Riemann Sums - Classwork. Right rectangles Left rectangles

Size: px
Start display at page:

Download "Riemann Sums - Classwork. Right rectangles Left rectangles"

Transcription

1 Riemann Sums - Classwork &s a common example, this worksheet will use this problem. ;ind the area under the function f ( x) given in the picture below from x = to x = %. Ahat we are looking for is the picture on the right. Ae will look at B technicuesd right rectangles, left rectangles, midpoint rectangles and trapezoids. ;irst some common statements. Ae will use B rectangles or trapezoids in this worksheet but you are expected to learn the technicue for any number of rectangles or trapezoids. Gbviously, if we wish B rectangles and the values of x run from to %, the base of each rectangle is. Here are the B pictures of what we are looking for. Right rectangles Left rectangles Ihe height of the rectangle is on the right side. Ihe height of the rectangle is on the left side. Ihis will underestimate the area Jthis case onlyk. Ihis will overrestimate the area Jthis case onlyk. Midpoint rectangles Trapezoids Ihe height of the rectangle is in the middle. Ihis ends up both over and underestimating the area. Ihe vertical lines represent the bases of the trapezoids Ihe result is a very good approximation to the area. MasterMathMentor.com " $% " Stu Schwartz

2 Ahen we divide our picture into B rectangles, we have to find the base of each rectangle. Mn this case, since we were interested in doing this from x = to x = %, and there were B rectangles, we lucked out because the base of each rectangle is. Ihat wonnt always happen. Mn general, letns call the base = b. Oow let us define x 0, x, x, x 3... x n as the places on the x"axis where we will build our heights, where n represents the number of rectangles Jor trapezoidsk. Mn this case, x =, x =, x = 3, x = 4, x = Mn the case of left rectangles, the area will bed Mn the case of right rectangles, the area will bed A! bh + bh + bh + bh 0 3 A! b h + h + h + h 0 3 A! bh + bh + bh + bh 3 4 A! b h + h + h3 + h4 but since h = f ( x ), we can say i i A b f x0 f x f x f x3 A b f x f x f x f x! so, in the specific case above ( 3 4 )! A f f f 3 f 4 A f f 3 f 4 f 5 so in general:! n" A b f x i!! A b f x i i= 0 i= n! Ihese are called Piemann Sums. Mn the case of midpoint rectangles, you have to find the midpoint between your x 0, x, x, x 3... x n Ihe midpoint between any two x values is their sum divided by, so you will used * $( x + x )' $( x + x )' $( x + x )' $( x + x )' A! b, f & ) + f & ) + f & ) + f & )/ + % ( % ( % ( % (. * $( + ) ' $( + 3) ' $( 3 + 4) ' $( 4 + 5) '- Mn our case, A!, f & ) + f & ) + f & ) + f & )/ or A + % ( % ( % ( % (. f. 5 f. 5 f 3. 5 f 4. 5 ;or trapezoids, remember that area A = 0 height 0 ( b + b) Ihat is when the trapezoid looks like thisd b b h! Since our traezoids are on their sides, we will say A = 0 base 0 ( h + h ) So, the total area A! b %( f ( x0) + f ( x) ) + ( f ( x) + f ( x) ) + ( f ( x) + f ( x3) ) + ( f ( x3) + f ( x4) )& or, in our case A! b f ( x0) + f ( x) + f ( x) + f ( x3) + f ( x4 ) b f f f 3 f 4 f 5 % & = % & Mn general, the trapezoidal ruled A b f x0 f x f x f x3... f xn" f x % n &! MasterMathMentor.com " $L " Stu Schwartz

3 = " TetNs try oned Tet f x x 3. Ae want to find the area under the curve using U rectanglesvtrapezoids from x = to x = L. ;irst, letns draw it. Oote that the curve is completely above the axis. Mf it dips below, the method changes slightly. Ihe drawing of the curve is helpful, but not necessary. Since there are U rectangles, and we are finding the area between x = and x = L, the base is WWWWWWWWW TetNs complete the chartd i x i f ( x i ) X $ B % L S U So, the right rectangle formula gives WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW the left rectangle formula give WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW the trapezoid formula gives WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW Oote that the chart will not give you the midpoint formula. TetNs do it hered WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW Ihe calculator can generate this chart. TetNs use right rectangles. Yo to SI&I Z[MI and clear out T and T. Place your x i in T. Mt will look like thisd Oow T contains f ( x i ). Since your function is in ], use Oow, you want to sum your T list and multiply it by your base which is.%. So go to your home screen and used ]ou will find the S^M command in your TMSI M&IH menu. How do you ad`ust this for left rectanglesa WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW MasterMathMentor.com " $S " Stu Schwartz

4 Interpretation of Area. & car comes to a stop % seconds after the driver slams on the brakes. Ahile the brakes are on, the following velocities are recorded. Zstimate the total distance the car took to stop. Iime since brakes applied JsecK X $ B % belocity JftVsecK UU LX BX % X X. ]ou `ump out of an airplane. cefore your parachute opens, you fall faster and faster. ]our acceleration decreases as you fall because of air resistance. Ihe table below gives your acceleration a Jin mvsec K after t seconds. Zstimate the velocity after % seconds. t X $ B % a d.u U.X$ L.%$ %.$U B.B $.L $. eedarbrook golf course is constructing a new green. Io estimate the area A of the green, the caretaker draws parallel lines X feet apart and then measures the width of the green along that line. [etermine how many scuare feet of grass sod that must be purchased to cover the green if ak Ihe caretaker is lazy and uses midpoint rectangles to calculate the area. bk Ihe caretaker uses left rectangles to calculate the area. ck Ihe caretaker uses right rectangles to calculate the area. dk Ihe caretaker uses trapezoids to calculate the area. Aidth in feet X U %X L LX %% % $X $ MasterMathMentor.com " $U " Stu Schwartz

