Two-Dimensional Motion and Vectors Problem E

Size: px
Start display at page:

Download "Two-Dimensional Motion and Vectors Problem E"

Transcription

1 Two-Dimensional Motion and Vectors Problem E PROJECTILES LAUNCHED AT AN ANGLE PROBLEM SOLUTION 1. DEFINE. PLAN The narrowest strait on earth is Seil Sound in Scotland, which lies between the mainland and the island of Seil. The strait is only about 6.0 m wide. Suppose an athlete wanting to jump over the sea leaps at an angle of 35 with respect to the horizontal. What is the minimum initial speed that would allow the athlete to clear the gap? Neglect air resistance. Given: Unknown: v i =? Diagram: x = 6.0 m = 35 v θ = 35 x = 6.00 m Choose the euation(s) or situation: The horizontal component of the athlete s velocity, v x, is eual to the initial speed multiplied by the cosine of the angle,, which is eual to the magnitude of the horizontal displacement, x, divided by the time interval reuired for the complete jump. v x = v i cos = x t At the midpoint of the jump, the vertical component of the athlete s velocity, v y, which is the upward vertical component of the initial velocity, v i sin, plus the component of velocity due to free-fall acceleration, euals zero. The time reuired for this to occur is half the time necessary for the total jump. v y = v i sin + a y t = 0 v i sin = a y t Rearrange the euation(s) to isolate the unknown(s): Express t in the second euation in terms of the displacement and velocity component in the first euation. v i sin = a y x v i cos ay x v i = si n cos a v i = y x si n cos Problem E 5

2 3. CALCULATE Substitute the values into the euation(s) and solve: Select the positive root for v i. ( 9.81 m/s 6.0 m) (sin 35 cos 35 ) v i = = 7.9 m/s 4. EVALUATE By substituting the value for v i into the original euations, you can determine the time for the jump to be completed, which is 0.9 s. From this, the height of the jump is found to eual 1.0 m. ADDITIONAL PRACTICE 1. In 1993, Wayne Brian threw a spear a record distance of 01.4 m. (This is not an official sport record because a special device was used to elongate Brian s hand.) Suppose Brian threw the spear at a 35.0 angle with respect to the horizontal. What was the initial speed of the spear?. April Moon set a record in flight shooting (a variety of long-distance archery). In 1981 in Utah, she sent an arrow a horizontal distance of m. What was the speed of the arrow at the top of the flight if the arrow was launched at an angle of 45.0 with respect to the horizontal? 3. In 1989 during overtime in a high school basketball game in Erie, Pennsylvania, Chris Eddy threw a basketball a distance of 7.5 m to score and win the game. If the shot was made at a 50.0 angle above the horizontal, what was the initial speed of the ball? 4. In 1978, Geoff Capes of the United Kingdom won a competition for throwing 5 lb bricks; he threw one brick a distance of 44.0 m. Suppose the brick left Capes hand at an angle of 45.0 with respect to the horizontal. a. What was the initial speed of the brick? b. What was the maximum height reached by the brick? c. If Capes threw the brick straight up with the speed found in (a), what would be the maximum height the brick could achieve? 5. In 1991, Doug Danger rode a motorcycle to jump a horizontal distance of 76.5 m. Find the maximum height of the jump if his angle with respect to the ground at the beginning of the jump was Michael Hout of Ohio can run meter hurdles in 18.9 s at an average speed of 5.8 m/s. What makes this interesting is that he juggles three balls as he runs the distance. Suppose Hout throws a ball up and forward at twice his running speed and just catches it at the same level. At what angle,,must the ball be thrown? (Hint: Consider horizontal displacements for Hout and the ball.) 6 Holt Physics Problem Workbook

3 7. A scared kangaroo once cleared a fence by jumping with a speed of 8.4 m/s at an angle of 55. with respect to the ground. If the jump lasted 1.40 s, how high was the fence? What was the kangaroo s horizontal displacement? 8. Measurements made in 1910 indicate that the common flea is an impressive jumper, given its size. Assume that a flea s initial speed is. m/s, and that it leaps at an angle of 1 with respect to the horizontal. If the jump lasts 0.16 s, what is the magnitude of the flea s horizontal displacement? How high does the flea jump? Problem E 7

4 Givens 8. y = 1.95 m v x = 3.0 m/s Solutions v y = a y y v = v x + v y = a v x + y y v = (3.0 /s) m ( m/s m) v = 9. 0m s / m / = tan 1 vy v x s = 47.3 m s / = 6.88 m/s ( 9.81 s m/.95 1m) 3.0 m/s = tan 1 a y y = tan 1 vx = 64 below the horizontal Additional Practice E 1. x = 01.4 m = 35.0 y = v i (sin ) t + 1 a y( t) = v i (sin ) + 1 a y t = 0 x = v i (cos ) t x t = vi (cos ) v i (sin ) = 1 y a x v i (cos) v i = a (sin y x cos = ) ( 9.81 m/s 01.4 m) (sin 35.0 cos 35.0 ) v i = 45.8 m/s II Copyright by Holt, Rinehart and Winston. All rights reserved.. x = m = x = 7.5 m = x = 44.0 m = 45.0 v i = a (sin y x cos ) m) (sin 45.0 cos 45.0 ) v i = 96.5 m/s At the top of the arrow s flight: v = v x = v i (cos ) = (96.5 m/scos 45.0 ) = 68. m/s v i = a (sin y x cos ) 7.5 m) (sin 50.0 cos 50.0 ) v i = 16.6 m/s a. v i = a (sin y x cos ) 44.0 m) (sin 45.0 cos 45.0 ) v i = 0.8 m/s Section Two Problem Workbook Solutions II Ch. 3 7

