2018 AP PHYSICS 1 FREE-RESPONSE QUESTIONS. PHYSICS 1 Section II 1 Questions Time 25 minutes

Size: px
Start display at page:

Download "2018 AP PHYSICS 1 FREE-RESPONSE QUESTIONS. PHYSICS 1 Section II 1 Questions Time 25 minutes"

Transcription

1 2018 AP FREE-RESPONSE QUESTIONS Time 25 minutes Directions: Question 1 is a long free-response question that requires about 25 minutes to answer and is worth 12 points. Show your work for each part in the space provided after that part. 1. (12 points, suggested time 25 minutes) A toy truck is launched horizontally from a table. In Case A the toy truck hits the floor a horizontal distance 2x from the edge of the table, and in Case B the toy truck hits the floor a horizontal distance x from the table. A student comparing the time the trucks are in the air in these cases states: The farther you go, the longer it takes to get there. The truck in Case A will be in the air longer than the truck in Case B a) Which aspects of the student s statement, if any, are incorrect? b) On the axes below sketch and label a graph of the magnitude of the vertical component of the velocity of Truck B as a function of time.

2 c) On the axes below sketch and label a graph of the magnitude of the horizontal component of the velocity of Truck B as a function of time. d) Explain how to use the quantities from the graph in part (b) to determine the time that Truck B is in the air. e) Using the information from the graph in part (b) derive an expression for the time that Truck B is in the air in terms of the given quantities and g. f) Determine the initial speed of Truck B in terms of the given quantities and g.

3 2018 AP FREE-RESPONSE QUESTIONS Directions: Question 1 is a short free-response question that requires about 13 minutes to answer and is worth 2. (7 points, suggested time 13 minutes) Two identical rocks are thrown horizontally by a student from the top of a cliff at time t = 0 as shown above. Rock A is thrown with initial speed of v0. Rock B is with initial speed of 2v0. Air resistance is negligible. The student writes the following equation in a lab notebook: v 2 x = v 2 x0 + 2a x (x x 0 ). The student then predicts, since speeds are squared in the equation, and distances are not, Rock B is going to hit the ocean four times farther away from the base of the cliff than Rock A, since I threw it twice as fast. a) Which aspects of the student s prediction, if any, are incorrect? The student next writes the following equation in the lab notebook: x = x 0 + v x0 t a xt. The student predicts, since speed is multiplied by time in the equation, Rock B will take twice as much time to hit the ocean as Rock A, since I threw it twice as fast. b) Which aspects of the student s prediction, if any, are incorrect?

4 c) On the axes below sketch and label a graph of the magnitude of the horizontal component of the acceleration of Rock A and Rock B as a function of time. d) On the axes below sketch and label a graph of the magnitude of the vertical component of the acceleration of Rock A and Rock B as a function of time AP FREE-RESPONSE QUESTIONS Directions: Question 1 is a short free-response question that requires about 13 minutes to answer and is worth 3. (7 points, suggested time 13 minutes)

5 Two identical rocks are released by a student from the top of a cliff at time t = 0 as shown above. Rock A has no initial velocity and falls straight down. Rock B is given an initial horizontal velocity of magnitude v0 and travels a horizontal distance before it reaches the ocean. The rocks reach the ocean at the same time tf, even though rock B has more distance to cover before splashing into the water. Air resistance is negligible. The student draws the following graphs to describe part of the motion of the rocks, using a coordinate system in which the positive vertical direction is up, the positive horizontal direction is away from the cliff, and the origin of the coordinate system is the point from which the rocks were released. a) Which of the two graphs for horizontal velocity as a function of time, if any, are drawn correctly? Rock A v(horizontal) Rock B v(horizontal) b) Which of the two graphs for vertical velocity as a function of time, if any, are drawn correctly? Rock A v(vertical) Rock B v(vertical) c) Explain how the student can use the correctly drawn graphs to estimate both the height of the cliff AND the horizontal distance Rock B travels before it reaches the ocean. Be sure to reference specific graphs and quantities used from those graphs.

6 2018 AP FREE-RESPONSE QUESTIONS Directions: Question 1 is a short free-response question that requires about 13 minutes to answer and is worth 4. (7 points, suggested time 13 minutes) A student throws a ball straight upward. A friend times how long it takes the ball to reach its maximum height. The student predicts: Faster things take less time. If I throw the ball faster, it will reach its highest point in less time. a) In a clear coherent paragraph-length response explain why the student s prediction is not completely correct. b) Derive an expression for the amount of time it takes the ball to reach its maximum height AP FREE-RESPONSE QUESTIONS

7 Directions: Question 1 is a short free-response question that requires about 13 minutes to answer and is worth 5. (7 points, suggested time 13 minutes) A student throws a ball straight upward in the positive direction and catches it 4 seconds later at the same height. The student makes this graph of the speed of the ball as a function of time. a) What, if anything, is wrong with the student s graph? Briefly explain your answer. b) On the grid below sketch and label a graph of the velocity of the ball as a function of time for the time period 0 to 4 seconds. c) Explain how the student could use the graph in part b) to determine the initial speed of the ball. d) Determine the initial speed of the ball.