5 Riemann Sums - Homework ;or each problem, approximate the area under the given function using the specified number of rectanglesv trapezoids. ]ou are to do all B methods to approximate the areas. f ;unction Mnterval Oumber f ( x) = x " 3x + 4 g,bh L f x x = g,lh U x = gx,h % = sin gx,!h U $ f x B f x x Teft Pight Midpoint &nswers are belowd f Teft Pight Midpoint Irapezoids d.%.% X.B$U X.L% S.L%X U.LU S.dB S.dXd $.$B%.%B%.BB.BB% B.dSB.dSB.X$.dSB Irapezoids %. Poger decides to run a marathon. PogerNs friend ieff rides behind him on a bicycle and clocks his pace every % minutes. Poger starts out strong, but after an hour and a half he is so exhausted that he has to stop. Ihe data ieff collected is summarized below. &ssuming that PogerNs speed is always decreasing, estimate the distance that Poger ran in ak the first half hour and bk the entire race. JIrapezoidsK Iime spent running JminK X % $X B% LX S% dx Speed JmphK X X U S X L. eoal gas is produced at a gasworks. Pollutants in the air are removed by scrubbers, which become less and less efficient as time goes on. Measurements are made at the start of each month Jalthough some months were neglectedk showing the rate at which pollutants in the gas are as follows. ^se trapezoids to estimate the total number of tons of coal removed over d months. Iime JmonthsK X $ B L S d Pate pollutants are escaping % S U X $ L X JtonsVmonthK S. ;or X " t ", a bug is crawling at a velocity v, determined by the formula v =, where t is in hours and v is + t in metersvhr. ;ind the distance that the bug crawls during this hour using X minute increments. U. &n ob`ect has zero initial velocity and a constant acceleration of 3 ft sec. eomplete the chart to find the velocity at these specified times. Ihen determine the distance traveled in B seconds. t JsecK X.%.%.% $ $.% B v ( ft sec) MasterMathMentor.com " $d " Stu Schwartz

5.1 Area and Estimating with Finite Sums

5.1 Area and Estimating with Finite Sums 5.1 Area and Estimating with Finite Sums Ideas for this section The ideas for this section are Left-Hand Sums Ideas for this section The ideas for this section are Left-Hand Sums Right-Hand Sums Ideas

More information

Distance And Velocity

Distance And Velocity Unit #8 - The Integral Some problems and solutions selected or adapted from Hughes-Hallett Calculus. Distance And Velocity. The graph below shows the velocity, v, of an object (in meters/sec). Estimate

More information

Week In Review #8 Covers sections: 5.1, 5.2, 5.3 and 5.4. Things you must know

Week In Review #8 Covers sections: 5.1, 5.2, 5.3 and 5.4. Things you must know Week In Review #8 Covers sections: 5.1, 5.2, 5.3 and 5. Things you must know Know how to get an accumulated change by finding an upper or a lower estimate value Know how to approximate a definite integral

More information

AP Calculus AB Riemann Sums

AP Calculus AB Riemann Sums AP Calculus AB Riemann Sums Name Intro Activity: The Gorilla Problem A gorilla (wearing a parachute) jumped off of the top of a building. We were able to record the velocity of the gorilla with respect

More information

Inverse Trig Functions - Classwork

Inverse Trig Functions - Classwork Inverse Trig Functions - Classwork The left hand graph below shows how the population of a certain city may grow as a function of time.

More information

Practice Problem List II

Practice Problem List II Math 46 Practice Problem List II -------------------------------------------------------------------------------------------------------------------- Section 4.: 3, 3, 5, 9, 3, 9, 34, 39, 43, 53, 6-7 odd

More information

Unit #6 Basic Integration and Applications Homework Packet

Unit #6 Basic Integration and Applications Homework Packet Unit #6 Basic Integration and Applications Homework Packet For problems, find the indefinite integrals below.. x 3 3. x 3x 3. x x 3x 4. 3 / x x 5. x 6. 3x x3 x 3 x w w 7. y 3 y dy 8. dw Daily Lessons and

More information

Turn off all noise-making devices and all devices with an internet connection and put them away. Put away all headphones, earbuds, etc.

Turn off all noise-making devices and all devices with an internet connection and put them away. Put away all headphones, earbuds, etc. CRN: NAME: INSTRUCTIONS: This exam is a closed book exam. You may not use your text, homework, or other aids except for a 3 5-inch notecard. You may use an allowable calculator, TI-83 or TI-84 to perform

More information

( ) for t 0. Rectilinear motion CW. ( ) = t sin t ( Calculator)

( ) for t 0. Rectilinear motion CW. ( ) = t sin t ( Calculator) Rectilinear motion CW 1997 ( Calculator) 1) A particle moves along the x-axis so that its velocity at any time t is given by v(t) = 3t 2 2t 1. The position x(t) is 5 for t = 2. a) Write a polynomial expression

More information

Created by T. Madas KINEMATIC GRAPHS. Created by T. Madas

Created by T. Madas KINEMATIC GRAPHS. Created by T. Madas KINEMATIC GRAPHS SPEED TIME GRAPHS Question (**) A runner is running along a straight horizontal road. He starts from rest at point A, accelerating uniformly for 6 s, reaching a top speed of 7 ms. This