5 Givens Solutions b. At maximum height, v y, f = 0 m/s v y, f = v y, i + a y y max = 0 v y max = = v i ( sin ) (0.8 m/s) (sin 45.0 ) y,i = = 11.0 m ay ( 9.81 m/s ay ) The brick s maximum height is 11.0 m. c. y max = vy, i ( 0. 8 m/s) = ay ( m/ s =.1 m ) The brick s maximum height is.1 m. II 5. x = 76.5 m = 1.0 At maximum height, v y, f = 0 m/s. v y, f = v y, i + a y y max = 0 y max = vy, i = v i ( sin ) ay ay Using the derivation for v i from problem 1, a y max = y x (sin cos ) (s in ) = x(si a y 4(co n ) s ) = x(t an ) 4 y max = (76.5 m tan 1.0 ) = 4.07 m 4 6. v runner = 5.8 m/s v i,ball = v runner In x-direction, v i,ball (cos ) = v runner (cos ) = v runner (cos ) = 1 = cos 1 1 = v i = 8.4 m/s = 55. t = 1.40 s 8. v i =. m/s = 1 t = 0.16 s For first half of jump, t 1 = 1.4 0s = s y = v i (sin ) t a y ( t 1 ) = (8.4 m/ssin s) + 1 ( 9.81 m/s s) y = 4.84 m.40 m =.44 m The fence is.44 m high. x = v i (cos ) t x = (8.4 m/s) (cos s) = 6.73 m x = v i (cos ) t = (. m/s) (cos s) = 0.33 m Maximum height is reached in a time interval of t y max = v i (sin ) t + 1 a y t y max = (. m/ssin 1 ) 0.1 6s + 1 ( 9.81 m/s ) 0.1 6s Copyright by Holt, Rinehart and Winston. All rights reserved. y max = m m = m = 3. cm The flea s maximum height is 3. cm. II Ch. 3 8 Holt Physics Solution Manual

Bell Ringer. x- direction: Ball and car start with same position and velocity, a=0, so always have same position

Bell Ringer. x- direction: Ball and car start with same position and velocity, a=0, so always have same position Objectives Students should be able to add, subtract, and resolve displacement and velocity vectors so they can: Determine the components of a vector along two specified, mutually perpendicular axes. Determine

More information

Physics 201 Homework 1

Physics 201 Homework 1 Physics 201 Homework 1 Jan 9, 2013 1. (a) What is the magnitude of the average acceleration of a skier who, starting (a) 1.6 m/s 2 ; (b) 20 meters from rest, reaches a speed of 8.0 m/s when going down

More information

Physics Chapter 3 Notes. Section 3-1: Introduction to Vectors (pages 80-83)

Physics Chapter 3 Notes. Section 3-1: Introduction to Vectors (pages 80-83) Physics Chapter 3 Notes Section 3-1: Introduction to Vectors (pages 80-83) We can use vectors to indicate both the magnitude of a quantity, and the direction. Vectors are often used in 2- dimensional problems.

More information

10. The vectors are V 1 = 6.0i + 8.0j, V 2 = 4.5i 5.0j. (a) For the magnitude of V 1 we have 2 1x + V 1y2 ) 1/2 = [( 6.0) 2 + (8.0) 2 ] 1/2 = 10.0.

10. The vectors are V 1 = 6.0i + 8.0j, V 2 = 4.5i 5.0j. (a) For the magnitude of V 1 we have 2 1x + V 1y2 ) 1/2 = [( 6.0) 2 + (8.0) 2 ] 1/2 = 10.0. 10. The vectors are V 1 = 6.0i + 8.0j, V 2 = 4.5i 5.0j. (a) For the magnitude of V 1 we have V 1 = (V 2 1x + V 1y2 ) 1/2 = [( 6.0) 2 + (8.0) 2 ] 1/2 = 10.0. We find the direction from tan θ 1 = V 1y /V

More information

PHY 1114: Physics I. Quick Question 1. Quick Question 2. Quick Question 3. Quick Question 4. Lecture 5: Motion in 2D

PHY 1114: Physics I. Quick Question 1. Quick Question 2. Quick Question 3. Quick Question 4. Lecture 5: Motion in 2D PHY 1114: Physics I Lecture 5: Motion in D Fall 01 Kenny L. Tapp Quick Question 1 A child throws a ball vertically upward at the school playground. Which one of the following quantities is (are) equal

More information

3.2 Projectile Motion

3.2 Projectile Motion Motion in 2-D: Last class we were analyzing the distance in two-dimensional motion and revisited the concept of vectors, and unit-vector notation. We had our receiver run up the field then slant Northwest.

More information

In this activity, we explore the application of differential equations to the real world as applied to projectile motion.

