Fix 0 < r < 1 and let H(z) := G(z) r2? z r(? z)? z where the rst product is over roots with jj < r and the second is over roots with jj = r. Then H is holomorphic and non-zero in an open disk of radius

10 Garrett: `Bernstein's analytic continuation of complex powers' 10 r + for some > 0. Thus, log jhj is harmonic in this disk, and we have the mean value property log jh(0)j = 1 log jh(re i )j d 2? On one hand, jh(0)j = jg(0)j r jj On the other hand, if jzj = r the factors have absolute value 1. Thus, where r 2? z r(? z) log jh(re i )j = log jg(re i )j? X As noted in Rudin (see below), e i arg = jj=r log j1? e i(?arg ) j 1 2? log j1? e i j d = 0 Therefore, the integral appearing in the assertion of the mean value property is unchanged upon replacing H by G. Putting this all together gives Jensen's formula. And let's do the integral computation, following Rudin. There is a function (z) on the open unit disc so that exp((z)) = 1? z since the disc is simply-connected. We uniquely specify this by requiring that (0) = 0. We have <(z) = log j1? zj and j=(z)j < 2 Let > 0 be small. Let? =? be the path which goes (counterclockwise) around the unit circle from e i to e (2?)i and let = be the path which goes (clockwise) around a small circle centered at 1 from e (2?)i to e i. Then log j1? e i 1 j d = lim!0 2 2? log j1? e i j d =

11 Garrett: `Bernstein's analytic continuation of complex powers' 11 1 = < 2i 1 = < 2i? (z) dz = z (z) dz z by Cauchy's theorem. Elementary estimates show that the latter integral has a bound of the form which goes to 0 as! 0. C log(1=)

Bernstein s analytic continuation of complex powers

Bernstein s analytic continuation of complex powers (April 3, 20) Bernstein s analytic continuation of complex powers Paul Garrett garrett@math.umn.edu http://www.math.umn.edu/ garrett/. Analytic continuation of distributions 2. Statement of the theorems

More information

Topological vectorspaces

Topological vectorspaces (July 25, 2011) Topological vectorspaces Paul Garrett garrett@math.umn.edu http://www.math.umn.edu/ garrett/ Natural non-fréchet spaces Topological vector spaces Quotients and linear maps More topological

More information

Representations of moderate growth Paul Garrett 1. Constructing norms on groups

Representations of moderate growth Paul Garrett 1. Constructing norms on groups (December 31, 2004) Representations of moderate growth Paul Garrett Representations of reductive real Lie groups on Banach spaces, and on the smooth vectors in Banach space representations,

More information

2 Garrett: `A Good Spectral Theorem' 1. von Neumann algebras, density theorem The commutant of a subring S of a ring R is S 0 = fr 2 R : rs = sr; 8s 2

2 Garrett: `A Good Spectral Theorem' 1. von Neumann algebras, density theorem The commutant of a subring S of a ring R is S 0 = fr 2 R : rs = sr; 8s 2 1 A Good Spectral Theorem c1996, Paul Garrett, garrett@math.umn.edu version February 12, 1996 1 Measurable Hilbert bundles Measurable Banach bundles Direct integrals of Hilbert spaces Trivializing Hilbert

More information

08a. Operators on Hilbert spaces. 1. Boundedness, continuity, operator norms

08a. Operators on Hilbert spaces. 1. Boundedness, continuity, operator norms (February 24, 2017) 08a. Operators on Hilbert spaces Paul Garrett garrett@math.umn.edu http://www.math.umn.edu/ garrett/ [This document is http://www.math.umn.edu/ garrett/m/real/notes 2016-17/08a-ops

More information

Hartogs Theorem: separate analyticity implies joint Paul Garrett garrett/

Hartogs Theorem: separate analyticity implies joint Paul Garrett  garrett/ (February 9, 25) Hartogs Theorem: separate analyticity implies joint Paul Garrett garrett@math.umn.edu http://www.math.umn.edu/ garrett/ (The present proof of this old result roughly follows the proof

More information

Let X be a topological space. We want it to look locally like C. So we make the following definition.

Let X be a topological space. We want it to look locally like C. So we make the following definition. February 17, 2010 1 Riemann surfaces 1.1 Definitions and examples Let X be a topological space. We want it to look locally like C. So we make the following definition. Definition 1. A complex chart on

More information

Theorem [Mean Value Theorem for Harmonic Functions] Let u be harmonic on D(z 0, R). Then for any r (0, R), u(z 0 ) = 1 z z 0 r

Theorem [Mean Value Theorem for Harmonic Functions] Let u be harmonic on D(z 0, R). Then for any r (0, R), u(z 0 ) = 1 z z 0 r 2. A harmonic conjugate always exists locally: if u is a harmonic function in an open set U, then for any disk D(z 0, r) U, there is f, which is analytic in D(z 0, r) and satisfies that Re f u. Since such

