WORK. The work is done by a force acting on a body while it undergoes a displacement.

Size: px
Start display at page:

Download "WORK. The work is done by a force acting on a body while it undergoes a displacement."

Transcription

1 ORK The work is one by a force acting on a boy while it unergoes a isplacement.

2 S S

3 S S cos S S cos S S S ork is one by a component of Ԧ, parallel to the isplacement. S

4 The work value epns on: force Ԧ value isplacement ԦS value angle α between Ԧ an ԦS

5 ork one in horizontal shifting 1 cos() 0 S cos 0 0 The is no work in horizontal shiftng!!! Carrying weights we o not work!!!

6 ork one in lifting an object S Q mg 1 cos() cos 1 S hen lifting, we perform positive work!!!

7 ork one in lowering an object 90 1 cos() S 180 cos 1 S hen lowering, we perform negative work!!!

8 w 1 0 S S Lifting an lowering mgs Q mgs S S 1 0 hen lifting an lowering, the total work is zero!!!

9 Lifting an lowering with varying mass w 0 Q S S mgs 1 S m 1 gs 1 S m m 1 gs 0 fter mass ecrease at the top, the total work is positive hen rinking, we perform positive work!!!

10 Pressing S 0 cos 1 S Pressing the remote control button we perform positive work!!!

11 S

12 Q S S Q Q Q Q Q S S S S S S

13 ORK The work is an integral of force an isplacement scalar prouct. S ork is energy transferre to or from an object by means of a force acting on the object. Energy transferre to the object is positive work. Energy transferre from the object is negative work.

14 The Scalar Prouct (ot prouct) R 1 cos() Example: work: = Ԧ ԦS, z N z 0 S T Q -1 Q N T 0 0 0

15 Q mgs 1 1 S 3 Q3 0 Q S 1 S 41 S 34 Q mgs 34 Q41 0 Q S 1 S 34 S S cos QS 1 cos 180 QS1

16 Q Q Q The net work one by a weight on a particle moving aroun any close path is zero.

17 Q The work one by a weight on a particle mooving between any two points oes not epen on the path taken by the particle. S 1 1 0

18 force, which net work on any close path is zero (is inepenent on the path), is sai to be a conservative force.

19 Conservative force: - gravitational force - spring force - Coulomb force Nonconservative force : - friction force - rag force Tk < 0 D < 0 ൡ both forces are issipative

20 or conservative force it is possible to efine the change of the potential energy c c r c 0 c c c r c

21 POTENTIL ENERGY The change in the potential energy is efine to equal to the negative of the work one by a conservative force uring the shift from an initial to a final state. c c r

22 Conservative force Potential energy Gravitation mg mgh Grawitaion G m m 1 r r r m1m r G Spring force Coulomb 1 4 kx 0 q r q 1 r r 1 kx q 1 q r

23 mgh m m G 1 r

24 1 kx x 0 x

25 1 q1q r 40 oy aim to achieve a state of minimum potential energy

26 Integral = ntierivative y f x y x f x x x The integral is the inverse operation to the erivative the antierivative. c r c gra c x (in one-imensional motion) (in 3D-imensional motion)

27 x x x ( x )( ) min x 0 c x ( x ) ( ) max x 0 c x ) ( x) const 0 c x ( x 0 0 0

28 x ( ) min max const x EQILIRIM 0 0 c the boy remains at rest the boy remains at equilibrium - stable - unstable ( x ) ( x ) min max - neutral const ( x )

29 The boy is at equilibrium when: - net force is zero 0 w - remains at the extremum of the potential energy x an (ynamic equilibrium conition) (energetic equilibrium conition) 0 0 M w

30 w r t V m t mv t w p t V r t r V t V t V m V V m t r V t mv t w p t w p KINETIC ENERGY

31 m V V 1 mv 1 mv K 1 mv K K K w w r

32 KINETIC ENERGY The change K in the kinetic energy is efine to equal to the work one by a conservative force uring the shift from an initial to a final state. K K K w w r

33 hen acting forces are conservative: w c w r c r w c K

34 K K K K E E E K E const

35 PRINCIPLE O CONSERVTION O MECHNICL ENERGY If only a conservative forsec within the system oes work, then the total mechanical energy E of the system, the total sum of its kinetic K an its potential energies, cannot change w c E K const