In this activity, we explore the application of differential equations to the real world as applied to projectile motion. Applications of Calculus: Projectile Motion ID: XXXX Name Class In this activity, we explore the application of differential equations to the real world as applied to projectile motion. Open the file CalcActXX_Projectile_Motion_EN.tns

More information

b) (6) How far down the road did the car travel during the acceleration?

b) (6) How far down the road did the car travel during the acceleration? General Physics I Quiz 2 - Ch. 2-1D Kinematics June 17, 2009 Name: For full credit, make your work clear to the grader. Show the formulas you use, all the essential steps, and results with correct units

More information

Motion in One Dimension Problem F

Motion in One Dimension Problem F NAME DATE CLASS Motion in One Dimension Problem F FALLING OBJECT PROBLEM When it is completed in 2002, the International Financial Center in Taipei, Taiwan, will be the tallest building in the world. Suppose

More information

Two-Dimensional Motion Worksheet

Two-Dimensional Motion Worksheet Name Pd Date Two-Dimensional Motion Worksheet Because perpendicular vectors are independent of each other we can use the kinematic equations to analyze the vertical (y) and horizontal (x) components of

More information

Chapter 4. Two-Dimensional Motion

Chapter 4. Two-Dimensional Motion Chapter 4. Two-Dimensional Motion 09/1/003 I. Intuitive (Understanding) Review Problems. 1. If a car (object, body, truck) moves with positive velocity and negative acceleration, it means that its a) speed

More information

MOTION ALONG A STRAIGHT LINE

MOTION ALONG A STRAIGHT LINE MOTION ALONG A STRAIGHT LINE 2 21 IDENTIFY: The average velocity is Let be upward EXECUTE: (a) EVALUATE: For the first 115 s of the flight, When the velocity isn t constant the average velocity depends

More information

Chapter 3. Kinematics in Two Dimensions

Chapter 3. Kinematics in Two Dimensions Chapter 3 Kinematics in Two Dimensions 3.1 Trigonometry 3.1 Trigonometry sin! = h o h cos! = h a h tan! = h o h a 3.1 Trigonometry tan! = h o h a tan50! = h o 67.2m h o = tan50! ( 67.2m) = 80.0m 3.1 Trigonometry!

More information

Name: Class: Date: Solution x 1 = units y 1 = 0. x 2 = d 2 cos = = tan 1 y

Name: Class: Date: Solution x 1 = units y 1 = 0. x 2 = d 2 cos = = tan 1 y Assessment Chapter Test B Teacher Notes and Answers Two-Dimensional Motion and Vectors CHAPTER TEST B (ADVANCED) 1. b 2. d 3. d x 1 = 3.0 10 1 cm east y 1 = 25 cm north x 2 = 15 cm west x tot = x 1 + x

More information

2-D Kinematics. In general, we have the following 8 equations (4 per dimension): Notes Page 1 of 7

2-D Kinematics. In general, we have the following 8 equations (4 per dimension): Notes Page 1 of 7 2-D Kinematics The problem we run into with 1-D kinematics, is that well it s one dimensional. We will now study kinematics in two dimensions. Obviously the real world happens in three dimensions, but

More information

Projectile Motion. v = v 2 + ( v 1 )

Projectile Motion. v = v 2 + ( v 1 ) What do the following situations have in common? Projectile Motion A monkey jumps from the branch of one tree to the branch of an adjacent tree. A snowboarder glides at top speed off the end of a ramp

More information

When we throw a ball :

When we throw a ball : PROJECTILE MOTION When we throw a ball : There is a constant velocity horizontal motion And there is an accelerated vertical motion These components act independently of each other PROJECTILE MOTION A

More information

Honors Physics Acceleration and Projectile Review Guide

Honors Physics Acceleration and Projectile Review Guide Honors Physics Acceleration and Projectile Review Guide Major Concepts 1 D Motion on the horizontal 1 D motion on the vertical Relationship between velocity and acceleration Difference between constant

More information

Introduction to 2-Dimensional Motion

Introduction to 2-Dimensional Motion Introduction to 2-Dimensional Motion 2-Dimensional Motion! Definition: motion that occurs with both x and y components.! Example:! Playing pool.! Throwing a ball to another person.! Each dimension of the

More information

Vocabulary Preview. Oct 21 9:53 AM. Projectile Motion. An object shot through the air is called a projectile.

Vocabulary Preview. Oct 21 9:53 AM. Projectile Motion. An object shot through the air is called a projectile. Projectile Trajectory Range Launch angle Vocabulary Preview Projectile Motion Projectile Motion An object shot through the air is called a projectile. A projectile can be a football, a bullet, or a drop

More information

2-D Vector Equations have the same form as 1-D Kinematics. f i i

2-D Vector Equations have the same form as 1-D Kinematics. f i i 2-D Vector Equations have the same form as 1-D Kinematics v = v + at f i 1 r = r + v t+ at f i i 2 2 2-D Vector Equations have the same form as 1-D Kinematics v = viˆ+ v ˆj f x y = ( v + ati ) ˆ+ ( v +

More information

Planar Motion with Constant Acceleration

Planar Motion with Constant Acceleration Planar Motion with Constant Acceleration 1. If the acceleration vector of an object is perpendicular to its velocity vector, which of the following must be true? (a) The speed is changing. (b) The direction

More information

PS 11 GeneralPhysics I for the Life Sciences

PS 11 GeneralPhysics I for the Life Sciences PS 11 GeneralPhysics I for the Life Sciences M E C H A N I C S I D R. B E N J A M I N C H A N A S S O C I A T E P R O F E S S O R P H Y S I C S D E P A R T M E N T N O V E M B E R 0 1 3 Definition Mechanics

More information

Exam 1 Practice SOLUTIONS Physics 111Q.B

Exam 1 Practice SOLUTIONS Physics 111Q.B Exam 1 Practice SOLUTIONS Physics 111Q.B Instructions This is a collection of practice problems for the first exam. The first exam will consist of 7-10 multiple choice questions followed by 1-3 problems

More information

(a) On the diagram above, draw an arrow showing the direction of velocity of the projectile at point A.