More information

Completeness and quasi-completeness. 1. Products, limits, coproducts, colimits

Completeness and quasi-completeness. 1. Products, limits, coproducts, colimits (April 24, 2014) Completeness and quasi-completeness Paul Garrett garrett@math.umn.edu http://www.math.umn.edu/ garrett/ [This document is http://www.math.umn.edu/ garrett/m/fun/notes 2012-13/07d quasi-completeness.pdf]

More information

INTRODUCTION TO REAL ANALYTIC GEOMETRY

INTRODUCTION TO REAL ANALYTIC GEOMETRY INTRODUCTION TO REAL ANALYTIC GEOMETRY KRZYSZTOF KURDYKA 1. Analytic functions in several variables 1.1. Summable families. Let (E, ) be a normed space over the field R or C, dim E

More information

Qualifying Exam Complex Analysis (Math 530) January 2019

Qualifying Exam Complex Analysis (Math 530) January 2019 Qualifying Exam Complex Analysis (Math 53) January 219 1. Let D be a domain. A function f : D C is antiholomorphic if for every z D the limit f(z + h) f(z) lim h h exists. Write f(z) = f(x + iy) = u(x,

More information

Max-Planck-Institut fur Mathematik in den Naturwissenschaften Leipzig Uniformly distributed measures in Euclidean spaces by Bernd Kirchheim and David Preiss Preprint-Nr.: 37 1998 Uniformly Distributed

More information

MA3111S COMPLEX ANALYSIS I

MA3111S COMPLEX ANALYSIS I MA3111S COMPLEX ANALYSIS I 1. The Algebra of Complex Numbers A complex number is an expression of the form a + ib, where a and b are real numbers. a is called the real part of a + ib and b the imaginary

More information

Banach-Alaoglu, boundedness, weak-to-strong principles Paul Garrett 1. Banach-Alaoglu theorem

Banach-Alaoglu, boundedness, weak-to-strong principles Paul Garrett 1. Banach-Alaoglu theorem (April 12, 2004) Banach-Alaoglu, boundedness, weak-to-strong principles Paul Garrett Banach-Alaoglu theorem: compactness of polars A variant Banach-Steinhaus theorem Bipolars Weak

More information

Review of complex analysis in one variable

Review of complex analysis in one variable CHAPTER 130 Review of complex analysis in one variable This gives a brief review of some of the basic results in complex analysis. In particular, it outlines the background in single variable complex analysis

More information

growth rates of perturbed time-varying linear systems, [14]. For this setup it is also necessary to study discrete-time systems with a transition map

growth rates of perturbed time-varying linear systems, [14]. For this setup it is also necessary to study discrete-time systems with a transition map Remarks on universal nonsingular controls for discrete-time systems Eduardo D. Sontag a and Fabian R. Wirth b;1 a Department of Mathematics, Rutgers University, New Brunswick, NJ 08903, b sontag@hilbert.rutgers.edu

More information

Vector-Valued Integrals

Vector-Valued Integrals (July 18, 2011) Vector-Valued Integrals Paul Garrett garrett@math.umn.edu http://www.math.umn.edu/ garrett/ 1. Gelfand-Pettis integrals 2. Coproducts, colimits of topological vectorspaces 3. Ubiquity of

More information

A theorem on summable families in normed groups. Dedicated to the professors of mathematics. L. Berg, W. Engel, G. Pazderski, and H.- W. Stolle.

A theorem on summable families in normed groups. Dedicated to the professors of mathematics. L. Berg, W. Engel, G. Pazderski, and H.- W. Stolle. Rostock. Math. Kolloq. 49, 51{56 (1995) Subject Classication (AMS) 46B15, 54A20, 54E15 Harry Poppe A theorem on summable families in normed groups Dedicated to the professors of mathematics L. Berg, W.

More information

Solutions to Complex Analysis Prelims Ben Strasser

Solutions to Complex Analysis Prelims Ben Strasser Solutions to Complex Analysis Prelims Ben Strasser In preparation for the complex analysis prelim, I typed up solutions to some old exams. This document includes complete solutions to both exams in 23,

More information

Linear Algebra (part 1) : Vector Spaces (by Evan Dummit, 2017, v. 1.07) 1.1 The Formal Denition of a Vector Space

Linear Algebra (part 1) : Vector Spaces (by Evan Dummit, 2017, v. 1.07) 1.1 The Formal Denition of a Vector Space Linear Algebra (part 1) : Vector Spaces (by Evan Dummit, 2017, v. 1.07) Contents 1 Vector Spaces 1 1.1 The Formal Denition of a Vector Space.................................. 1 1.2 Subspaces...................................................