36 V 0 K mgh K E 0 mv K E E E mv mgh g V H H

37 V C 0 K mgh K E 0 C C C C C mv K E C E E mgh mv C V C gh g V g V C V C V

38 K int E K ex c w r r r r ex c w ex E K int ex c w hen on a boy, except conservative foces Ԧ c, acts issipative forces Ԧ an external forces Ԧ ex : Q ex ex E K int

39 PRINCIPLE O TOTL ENERGY CONSERVTION E tot K E int ex The change in the total energy of the system is equal to the work one by an external force.

40 PRINCIPLE O TOTL ENERGY CONSERVTION ex 0 E tot K Eint 0 In an isolate system, (system without external foces) energy may be transferre from one type to another, but the total energy E tot of the system always remains constant.

41 INTERNL ENERGY E int 1. The change of the internal energy is equal to the negative of the issipative force work.. ork one by torque or rag foce Ԧ always increase the internal energy of the system E int > Internal energy coul be observe as: boy an environment heating, eformation, soun, light...

42 Discuss energy transfers occurring in each of the following 1 situations: a) not taking into account the occurrence of frictional force b) taking into account the occurrence of friction force V V V V V Ԧ V Ԧ V Ԧ V Ԧ V Ԧ V Ԧ V Ԧ V Ԧ 1) hich of the presente cases can not occur in reality?? ) In which of the presente cases the spee coul be constant? Discuss energy transfers in such a case.

43 1 1 t p t p t p t p t p 0 1 t p p const p p 1 COLLISIONS

44 PRINCIPLE O MOMENTM CONSERVTION If there is no external foce or net external force is zero, the net linear momentum of the system 0 wz cannot change. p c p i const 11z 1z z 31 1 z 3z z 3 z 3z 3

45 If in collisions acting forces are conservative then the mechanical energy is constant. 1 1 kx The collisions is then sai to be elastic. p1 p p1 p mv mv 1 1 mv mv MC MEC 0

46 p p p p 1 1 int 1 1 E mv mv mv V m MC TEC If in collisions acting forces are nonconservative The collisions is then sai to be inelastic. then the total energy is constant.

47 V C V C V C In elastic collisions: total mechanical energy is constant In inelastic collisions: total mechanical energy ecreases an follows: heating, eformation, soun generation, ligt generation.

Work and Kinetic Energy

Work and Kinetic Energy Work Work an Kinetic Energy Work (W) the prouct of the force eerte on an object an the istance the object moes in the irection of the force (constant force only). W = " = cos" (N " m = J)! is the angle

More information

Other Examples of Energy Transfer

Other Examples of Energy Transfer Chapter 7 Work and Energy Overview energy. Study work as defined in physics. Relate work to kinetic energy. Consider work done by a variable force. Study potential energy. Understand energy conservation.

More information

Work changes Energy. Do Work Son!

Work changes Energy. Do Work Son! 1 Work changes Energy Do Work Son! 2 Do Work Son! 3 Work Energy Relationship 2 types of energy kinetic : energy of an object in motion potential: stored energy due to position or stored in a spring Work

More information

Kinematics (special case) Dynamics gravity, tension, elastic, normal, friction. Energy: kinetic, potential gravity, spring + work (friction)

Kinematics (special case) Dynamics gravity, tension, elastic, normal, friction. Energy: kinetic, potential gravity, spring + work (friction) Kinematics (special case) a = constant 1D motion 2D projectile Uniform circular Dynamics gravity, tension, elastic, normal, friction Motion with a = constant Newton s Laws F = m a F 12 = F 21 Time & Position

More information

ACCELERATION, FORCE, MOMENTUM, ENERGY : solutions to higher level questions

ACCELERATION, FORCE, MOMENTUM, ENERGY : solutions to higher level questions ACCELERATION, FORCE, MOMENTUM, ENERGY : solutions to higher level questions 015 Question 1 (a) (i) State Newton s secon law of motion. Force is proportional to rate of change of momentum (ii) What is the

More information

Chapter 6 Work and Energy

Chapter 6 Work and Energy Chapter 6 Work and Energy Midterm exams will be available next Thursday. Assignment 6 Textbook (Giancoli, 6 th edition), Chapter 6: Due on Thursday, November 5 1. On page 162 of Giancoli, problem 4. 2.