Multiple-Choice Questions

Multiple-Choice Questions Multiple-Choice Questions 1. A rock is thrown straight up from the edge of a cliff. The rock reaches the maximum height of 15 m above the edge and then falls down to the bottom of the cliff 35 m below

More information

(a) On the diagram above, draw an arrow showing the direction of velocity of the projectile at point A.

(a) On the diagram above, draw an arrow showing the direction of velocity of the projectile at point A. QUESTION 1 The path of a projectile in a uniform gravitational field is shown in the diagram below. When the projectile reaches its maximum height, at point A, its speed v is 8.0 m s -1. Assume g = 10

More information

Formative Assessment: Uniform Acceleration

Formative Assessment: Uniform Acceleration Formative Assessment: Uniform Acceleration Name 1) A truck on a straight road starts from rest and accelerates at 3.0 m/s 2 until it reaches a speed of 24 m/s. Then the truck travels for 20 s at constant

More information

PSI AP Physics 1 Kinematics. Free Response Problems

PSI AP Physics 1 Kinematics. Free Response Problems PSI AP Physics 1 Kinematics Free Response Problems 1. A car whose speed is 20 m/s passes a stationary motorcycle which immediately gives chase with a constant acceleration of 2.4 m/s 2. a. How far will

More information

AP PHYSICS 1 UNIT 4 / FINAL 1 PRACTICE TEST

AP PHYSICS 1 UNIT 4 / FINAL 1 PRACTICE TEST AP PHYSICS 1 UNIT 4 / FINAL 1 PRACTICE TEST NAME FREE RESPONSE PROBLEMS Put all answers on this test. Show your work for partial credit. Circle or box your answers. Include the correct units and the correct

More information

Review Session 1. Page 1

Review Session 1. Page 1 Review Session 1 1. Which combination of fundamental units can be used to express the amount of work done on an object? 2. The height of a typical kitchen table is approximately A) 10-2 m B) 10 0 m C)

More information

PHYS.1410 Physics I Exam 1 Spring 2016 (version A)

PHYS.1410 Physics I Exam 1 Spring 2016 (version A) PHYS.1410 Physics I Exam 1 Spring 016 (version A) Recitation Section Number Name (PRINT) / LAST FIRST Last 3 Digits of Student ID Number: Fill out the above section of this page and print your last name

More information

Unit 1 Test Review Physics Basics, Movement, and Vectors Chapters 2-3

Unit 1 Test Review Physics Basics, Movement, and Vectors Chapters 2-3 A.P. Physics B Unit 1 Test Review Physics Basics, Movement, and Vectors Chapters - 3 * In studying for your test, make sure to study this review sheet along with your quizzes and homework assignments.

More information

~ RockA '\ RockB coordinate system is the point the rocks were released from. RockB v (horizontal) time. time

~ RockA '\ RockB coordinate system is the point the rocks were released from. RockB v (horizontal) time. time 82-WWT08: FALLING ROCK AN THROWN ROCK-VELOCITY- TIME GRAPHS Rock A is dropped from the top of a cliff at the same instant that Rock is thrown horizontally away from the cliff. The rocks are identical.

More information

STRAIGHT LINE MOTION TEST

STRAIGHT LINE MOTION TEST STRAIGHT LINE MOTION TEST Name: 1. The number of significant figures in the number 0.030 is a) b) 3 c) d) 5. The number 35.5 rounded to significant figures is a) 35.0 b) 35 c) 35.5 d) 0 3. Five different

More information

VERTICAL PROJECTILE MOTION (LIVE) 08 APRIL 2015 Section A: Summary Notes and Examples

VERTICAL PROJECTILE MOTION (LIVE) 08 APRIL 2015 Section A: Summary Notes and Examples VERTICAL PROJECTILE MOTION (LIVE) 08 APRIL 2015 Section A: Summary Notes and Examples Equations of Motion When an object is thrown, projected or shot upwards or downwards, it is said to be a projectile.

More information

Motion Along a Straight Line

Motion Along a Straight Line PHYS 101 Previous Exam Problems CHAPTER Motion Along a Straight Line Position & displacement Average & instantaneous velocity Average & instantaneous acceleration Constant acceleration Free fall Graphical

More information

Kinematics Multiple- Choice Questions (answers on page 16)

Kinematics Multiple- Choice Questions (answers on page 16) Kinematics Multiple- Choice Questions (answers on page 16) 1. An object moves around a circular path of radius R. The object starts from point A, goes to point B and describes an arc of half of the circle.