More information

Department of Mathematics, University of California, Berkeley. GRADUATE PRELIMINARY EXAMINATION, Part A Fall Semester 2016

Department of Mathematics, University of California, Berkeley. GRADUATE PRELIMINARY EXAMINATION, Part A Fall Semester 2016 Department of Mathematics, University of California, Berkeley YOUR 1 OR 2 DIGIT EXAM NUMBER GRADUATE PRELIMINARY EXAMINATION, Part A Fall Semester 2016 1. Please write your 1- or 2-digit exam number on

More information

Stanford Mathematics Department Math 205A Lecture Supplement #4 Borel Regular & Radon Measures

Stanford Mathematics Department Math 205A Lecture Supplement #4 Borel Regular & Radon Measures 2 1 Borel Regular Measures We now state and prove an important regularity property of Borel regular outer measures: Stanford Mathematics Department Math 205A Lecture Supplement #4 Borel Regular & Radon

More information

Tools from Lebesgue integration

Tools from Lebesgue integration Tools from Lebesgue integration E.P. van den Ban Fall 2005 Introduction In these notes we describe some of the basic tools from the theory of Lebesgue integration. Definitions and results will be given

More information

NATIONAL UNIVERSITY OF SINGAPORE Department of Mathematics MA4247 Complex Analysis II Lecture Notes Part II

NATIONAL UNIVERSITY OF SINGAPORE Department of Mathematics MA4247 Complex Analysis II Lecture Notes Part II NATIONAL UNIVERSITY OF SINGAPORE Department of Mathematics MA4247 Complex Analysis II Lecture Notes Part II Chapter 2 Further properties of analytic functions 21 Local/Global behavior of analytic functions;

More information

POWER SERIES AND ANALYTIC CONTINUATION

POWER SERIES AND ANALYTIC CONTINUATION POWER SERIES AND ANALYTIC CONTINUATION 1. Analytic functions Definition 1.1. A function f : Ω C C is complex-analytic if for each z 0 Ω there exists a power series f z0 (z) := a n (z z 0 ) n which converges

More information

Notes on Distributions

Notes on Distributions Notes on Distributions Functional Analysis 1 Locally Convex Spaces Definition 1. A vector space (over R or C) is said to be a topological vector space (TVS) if it is a Hausdorff topological space and the

More information

Complex Analysis Qualifying Exam Solutions

Complex Analysis Qualifying Exam Solutions Complex Analysis Qualifying Exam Solutions May, 04 Part.. Let log z be the principal branch of the logarithm defined on G = {z C z (, 0]}. Show that if t > 0, then the equation log z = t has exactly one

More information

B. Appendix B. Topological vector spaces

B. Appendix B. Topological vector spaces B.1 B. Appendix B. Topological vector spaces B.1. Fréchet spaces. In this appendix we go through the definition of Fréchet spaces and their inductive limits, such as they are used for definitions of function

More information

COMPLEX ANALYSIS Spring 2014

COMPLEX ANALYSIS Spring 2014 COMPLEX ANALYSIS Spring 204 Cauchy and Runge Under the Same Roof. These notes can be used as an alternative to Section 5.5 of Chapter 2 in the textbook. They assume the theorem on winding numbers of the

More information

Seminorms and locally convex spaces

Seminorms and locally convex spaces (April 23, 2014) Seminorms and locally convex spaces Paul Garrett garrett@math.umn.edu http://www.math.umn.edu/ garrett/ [This document is http://www.math.umn.edu/ garrett/m/fun/notes 2012-13/07b seminorms.pdf]

More information

LECTURE-15 : LOGARITHMS AND COMPLEX POWERS

LECTURE-15 : LOGARITHMS AND COMPLEX POWERS LECTURE-5 : LOGARITHMS AND COMPLEX POWERS VED V. DATAR The purpose of this lecture is twofold - first, to characterize domains on which a holomorphic logarithm can be defined, and second, to show that

More information

1 Holomorphic functions

1 Holomorphic functions Robert Oeckl CA NOTES 1 15/09/2009 1 1 Holomorphic functions 11 The complex derivative The basic objects of complex analysis are the holomorphic functions These are functions that posses a complex derivative

More information

Proposition 5. Group composition in G 1 (N) induces the structure of an abelian group on K 1 (X):

Proposition 5. Group composition in G 1 (N) induces the structure of an abelian group on K 1 (X): 2 RICHARD MELROSE 3. Lecture 3: K-groups and loop groups Wednesday, 3 September, 2008 Reconstructed, since I did not really have notes { because I was concentrating too hard on the 3 lectures on blow-up

More information

5 Banach Algebras. 5.1 Invertibility and the Spectrum. Robert Oeckl FA NOTES 5 19/05/2010 1

5 Banach Algebras. 5.1 Invertibility and the Spectrum. Robert Oeckl FA NOTES 5 19/05/2010 1 Robert Oeckl FA NOTES 5 19/05/2010 1 5 Banach Algebras 5.1 Invertibility and the Spectrum Suppose X is a Banach space. Then we are often interested in (continuous) operators on this space, i.e, elements

More information

Our goal is to solve a general constant coecient linear second order. this way but that will not always happen). Once we have y 1, it will always

Our goal is to solve a general constant coecient linear second order. this way but that will not always happen). Once we have y 1, it will always October 5 Relevant reading: Section 2.1, 2.2, 2.3 and 2.4 Our goal is to solve a general constant coecient linear second order ODE a d2 y dt + bdy + cy = g (t) 2 dt where a, b, c are constants and a 0.