More information

AN INTRODUCTION TO AIRCRAFT WING FLUTTER Revision A

AN INTRODUCTION TO AIRCRAFT WING FLUTTER Revision A AN INTRODUCTION TO AIRCRAFT WIN FLUTTER Revision A By Tom Irvine Email: tomirvine@aol.com January 8, 000 Introuction Certain aircraft wings have experience violent oscillations uring high spee flight.

More information

5.3. Conservation of Energy

5.3. Conservation of Energy 5.3. Conservation of Energy Conservation of Energy Energy is never created or destroyed. Any time work is done, it is only transformed from one form to another: Kinetic Energy Potential Energy Gravitational,

More information

Newton s Laws of Motion

Newton s Laws of Motion Chapter 4 Newton s Second Law: in vector form Newton s Laws of Motion σ റF = m റa in component form σ F x = ma x σ F y = ma y in equilibrium and static situations a x = 0; a y = 0 Strategy for Solving

More information

Chapter 8. Potential Energy & Conservation of Energy

Chapter 8. Potential Energy & Conservation of Energy Chapter 8 Potential Energy & Conservation of Energy 8.1 Potential Energy Technically, potential energy is energy that can be associated with the configuration (arrangement) of a system of objects that

More information

Conservative vs. Non-conservative forces Gravitational Potential Energy. Conservation of Mechanical energy

Conservative vs. Non-conservative forces Gravitational Potential Energy. Conservation of Mechanical energy Next topic Conservative vs. Non-conservative forces Gravitational Potential Energy Mechanical Energy Conservation of Mechanical energy Work done by non-conservative forces and changes in mechanical energy

More information

Name Class Date. In the space provided, write the letter of the term or phrase that best completes each statement or best answers each question.

Name Class Date. In the space provided, write the letter of the term or phrase that best completes each statement or best answers each question. Assessment Chapter Test A ork and Energy MULTIPLE CHOICE In the space provided, write the letter of the term or phrase that best completes each statement or best answers each question. 1. In which of the

More information

Worksheet 4: Energy. 1 Mechanical Energy

Worksheet 4: Energy. 1 Mechanical Energy Name: 3DigitCoe: Worksheet 4: Energy 1 Mechanical Energy ##$%$ A) B) C) D) ##$)$ ##$($ ##$'$ ##$&$ (left) Threeballsarefiresimultaneouslywithequal spees from the same height above the groun. Ball 1 is

More information

Chapter 2 Lagrangian Modeling

Chapter 2 Lagrangian Modeling Chapter 2 Lagrangian Moeling The basic laws of physics are use to moel every system whether it is electrical, mechanical, hyraulic, or any other energy omain. In mechanics, Newton s laws of motion provie

More information

Lecture 6 Physics 106 Spring 2006

Lecture 6 Physics 106 Spring 2006 Lecture 6 Physics 106 Spring 2006 Angular Momentum Rolling Angular Momentum: Definition: Angular Momentum for rotation System of particles: Torque: l = r m v sinφ l = I ω [kg m 2 /s] http://web.njit.edu/~sirenko/

More information

Numerical Integrator. Graphics

Numerical Integrator. Graphics 1 Introuction CS229 Dynamics Hanout The question of the week is how owe write a ynamic simulator for particles, rigi boies, or an articulate character such as a human figure?" In their SIGGRPH course notes,

More information

The Principle of Least Action

The Principle of Least Action Chapter 7. The Principle of Least Action 7.1 Force Methos vs. Energy Methos We have so far stuie two istinct ways of analyzing physics problems: force methos, basically consisting of the application of

More information

WORK, ENERGY & POWER Work scalar W = F S Cosθ Unit of work in SI system Work done by a constant force

WORK, ENERGY & POWER Work scalar W = F S Cosθ Unit of work in SI system Work done by a constant force WORK, ENERGY & POWER Work Let a force be applied on a body so that the body gets displaced. Then work is said to be done. So work is said to be done if the point of application of force gets displaced.