More information

8.01x Classical Mechanics, Fall 2016 Massachusetts Institute of Technology. Problem Set 1

8.01x Classical Mechanics, Fall 2016 Massachusetts Institute of Technology. Problem Set 1 8.01x Classical Mechanics, Fall 2016 Massachusetts Institute of Technology 1. Car and Bicycle Rider Problem Set 1 A car is driving along a straight line with a speed v 0. At time t = 0 the car is at the

More information

AP PHYSICS 1 UNIT 3 PRACTICE TEST

AP PHYSICS 1 UNIT 3 PRACTICE TEST AP PHYSICS 1 UNIT 3 PRACTICE TEST NAME FREE RESPONSE PROBLEMS Show your work for partial credit. Circle or box your answers. Include the correct units and the correct number of significant figures in your

More information

(a) On the dots below that represent the students, draw and label free-body diagrams showing the forces on Student A and on Student B.

(a) On the dots below that represent the students, draw and label free-body diagrams showing the forces on Student A and on Student B. 2003 B1. (15 points) A rope of negligible mass passes over a pulley of negligible mass attached to the ceiling, as shown above. One end of the rope is held by Student A of mass 70 kg, who is at rest on

More information

AP Physics 1 Summer Assignment

AP Physics 1 Summer Assignment Name: Email address (write legibly): AP Physics 1 Summer Assignment Packet 3 The assignments included here are to be brought to the first day of class to be submitted. They are: Problems from Conceptual

More information

Vector and Relative motion discussion/ in class notes. Projectile Motion discussion and launch angle problem. Finish 2 d motion and review for test

Vector and Relative motion discussion/ in class notes. Projectile Motion discussion and launch angle problem. Finish 2 d motion and review for test AP Physics 1 Unit 2: 2 Dimensional Kinematics Name: Date In Class Homework to completed that evening (before coming to next class period) 9/6 Tue (B) 9/7 Wed (C) 1D Kinematics Test Unit 2 Video 1: Vectors

More information

Practice Test 1 1. A steel cylinder is 39 mm in height and 39 mm in diameter.

Practice Test 1 1. A steel cylinder is 39 mm in height and 39 mm in diameter. Practice Test 1 1. A steel cylinder is 39 mm in height and 39 mm in diameter. (a) How much does it weigh? (density of steel: ρ = 7560 kg/m3) 2. An automobile moving along a straight track changes its velocity

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. PHYS 101 Fall 2013 (Purcell), Fake Midterm #1 MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) The figure shows the graph of the position x as a

More information

1. Joseph runs along a long straight track. The variation of his speed v with time t is shown below.

1. Joseph runs along a long straight track. The variation of his speed v with time t is shown below. Kinematics 1. Joseph runs along a long straight track. The variation of his speed v with time t is shown below. After 25 seconds Joseph has run 200 m. Which of the following is correct at 25 seconds? Instantaneous

More information

Name: Class: Date: Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. c.

Name: Class: Date: Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. c. Class: Date: Chapter 2 Review Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. What is the speed of an object at rest? a. 0.0 m/s c. 9.8 m/s

More information

*************************************************************************

************************************************************************* Your Name: TEST #1 Print clearly. On the Scantron, fill out your student ID, leaving the first column empty and starting in the second column. Also write your name, class time (11:30 or 12:30), and Test

More information

Two Dimensional Kinematics Challenge Problems

Two Dimensional Kinematics Challenge Problems Two Dimensional Kinematics Challenge Problems Problem 1: Suppose a MIT student wants to row across the Charles River. Suppose the water is moving downstream at a constant rate of 1.0 m/s. A second boat

More information

AP Physics First Nine Weeks Review

AP Physics First Nine Weeks Review AP Physics First Nine Weeks Review 1. If F1 is the magnitude of the force exerted by the Earth on a satellite in orbit about the Earth and F2 is the magnitude of the force exerted by the satellite on the

More information

Problem: Projectile (CM-1998) Justify your answer: Problem: Projectile (CM-1998) 5 10 m/s 3. Show your work: 3 m/s 2

Problem: Projectile (CM-1998) Justify your answer: Problem: Projectile (CM-1998) 5 10 m/s 3. Show your work: 3 m/s 2 Physics C -D Kinematics Name: AP Review Packet Vectors have both magnitude and direction displacement, velocity, acceleration Scalars have magnitude only distance, speed, time, mass Unit vectors Specify

More information

NO CREDIT DO NOT USE IT

NO CREDIT DO NOT USE IT 1. Liela is standing on the opponents 40 yard line. She throws a pass toward the goal line. The ball is 2 meters above the ground when she lets go. It follows a parabolic path, reaching its highest point,

More information

Lecture 2. 1D motion with Constant Acceleration. Vertical Motion.