(a) On the diagram above, draw an arrow showing the direction of velocity of the projectile at point A. QUESTION 1 The path of a projectile in a uniform gravitational field is shown in the diagram below. When the projectile reaches its maximum height, at point A, its speed v is 8.0 m s -1. Assume g = 10

More information

PH Fall - Section 04 - Version A DRAFT

PH Fall - Section 04 - Version A DRAFT 1. A truck (traveling in a straight line), starts from rest and accelerates to 30 m/s in 20 seconds. It cruises along at that constant speed for one minute, then brakes, coming to a stop in 25 m. Determine

More information

physics Chapter 4 Lecture a strategic approach randall d. knight FOR SCIENTISTS AND ENGINEERS Chapter 4_Lecture1 THIRD EDITION

physics Chapter 4 Lecture a strategic approach randall d. knight FOR SCIENTISTS AND ENGINEERS Chapter 4_Lecture1 THIRD EDITION Chapter 4 Lecture physics FOR SCIENTISTS AND ENGINEERS a strategic approach THIRD EDITION randall d. knight Chapter 4_Lecture1 1 Chapter 4 Kinematics in 2D: Projectile Motion (Sec. 4.2) Which fountain

More information

Physics 11 Chapter 3: Kinematics in Two Dimensions. Problem Solving

Physics 11 Chapter 3: Kinematics in Two Dimensions. Problem Solving Physics 11 Chapter 3: Kinematics in Two Dimensions The only thing in life that is achieved without effort is failure. Source unknown "We are what we repeatedly do. Excellence, therefore, is not an act,

More information

CHAPTER 3 KINEMATICS IN TWO DIMENSIONS; VECTORS

CHAPTER 3 KINEMATICS IN TWO DIMENSIONS; VECTORS CHAPTER 3 KINEMATICS IN TWO DIMENSIONS; VECTORS OBJECTIVES After studying the material of this chapter, the student should be able to: represent the magnitude and direction of a vector using a protractor

More information

Chapter 3: Vectors and Projectile Motion

Chapter 3: Vectors and Projectile Motion Chapter 3: Vectors and Projectile Motion Vectors and Scalars You might remember from math class the term vector. We define a vector as something with both magnitude and direction. For example, 15 meters/second

More information

2018 AP PHYSICS 1 FREE-RESPONSE QUESTIONS. PHYSICS 1 Section II 1 Questions Time 25 minutes

2018 AP PHYSICS 1 FREE-RESPONSE QUESTIONS. PHYSICS 1 Section II 1 Questions Time 25 minutes 2018 AP FREE-RESPONSE QUESTIONS Time 25 minutes Directions: Question 1 is a long free-response question that requires about 25 minutes to answer and is worth 12 points. Show your work for each part in

More information

Trigonometry Basics. Which side is opposite? It depends on the angle. θ 2. Y is opposite to θ 1 ; Y is adjacent to θ 2.

Trigonometry Basics. Which side is opposite? It depends on the angle. θ 2. Y is opposite to θ 1 ; Y is adjacent to θ 2. Trigonometry Basics Basic Terms θ (theta) variable for any angle. Hypotenuse longest side of a triangle. Opposite side opposite the angle (θ). Adjacent side next to the angle (θ). Which side is opposite?

More information

Circular motion. Announcements:

Circular motion. Announcements: Circular motion Announcements: Clicker scores through Wednesday are now posted on DL. Scoring is points for a wrong answer, 3 points for a right answer. 13 clicker questions so far, so max is 39 points.

More information

Falling Objects. Bởi: OpenStaxCollege

Falling Objects. Bởi: OpenStaxCollege Falling Objects Bởi: OpenStaxCollege Falling objects form an interesting class of motion problems. For example, we can estimate the depth of a vertical mine shaft by dropping a rock into it and listening

More information

3.4 Projectile Motion

3.4 Projectile Motion 3.4 Projectile Motion Projectile Motion A projectile is anything launched, shot or thrown---i.e. not self-propelled. Examples: a golf ball as it flies through the air, a kicked soccer ball, a thrown football,

More information

Motion in Two or Three Dimensions

Motion in Two or Three Dimensions Chapter 3 Motion in Two or Three Dimensions PowerPoint Lectures for University Physics, Thirteenth Edition Hugh D. Young and Roger A. Freedman Lectures by Wayne Anderson Goals for Chapter 3 To use vectors

More information

5) A stone is thrown straight up. What is its acceleration on the way up? 6) A stone is thrown straight up. What is its acceleration on the way down?

5) A stone is thrown straight up. What is its acceleration on the way up? 6) A stone is thrown straight up. What is its acceleration on the way down? 5) A stone is thrown straight up. What is its acceleration on the way up? Answer: 9.8 m/s 2 downward 6) A stone is thrown straight up. What is its acceleration on the way down? Answer: 9.8 m/ s 2 downward

More information

PSI AP Physics 1 Kinematics. Free Response Problems

PSI AP Physics 1 Kinematics. Free Response Problems PSI AP Physics 1 Kinematics Free Response Problems 1. A car whose speed is 20 m/s passes a stationary motorcycle which immediately gives chase with a constant acceleration of 2.4 m/s 2. a. How far will

More information

Base your answers to questions 5 and 6 on the information below.