More information

Chapter 8. Potential Energy and Conservation of Energy

Chapter 8. Potential Energy and Conservation of Energy Chapter 8 Potential Energy and Conservation of Energy 8.2 Conservative and non-conservative forces A system consists of two or more particles. A configuration of the system is just a specification of the

More information

Lecture 13 REVIEW. Physics 106 Spring What should we know? What should we know? Newton s Laws

Lecture 13 REVIEW. Physics 106 Spring What should we know? What should we know? Newton s Laws Lecture 13 REVIEW Physics 106 Spring 2006 http://web.njit.edu/~sirenko/ What should we know? Vectors addition, subtraction, scalar and vector multiplication Trigonometric functions sinθ, cos θ, tan θ,

More information

OCR Physics Specification A - H156/H556

OCR Physics Specification A - H156/H556 OCR Physics Specification A - H156/H556 Module 3: Forces and Motion You should be able to demonstrate and show your understanding of: 3.1 Motion Displacement, instantaneous speed, average speed, velocity

More information

Chapter 8: Potential Energy and Conservation of Energy Work and kinetic energy are energies of motion.

Chapter 8: Potential Energy and Conservation of Energy Work and kinetic energy are energies of motion. Chapter 8: Potential Energy and Conservation of Energy Work and kinetic energy are energies of motion. K = K f K i = 1 2 mv 2 f rf = v v F dr Consider a vertical spring oscillating with mass m attached

More information

Physics 2514 Lecture 26

Physics 2514 Lecture 26 Physics 2514 Lecture 26 P. Gutierrez Department of Physics & Astronomy University of Oklahoma Physics 2514 p. 1/12 Review We have defined the following using Newton s second law of motion ( F net = d p

More information

Problem set 2: Solutions Math 207B, Winter 2016

Problem set 2: Solutions Math 207B, Winter 2016 Problem set : Solutions Math 07B, Winter 016 1. A particle of mass m with position x(t) at time t has potential energy V ( x) an kinetic energy T = 1 m x t. The action of the particle over times t t 1

More information

Introduction to Mechanics Work and Energy

Introduction to Mechanics Work and Energy Introuction to Mechanics Work an Energy Lana Sherian De Anza College Mar 15, 2018 Last time non-uniform circular motion an tangential acceleration energy an work Overview energy work a more general efinition

More information

If you have a conflict, you should have already requested and received permission from Prof. Shapiro to take the make-up exam.

If you have a conflict, you should have already requested and received permission from Prof. Shapiro to take the make-up exam. Reminder: Exam this Sunday Nov. 9. Chapters 5. 5.4, 3.4,.0, 6, 7. Time: 6:0 7:30 PM Look up locations online. Bring calculator and formula sheet. If you have a conflict, you should have already requested

More information

Recall: Gravitational Potential Energy

Recall: Gravitational Potential Energy Welcome back to Physics 15 Today s agenda: Work Power Physics 15 Spring 017 Lecture 10-1 1 Recall: Gravitational Potential Energy For an object of mass m near the surface of the earth: U g = mgh h is height

More information

Physics 2414 Group Exercise 8. Conservation of Energy

Physics 2414 Group Exercise 8. Conservation of Energy Physics 244 Group Exercise 8 Name : OUID : Name 2: OUID 2: Name 3: OUID 3: Name 4: OUID 4: Section Number: Solutions Solutions Conservation of Energy A mass m moves from point i to point f under the action

More information

PHY 101. Work and Kinetic Energy 7.1 Work Done by a Constant Force

PHY 101. Work and Kinetic Energy 7.1 Work Done by a Constant Force PHY 101 DR M. A. ELERUJA KINETIC ENERGY AND WORK POTENTIAL ENERGY AND CONSERVATION OF ENERGY CENTRE OF MASS AND LINEAR MOMENTUM Work is done by a force acting on an object when the point of application

More information

Assessment Schedule 2007 Physics: Demonstrate understanding of mechanics (90255)

Assessment Schedule 2007 Physics: Demonstrate understanding of mechanics (90255) NCEA Level Physics (9055) 007 page of 5 Assessment Schedule 007 Physics: Demonstrate understanding of mechanics (9055) Evidence Statement Q Evidence Achievement Achievement with Merit Achievement with