Lecture 2. 1D motion with Constant Acceleration. Vertical Motion. Lecture 2 1D motion with Constant Acceleration. Vertical Motion. Types of motion Trajectory is the line drawn to track the position of an abject in coordinates space (no time axis). y 1D motion: Trajectory

More information

Unit 2: Vector Dynamics

Unit 2: Vector Dynamics Multiple Choice Portion Unit 2: Vector Dynamics 1. Which one of the following best describes the motion of a projectile close to the surface of the Earth? (Assume no friction) Vertical Acceleration Horizontal

More information

Exam 1 Practice SOLUTIONS Physics 111Q.B

Exam 1 Practice SOLUTIONS Physics 111Q.B Exam 1 Practice SOLUTIONS Physics 111Q.B Instructions This is a collection of practice problems for the first exam. The first exam will consist of 7-10 multiple choice questions followed by 1-3 problems

More information

3.2 Projectile Motion

3.2 Projectile Motion Motion in 2-D: Last class we were analyzing the distance in two-dimensional motion and revisited the concept of vectors, and unit-vector notation. We had our receiver run up the field then slant Northwest.

More information

1) If the acceleration of an object is negative, the object must be slowing down. A) True B) False Answer: B Var: 1

1) If the acceleration of an object is negative, the object must be slowing down. A) True B) False Answer: B Var: 1 University Physics, 13e (Young/Freedman) Chapter 2 Motion Along a Straight Line 2.1 Conceptual Questions 1) If the acceleration of an object is negative, the object must be slowing down. A) True B) False

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) If the acceleration of an object is negative, the object must be slowing down. A) True B) False

More information

Adding Vectors in Two Dimensions

Adding Vectors in Two Dimensions Slide 37 / 125 Adding Vectors in Two Dimensions Return to Table of Contents Last year, we learned how to add vectors along a single axis. The example we used was for adding two displacements. Slide 38

More information

i. Indicate on the figure the point P at which the maximum speed of the car is attained. ii. Calculate the value vmax of this maximum speed.

i. Indicate on the figure the point P at which the maximum speed of the car is attained. ii. Calculate the value vmax of this maximum speed. 1. A 0.20 kg object moves along a straight line. The net force acting on the object varies with the object's displacement as shown in the graph above. The object starts from rest at displacement x = 0

More information

pg B7. A pendulum consists of a small object of mass m fastened to the end of an inextensible cord of length L. Initially, the pendulum is dra

pg B7. A pendulum consists of a small object of mass m fastened to the end of an inextensible cord of length L. Initially, the pendulum is dra pg 165 A 0.20 kg object moves along a straight line. The net force acting on the object varies with the object's displacement as shown in the graph above. The object starts from rest at displacement x

More information

acceleration versus time. LO Determine a particle s change in position by graphical integration on a graph of velocity versus time.

acceleration versus time. LO Determine a particle s change in position by graphical integration on a graph of velocity versus time. Chapter: Chapter 2 Learning Objectives LO 2.1.0 Solve problems related to position, displacement, and average velocity to solve problems. LO 2.1.1 Identify that if all parts of an object move in the same

More information

; Vertex: ( b. 576 feet above the ground?

; Vertex: ( b. 576 feet above the ground? Lesson 8: Applications of Quadratics Quadratic Formula: x = b± b 2 4ac 2a ; Vertex: ( b, f ( b )) 2a 2a Standard: F.IF.7 Graph functions expressed symbolically and show key features of the graph, by hand

More information

(f ) From the graph, obtain the height of the tube given the mass of the dart is 20 grams and the constant force applied in the tube is 2 newtons.

(f ) From the graph, obtain the height of the tube given the mass of the dart is 20 grams and the constant force applied in the tube is 2 newtons. 1. Bowling Ball A is dropped from a point halfway up a cliff. A second identical bowling ball, B, is dropped simultaneously from the top of the cliff. Comparing the bowling balls at the instant they reach

More information

a. Determine the sprinter's constant acceleration during the first 2 seconds.

a. Determine the sprinter's constant acceleration during the first 2 seconds. AP Physics 1 FR Practice Kinematics 1d 1 The first meters of a 100-meter dash are covered in 2 seconds by a sprinter who starts from rest and accelerates with a constant acceleration. The remaining 90

More information

AP Physics Free Response Practice Kinematics

AP Physics Free Response Practice Kinematics AP Physics Free Response Practice Kinematics 1982B1. The first meters of a 100-meter dash are covered in 2 seconds by a sprinter who starts from rest and accelerates with a constant acceleration. The remaining

More information

PH 1110 Summary Homework 1

PH 1110 Summary Homework 1 PH 111 Summary Homework 1 Name Section Number These exercises assess your readiness for Exam 1. Solutions will be available on line. 1a. During orientation a new student is given instructions for a treasure

More information

Lecture 2. 1D motion with Constant Acceleration. Vertical Motion.

Lecture 2. 1D motion with Constant Acceleration. Vertical Motion. Lecture 2 1D motion with Constant Acceleration. Vertical Motion. Types of motion Trajectory is the line drawn to track the position of an abject in coordinates space (no time axis). y 1D motion: Trajectory

More information

Antiderivatives. Definition A function, F, is said to be an antiderivative of a function, f, on an interval, I, if. F x f x for all x I.