More information

Math 1526 Excel Lab 2 Summer 2012

Math 1526 Excel Lab 2 Summer 2012 Math 1526 Excel Lab 2 Summer 2012 Riemann Sums, Trapezoidal Rule and Simpson's Rule: In this lab you will learn how to recover information from rate of change data. For instance, if you have data for marginal

More information

Clock Reading (t) Position (x) Clock Reading (t) Position (x)

Clock Reading (t) Position (x) Clock Reading (t) Position (x) How Fast are you Moving? 2.1 Observe and represent Find a starting position on the floor. You will need to use 2 cars for this experiment (try to use one fast and one slow). Practice releasing the car

More information

SCIENCE 1206 Unit 3. Physical Science Motion

SCIENCE 1206 Unit 3. Physical Science Motion SCIENCE 1206 Unit 3 Physical Science Motion Section 1: Units, Measurements and Error What is Physics? Physics is the study of motion, matter, energy, and force. Qualitative and Quantitative Descriptions

More information

Day 5 Notes: The Fundamental Theorem of Calculus, Particle Motion, and Average Value

Day 5 Notes: The Fundamental Theorem of Calculus, Particle Motion, and Average Value AP Calculus Unit 6 Basic Integration & Applications Day 5 Notes: The Fundamental Theorem of Calculus, Particle Motion, and Average Value b (1) v( t) dt p( b) p( a), where v(t) represents the velocity and

More information

11.3 Solving Radical Equations

11.3 Solving Radical Equations Name Class Date 11.3 Solving Radical Equations Essential Question: How can you solve equations involving square roots and cube roots? Explore Investigating Solutions of Square Root Equations Resource Locker

More information

Use your hypothesis (the mathematical model you created) from activity 4.1 to predict the man s position for the following scenarios:

Use your hypothesis (the mathematical model you created) from activity 4.1 to predict the man s position for the following scenarios: 4.1 Hypothesize Lesson 4: The Moving Man An object is moving in the positive direction at constant velocity v. It starts at clock reading t = 0 sec, at a position x 0. How would you write a function that

More information

AP Calculus AB Unit 6 Packet Antiderivatives. Antiderivatives

AP Calculus AB Unit 6 Packet Antiderivatives. Antiderivatives Antiderivatives Name In mathematics, we use the inverse operation to undo a process. Let s imagine undoing following everyday processes. Process Locking your car Going to sleep Taking out your calculator

More information

MA 114 Worksheet #01: Integration by parts

MA 114 Worksheet #01: Integration by parts Fall 8 MA 4 Worksheet Thursday, 3 August 8 MA 4 Worksheet #: Integration by parts. For each of the following integrals, determine if it is best evaluated by integration by parts or by substitution. If

More information

SPH3U1 Lesson 08 Kinematics

SPH3U1 Lesson 08 Kinematics EQUATIONS OF CONSTANT ACCELERATION LEARNING GOALS Students will Derive the five key equations of accelerated motion apply to motion with uniform (constant) acceleration. Select which equation(s) to use

More information

a rad = v2 R = 4 π2 R T 2

a rad = v2 R = 4 π2 R T 2 Name Physics 121 Exam 1 28 September 217 This test is closed-note and closed-book. No written, printed, or recorded material is permitted. Calculators are permitted but computers are not. No collaboration,

More information

April 23, 2009 SOLUTIONS SECTION NUMBER:

April 23, 2009 SOLUTIONS SECTION NUMBER: MATH 5 FINAL EXAM April, 9 NAME: SOLUTIONS INSTRUCTOR: SECTION NUMBER:. Do not open this exam until you are told to begin.. This exam has pages including this cover. There are 9 questions.. Do not separate

More information

Lesson 3A: How Fast Are You Moving?

Lesson 3A: How Fast Are You Moving? Lesson 3A: How Fast Are You Moving? 3.1 Observe and represent Decide on a starting point. You will need 2 cars (or other moving objects). For each car, you will mark its position at each second. Make sure

More information

Elem Calc w/trig II Spring 08 Class time: TR 9:30 am to 10:45 am Classroom: Whit 257 Helmi Temimi: PhD Teaching Assistant, 463 C

Elem Calc w/trig II Spring 08 Class time: TR 9:30 am to 10:45 am Classroom: Whit 257 Helmi Temimi: PhD Teaching Assistant, 463 C Elem Calc w/trig II Spring 08 Class time: TR 9:30 am to 10:45 am Classroom: Whit 257 Helmi Temimi: PhD Teaching Assistant, 463 C Email: temimi@vt.edu Office Hours 11:00 am 12:00 pm Course contract, Syllabus

More information

Lesson 12: Position of an Accelerating Object as a Function of Time

Lesson 12: Position of an Accelerating Object as a Function of Time Lesson 12: Position of an Accelerating Object as a Function of Time 12.1 Hypothesize (Derive a Mathematical Model) Recall the initial position and clock reading data from the previous lab. When considering

More information

AP CALCULUS AB/CALCULUS BC 2015 SCORING GUIDELINES

AP CALCULUS AB/CALCULUS BC 2015 SCORING GUIDELINES AP CALCULUS AB/CALCULUS BC 15 SCORING GUIDELINES Question 3 t (minutes) vt ( ) (meters per minute) 1 4 4 4 15 Johanna jogs along a straight path. For t 4, Johanna s velocity is given by a differentiable

More information

All work must be shown in this course for full credit. Unsupported answers may receive NO credit.