More information

W = F x W = Fx cosθ W = Fx. Work

W = F x W = Fx cosθ W = Fx. Work Ch 7 Energy & Work Work Work is a quantity that is useful in describing how objects interact with other objects. Work done by an agent exerting a constant force on an object is the product of the component

More information

Chapter 7 Potential Energy and Energy Conservation

Chapter 7 Potential Energy and Energy Conservation Chapter 7 Potential Energy and Energy Conservation We saw in the previous chapter the relationship between work and kinetic energy. We also saw that the relationship was the same whether the net external

More information

40 N 40 N. Direction of travel

40 N 40 N. Direction of travel 1 Two ropes are attached to a box. Each rope is pulled with a force of 40 N at an angle of 35 to the direction of travel. 40 N 35 35 40 N irection of travel The work done, in joules, is found using 2 Which

More information

Essentially, the amount of work accomplished can be determined two ways:

Essentially, the amount of work accomplished can be determined two ways: 1 Work and Energy Work is done on an object that can exert a resisting force and is only accomplished if that object will move. In particular, we can describe work done by a specific object (where a force

More information

G j dq i + G j. q i. = a jt. and

G j dq i + G j. q i. = a jt. and Lagrange Multipliers Wenesay, 8 September 011 Sometimes it is convenient to use reunant coorinates, an to effect the variation of the action consistent with the constraints via the metho of Lagrange unetermine

More information

WORK, POWER & ENERGY

WORK, POWER & ENERGY WORK, POWER & ENERGY Work An applied force acting over a displacement. The force being applied must be parallel to the displacement for work to be occurring. Work Force displacement Units: Newton meter

More information

PHYS 1114, Lecture 33, April 10 Contents:

PHYS 1114, Lecture 33, April 10 Contents: PHYS 1114, Lecture 33, April 10 Contents: 1 This class is o cially cancelled, and has been replaced by the common exam Tuesday, April 11, 5:30 PM. A review and Q&A session is scheduled instead during class

More information

Welcome back to Physics 211

Welcome back to Physics 211 Welcome back to Physics 211 Today s agenda: Work Power Physics 211 Fall 2012 Lecture 09-2 1 Current assignments HW#9 due this Friday at 5 pm. Short assignment SAGE (Thanks for the feedback!) I am using

More information

Lecture 10. Potential energy and conservation of energy

Lecture 10. Potential energy and conservation of energy Lecture 10 Potential energy and conservation of energy Today s Topics: Potential Energy and work done by conservative forces Work done by nonconservative forces Conservation of mechanical energy Potential

More information

11th Grade. Review for General Exam-3. decreases. smaller than. remains the same

11th Grade. Review for General Exam-3. decreases. smaller than. remains the same 1. An object is thrown horizontally with a speed of v from point M and hits point E on the vertical wall after t seconds as shown in the figure. (Ignore air friction.). Two objects M and S are thrown as

More information

The... of a particle is defined as its change in position in some time interval.

The... of a particle is defined as its change in position in some time interval. Distance is the. of a path followed by a particle. Distance is a quantity. The... of a particle is defined as its change in position in some time interval. Displacement is a.. quantity. The... of a particle

More information

Lecture 10 Mechanical Energy Conservation; Power

Lecture 10 Mechanical Energy Conservation; Power Potential energy Basic energy Lecture 10 Mechanical Energy Conservation; Power ACT: Zero net work The system of pulleys shown below is used to lift a bag of mass M at constant speed a distance h from the

More information

Work and kinetic energy. If a net force is applied on an object, the object may

Work and kinetic energy. If a net force is applied on an object, the object may Work and kinetic energy If a net force is applied on an object, the object may CHAPTER 6 WORK AND ENERGY experience a change in position, i.e., a displacement. When a net force is applied over a distance,

More information

and from it produce the action integral whose variation we set to zero:

and from it produce the action integral whose variation we set to zero: Lagrange Multipliers Monay, 6 September 01 Sometimes it is convenient to use reunant coorinates, an to effect the variation of the action consistent with the constraints via the metho of Lagrange unetermine