Antiderivatives. Definition A function, F, is said to be an antiderivative of a function, f, on an interval, I, if. F x f x for all x I. Antiderivatives Definition A function, F, is said to be an antiderivative of a function, f, on an interval, I, if F x f x for all x I. Theorem If F is an antiderivative of f on I, then every function of

More information

Introduction to 2-Dimensional Motion

Introduction to 2-Dimensional Motion Introduction to 2-Dimensional Motion 2-Dimensional Motion! Definition: motion that occurs with both x and y components.! Example:! Playing pool.! Throwing a ball to another person.! Each dimension of the

More information

MOTION ALONG A STRAIGHT LINE

MOTION ALONG A STRAIGHT LINE MOTION ALONG A STRAIGHT LINE 2 21 IDENTIFY: The average velocity is Let be upward EXECUTE: (a) EVALUATE: For the first 115 s of the flight, When the velocity isn t constant the average velocity depends

More information

From rest, a rock is dropped and falls for 3.0 seconds before hitting the ground. What is its velocity right before it hits the ground?

From rest, a rock is dropped and falls for 3.0 seconds before hitting the ground. What is its velocity right before it hits the ground? Physics Lecture #6: Falling Objects A falling object accelerates as it falls. A bowling ball dropped on your foot will hurt more if it is dropped from a greater height since it has more time to increase

More information

Chapter 3 Acceleration

Chapter 3 Acceleration Chapter 3 Acceleration Slide 3-1 Chapter 3: Acceleration Chapter Goal: To extend the description of motion in one dimension to include changes in velocity. This type of motion is called acceleration. Slide

More information

Accl g Motion graph prac

Accl g Motion graph prac Accl g Motion graph prac 1. An object starts from rest and falls freely. What is the velocity of the object at the end of 3.00 seconds? A) 9.81 m/s B) 19.6 m/s C) 29.4 m/s D) 88.2 m/s 2. An object is dropped

More information

Honors Physics Acceleration and Projectile Review Guide

Honors Physics Acceleration and Projectile Review Guide Honors Physics Acceleration and Projectile Review Guide Major Concepts 1 D Motion on the horizontal 1 D motion on the vertical Relationship between velocity and acceleration Difference between constant

More information

1-D Motion: Free Falling Objects

1-D Motion: Free Falling Objects v (m/s) a (m/s^2) 1-D Motion: Free Falling Objects So far, we have only looked at objects moving in a horizontal dimension. Today, we ll look at objects moving in the vertical. Then, we ll look at both

More information

AP Physics B Summer Assignment Packet 3

AP Physics B Summer Assignment Packet 3 AP Physics B Summer Assignment Packet 3 The assignments included here are to be brought to the first day of class to be submitted. They are: Problems from Conceptual Physics Find the Mistake Straightening

More information

BROCK UNIVERSITY SOLUTIONS. 1. [1 point] A car is driving at a constant speed on a circular road. The force on a passenger in the car is

BROCK UNIVERSITY SOLUTIONS. 1. [1 point] A car is driving at a constant speed on a circular road. The force on a passenger in the car is BROCK UNIVERSITY Test 2: October 2014 Number of pages: 4 + formula sheet Course: PHYS 1P21/1P91 Number of students: 280 Examination date: 6 October 2014 Time of Examination: 13:00 13:50 Instructor: S.

More information

2. To study circular motion, two students use the hand-held device shown above, which consists of a rod on which a spring scale is attached.

2. To study circular motion, two students use the hand-held device shown above, which consists of a rod on which a spring scale is attached. 1. A ball of mass M attached to a string of length L moves in a circle in a vertical plane as shown above. At the top of the circular path, the tension in the string is twice the weight of the ball. At

More information

AP Physics C: Work, Energy, and Power Practice

AP Physics C: Work, Energy, and Power Practice AP Physics C: Work, Energy, and Power Practice 1981M2. A swing seat of mass M is connected to a fixed point P by a massless cord of length L. A child also of mass M sits on the seat and begins to swing

More information

AP Physics 1 Work Energy and Power Practice Test Name

AP Physics 1 Work Energy and Power Practice Test Name AP Physics 1 Work Energy and Power Practice Test Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Two objects, one of mass m and the other

More information

AP Physics C: Mechanics

AP Physics C: Mechanics 2017 AP Physics C: Mechanics Scoring Guidelines 2017 The College Board. College Board, Advanced Placement Program, AP, AP Central, and the acorn logo are registered trademarks of the College Board. Visit

More information

Do Now 10 Minutes Topic Free Fall

Do Now 10 Minutes Topic Free Fall Do Now 10 Minutes Topic Free Fall I will be passing out a pop quiz right now. You have ten minutes to complete the pop quiz. Homework Complete the Motion Graph Lab Turn in the Kinematic Equations Worksheet

More information

AP Physics C: Mechanics Practice (Newton s Laws including friction, resistive forces, and centripetal force).