All work must be shown in this course for full credit. Unsupported answers may receive NO credit. AP Calculus 5. Worksheet All work must be shown in this course for full credit. Unsupported answers may receive NO credit.. Suppose an oil pump is producing 8 gallons per hour for the first 5 hours of

More information

INTEGRATION: AREAS AND RIEMANN SUMS MR. VELAZQUEZ AP CALCULUS

INTEGRATION: AREAS AND RIEMANN SUMS MR. VELAZQUEZ AP CALCULUS INTEGRATION: AREAS AND RIEMANN SUMS MR. VELAZQUEZ AP CALCULUS APPROXIMATING AREA For today s lesson, we will be using different approaches to the area problem. The area problem is to definite integrals

More information

) and cars are sold at the rate of S( t) = cos( 0.2t)where t

) and cars are sold at the rate of S( t) = cos( 0.2t)where t AB Calculus Introduction Before we get into what calculus is, here are several examples of what you could do BC (before calculus) and what you will be able to do at the end of this course. Example 1: On

More information

Worksheet 3. Sketch velocity vs time graphs corresponding to the following descriptions of the motion of an object.

Worksheet 3. Sketch velocity vs time graphs corresponding to the following descriptions of the motion of an object. Worksheet 3 Sketch velocity vs time graphs corresponding to the following descriptions of the motion of an object. 1. The object is moving away from the origin at a constant (steady) speed. 2. The object

More information

Chapter 4 Integration

Chapter 4 Integration Chapter 4 Integration SECTION 4.1 Antiderivatives and Indefinite Integration Calculus: Chapter 4 Section 4.1 Antiderivative A function F is an antiderivative of f on an interval I if F '( x) f ( x) for

More information

*************************************************************************

************************************************************************* Your Name: TEST #1 Print clearly. On the Scantron, fill out your student ID, leaving the first column empty and starting in the second column. Also write your name, class time (11:30 or 12:30), and Test

More information

Unit 3 Right Triangle Trigonometry - Classwork

Unit 3 Right Triangle Trigonometry - Classwork Unit 3 Right Triangle Trigonometry - Classwork We have spent time learning the definitions of trig functions and finding the trig functions of both quadrant and special angles. But what about other angles?

More information

(a) The best linear approximation of f at x = 2 is given by the formula. L(x) = f(2) + f (2)(x 2). f(2) = ln(2/2) = ln(1) = 0, f (2) = 1 2.

(a) The best linear approximation of f at x = 2 is given by the formula. L(x) = f(2) + f (2)(x 2). f(2) = ln(2/2) = ln(1) = 0, f (2) = 1 2. Math 180 Written Homework Assignment #8 Due Tuesday, November 11th at the beginning of your discussion class. Directions. You are welcome to work on the following problems with other MATH 180 students,

More information

Questions from Larson Chapter 4 Topics. 5. Evaluate

Questions from Larson Chapter 4 Topics. 5. Evaluate Math. Questions from Larson Chapter 4 Topics I. Antiderivatives. Evaluate the following integrals. (a) x dx (4x 7) dx (x )(x + x ) dx x. A projectile is launched vertically with an initial velocity of

More information

Math 122 Fall Unit Test 1 Review Problems Set A

Math 122 Fall Unit Test 1 Review Problems Set A Math Fall 8 Unit Test Review Problems Set A We have chosen these problems because we think that they are representative of many of the mathematical concepts that we have studied. There is no guarantee

More information

The Magic Chart Honors Physics

The Magic Chart Honors Physics The Magic Chart Honors Physics Magic Chart Equations v f = v i + a t x = v i t + 1/2 a t 2 x = ½ (v i + v f ) t v 2 f = v 2 i + 2a x x = v f t - 1/2 a t 2 x Who Cares Quantity v f a t V i THE WHO CARES

More information

All work must be shown in this course for full credit. Unsupported answers may receive NO credit.

All work must be shown in this course for full credit. Unsupported answers may receive NO credit. AP Calculus 6.. Worksheet Estimating with Finite Sums All work must be shown in this course for full credit. Unsupported answers may receive NO credit.. Suppose an oil pump is producing 8 gallons per hour

More information

MiSP Force and Gravity Worksheet #3, L3

MiSP Force and Gravity Worksheet #3, L3 MiSP Force and Gravity Worksheet #3, L3 Name Date FORCE AND ACCELERATION Introduction Today you will view a video of a typical skydive. The skydiver had a skydiving altimeter mounted in a special box with

More information

Welcome to. Elementary Calculus with Trig II CRN(13828) Instructor: Quanlei Fang. Department of Mathematics, Virginia Tech, Spring 2008

Welcome to. Elementary Calculus with Trig II CRN(13828) Instructor: Quanlei Fang. Department of Mathematics, Virginia Tech, Spring 2008 Welcome to Elementary Calculus with Trig II CRN(13828) Instructor: Quanlei Fang Department of Mathematics, Virginia Tech, Spring 2008 1 Be sure to read the course contract Contact Information Text Grading

More information

Chapter 2. Motion In One Dimension

Chapter 2. Motion In One Dimension I. Displacement, Position, and Distance Chapter 2. Motion In One Dimension 1. John (Mike, Fred, Joe, Tom, Derek, Dan, James) walks (jogs, runs, drives) 10 m north. After that he turns around and walks