More information

WORK, POWER AND ENERGY

WORK, POWER AND ENERGY WORK, POWER AND ENERGY Important Points:. Dot Product: a) Scalar product is defined as the product of the magnitudes of two vectors and the cosine of the angle between them. The dot product of two vectors

More information

Electric Potential & Potential Energy

Electric Potential & Potential Energy Electric Potential & Potential Energy I) ELECTRIC POTENTIAL ENERGY of a POINT CHARGE Okay, remember from your Mechanics: Potential Energy (U) is gaine when you o work against a fiel (like lifting a weight,

More information

Lecture 6.1 Work and Energy During previous lectures we have considered many examples, which can be solved using Newtonian approach, in particular,

Lecture 6.1 Work and Energy During previous lectures we have considered many examples, which can be solved using Newtonian approach, in particular, Lecture 6. Work and Energy During previous lectures we have considered many examples, which can be solved using Newtonian approach, in particular, Newton's second law. However, this is not always the most

More information

CHAPTER 6 WORK AND ENERGY

CHAPTER 6 WORK AND ENERGY CHAPTER 6 WORK AND ENERGY ANSWERS TO FOCUS ON CONCEPTS QUESTIONS (e) When the force is perpendicular to the displacement, as in C, there is no work When the force points in the same direction as the displacement,

More information

α f k θ y N m mg Figure 1 Solution 1: (a) From Newton s 2 nd law: From (1), (2), and (3) Free-body diagram (b) 0 tan 0 then

α f k θ y N m mg Figure 1 Solution 1: (a) From Newton s 2 nd law: From (1), (2), and (3) Free-body diagram (b) 0 tan 0 then Question [ Work ]: A constant force, F, is applied to a block of mass m on an inclined plane as shown in Figure. The block is moved with a constant velocity by a distance s. The coefficient of kinetic

More information

Which iceboat crosses the finish line with more kinetic energy (KE)?

Which iceboat crosses the finish line with more kinetic energy (KE)? Two iceboats (one of mass m, one of mass 2m) hold a race on a frictionless, horizontal, frozen lake. Both iceboats start at rest, and the wind exerts the same constant force on both iceboats. Which iceboat

More information

Phys 207. Announcements. Hwk 6 is posted online; submission deadline = April 4 Exam 2 on Friday, April 8th. Today s Agenda

Phys 207. Announcements. Hwk 6 is posted online; submission deadline = April 4 Exam 2 on Friday, April 8th. Today s Agenda Phs 07 Announcements Hwk 6 is posted online; submission deadline = April 4 Exam on Frida, April 8th Toda s Agenda Freshman Interim Grades eview Work done b variable force in 3-D Newton s gravitational

More information

Physics 1A Fall 2013: Quiz 4 Version A 1. Department of Physics Physics 1A Fall Quarter 2013 Dr. Paddock. Version A

Physics 1A Fall 2013: Quiz 4 Version A 1. Department of Physics Physics 1A Fall Quarter 2013 Dr. Paddock. Version A Physics 1A Fall 2013: Quiz 4 Version A 1 Department of Physics Physics 1A Fall Quarter 2013 Dr. Paddock Version A DO NOT TURN OVER THIS PAGE UNTIL INSTRUCTED TO DO SO PUT AWAY ALL BOOKS, NOTES, PHONES,

More information

Fundamentals Physics

Fundamentals Physics Fundamentals Physics Tenth Edition Halliday Chapter 8 Potential Energy and Conservation of Energy 8-1 Potential Energy (1 of 15) Learning Objectives 8.01 Distinguish a conservative force force from a nonconservative

More information

(A) 10 m (B) 20 m (C) 25 m (D) 30 m (E) 40 m

(A) 10 m (B) 20 m (C) 25 m (D) 30 m (E) 40 m Work/nergy 1. student throws a ball upward where the initial potential energy is 0. t a height of 15 meters the ball has a potential energy of 60 joules and is moving upward with a kinetic energy of 40

More information

Chapter 9. Collisions. Copyright 2010 Pearson Education, Inc.