AP Physics C: Mechanics Practice (Newton s Laws including friction, resistive forces, and centripetal force). AP Physics C: Mechanics Practice (Newton s Laws including friction, resistive forces, and centripetal force). 1981M1. A block of mass m, acted on by a force of magnitude F directed horizontally to the

More information

AP Physics Review FRQ 2015

AP Physics Review FRQ 2015 AP Physics Review FRQ 2015 2015 Mech 1. A block of mass m is projected up from the bottom of an inclined ramp with an initial velocity of magnitude v 0. The ramp has negligible friction and makes an angle

More information

Free fall. Lana Sheridan. Oct 3, De Anza College

Free fall. Lana Sheridan. Oct 3, De Anza College Free fall Lana Sheridan De Anza College Oct 3, 2018 2018 Physics Nobel Prize Congratulations to Arthur Ashkin and to Gérard Mourou and Donna Strickland Last time the kinematics equations (constant acceleration)

More information

Motion Section 3 Acceleration

Motion Section 3 Acceleration Section 3 Acceleration Review velocity Scan Use the checklist below to preview Section 3 of your book. Read all section titles. Read all boldfaced words. Read all graphs and equations. Look at all the

More information

AP PHYSICS C: MECHANICS 2013 SCORING GUIDELINES

AP PHYSICS C: MECHANICS 2013 SCORING GUIDELINES AP PHYSICS C: MECHANICS 2013 SCORING GUIDELINES Question 1 15 points total Distribution of points (a) 3 points For labeling the axes with appropriate values For a smooth curve that begins with increasing

More information

AP Physics 1: MIDTERM REVIEW OVER UNITS 2-4: KINEMATICS, DYNAMICS, FORCE & MOTION, WORK & POWER

AP Physics 1: MIDTERM REVIEW OVER UNITS 2-4: KINEMATICS, DYNAMICS, FORCE & MOTION, WORK & POWER MIDTERM REVIEW AP Physics 1 McNutt Name: Date: Period: AP Physics 1: MIDTERM REVIEW OVER UNITS 2-4: KINEMATICS, DYNAMICS, FORCE & MOTION, WORK & POWER 1.) A car starts from rest and uniformly accelerates

More information

Spring 2010 Physics 141 Practice Exam II Phy141_mt1b.pdf

Spring 2010 Physics 141 Practice Exam II Phy141_mt1b.pdf 1. (15 points) You are given two vectors: A has length 10. and an angle of 60. o (with respect to the +x axis). B has length 10. and an angle of 200. o (with respect to the +x axis). a) Calculate the components

More information

Kinematics Multiple-Choice Questions

Kinematics Multiple-Choice Questions Kinematics Multiple-Choice Questions 1. An object moves around a circular path of radius R. The object starts from point A, goes to point B and describes an arc of half of the circle. Which of the following

More information

Summary of motion graphs Object is moving to the right (in positive direction) v = 0 a = 0

Summary of motion graphs Object is moving to the right (in positive direction) v = 0 a = 0 Summary of motion graphs Object is moving to the right (in positive direction) Object at rest (not moving) Position is constant v (m/s) a (m/s 2 ) v = 0 a = 0 Constant velocity Position increases at constant

More information

Unit 6: Friction and Spring Force Review Section 1: Know the definitions and/or concepts of the following: 1) Static friction force:

Unit 6: Friction and Spring Force Review Section 1: Know the definitions and/or concepts of the following: 1) Static friction force: Name Date Period Unit 6: Friction and Spring Force Review Section 1: Know the definitions and/or concepts of the following: 1) Static friction force: 5) Hooke s Law: 2) Kinetic friction force: 6) Spring

More information

PHYSICS 218 EXAM 1 Thursday, September 22, 2011

PHYSICS 218 EXAM 1 Thursday, September 22, 2011 A PHYSICS 218 EXAM 1 Thursday, September 22, 2011 NAME: ENCIRCLE YOUR SECTION NUMBER: 513 514 515 516 Note: 513 Recitation & lab Wed 8:00-10:50 am 514 Recitation & lab Wed 10:20 am - 1:10 pm 515 Recitation

More information

Lecture Notes Kinematics Recap 2.4 Acceleration

Lecture Notes Kinematics Recap 2.4 Acceleration Lecture Notes 2.5-2.9 Kinematics Recap 2.4 Acceleration Acceleration is the rate at which velocity changes. The SI unit for acceleration is m/s 2 Acceleration is a vector, and thus has both a magnitude

More information

Trigonometry Basics. Which side is opposite? It depends on the angle. θ 2. Y is opposite to θ 1 ; Y is adjacent to θ 2.

Trigonometry Basics. Which side is opposite? It depends on the angle. θ 2. Y is opposite to θ 1 ; Y is adjacent to θ 2. Trigonometry Basics Basic Terms θ (theta) variable for any angle. Hypotenuse longest side of a triangle. Opposite side opposite the angle (θ). Adjacent side next to the angle (θ). Which side is opposite?