More information

Chapter Fair Game Review Find the missing value in the table. Big Ideas Math Blue 119

Chapter Fair Game Review Find the missing value in the table. Big Ideas Math Blue 119 Name Date Chapter 6 Fair Game Review Find the missing value in the table... 5 7 5 9 7 6 8.. 6 9 6 8 8 9 8 8 5. 6..5 9.5 5.5 6 5.8 5.8.8.6. Copright Big Ideas Learning, LLC Big Ideas Math Blue 9 Name Date

More information

Position, Velocity, Acceleration

Position, Velocity, Acceleration 191 CHAPTER 7 Position, Velocity, Acceleration When we talk of acceleration we think of how quickly the velocity is changing. For example, when a stone is dropped its acceleration (due to gravity) is approximately

More information

Name Period. Algebra 2 Agenda. Week 3.4 Objective Summary Grade

Name Period. Algebra 2 Agenda. Week 3.4 Objective Summary Grade Name Period Algebra Agenda Week 3.4 Objective Summary Grade Monday January 3, 07 Tuesday January 4, 07 Wednesday January 5, 07 Thursday January 6, 07 Friday January 7, 07 Solving Equations with Radicals

More information

Unit 2 - The Trigonometric Functions - Classwork

Unit 2 - The Trigonometric Functions - Classwork Unit 2 - The Trigonometric Functions - Classwork Given a right triangle with one of the angles named ", and the sides of the triangle relative to " named opposite, adjacent, and hypotenuse (picture on

More information

Day 2 Notes: Riemann Sums In calculus, the result of f ( x)

Day 2 Notes: Riemann Sums In calculus, the result of f ( x) AP Calculus Unit 6 Basic Integration & Applications Day 2 Notes: Riemann Sums In calculus, the result of f ( x) dx is a function that represents the anti-derivative of the function f(x). This is also sometimes

More information

4.9 APPROXIMATING DEFINITE INTEGRALS

4.9 APPROXIMATING DEFINITE INTEGRALS 4.9 Approximating Definite Integrals Contemporary Calculus 4.9 APPROXIMATING DEFINITE INTEGRALS The Fundamental Theorem of Calculus tells how to calculate the exact value of a definite integral IF the

More information

Four Types of Motion We ll Study

Four Types of Motion We ll Study Four Types of Motion We ll Study The branch of mechanics that studies the motion of a body without caring about what caused the motion. Kinematics definitions Kinematics branch of physics; study of motion

More information

PHYSICS: UNIT 1 REVIEW KEY

PHYSICS: UNIT 1 REVIEW KEY 1) raw a motion map for the car on a balanced track. (he speed is CONSAN!) 2) etermine the speed of the car through photogate B for both positions. through Photogate A (sec) through Photogate B (sec) from

More information

Motion with Integrals Worksheet 4: What you need to know about Motion along the x-axis (Part 2)

Motion with Integrals Worksheet 4: What you need to know about Motion along the x-axis (Part 2) Motion with Integrals Worksheet 4: What you need to know about Motion along the x-axis (Part 2) 1. Speed is the absolute value of. 2. If the velocity and acceleration have the sign (either both positive

More information

Antiderivatives Introduction

Antiderivatives Introduction Antierivatives 40. Introuction So far much of the term has been spent fining erivatives or rates of change. But in some circumstances we alreay know the rate of change an we wish to etermine the original

More information

Wednesday 9/27. Please open quizizz

Wednesday 9/27. Please open quizizz Wednesday 9/27 Please open quizizz Graphing Acceleration VT Graphs VELOCITY m/s VELOCITY TIME GRAPHS Moving in a positive direction, SPEEDING UP Constant speed NO ACCELERATION Moving in a positive direction,

More information

AP Calculus Prep Session Handout. Table Problems

AP Calculus Prep Session Handout. Table Problems AP Calculus Prep Session Handout The AP Calculus Exams include multiple choice and free response questions in which the stem of the question includes a table of numerical information from which the students

More information

Section 1: The Definite Integral

Section 1: The Definite Integral Chapter The Integral Applied Calculus 70 Section : The Definite Integral Distance from Velocity Example Suppose a car travels on a straight road at a constant speed of 40 miles per hour for two hours.

More information

ADDITIONAL RESOURCES. Duration of resource: 12 Minutes. Year of Production: Stock code: VEA12054

ADDITIONAL RESOURCES. Duration of resource: 12 Minutes. Year of Production: Stock code: VEA12054 ADDITIONAL RESOURCES Any type of motion means a force is at work it is one of the most fundamental concepts in physics, and has formed the basis of the work of many pioneering scientists, including Isaac

More information

RECAP!! Paul is a safe driver who always drives the speed limit. Here is a record of his driving on a straight road. Time (s)

RECAP!! Paul is a safe driver who always drives the speed limit. Here is a record of his driving on a straight road. Time (s) RECAP!! What is uniform motion? > Motion in a straight line > Moving at a constant speed Yes or No? Yes or No? Paul is a safe driver who always drives the speed limit. Here is a record of his driving on

More information

Chapter 2 Section 2: Acceleration

Chapter 2 Section 2: Acceleration Chapter 2 Section 2: Acceleration Motion Review Speed is the rate that an object s distance changes Distance is how far an object has travelled Speed = distance/time Velocity is rate that an object s displacement

More information

AP CALCULUS AB SECTION I, Part A Time 55 Minutes Number of questions 28 A CALCULATOR MAY NOT BE USED ON THIS PART OF THE EXAM