Chapter 9. Collisions. Copyright 2010 Pearson Education, Inc. Chapter 9 Linear Momentum and Collisions Linear Momentum Units of Chapter 9 Momentum and Newton s Second Law Impulse Conservation of Linear Momentum Inelastic Collisions Elastic Collisions Units of Chapter

More information

Today s lecture. WEST VIRGINIA UNIVERSITY Physics

Today s lecture. WEST VIRGINIA UNIVERSITY Physics Today s lecture Review of chapters 1-14 Note: I m taking for granted that you ll still know SI/cgs units, order-of-magnitude estimates, etc., so I m focusing on problems. Velocity and acceleration (1d)

More information

Chapter 9 Linear Momentum and Collisions

Chapter 9 Linear Momentum and Collisions Chapter 9 Linear Momentum and Collisions Units of Chapter 9 Linear Momentum Momentum and Newton s Second Law Impulse Conservation of Linear Momentum Inelastic Collisions Elastic Collisions Units of Chapter

More information

Work- Work done W is defined as the dot product of force F and displacement s.

Work- Work done W is defined as the dot product of force F and displacement s. Work- Work done W is defined as the dot product of force F and displacement s. Here θ is the angle between and. Work done by the force is positive if the angle between force and displacement is acute (0

More information

Power and Gravitational Potential Energy

Power and Gravitational Potential Energy Power and Gravitational Potential Energ REVIE of Last eek s Lecture Scalar Product A B AB cos A B x x A B A z B B cos B z A ork Fs F s constant force parallel to displacement force not parallel to displacement

More information

Chapter 8 LINEAR MOMENTUM AND COLLISIONS

Chapter 8 LINEAR MOMENTUM AND COLLISIONS Chapter 8 LINEAR MOMENTUM AND COLLISIONS Linear Momentum Momentum and Newton s Second Law Impulse Conservation of Linear Momentum Inelastic Collisions Elastic Collisions Center of Mass Systems with Changing

More information

King Saud University College of Science Physics & Astronomy Dept.

King Saud University College of Science Physics & Astronomy Dept. King Saud University College of Science Physics & Astronomy Dept. PHYS 103 (GENERAL PHYSICS) CHAPTER 7:Energy and Energy Transfer Presented by Nouf Saad Alkathran Imagine a system consisting of a book

More information

Lesson 5. Luis Anchordoqui. Physics 168. Tuesday, September 26, 17

Lesson 5. Luis Anchordoqui. Physics 168. Tuesday, September 26, 17 Lesson 5 Physics 168 1 C. B.-Champagne Luis Anchordoqui 2 2 Work Done by a Constant Force distance moved times component of force in direction of displacement W = Fd cos 3 Work Done by a Constant Force

More information

Linear Momentum. Lecture 15. Chapter 9. Physics I Department of Physics and Applied Physics

Linear Momentum. Lecture 15. Chapter 9. Physics I Department of Physics and Applied Physics Lecture 15 Chapter 9 Physics I 10.30.2013 Linear Momentum Course website: http://faculty.uml.edu/ndriy_danylov/teaching/physicsi Lecture Capture: http://echo360.uml.edu/danylov2013/physics1fall.html Outline

More information

P = dw dt. P = F net. = W Δt. Conservative Force: P ave. Net work done by a conservative force on an object moving around every closed path is zero

P = dw dt. P = F net. = W Δt. Conservative Force: P ave. Net work done by a conservative force on an object moving around every closed path is zero Power Forces Conservative Force: P ave = W Δt P = dw dt P = F net v Net work done by a conservative force on an object moving around every closed path is zero Non-conservative Force: Net work done by a

More information

Exam 2 Solutions. PHY2048 Spring 2017

Exam 2 Solutions. PHY2048 Spring 2017 Exam Solutions. The figure shows an overhead view of three horizontal forces acting on a cargo canister that was initially stationary but that now moves across a frictionless floor. The force magnitudes

More information

MECHANICAL (TOTAL) ENERGY

MECHANICAL (TOTAL) ENERGY DO NOW: 1/19 If you haven t already, please take the short google form survey posted on Edmodo Please turn in your Work done by friction Lab in the top tray POTENTIAL ENERGY Stored energy An object that

More information

Assignment 1. g i (x 1,..., x n ) dx i = 0. i=1

Assignment 1. g i (x 1,..., x n ) dx i = 0. i=1 Assignment 1 Golstein 1.4 The equations of motion for the rolling isk are special cases of general linear ifferential equations of constraint of the form g i (x 1,..., x n x i = 0. i=1 A constraint conition

More information

Conservation of Momentum and Energy

Conservation of Momentum and Energy ASU University Physics Labs - Mechanics Lab 5 p. 1 Conservation of Momentum and Energy As you work through the steps in the lab procedure, record your experimental values and the results on this worksheet.