More information

(f) none of the above

(f) none of the above Honors Physics TEST: Kinematics in 1D 10/30/12 Part 1. Multiple Choice: Answer the following multiple choice questions by picking the selection that best answers the question. Write your answers on a separate

More information

Unit 1 Motion. Projectile Motion

Unit 1 Motion. Projectile Motion Unit 1 Motion Projectile Motion Motion to Date Uniform Motion Accelerated Motion Relative Motion Uniform Motion Motion with a constant velocity - Constant speed - Same direction Equation: v d t Problems

More information

Newtonian mechanics: kinematics and dynamics Kinematics: mathematical description of motion (Ch 2, Ch 3) Dynamics: how forces affect motion (Ch 4)

Newtonian mechanics: kinematics and dynamics Kinematics: mathematical description of motion (Ch 2, Ch 3) Dynamics: how forces affect motion (Ch 4) July-15-14 10:39 AM Chapter 2 Kinematics in One Dimension Newtonian mechanics: kinematics and dynamics Kinematics: mathematical description of motion (Ch 2, Ch 3) Dynamics: how forces affect motion (Ch

More information

Projectile motion. Objectives. Assessment. Assessment. Equations. Physics terms 5/20/14. Identify examples of projectile motion.

Projectile motion. Objectives. Assessment. Assessment. Equations. Physics terms 5/20/14. Identify examples of projectile motion. Projectile motion Objectives Identify examples of projectile motion. Solve projectile motion problems. problems Graph the motion of a projectile. 1. Which of the events described below cannot be an example

More information

AP Physics C: Mechanics Ch. 2 Motion. SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

AP Physics C: Mechanics Ch. 2 Motion. SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Name: Period: Date: AP Physics C: Mechanics Ch. Motion SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. ) Car A is traveling at twice the speed of car

More information

UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics

UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics Physics 115.3 MIDTERM TEST October 23, 2014 Time: 90 minutes NAME: (Last) Please Print (Given) STUDENT NO.: LECTURE SECTION (please

More information

Worksheet At t = 0 a car has a speed of 30 m/s. At t = 6 s, its speed is 14 m/s. What is its average acceleration during this time interval?

Worksheet At t = 0 a car has a speed of 30 m/s. At t = 6 s, its speed is 14 m/s. What is its average acceleration during this time interval? Worksheet 9 1. A poorly tuned Geo Metro (really old cheap, slow, car) can accelerate from rest to a speed of 28 m/s in 20 s. a) What is the average acceleration of the car? b) What distance does it travel

More information

1 What is Science? Worksheets CHAPTER CHAPTER OUTLINE

1 What is Science? Worksheets CHAPTER CHAPTER OUTLINE www.ck12.org Chapter 1. What is Science? Worksheets CSS AP Physics 1 2015-16 Summer Assignment Part 1 of 3 CHAPTER 1 What is Science? Worksheets CHAPTER OUTLINE 1.1 Scientific Inquiry 1.2 Fundamental Units

More information

Ch 2 Homework. Follow the instructions on the problems and show your work clearly.

Ch 2 Homework. Follow the instructions on the problems and show your work clearly. Ch 2 Homework Name: Follow the instructions on the problems and show your work clearly. 1. (Problem 3) A person travels by car from one city to another with different constant speeds between pairs of cities.

More information

4.1 Motion Is Relative. An object is moving if its position relative to a fixed point is changing. You can describe the motion of an object by its

4.1 Motion Is Relative. An object is moving if its position relative to a fixed point is changing. You can describe the motion of an object by its 4.1 Motion Is Relative You can describe the motion of an object by its position, speed, direction, and acceleration. An object is moving if its position relative to a fixed point is changing. 4.1 Motion

More information

Trial 1 Trial 2 Trial 3. From your results, how many seconds would it take the car to travel 1.50 meters? (3 significant digits)

Trial 1 Trial 2 Trial 3. From your results, how many seconds would it take the car to travel 1.50 meters? (3 significant digits) SPEED & ACCELERATION PART I: A DISTANCE-TIME STUDY AT CONSTANT SPEED Speed is composed of two fundamental concepts, namely, distance and time. In this part of the experiment you will take measurements

More information

AP Physics 1 Summer Assignment 2018 Mrs. DeMaio

AP Physics 1 Summer Assignment 2018 Mrs. DeMaio AP Physics 1 Summer Assignment 2018 Mrs. DeMaio demaiod@middletownk12.org Welcome to AP Physics 1 for the 2018-2019 school year. AP Physics 1 is an algebra based, introductory college-level physics course.

More information

SCI 265 Spring Low Density Water High Density

SCI 265 Spring Low Density Water High Density SCI 265 Spring 2016 1. Consider 1kg of feathers and 1 kg of gold, A. 1 kg of gold has a smaller weight B. 1 kg of feathers has a smaller weight C. 1 kg of feathers and 1 kg of gold have equal weight D.