AP CALCULUS AB SECTION I, Part A Time 55 Minutes Number of questions 28 A CALCULATOR MAY NOT BE USED ON THIS PART OF THE EXAM AP CALCULUS AB SECTION I, Part A Time 55 Minutes Number of questions 28 Time Began: Time Ended: A CALCULATOR MAY NOT BE USED ON THIS PART OF THE EXAM Directions: Solve each of the following problems, using

More information

y=5 y=1+x 2 AP Calculus Chapter 5 Testbank Part I. Multiple-Choice Questions

y=5 y=1+x 2 AP Calculus Chapter 5 Testbank Part I. Multiple-Choice Questions AP Calculus Chapter 5 Testbank Part I. Multiple-Choice Questions. Which of the following integrals correctly corresponds to the area of the shaded region in the figure to the right? (A) (B) (C) (D) (E)

More information

Introduction to Kinematics. Motion, Forces and Energy

Introduction to Kinematics. Motion, Forces and Energy Introduction to Kinematics Motion, Forces and Energy Mechanics: The study of motion Kinematics The description of how things move 1-D and 2-D motion Dynamics The study of the forces that cause motion Newton

More information

Unit 8 - Polynomial and Rational Functions Classwork

Unit 8 - Polynomial and Rational Functions Classwork Unit 8 - Polynomial and Rational Functions Classwork This unit begins with a study of polynomial functions. Polynomials are in the form: f ( x) = a n x n + a n 1 x n 1 + a n 2 x n 2 +... + a 2 x 2 + a

More information

Students! (1) with calculator. (2) No calculator

Students! (1) with calculator. (2) No calculator Students! (1) with calculator Let R be the region bounded by the graphs of y = sin(π x) and y = x 3 4x, as shown in the figure above. (a) Find the area of R. (b) The horizontal line y = splits the region

More information

Arkansas Council of Teachers of Mathematics 2013 State Contest Calculus Exam

Arkansas Council of Teachers of Mathematics 2013 State Contest Calculus Exam 0 State Contest Calculus Eam In each of the following choose the BEST answer and shade the corresponding letter on the Scantron Sheet. Answer all multiple choice questions before attempting the tie-breaker

More information

SCIENCE 1206 Unit 3. Physical Science Motion

SCIENCE 1206 Unit 3. Physical Science Motion SCIENCE 1206 Unit 3 Physical Science Motion Converting Base Units The Step Stair Method is a simple trick to converting these units. Kilo (k) Hecta (h) Deka (D) Larger unit as you go up the steps! Divide

More information

EDEXCEL INTERNATIONAL A LEVEL MATHEMATICS. MECHANICS 1 Student Book SAMPLE COPY

EDEXCEL INTERNATIONAL A LEVEL MATHEMATICS. MECHANICS 1 Student Book SAMPLE COPY SPECIFICATIN 1.1.1 UNIT 1 THE MARKET i EDEXCEL INTERNATINAL A LEVEL MATHEMATICS MECHANICS 1 Student Book CNTENTS ii ABUT THIS BK VI 1 MATHEMATICAL MDELS IN MECHANICS 2 2 VECTRS IN MECHANICS 12 3 CNSTANT

More information

INTEGRALS. In Chapter 2, we used the tangent and velocity problems to introduce the derivative the central idea in differential calculus.

INTEGRALS. In Chapter 2, we used the tangent and velocity problems to introduce the derivative the central idea in differential calculus. INTEGRALS 5 INTEGRALS In Chapter 2, we used the tangent and velocity problems to introduce the derivative the central idea in differential calculus. INTEGRALS In much the same way, this chapter starts

More information

Slope as a Rate of Change

Slope as a Rate of Change Find the slope of a line using two of its points. Interpret slope as a rate of change in real-life situations. FINDING THE SLOPE OF A LINE The slope m of the nonvertical line passing through the points

More information

Unit 10 Parametric and Polar Equations - Classwork

Unit 10 Parametric and Polar Equations - Classwork Unit 10 Parametric and Polar Equations - Classwork Until now, we have been representing graphs by single equations involving variables x and y. We will now study problems with which 3 variables are used

More information

Velocity, Speed, and Acceleration. Unit 1: Kinematics

Velocity, Speed, and Acceleration. Unit 1: Kinematics Velocity, Speed, and Acceleration Unit 1: Kinematics Speed vs Velocity Speed is a precise measurement of how fast you are going. It is your distance traveled over time. Speed is a scalar quantity. To measure

More information

Grade 7, Unit 2 Practice Problems - Open Up Resources. Lesson 1. Problem 1. Problem 2. Yes, since 3 times 1.5 is 4 and 2 times 1.5 is 3.

Grade 7, Unit 2 Practice Problems - Open Up Resources. Lesson 1. Problem 1. Problem 2. Yes, since 3 times 1.5 is 4 and 2 times 1.5 is 3. 9//7, 0) AM Lesson Problem Which one of these shapes is not like the others? Explain what makes it different by representing each width and height pair with a ratio. C is different from A and B. For both

More information

Which car/s is/are undergoing an acceleration?