More information

Normed and Banach Spaces

Normed and Banach Spaces (August 30, 2005) Normed and Banach Spaces Paul Garrett garrett@math.umn.edu http://www.math.umn.edu/ garrett/ We have seen that many interesting spaces of functions have natural structures of Banach spaces:

More information

Analysis Comprehensive Exam, January 2011 Instructions: Do as many problems as you can. You should attempt to answer completely some questions in both

Analysis Comprehensive Exam, January 2011 Instructions: Do as many problems as you can. You should attempt to answer completely some questions in both Analysis Comprehensive Exam, January 2011 Instructions: Do as many problems as you can. You should attempt to answer completely some questions in both real and complex analysis. You have 3 hours. Real

More information

4.6 Montel's Theorem. Robert Oeckl CA NOTES 7 17/11/2009 1

4.6 Montel's Theorem. Robert Oeckl CA NOTES 7 17/11/2009 1 Robert Oeckl CA NOTES 7 17/11/2009 1 4.6 Montel's Theorem Let X be a topological space. We denote by C(X) the set of complex valued continuous functions on X. Denition 4.26. A topological space is called

More information

SPRING 2006 PRELIMINARY EXAMINATION SOLUTIONS

SPRING 2006 PRELIMINARY EXAMINATION SOLUTIONS SPRING 006 PRELIMINARY EXAMINATION SOLUTIONS 1A. Let G be the subgroup of the free abelian group Z 4 consisting of all integer vectors (x, y, z, w) such that x + 3y + 5z + 7w = 0. (a) Determine a linearly

More information

MATH 566 LECTURE NOTES 4: ISOLATED SINGULARITIES AND THE RESIDUE THEOREM

MATH 566 LECTURE NOTES 4: ISOLATED SINGULARITIES AND THE RESIDUE THEOREM MATH 566 LECTURE NOTES 4: ISOLATED SINGULARITIES AND THE RESIDUE THEOREM TSOGTGEREL GANTUMUR 1. Functions holomorphic on an annulus Let A = D R \D r be an annulus centered at 0 with 0 < r < R

More information

Qualifying Exams I, 2014 Spring

Qualifying Exams I, 2014 Spring Qualifying Exams I, 2014 Spring 1. (Algebra) Let k = F q be a finite field with q elements. Count the number of monic irreducible polynomials of degree 12 over k. 2. (Algebraic Geometry) (a) Show that

More information

P-adic Functions - Part 1

P-adic Functions - Part 1 P-adic Functions - Part 1 Nicolae Ciocan 22.11.2011 1 Locally constant functions Motivation: Another big difference between p-adic analysis and real analysis is the existence of nontrivial locally constant

More information

Midterm 1. Every element of the set of functions is continuous

Midterm 1. Every element of the set of functions is continuous Econ 200 Mathematics for Economists Midterm Question.- Consider the set of functions F C(0, ) dened by { } F = f C(0, ) f(x) = ax b, a A R and b B R That is, F is a subset of the set of continuous functions

More information

WEIERSTRASS THEOREMS AND RINGS OF HOLOMORPHIC FUNCTIONS

WEIERSTRASS THEOREMS AND RINGS OF HOLOMORPHIC FUNCTIONS WEIERSTRASS THEOREMS AND RINGS OF HOLOMORPHIC FUNCTIONS YIFEI ZHAO Contents. The Weierstrass factorization theorem 2. The Weierstrass preparation theorem 6 3. The Weierstrass division theorem 8 References

More information

Notes on Complex Analysis

Notes on Complex Analysis Michael Papadimitrakis Notes on Complex Analysis Department of Mathematics University of Crete Contents The complex plane.. The complex plane...................................2 Argument and polar representation.........................

More information

ζ(u) z du du Since γ does not pass through z, f is defined and continuous on [a, b]. Furthermore, for all t such that dζ

ζ(u) z du du Since γ does not pass through z, f is defined and continuous on [a, b]. Furthermore, for all t such that dζ Lecture 6 Consequences of Cauchy s Theorem MATH-GA 45.00 Complex Variables Cauchy s Integral Formula. Index of a point with respect to a closed curve Let z C, and a piecewise differentiable closed curve

More information

The weak topology of locally convex spaces and the weak-* topology of their duals

The weak topology of locally convex spaces and the weak-* topology of their duals The weak topology of locally convex spaces and the weak-* topology of their duals Jordan Bell jordan.bell@gmail.com Department of Mathematics, University of Toronto April 3, 2014 1 Introduction These notes

More information

The uniformization theorem

The uniformization theorem 1 The uniformization theorem Thurston s basic insight in all four of the theorems discussed in this book is that either the topology of the problem induces an appropriate geometry or there is an understandable

More information

The Erwin Schrodinger International Boltzmanngasse 9. Institute for Mathematical Physics A-1090 Wien, Austria

The Erwin Schrodinger International Boltzmanngasse 9. Institute for Mathematical Physics A-1090 Wien, Austria ESI The Erwin Schrodinger International Boltzmanngasse 9 Institute for Mathematical Physics A-1090 Wien, Austria Noncommutative Contact Algebras Hideki Omori Yoshiaki Maeda Naoya Miyazaki Akira Yoshioka