More information

Mark on the diagram the position of the ball 0.50 s after projection.

Mark on the diagram the position of the ball 0.50 s after projection. IB Kinematics Problems 1. This question is about projectile motion. A small steel ball is projected horizontally from the edge of a bench. Flash photographs of the ball are taken at.1 s intervals. The

More information

Materials: One of each of the following is needed: Cart Meter stick Pulley with clamp 70 cm string Motion Detector

Materials: One of each of the following is needed: Cart Meter stick Pulley with clamp 70 cm string Motion Detector Name Date Period Newton s Second Law: Net Force and Acceleration Procedures: Newton s second law describes a relationship between the net force acting on an object and the objects acceleration. In determining

More information

Physics I Exam 1 Fall 2014 (version A)

Physics I Exam 1 Fall 2014 (version A) 95.141 Physics I Exam 1 Fall 014 (version A) Section Number Section instructor Last/First Name (print) / Last 3 Digits of Student ID Number: Answer all questions, beginning each new question in the space

More information

Topic 2 Revision questions Paper

Topic 2 Revision questions Paper Topic 2 Revision questions Paper 1 3.1.2018 1. [1 mark] The graph shows the variation of the acceleration a of an object with time t. What is the change in speed of the object shown by the graph? A. 0.5

More information

Practice Test What two units of measurement are necessary for describing speed?

Practice Test What two units of measurement are necessary for describing speed? Practice Test 1 1. What two units of measurement are necessary for describing speed? 2. What kind of speed is registered by an automobile? 3. What is the average speed in kilometers per hour for a horse

More information

UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics

UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics Physics 115.3 MIDTERM TEST Time: 90 minutes NAME: (Last) Please Print (Given) STUDENT NO.: LECTURE SECTION (please check): 01 A.

More information

AP Physics C: Electricity and Magnetism

AP Physics C: Electricity and Magnetism 2018 AP Physics C: Electricity and Magnetism Sample Student Responses and Scoring Commentary Inside: Free Response Question 2 RR Scoring Guideline RR Student Samples RR Scoring Commentary 2018 The College

More information

Falling Objects and Projectile Motion

Falling Objects and Projectile Motion Falling Objects and Projectile Motion Gravity influences motion in a particular way. How does a dropped object behave? accelerate, or speed constant? What if they have: different masses? different shapes?

More information

1 D motion: know your variables, position, displacement, velocity, speed acceleration, average and instantaneous.

1 D motion: know your variables, position, displacement, velocity, speed acceleration, average and instantaneous. General: Typically, there will be multiple choice, short answer, and big problems. Multiple Choice and Short Answer On the multiple choice and short answer, explanations are typically not required (only

More information

170 Test example problems CH1,2,3

170 Test example problems CH1,2,3 170 Test example problems CH1,2,3 WARNING: these are simply examples that showed up in previous semesters test. It does NOT mean that similar problems will be present in THIS semester s test. Hence, you

More information

Free Fall. Last new topic that will be on the Midterm

Free Fall. Last new topic that will be on the Midterm Homework Questions? Free Fall Last new topic that will be on the Midterm Do now: Calculate acceleration due to gravity on earth Announcements 3.03 is due Friday Free Fall Introduction: Doc Shuster (AP

More information

UNIT I: MECHANICS Chapter 5: Projectile Motion

UNIT I: MECHANICS Chapter 5: Projectile Motion IMPORTANT TERMS: Component Projectile Resolution Resultant Satellite Scalar quantity Vector Vector quantity UNIT I: MECHANICS Chapter 5: Projectile Motion I. Vector and Scalar Quantities (5-1) A. Vector

More information

AP Physics C: One Dimensional Kinematics

AP Physics C: One Dimensional Kinematics Slide 1 / 33 P Physics : One imensional Kinematics Multiple hoice Questions Slide 2 / 33 1 In the absence of air resistance, a ball dropped near the surface of the arth experiences a constant acceleration

More information

Projectile Motion I. Projectile motion is an example of. Motion in the x direction is of motion in the y direction

Projectile Motion I. Projectile motion is an example of. Motion in the x direction is of motion in the y direction What is a projectile? Projectile Motion I A projectile is an object upon which the only force acting is gravity. There are a variety of examples of projectiles. An object dropped from rest is a projectile

More information

Chapter 3 Acceleration

Chapter 3 Acceleration Chapter 3 Acceleration Slide 3-1 Chapter 3: Acceleration Chapter Goal: To extend the description of motion in one dimension to include changes in velocity. This type of motion is called acceleration. Slide

More information

Problem: Projectile (CM-1998)

Problem: Projectile (CM-1998) Physics C -D Kinematics Name: ANSWER KEY AP Review Packet Vectors have both magnitude and direction displacement, velocity, acceleration Scalars have magnitude only distance, speed, time, mass Unit vectors

More information