Which car/s is/are undergoing an acceleration? Which car/s is/are undergoing an acceleration? Which car experiences the greatest acceleration? Match a Graph Consider the position-time graphs below. Each one of the 3 lines on the position-time graph

More information

THE MOVING MAN: DISTANCE, DISPLACEMENT, SPEED & VELOCITY

THE MOVING MAN: DISTANCE, DISPLACEMENT, SPEED & VELOCITY THE MOVING MAN: DISTANCE, DISPLACEMENT, SPEED & VELOCITY Background Remember graphs are not just an evil thing your teacher makes you create, they are a means of communication. Graphs are a way of communicating

More information

Forces and Motion in One Dimension. Chapter 3

Forces and Motion in One Dimension. Chapter 3 Forces and Motion in One Dimension Chapter 3 Constant velocity on an x-versus-t graph Velocity and Position In general, the average velocity is the slope of the line segment that connects the positions

More information

y=5 y=1+x 2 AP Calculus Chapter 5 Testbank Part I. Multiple-Choice Questions

y=5 y=1+x 2 AP Calculus Chapter 5 Testbank Part I. Multiple-Choice Questions AP Calculus Chapter 5 Testbank Part I. Multiple-Choice Questions. Which of the following integrals correctly corresponds to the area of the shaded region in the figure to the right? (A) (B) (C) (D) (E)

More information

Mathematica Project 3

Mathematica Project 3 Mathematica Project 3 Name: Section: Date: On your class s Sakai site, your instructor has placed 5 Mathematica notebooks. Please use the following table to determine which file you should select based

More information

7.1 Indefinite Integrals Calculus

7.1 Indefinite Integrals Calculus 7.1 Indefinite Integrals Calculus Learning Objectives A student will be able to: Find antiderivatives of functions. Represent antiderivatives. Interpret the constant of integration graphically. Solve differential

More information

Using Graphs to Relate Two Quantities

Using Graphs to Relate Two Quantities - Using Graphs to Relate Two Quantities For Eercises, choose the correct letter.. The graph shows our distance from the practice field as ou go home after practice. You received a ride from a friend back

More information

APPLICATIONS OF INTEGRATION

APPLICATIONS OF INTEGRATION 6 APPLICATIONS OF INTEGRATION APPLICATIONS OF INTEGRATION In this chapter, we explore some of the applications of the definite integral by using it to compute areas between curves, volumes of solids, and

More information

Average rates of change May be used to estimate the derivative at a point

Average rates of change May be used to estimate the derivative at a point Derivatives Big Ideas Rule of Four: Numerically, Graphically, Analytically, and Verbally Average rate of Change: Difference Quotient: y x f( a+ h) f( a) f( a) f( a h) f( a+ h) f( a h) h h h Average rates

More information

SUBJECT: PHYSICAL SCIENCES GRADE: 10 CHAPTER / MODULE: MECHANICS UNIT / LESSON TOPIC: - Equations of Motion - Graphs of Motion

SUBJECT: PHYSICAL SCIENCES GRADE: 10 CHAPTER / MODULE: MECHANICS UNIT / LESSON TOPIC: - Equations of Motion - Graphs of Motion SUBJECT: PHYSICAL SCIENCES GRADE: 10 CHAPTER / MODULE: MECHANICS UNIT / LESSON TOPIC: - Equations of Motion - Graphs of Motion By the end of this unit, you should be able to: describe motion along a straight

More information

8/6/2010 Assignment Previewer

8/6/2010 Assignment Previewer Week 12 Tuesday Homework (1329184) Question 1234567891011121314151617181920 webassign.net/ /control.pl 1/9 1. Question DetailsSCalcET6 5.1.AE.01. [708910] EXAMPLE 1 Use rectangles to estimate the area

More information

Who invented Calculus Newton or Leibniz? Join me in this discussion on Sept. 4, 2018.

Who invented Calculus Newton or Leibniz? Join me in this discussion on Sept. 4, 2018. Who invented Calculus Newton or Leibniz? Join me in this discussion on Sept. 4, 208. Sir Isaac Newton idology.wordpress.com Gottfried Wilhelm Leibniz et.fh-koeln.de Welcome to BC Calculus. I hope that

More information

RELATING GRAPHS TO EVENTS

RELATING GRAPHS TO EVENTS RELATING GRAPHS TO EVENTS Independent Variable: The cause variable (the tested variable or input). Always labeled on the x axis of graph. Dependent Variable: The effect variable (output). Always labeled

More information

Calculus I Homework: Rates of Change in the Natural and Social Sciences Page 1

Calculus I Homework: Rates of Change in the Natural and Social Sciences Page 1 Calculus I Homework: Rates of Change in the Natural and Social Sciences Page 1 Questions Example If a ball is thrown vertically upward with a velocity of 80 ft/s, then its height after t seconds is s 80t

More information

Study Guide and Intervention. The Quadratic Formula and the Discriminant. Quadratic Formula. Replace a with 1, b with -5, and c with -14.

Study Guide and Intervention. The Quadratic Formula and the Discriminant. Quadratic Formula. Replace a with 1, b with -5, and c with -14. 4-6 Study Guide and Intervention Quadratic Formula The Quadratic Formula can be used to solve any quadratic equation once it is written in the form ax 2 + bx + c = 0. Quadratic Formula The solutions of

More information

2.1 KINEMATICS HW/Study Packet

2.1 KINEMATICS HW/Study Packet 2.1 KINEMATICS HW/Study Packet Required: READ Hamper pp 17-28 READ Tsokos, pp 38-62 SL/HL Supplemental: Cutnell and Johnson, pp 28-52 Giancoli, pp 19-38 ü ü ü ü ü REMEMBER TO. Work through all of the example