More information

Part II. Riemann Surfaces. Year

Part II. Riemann Surfaces. Year Part II Year 2018 2017 2016 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2018 96 Paper 2, Section II 23F State the uniformisation theorem. List without proof the Riemann surfaces which are uniformised

More information

Complex Variables Notes for Math 703. Updated Fall Anton R. Schep

Complex Variables Notes for Math 703. Updated Fall Anton R. Schep Complex Variables Notes for Math 703. Updated Fall 20 Anton R. Schep CHAPTER Holomorphic (or Analytic) Functions. Definitions and elementary properties In complex analysis we study functions f : S C,

More information

An Introduction to Complex Analysis and Geometry John P. D Angelo, Pure and Applied Undergraduate Texts Volume 12, American Mathematical Society, 2010

An Introduction to Complex Analysis and Geometry John P. D Angelo, Pure and Applied Undergraduate Texts Volume 12, American Mathematical Society, 2010 An Introduction to Complex Analysis and Geometry John P. D Angelo, Pure and Applied Undergraduate Texts Volume 12, American Mathematical Society, 2010 John P. D Angelo, Univ. of Illinois, Urbana IL 61801.

More information

is holomorphic. In other words, a holomorphic function is a collection of compatible holomorphic functions on all charts.

is holomorphic. In other words, a holomorphic function is a collection of compatible holomorphic functions on all charts. RIEMANN SURFACES 2. Week 2. Basic definitions 2.1. Smooth manifolds. Complex manifolds. Let X be a topological space. A (real) chart of X is a pair (U, f : U R n ) where U is an open subset of X and f

More information

Math 213br HW 1 solutions

Math 213br HW 1 solutions Math 213br HW 1 solutions February 26, 2014 Problem 1 Let P (x) be a polynomial of degree d > 1 with P (x) > 0 for all x 0. For what values of α R does the integral I(α) = 0 x α P (x) dx converge? Give

More information

Hahn-Banach theorems. 1. Continuous Linear Functionals

Hahn-Banach theorems. 1. Continuous Linear Functionals (April 22, 2014) Hahn-Banach theorems Paul Garrett garrett@math.umn.edu http://www.math.umn.edu/ garrett/ [This document is http://www.math.umn.edu/ garrett/m/fun/notes 2012-13/07c hahn banach.pdf] 1.

More information

Part IB Complex Analysis

Part IB Complex Analysis Part IB Complex Analysis Theorems Based on lectures by I. Smith Notes taken by Dexter Chua Lent 2016 These notes are not endorsed by the lecturers, and I have modified them (often significantly) after

More information

Counterexamples to witness conjectures. Notations Let E be the set of admissible constant expressions built up from Z; + ;?;;/; exp and log. Here a co

Counterexamples to witness conjectures. Notations Let E be the set of admissible constant expressions built up from Z; + ;?;;/; exp and log. Here a co Counterexamples to witness conjectures Joris van der Hoeven D pt. de Math matiques (b t. 45) Universit Paris-Sud 91405 Orsay CEDEX France August 15, 003 Consider the class of exp-log constants, which is

More information

are Banach algebras. f(x)g(x) max Example 7.4. Similarly, A = L and A = l with the pointwise multiplication

are Banach algebras. f(x)g(x) max Example 7.4. Similarly, A = L and A = l with the pointwise multiplication 7. Banach algebras Definition 7.1. A is called a Banach algebra (with unit) if: (1) A is a Banach space; (2) There is a multiplication A A A that has the following properties: (xy)z = x(yz), (x + y)z =

More information

Convex Optimization Notes

Convex Optimization Notes Convex Optimization Notes Jonathan Siegel January 2017 1 Convex Analysis This section is devoted to the study of convex functions f : B R {+ } and convex sets U B, for B a Banach space. The case of B =

More information

(03) So when the order of { divides no N j at all then Z { (s) is holomorphic on C Now the N j are not intrinsically associated to f 1 f0g; but the or

(03) So when the order of { divides no N j at all then Z { (s) is holomorphic on C Now the N j are not intrinsically associated to f 1 f0g; but the or HOLOMORPHY OF LOCAL ZETA FUNCTIONS FOR CURVES Willem Veys Introduction (01) Let K be a nite extension of the eld Q p of p{adic numbers, R the valuation ring of K, P the maximal ideal of R, and K = R=P

More information

Locally convex spaces, the hyperplane separation theorem, and the Krein-Milman theorem

Locally convex spaces, the hyperplane separation theorem, and the Krein-Milman theorem 56 Chapter 7 Locally convex spaces, the hyperplane separation theorem, and the Krein-Milman theorem Recall that C(X) is not a normed linear space when X is not compact. On the other hand we could use semi