Base your answers to questions 5 and 6 on the information below. 1. A car travels 90. meters due north in 15 seconds. Then the car turns around and travels 40. meters due south in 5.0 seconds. What is the magnitude of the average velocity of the car during this 20.-second

More information

Bell Ringer: What is constant acceleration? What is projectile motion?

Bell Ringer: What is constant acceleration? What is projectile motion? Bell Ringer: What is constant acceleration? What is projectile motion? Can we analyze the motion of an object on the y-axis independently of the object s motion on the x-axis? NOTES 3.2: 2D Motion: Projectile

More information

Projectile Motion. Chin- Sung Lin STEM GARAGE SCIENCE PHYSICS

Projectile Motion. Chin- Sung Lin STEM GARAGE SCIENCE PHYSICS Projectile Motion Chin- Sung Lin Introduction to Projectile Motion q What is Projectile Motion? q Trajectory of a Projectile q Calculation of Projectile Motion Introduction to Projectile Motion q What

More information

Physics 111. Lecture 8 (Walker: 4.3-5) 2D Motion Examples. Projectile - General Launch Angle. In general, v 0x = v 0 cos θ and v 0y = v 0 sin θ

Physics 111. Lecture 8 (Walker: 4.3-5) 2D Motion Examples. Projectile - General Launch Angle. In general, v 0x = v 0 cos θ and v 0y = v 0 sin θ Physics 111 Lecture 8 (Walker: 4.3-5) D Motion Examples February 13, 009 Lecture 8 1/ Projectile - General Launch Angle In general, v 0x = v 0 cos θ and v 0y = v 0 sin θ (This ASSUMES θ is measured CCW

More information

Unit 1 Motion. Projectile Motion

Unit 1 Motion. Projectile Motion Unit 1 Motion Projectile Motion Motion to Date Uniform Motion Accelerated Motion Relative Motion Uniform Motion Motion with a constant velocity - Constant speed - Same direction Equation: v d t Problems

More information

Chapter 2. Kinematics in One Dimension. continued

Chapter 2. Kinematics in One Dimension. continued Chapter 2 Kinematics in One Dimension continued 2.6 Freely Falling Bodies Example 10 A Falling Stone A stone is dropped from the top of a tall building. After 3.00s of free fall, what is the displacement

More information

4 MOTION IN TWO AND THREE DIMENSIONS

4 MOTION IN TWO AND THREE DIMENSIONS Chapter 4 Motion in Two and Three Dimensions 157 4 MOTION IN TWO AND THREE DIMENSIONS Figure 4.1 The Red Arrows is the aerobatics display team of Britain s Royal Air Force. Based in Lincolnshire, England,

More information

3.6 Motion in Two Dimensions Projectile Motion 3.7 Projectile Motion Solving September Problems.notebook

3.6 Motion in Two Dimensions Projectile Motion 3.7 Projectile Motion Solving September Problems.notebook Projectile motion is an extension to two dimensions of free fall motion. Section 3.6 A projectile is an object that moves in two dimensions under the influence of gravity and nothing else. As long as we

More information

Chapter 3 Kinematics in Two Dimensions; Vectors

Chapter 3 Kinematics in Two Dimensions; Vectors Chapter 3 Kinematics in Two Dimensions; Vectors Vectors and Scalars Addition of Vectors Graphical Methods (One and Two- Dimension) Multiplication of a Vector by a Scalar Subtraction of Vectors Graphical

More information

Chapter 3. Table of Contents. Section 1 Introduction to Vectors. Section 2 Vector Operations. Section 3 Projectile Motion. Section 4 Relative Motion

Chapter 3. Table of Contents. Section 1 Introduction to Vectors. Section 2 Vector Operations. Section 3 Projectile Motion. Section 4 Relative Motion Two-Dimensional Motion and Vectors Table of Contents Section 1 Introduction to Vectors Section 2 Vector Operations Section 3 Projectile Motion Section 4 Relative Motion Section 1 Introduction to Vectors

More information

Chapter 4. Motion in Two Dimensions

Chapter 4. Motion in Two Dimensions Chapter 4 Motion in Two Dimensions Projectile Motion An object may move in both the x and y directions simultaneously. This form of two-dimensional motion we will deal with is called projectile motion.

More information

Phys 2425: University Physics I Summer 2016 Practice Exam 1

Phys 2425: University Physics I Summer 2016 Practice Exam 1 1. (0 Points) What course is this? a. PHYS 1401 b. PHYS 1402 c. PHYS 2425 d. PHYS 2426 2. (0 Points) Which exam is this? a. Exam 1 b. Exam 2 c. Final Exam 3. (0 Points) What version of the exam is this?