More information

Chapter 3 - RATE IN MECHANICAL SYSTEMS. Graphing Foldable /10

Chapter 3 - RATE IN MECHANICAL SYSTEMS. Graphing Foldable /10 1 NAME PERIOD Chapter 3 - RATE IN MECHANICAL SYSTEMS ACTIVITY LESSON DESCRIPTION SCORE/POINTS 1. NT FILL IN NOTE GUIDE SCORE /20 Graphing Foldable /10 2. TX PP. 122-135 WORKSHEET /53 3. MATH Math formula

More information

PHYSICS - CLUTCH CH 02: 1D MOTION (KINEMATICS)

PHYSICS - CLUTCH CH 02: 1D MOTION (KINEMATICS) !! www.clutchprep.com CONSTANT / AVERAGE VELOCITY AND SPEED Remember there are two terms that deal with how much something moves: - Displacement ( ) is a vector (has direction; could be negative) - Distance

More information

CHAPTER 2 LINEAR MOTION

CHAPTER 2 LINEAR MOTION 0 CHAPTER LINEAR MOTION HAPTER LINEAR MOTION 1 Motion o an object is the continuous change in the position o that object. In this chapter we shall consider the motion o a particle in a straight line, which

More information

Unit #9 - Definite Integral Properties, Fundamental Theorem of Calculus

Unit #9 - Definite Integral Properties, Fundamental Theorem of Calculus Unit #9 - Definite Integral Properties, Fundamental Theorem of Calculus Definite Integrals in Modeling Some problems and solutions selected or adapted from Hughes-Hallett Calculus.. The rate at which the

More information

Calculus AB Topics Limits Continuity, Asymptotes

Calculus AB Topics Limits Continuity, Asymptotes Calculus AB Topics Limits Continuity, Asymptotes Consider f x 2x 1 x 3 1 x 3 x 3 Is there a vertical asymptote at x = 3? Do not give a Precalculus answer on a Calculus exam. Consider f x 2x 1 x 3 1 x 3

More information

5) A stone is thrown straight up. What is its acceleration on the way up? 6) A stone is thrown straight up. What is its acceleration on the way down?

5) A stone is thrown straight up. What is its acceleration on the way up? 6) A stone is thrown straight up. What is its acceleration on the way down? 5) A stone is thrown straight up. What is its acceleration on the way up? Answer: 9.8 m/s 2 downward 6) A stone is thrown straight up. What is its acceleration on the way down? Answer: 9.8 m/ s 2 downward

More information

Physics #1 - Motion Notebook

Physics #1 - Motion Notebook Name Hour Group # Test Date Physics #1 - Motion Notebook Physics #1 - LEARNING Targets Physics #1 Vocabulary: You re The Scientist #1 Getting to Know a Physicist! You will research a physicist and create

More information

SCIENCE 1206 Unit 4. Physical Science Motion

SCIENCE 1206 Unit 4. Physical Science Motion SCIENCE 1206 Unit 4 Physical Science Motion What is Physics? Physics is the study of motion, matter, energy, and force. Called the Fundamental Science Famous Physicists Galileo Galilei Albert Einstein

More information

Describing Mo tion. Speed and Velocity. What is speed?

Describing Mo tion. Speed and Velocity. What is speed? CHAPTER 1 LESSON 2 Describing Mo tion Speed and Velocity Key Concepts What is speed? How can you use a dis tance-time graph to calculate average speed? What are ways velocity can change? What do you think?

More information

Physics 20 Acceleration Worksheet

Physics 20 Acceleration Worksheet Physics 20 Acceleration Worksheet 1. A racecar reaches the straightaway on the race track going 140km/hr and accelerates at a rate of 3.5m/s 2 for 6.2 seconds. a) what is the car s initial speed in m/s?

More information

AP Calculus AB 2nd Semester Homework List

AP Calculus AB 2nd Semester Homework List AP Calculus AB 2nd Semester Homework List Date Assigned: 1/4 DUE Date: 1/6 Title: Typsetting Basic L A TEX and Sigma Notation Write the homework out on paper. Then type the homework on L A TEX. Use this

More information

Math 4 Review for Quarter 1 Cumulative Test

Math 4 Review for Quarter 1 Cumulative Test Math 4 Review for Quarter 1 Cumulative Test Name: I. Unit Conversion Units are important in describing the world around us To convert between units: o Method 1: Multiplication/Division Converting to a

More information

Mathematics 1a, Section 4.3 Solutions

Mathematics 1a, Section 4.3 Solutions Mathematics 1a, Section 4.3 Solutions Alexander Ellis November 30, 2004 1. f(8) f(0) 8 0 = 6 4 8 = 1 4 The values of c which satisfy f (c) = 1/4 seem to be about c = 0.8, 3.2, 4.4, and 6.1. 2. a. g is

More information

1 Linear and Absolute Value Equations

1 Linear and Absolute Value Equations 1 Linear and Absolute Value Equations 1. Solve the equation 11x + 6 = 7x + 15. Solution: Use properties of equality to bring the x s to one side and the numbers to the other: 11x (7x) + 6 = 7x (7x) + 15

More information

UNIT 6 DESCRIBING DATA Lesson 2: Working with Two Variables. Instruction. Guided Practice Example 1

UNIT 6 DESCRIBING DATA Lesson 2: Working with Two Variables. Instruction. Guided Practice Example 1 Guided Practice Eample 1 Andrew wants to estimate his gas mileage, or miles traveled per gallon of gas used. He records the number of gallons of gas he purchased and the total miles he traveled with that

More information