More information

1. If 1, ω, ω 2, -----, ω 9 are the 10 th roots of unity, then (1 + ω) (1 + ω 2 ) (1 + ω 9 ) is A) 1 B) 1 C) 10 D) 0

1. If 1, ω, ω 2, -----, ω 9 are the 10 th roots of unity, then (1 + ω) (1 + ω 2 ) (1 + ω 9 ) is A) 1 B) 1 C) 10 D) 0 4 INUTES. If, ω, ω, -----, ω 9 are the th roots of unity, then ( + ω) ( + ω ) ----- ( + ω 9 ) is B) D) 5. i If - i = a + ib, then a =, b = B) a =, b = a =, b = D) a =, b= 3. Find the integral values for

More information

MATH 722, COMPLEX ANALYSIS, SPRING 2009 PART 5

MATH 722, COMPLEX ANALYSIS, SPRING 2009 PART 5 MATH 722, COMPLEX ANALYSIS, SPRING 2009 PART 5.. The Arzela-Ascoli Theorem.. The Riemann mapping theorem Let X be a metric space, and let F be a family of continuous complex-valued functions on X. We have

More information

Part IB. Further Analysis. Year

Part IB. Further Analysis. Year Year 2004 2003 2002 2001 10 2004 2/I/4E Let τ be the topology on N consisting of the empty set and all sets X N such that N \ X is finite. Let σ be the usual topology on R, and let ρ be the topology on

More information

Topic 4 Notes Jeremy Orloff

Topic 4 Notes Jeremy Orloff Topic 4 Notes Jeremy Orloff 4 auchy s integral formula 4. Introduction auchy s theorem is a big theorem which we will use almost daily from here on out. Right away it will reveal a number of interesting

More information

INTRODUCTION TO NETS. limits to coincide, since it can be deduced: i.e. x

INTRODUCTION TO NETS. limits to coincide, since it can be deduced: i.e. x INTRODUCTION TO NETS TOMMASO RUSSO 1. Sequences do not describe the topology The goal of this rst part is to justify via some examples the fact that sequences are not sucient to describe a topological

More information

Considering our result for the sum and product of analytic functions, this means that for (a 0, a 1,..., a N ) C N+1, the polynomial.

Considering our result for the sum and product of analytic functions, this means that for (a 0, a 1,..., a N ) C N+1, the polynomial. Lecture 3 Usual complex functions MATH-GA 245.00 Complex Variables Polynomials. Construction f : z z is analytic on all of C since its real and imaginary parts satisfy the Cauchy-Riemann relations and

More information

FINAL EXAM MATH 220A, UCSD, AUTUMN 14. You have three hours.

FINAL EXAM MATH 220A, UCSD, AUTUMN 14. You have three hours. FINAL EXAM MATH 220A, UCSD, AUTUMN 4 You have three hours. Problem Points Score There are 6 problems, and the total number of points is 00. Show all your work. Please make your work as clear and easy to

More information

MAT 544 Problem Set 2 Solutions

MAT 544 Problem Set 2 Solutions MAT 544 Problem Set 2 Solutions Problems. Problem 1 A metric space is separable if it contains a dense subset which is finite or countably infinite. Prove that every totally bounded metric space X is separable.

More information

Math 225B: Differential Geometry, Final

Math 225B: Differential Geometry, Final Math 225B: Differential Geometry, Final Ian Coley March 5, 204 Problem Spring 20,. Show that if X is a smooth vector field on a (smooth) manifold of dimension n and if X p is nonzero for some point of

More information

Rearrangements and polar factorisation of countably degenerate functions G.R. Burton, School of Mathematical Sciences, University of Bath, Claverton D

Rearrangements and polar factorisation of countably degenerate functions G.R. Burton, School of Mathematical Sciences, University of Bath, Claverton D Rearrangements and polar factorisation of countably degenerate functions G.R. Burton, School of Mathematical Sciences, University of Bath, Claverton Down, Bath BA2 7AY, U.K. R.J. Douglas, Isaac Newton

More information

Contents. 4 Arithmetic and Unique Factorization in Integral Domains. 4.1 Euclidean Domains and Principal Ideal Domains

Contents. 4 Arithmetic and Unique Factorization in Integral Domains. 4.1 Euclidean Domains and Principal Ideal Domains Ring Theory (part 4): Arithmetic and Unique Factorization in Integral Domains (by Evan Dummit, 018, v. 1.00) Contents 4 Arithmetic and Unique Factorization in Integral Domains 1 4.1 Euclidean Domains and

More information

THE RESIDUE THEOREM. f(z) dz = 2πi res z=z0 f(z). C

THE RESIDUE THEOREM. f(z) dz = 2πi res z=z0 f(z). C THE RESIDUE THEOREM ontents 1. The Residue Formula 1 2. Applications and corollaries of the residue formula 2 3. ontour integration over more general curves 5 4. Defining the logarithm 7 Now that we have

More information

2 DAVID W. BOYD AND R. DANIEL MAULDIN of a Pisot number, A() 6=, A(1=) 6=, and ja(z)j jq(z)j on jzj = 1. Thus jf(z)j 1onjzj = 1 and f(z) has a unique