More information

Example problem: Free Fall

Example problem: Free Fall Example problem: Free Fall A ball is thrown from the top of a building with an initial velocity of 20.0 m/s straight upward, at an initial height of 50.0 m above the ground. The ball just misses the edge

More information

Chapter 3: Kinematics in Two Dimensions

Chapter 3: Kinematics in Two Dimensions Chapter 3: Kinematics in Two Dimensions Vectors and Scalars A scalar is a number with units. It can be positive, negative, or zero. Time: 100 s Distance and speed are scalars, although they cannot be negative

More information

Webreview cp physics ch 3 practice test (holt)

Webreview cp physics ch 3 practice test (holt) Name: Class: _ Date: _ ID: A Webreview cp physics ch 3 practice test (holt) Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Identify the following quantities

More information

F13--HPhys--Q4 Practice POST

F13--HPhys--Q4 Practice POST Name: Class: Date: ID: A F13--HPhys--Q4 Practice POST Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Which of the following is not an example of projectile

More information

Two Dimensional Kinematics Challenge Problems

Two Dimensional Kinematics Challenge Problems Two Dimensional Kinematics Challenge Problems Problem 1: Suppose a MIT student wants to row across the Charles River. Suppose the water is moving downstream at a constant rate of 1.0 m/s. A second boat

More information

Antiderivatives. Definition A function, F, is said to be an antiderivative of a function, f, on an interval, I, if. F x f x for all x I.

Antiderivatives. Definition A function, F, is said to be an antiderivative of a function, f, on an interval, I, if. F x f x for all x I. Antiderivatives Definition A function, F, is said to be an antiderivative of a function, f, on an interval, I, if F x f x for all x I. Theorem If F is an antiderivative of f on I, then every function of

More information

Practice Test What two units of measurement are necessary for describing speed?

Practice Test What two units of measurement are necessary for describing speed? Practice Test 1 1. What two units of measurement are necessary for describing speed? 2. What kind of speed is registered by an automobile? 3. What is the average speed in kilometers per hour for a horse

More information

Motion in Two Dimensions

Motion in Two Dimensions P U Z Z L E R This airplane is used by NASA for astronaut training. When it flies along a certain curved path, anything inside the plane that is not strapped down begins to float. What causes this strange

More information

Kinematics 2. Kinematics Equations. How to solve a Physics problem:

Kinematics 2. Kinematics Equations. How to solve a Physics problem: Kinematics Equations Kinematics 2 How to solve a Physics problem: What is the question asking for? List the given quantities with units Equation Substitution with units Solution with units Does the answer

More information

Full file at

Full file at Section 3-1 Constructing Complex Motions from Simple Motion *1. In Figure 3-1, the motion of a spinning wheel (W) that itself revolves in a circle is shown. Which of the following would not be represented

More information

An object moves back and forth, as shown in the position-time graph. At which points is the velocity positive?

An object moves back and forth, as shown in the position-time graph. At which points is the velocity positive? 1 The slope of the tangent on a position-time graph equals the instantaneous velocity 2 The area under the curve on a velocity-time graph equals the: displacement from the original position to its position

More information

Progressive Science Initiative. Click to go to website:

Progressive Science Initiative. Click to go to website: Slide 1 / 246 New Jersey Center for Teaching and Learning Progressive Science Initiative This material is made freely available at www.njctl.org and is intended for the non-commercial use of students and

More information

Falling Objects and Projectile Motion

Falling Objects and Projectile Motion Falling Objects and Projectile Motion Gravity influences motion in a particular way. How does a dropped object behave? accelerate, or speed constant? What if they have: different masses? different shapes?

More information

Unit 1, Lessons 2-5: Vectors in Two Dimensions

Unit 1, Lessons 2-5: Vectors in Two Dimensions Unit 1, Lessons 2-5: Vectors in Two Dimensions Textbook Sign-Out Put your name in it and let s go! Check-In Any questions from last day s homework? Vector Addition 1. Find the resultant displacement

More information

Adding Vectors in Two Dimensions

Adding Vectors in Two Dimensions Slide 37 / 125 Adding Vectors in Two Dimensions Return to Table of Contents Last year, we learned how to add vectors along a single axis. The example we used was for adding two displacements. Slide 38

More information

9/7/11. Which of the following is not a vector? Physics 101 Tuesday 9/6/11 Class 4

9/7/11. Which of the following is not a vector? Physics 101 Tuesday 9/6/11 Class 4 Reading Quiz Which of the following is not a vector? Physics 101 Tuesday 9/6/11 Class 4 Chapter 3 Sections 3.1 3.4 Free fall Components of a Vector Adding and Subtracting Vectors Unit Vectors A: speed

More information

Physics Mechanics. Lecture 8 2D Motion Basics

Physics Mechanics. Lecture 8 2D Motion Basics Physics 170 - Mechanics Lecture 8 2D Motion Basics Two-Dimensional Kinematics Motion in Two Dimensions Motion in the x- and y-directions should be solved separately: Constant Velocity If velocity is constant,

More information

Chapter 3 Homework Packet. Conceptual Questions

Chapter 3 Homework Packet. Conceptual Questions Chapter 3 Homework Packet Conceptual Questions 1) Which one of the following is an example of a vector quantity? A) mass B) area C) distance D) velocity A vector quantity has both magnitude and direction.

More information

Chapter 3 2-D Motion

Chapter 3 2-D Motion Chapter 3 2-D Motion We will need to use vectors and their properties a lot for this chapter. .. Pythagorean Theorem: Sample problem: First you hike 100 m north. Then hike 50 m west. Finally

More information

Vector Quantities A quantity such as force, that has both magnitude and direction. Examples: Velocity, Acceleration

Vector Quantities A quantity such as force, that has both magnitude and direction. Examples: Velocity, Acceleration Projectile Motion Vector Quantities A quantity such as force, that has both magnitude and direction. Examples: Velocity, Acceleration Scalar Quantities A quantity such as mass, volume, and time, which

More information

Graphical Vector Addition

Graphical Vector Addition Vectors Chapter 4 Vectors and Scalars Measured quantities can be of two types Scalar quantities: only require magnitude (and proper unit) for description. Examples: distance, speed, mass, temperature,

More information

The centripetal acceleration for a particle moving in a circle is a c = v 2 /r, where v is its speed and r is its instantaneous radius of rotation.

The centripetal acceleration for a particle moving in a circle is a c = v 2 /r, where v is its speed and r is its instantaneous radius of rotation. skiladæmi 1 Due: 11:59pm on Wednesday, September 9, 2015 You will receive no credit for items you complete after the assignment is due. Grading Policy Problem 3.04 The horizontal coordinates of a in a

More information

UNIT I: MECHANICS Chapter 5: Projectile Motion

UNIT I: MECHANICS Chapter 5: Projectile Motion IMPORTANT TERMS: Component Projectile Resolution Resultant Satellite Scalar quantity Vector Vector quantity UNIT I: MECHANICS Chapter 5: Projectile Motion I. Vector and Scalar Quantities (5-1) A. Vector

More information

Solutions to Physics: Principles with Applications, 5/E, Giancoli Chapter 3 CHAPTER 3

Solutions to Physics: Principles with Applications, 5/E, Giancoli Chapter 3 CHAPTER 3 Solutions to Phsics: Principles with Applications, 5/E, Giancoli Chapter 3 CHAPTE 3 1. We choose the west and south coordinate sstem shown. For the components of the resultant we have W W = D 1 + D cos

More information

Chapter 4 Two-Dimensional Kinematics. Copyright 2010 Pearson Education, Inc.

Chapter 4 Two-Dimensional Kinematics. Copyright 2010 Pearson Education, Inc. Chapter 4 Two-Dimensional Kinematics Units of Chapter 4 Motion in Two Dimensions Projectile Motion: Basic Equations Zero Launch Angle General Launch Angle Projectile Motion: Key Characteristics 4-1 Motion

More information

Write these equations in your notes if they re not already there. You will want them for Exam 1 & the Final.

Write these equations in your notes if they re not already there. You will want them for Exam 1 & the Final. Tuesday January 24 Assignment 3: Due Friday, 11:59pm.like every Friday Pre-Class Assignment: 15min before class like every class Office Hours: Wed. 10-11am, 204 EAL Help Room: Wed. & Thurs. 6-9pm, here

More information

1-D Motion: Free Falling Objects

1-D Motion: Free Falling Objects v (m/s) a (m/s^2) 1-D Motion: Free Falling Objects So far, we have only looked at objects moving in a horizontal dimension. Today, we ll look at objects moving in the vertical. Then, we ll look at both

More information

8.01x Classical Mechanics, Fall 2016 Massachusetts Institute of Technology. Problem Set 1

8.01x Classical Mechanics, Fall 2016 Massachusetts Institute of Technology. Problem Set 1 8.01x Classical Mechanics, Fall 2016 Massachusetts Institute of Technology 1. Car and Bicycle Rider Problem Set 1 A car is driving along a straight line with a speed v 0. At time t = 0 the car is at the

More information

PROBLEM SOLUTION

PROBLEM SOLUTION PROLEM 13.119 35, Mg ocean liner has an initial velocity of 4 km/h. Neglecting the frictional resistance of the water, determine the time required to bring the liner to rest by using a single tugboat which

More information

Kinematics Multiple- Choice Questions (answers on page 16)

Kinematics Multiple- Choice Questions (answers on page 16) Kinematics Multiple- Choice Questions (answers on page 16) 1. An object moves around a circular path of radius R. The object starts from point A, goes to point B and describes an arc of half of the circle.

More information

Demo: x-t, v-t and a-t of a falling basket ball.

Demo: x-t, v-t and a-t of a falling basket ball. Demo: x-t, v-t and a-t of a falling basket ball. I-clicker question 3-1: A particle moves with the position-versus-time graph shown. Which graph best illustrates the velocity of the particle as a function

More information

Lecture Notes Kinematics Recap 2.4 Acceleration

Lecture Notes Kinematics Recap 2.4 Acceleration Lecture Notes 2.5-2.9 Kinematics Recap 2.4 Acceleration Acceleration is the rate at which velocity changes. The SI unit for acceleration is m/s 2 Acceleration is a vector, and thus has both a magnitude

More information

CHAPTER 2: Describing Motion: Kinematics in One Dimension

CHAPTER 2: Describing Motion: Kinematics in One Dimension CHAPTER : Describing Motion: Kinematics in One Dimension Answers to Questions 1. A car speedometer measures only speed. It does not give any information about the direction, and so does not measure velocity..

More information

Particle Motion Notes Position When an object moves, its position is a function of time. For its position function, we will denote the variable s(t).

Particle Motion Notes Position When an object moves, its position is a function of time. For its position function, we will denote the variable s(t). Particle Motion Notes Position When an object moves, its position is a function of time. For its position function, we will denote the variable s(t). Example 1: For s( t) t t 3, show its position on the

More information

PHYS 185 Week 3 Homework Fall You may answer the questions in the space provided here, or if you prefer, on your own notebook paper.