2 DAVID W. BOYD AND R. DANIEL MAULDIN of a Pisot number, A() 6=, A(1=) 6=, and ja(z)j jq(z)j on jzj = 1. Thus jf(z)j 1onjzj = 1 and f(z) has a unique Topology and Its Applications, 69(1996), 115-12 THE ORDER TYPE OF THE SET OF PISOT NUMBERS David W. Boyd and R. Daniel Mauldin y University of British Columbia and University of North Texas September 7,

More information

LECTURE 3 Functional spaces on manifolds

LECTURE 3 Functional spaces on manifolds LECTURE 3 Functional spaces on manifolds The aim of this section is to introduce Sobolev spaces on manifolds (or on vector bundles over manifolds). These will be the Banach spaces of sections we were after

More information

COMPLETELY INVARIANT JULIA SETS OF POLYNOMIAL SEMIGROUPS

COMPLETELY INVARIANT JULIA SETS OF POLYNOMIAL SEMIGROUPS Series Logo Volume 00, Number 00, Xxxx 19xx COMPLETELY INVARIANT JULIA SETS OF POLYNOMIAL SEMIGROUPS RICH STANKEWITZ Abstract. Let G be a semigroup of rational functions of degree at least two, under composition

More information

An introduction to some aspects of functional analysis

An introduction to some aspects of functional analysis An introduction to some aspects of functional analysis Stephen Semmes Rice University Abstract These informal notes deal with some very basic objects in functional analysis, including norms and seminorms

More information

Riemann Surfaces and Algebraic Curves

Riemann Surfaces and Algebraic Curves Riemann Surfaces and Algebraic Curves JWR Tuesday December 11, 2001, 9:03 AM We describe the relation between algebraic curves and Riemann surfaces. An elementary reference for this material is [1]. 1

More information

Chapter 3: Baire category and open mapping theorems

Chapter 3: Baire category and open mapping theorems MA3421 2016 17 Chapter 3: Baire category and open mapping theorems A number of the major results rely on completeness via the Baire category theorem. 3.1 The Baire category theorem 3.1.1 Definition. A

More information

Math 868 Final Exam. Part 1. Complete 5 of the following 7 sentences to make a precise definition (5 points each). Y (φ t ) Y lim

Math 868 Final Exam. Part 1. Complete 5 of the following 7 sentences to make a precise definition (5 points each). Y (φ t ) Y lim SOLUTIONS Dec 13, 218 Math 868 Final Exam In this exam, all manifolds, maps, vector fields, etc. are smooth. Part 1. Complete 5 of the following 7 sentences to make a precise definition (5 points each).

More information

Course 214 Basic Properties of Holomorphic Functions Second Semester 2008

Course 214 Basic Properties of Holomorphic Functions Second Semester 2008 Course 214 Basic Properties of Holomorphic Functions Second Semester 2008 David R. Wilkins Copyright c David R. Wilkins 1989 2008 Contents 7 Basic Properties of Holomorphic Functions 72 7.1 Taylor s Theorem

More information

2 Infinite products and existence of compactly supported φ

2 Infinite products and existence of compactly supported φ 415 Wavelets 1 Infinite products and existence of compactly supported φ Infinite products.1 Infinite products a n need to be defined via limits. But we do not simply say that a n = lim a n N whenever the

More information

F (z) =f(z). f(z) = a n (z z 0 ) n. F (z) = a n (z z 0 ) n

F (z) =f(z). f(z) = a n (z z 0 ) n. F (z) = a n (z z 0 ) n 6 Chapter 2. CAUCHY S THEOREM AND ITS APPLICATIONS Theorem 5.6 (Schwarz reflection principle) Suppose that f is a holomorphic function in Ω + that extends continuously to I and such that f is real-valued

More information

Vector Space Basics. 1 Abstract Vector Spaces. 1. (commutativity of vector addition) u + v = v + u. 2. (associativity of vector addition)

Vector Space Basics. 1 Abstract Vector Spaces. 1. (commutativity of vector addition) u + v = v + u. 2. (associativity of vector addition) Vector Space Basics (Remark: these notes are highly formal and may be a useful reference to some students however I am also posting Ray Heitmann's notes to Canvas for students interested in a direct computational

More information

02. Measure and integral. 1. Borel-measurable functions and pointwise limits

02. Measure and integral. 1. Borel-measurable functions and pointwise limits (October 3, 2017) 02. Measure and integral Paul Garrett garrett@math.umn.edu http://www.math.umn.edu/ garrett/ [This document is http://www.math.umn.edu/ garrett/m/real/notes 2017-18/02 measure and integral.pdf]

More information

Notes on Iterated Expectations Stephen Morris February 2002

Notes on Iterated Expectations Stephen Morris February 2002 Notes on Iterated Expectations Stephen Morris February 2002 1. Introduction Consider the following sequence of numbers. Individual 1's expectation of random variable X; individual 2's expectation of individual