PHYS 185 Week 3 Homework Fall You may answer the questions in the space provided here, or if you prefer, on your own notebook paper. PHYS 185 Week 3 Homework Fall 2013 Name: You may answer the questions in the space provided here, or if you prefer, on your own notebook paper. Short Problems v f = v i + at x f = x i + 1 2 (v i + v f

More information

Projectile Launched at an Angle

Projectile Launched at an Angle Projectile Launched at an Angle by Nada Saab-Ismail, PhD, MAT, MEd, IB nhsaab.weebly.com nhsaab2014@gmail.com P2.2g Apply the independence of the vertical and horizontal initial velocities to solve projectile

More information

Components of a Vector

Components of a Vector Vectors (Ch. 1) A vector is a quantity that has a magnitude and a direction. Examples: velocity, displacement, force, acceleration, momentum Examples of scalars: speed, temperature, mass, length, time.

More information

ssignment Previewer of 22 2/16/2016 12:19 PM Practice Exam Chapters 3.35.6 (Ungraded) (6043257) Due: Wed Feb 24 2016 06:00 PM EST Question 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

More information

(UNIT I) Measuring Activity Name

(UNIT I) Measuring Activity Name (UNIT I) Measuring Activity Name Purpose: To become more familiar with the metric system (SI) of measurement. Make estimates first and then measure it. Pre Lab reading: http://www.cnn.com/tech/space/9909/30/mars.metric.02/#1

More information

Phys 2425: University Physics I Spring 2016 Practice Exam 1

Phys 2425: University Physics I Spring 2016 Practice Exam 1 1. (0 Points) What course is this? a. PHYS 1401 b. PHYS 140 c. PHYS 45 d. PHYS 46 Survey Questions no points. (0 Points) Which exam is this? a. Exam 1 b. Exam c. Final Exam 3. (0 Points) What version of

More information

Two-Dimensional and Projectile Motion

Two-Dimensional and Projectile Motion Two-Dimensional and Projectile Motion James H Dann, Ph.D. James Dann, Ph.D. Say Thanks to the Authors Click http://www.ck12.org/saythanks (No sign in required) To access a customizable version of this

More information

Kinematics A train accelerates from rest at a rate of 2 m/(s*s), for a time of 20 seconds. How much distance does the train cover?

Kinematics A train accelerates from rest at a rate of 2 m/(s*s), for a time of 20 seconds. How much distance does the train cover? Physics R Date: 1. A cheetah goes from rest to 60 miles per hour (26.8 m/s) in 3 seconds. Calculate the acceleration of the cheetah. Kinematics Equations Kinematics 2 How to solve a Physics problem: 1.

More information

PH Fall - Section 05 - Version C DRAFT

PH Fall - Section 05 - Version C DRAFT 1. A truck (traveling in a straight line), starts from rest and accelerates to 30 m/s in 20 seconds. It cruises along at that constant speed for one minute, then brakes, coming to a stop in 25 m. Determine

More information

succeeding in the vce, 2017

succeeding in the vce, 2017 Unit 3 Physics succeeding in the vce, 017 extract from the master class teaching materials Our Master Classes form a component of a highly specialised weekly program, which is designed to ensure that students

More information

Physics 201 Lab 2 Air Drag Simulation

Physics 201 Lab 2 Air Drag Simulation Physics 201 Lab 2 Air Drag Simulation Jan 28, 2013 Equipment Initial Set Up Type the data from Table 1 into the appropriate cells. By preceding the content of the cell with an equal sign (as in cell A6)

More information

Physics Mid-Term Practice Exam

Physics Mid-Term Practice Exam Physics Mid-Term Practice Exam Multiple Choice. Identify the choice that best completes the statement or answers the question. 1. Which one of the following problems would NOT be a part of physics? a.

More information

Announcement. Quiz on Friday (Graphing and Projectile Motion) No HW due Wednesday

Announcement. Quiz on Friday (Graphing and Projectile Motion) No HW due Wednesday Going over HW3.05 Announcement Quiz on Friday (Graphing and Projectile Motion) No HW due Wednesday As the red ball rolls off the edge, a green ball is dropped from rest from the same height at the same

More information

International Examinations. Advanced Level Mathematics Mechanics 2 Douglas Quadling

International Examinations. Advanced Level Mathematics Mechanics 2 Douglas Quadling International Examinations Advanced Level Mathematics Mechanics Douglas Quadling The publishers would like to acknowledge the contributions of the following people to this series of books: Tim Cross, Richard

More information

Lab 5: Projectile Motion

Lab 5: Projectile Motion Concepts to explore Scalars vs. vectors Projectiles Parabolic trajectory As you learned in Lab 4, a quantity that conveys information about magnitude only is called a scalar. However, when a quantity,

More information

James T. Shipman Jerry D. Wilson Charles A. Higgins, Jr. Omar Torres. Chapter 2 Motion Cengage Learning

James T. Shipman Jerry D. Wilson Charles A. Higgins, Jr. Omar Torres. Chapter 2 Motion Cengage Learning James T. Shipman Jerry D. Wilson Charles A. Higgins, Jr. Omar Torres Chapter 2 Motion Defining Motion Motion is a continuous change in position can be described by measuring the rate of change of position

More information