More information

A note on a construction of J. F. Feinstein

A note on a construction of J. F. Feinstein STUDIA MATHEMATICA 169 (1) (2005) A note on a construction of J. F. Feinstein by M. J. Heath (Nottingham) Abstract. In [6] J. F. Feinstein constructed a compact plane set X such that R(X), the uniform

More information

1. Pseudo-Eisenstein series

1. Pseudo-Eisenstein series (January 4, 202) Spectral Theory for SL 2 (Z)\SL 2 (R)/SO 2 (R) Paul Garrett garrett@math.umn.edu http://www.math.umn.edu/ garrett/ Pseudo-Eisenstein series Fourier-Laplace-Mellin transforms Recollection

More information

(1.) For any subset P S we denote by L(P ) the abelian group of integral relations between elements of P, i.e. L(P ) := ker Z P! span Z P S S : For ea

(1.) For any subset P S we denote by L(P ) the abelian group of integral relations between elements of P, i.e. L(P ) := ker Z P! span Z P S S : For ea Torsion of dierentials on toric varieties Klaus Altmann Institut fur reine Mathematik, Humboldt-Universitat zu Berlin Ziegelstr. 13a, D-10099 Berlin, Germany. E-mail: altmann@mathematik.hu-berlin.de Abstract

More information

Plurisubharmonic Functions and Pseudoconvex Domains

Plurisubharmonic Functions and Pseudoconvex Domains Plurisubharmonic Functions and Pseudoconvex Domains Thomas Jackson June 8, 218 1 Introduction The purpose of this project is to give a brief background of basic complex analysis in several complex variables

More information

2. Function spaces and approximation

2. Function spaces and approximation 2.1 2. Function spaces and approximation 2.1. The space of test functions. Notation and prerequisites are collected in Appendix A. Let Ω be an open subset of R n. The space C0 (Ω), consisting of the C

More information

Quasi-conformal maps and Beltrami equation

Quasi-conformal maps and Beltrami equation Chapter 7 Quasi-conformal maps and Beltrami equation 7. Linear distortion Assume that f(x + iy) =u(x + iy)+iv(x + iy) be a (real) linear map from C C that is orientation preserving. Let z = x + iy and

More information

Conformal Mappings. Chapter Schwarz Lemma

Conformal Mappings. Chapter Schwarz Lemma Chapter 5 Conformal Mappings In this chapter we study analytic isomorphisms. An analytic isomorphism is also called a conformal map. We say that f is an analytic isomorphism of U with V if f is an analytic

More information

. Then g is holomorphic and bounded in U. So z 0 is a removable singularity of g. Since f(z) = w 0 + 1

. Then g is holomorphic and bounded in U. So z 0 is a removable singularity of g. Since f(z) = w 0 + 1 Now we describe the behavior of f near an isolated singularity of each kind. We will always assume that z 0 is a singularity of f, and f is holomorphic on D(z 0, r) \ {z 0 }. Theorem 4.2.. z 0 is a removable

More information

Problem 1A. Calculus. Problem 3A. Real analysis. f(x) = 0 x = 0.

Problem 1A. Calculus. Problem 3A. Real analysis. f(x) = 0 x = 0. Problem A. Calculus Find the length of the spiral given in polar coordinates by r = e θ, < θ 0. Solution: The length is 0 θ= ds where by Pythagoras ds = dr 2 + (rdθ) 2 = dθ 2e θ, so the length is 0 2e

More information

Compact operators on Banach spaces

Compact operators on Banach spaces Compact operators on Banach spaces Jordan Bell jordan.bell@gmail.com Department of Mathematics, University of Toronto November 12, 2017 1 Introduction In this note I prove several things about compact

More information

MATH 566 LECTURE NOTES 6: NORMAL FAMILIES AND THE THEOREMS OF PICARD

MATH 566 LECTURE NOTES 6: NORMAL FAMILIES AND THE THEOREMS OF PICARD MATH 566 LECTURE NOTES 6: NORMAL FAMILIES AND THE THEOREMS OF PICARD TSOGTGEREL GANTUMUR 1. Introduction Suppose that we want to solve the equation f(z) = β where f is a nonconstant entire function and

More information

4 Uniform convergence

4 Uniform convergence 4 Uniform convergence In the last few sections we have seen several functions which have been defined via series or integrals. We now want to develop tools that will allow us to show that these functions

More information

2 Section 2 However, in order to apply the above idea, we will need to allow non standard intervals ('; ) in the proof. More precisely, ' and may gene

2 Section 2 However, in order to apply the above idea, we will need to allow non standard intervals ('; ) in the proof. More precisely, ' and may gene Introduction 1 A dierential intermediate value theorem by Joris van der Hoeven D pt. de Math matiques (B t. 425) Universit Paris-Sud 91405 Orsay Cedex France June 2000 Abstract Let T be the eld of grid-based

More information

Problem Set 5 Solution Set

Problem Set 5 Solution Set Problem Set 5 Solution Set Anthony Varilly Math 113: Complex Analysis, Fall 2002 1. (a) Let g(z) be a holomorphic function in a neighbourhood of z = a. Suppose that g(a) = 0. Prove that g(z)/(z a) extends

More information