More information

CIRCULAR MOTION AND SHM: Solutions to Higher Level Questions

CIRCULAR MOTION AND SHM: Solutions to Higher Level Questions CIRCULAR MOTION AND SHM: Solutions to Higher Level Questions ****ALL QUESTIONS-ANSWERS ARE HIGHER LEVEL*** Solutions 015 Question 6 (i) Explain what is meant by centripetal force. The force - acting in

More information

Exam I, Physics 117-Spring 2003, Mon. 3/10/2003

Exam I, Physics 117-Spring 2003, Mon. 3/10/2003 General Instructions Exam I, Physics 117-Spring 2003, Mon. 3/10/2003 Instructor: Dr. S. Liberati There are a total of five problems in this exam. All problems carry equal weights. Do all the five problems

More information

1. The electron volt is a measure of (A) charge (B) energy (C) impulse (D) momentum (E) velocity

1. The electron volt is a measure of (A) charge (B) energy (C) impulse (D) momentum (E) velocity AP Physics Multiple Choice Practice Electrostatics 1. The electron volt is a measure of (A) charge (B) energy (C) impulse (D) momentum (E) velocity. A soli conucting sphere is given a positive charge Q.

More information

PSI AP Physics C Work and Energy. (With Calculus) Multiple Choice Questions

PSI AP Physics C Work and Energy. (With Calculus) Multiple Choice Questions PSI AP Physics C Work and Energy (With Calculus) Multiple Choice Questions 1. An object moves according to the function x = t 7/2 where x is the distance traveled and t is the time. Its kinetic energy

More information

Simple Harmonic Motion

Simple Harmonic Motion Physics 7B-1 (A/B) Professor Cebra Winter 010 Lecture 10 Simple Harmonic Motion Slide 1 of 0 Announcements Final exam will be next Wednesday 3:30-5:30 A Formula sheet will be provided Closed-notes & closed-books

More information

Physics 5153 Classical Mechanics. The Virial Theorem and The Poisson Bracket-1

Physics 5153 Classical Mechanics. The Virial Theorem and The Poisson Bracket-1 Physics 5153 Classical Mechanics The Virial Theorem an The Poisson Bracket 1 Introuction In this lecture we will consier two applications of the Hamiltonian. The first, the Virial Theorem, applies to systems

More information

( ) = ( ) W net = ΔKE = KE f KE i W F. F d x. KE = 1 2 mv2. Note: Work is the dot product of F and d. Work-Kinetic Energy Theorem

( ) = ( ) W net = ΔKE = KE f KE i W F. F d x. KE = 1 2 mv2. Note: Work is the dot product of F and d. Work-Kinetic Energy Theorem Work-Kinetic Energy Theorem KE = 1 2 mv2 W F change in the kinetic energy of an object F d x net work done on the particle ( ) = ( ) W net = ΔKE = KE f KE i Note: Work is the dot product of F and d W g

More information

A. B. C. D. E. v x. ΣF x

A. B. C. D. E. v x. ΣF x Q4.3 The graph to the right shows the velocity of an object as a function of time. Which of the graphs below best shows the net force versus time for this object? 0 v x t ΣF x ΣF x ΣF x ΣF x ΣF x 0 t 0

More information

Diagonalization of Matrices Dr. E. Jacobs

Diagonalization of Matrices Dr. E. Jacobs Diagonalization of Matrices Dr. E. Jacobs One of the very interesting lessons in this course is how certain algebraic techniques can be use to solve ifferential equations. The purpose of these notes is

More information

Question 8.1 Sign of the Energy II

Question 8.1 Sign of the Energy II Question 8. Sign of the Energy II Is it possible for the gravitational potential energy of an object to be negative? a) yes b) no Question 8. Sign of the Energy II Is it possible for the gravitational

More information

Physics 142 Energy in Mechanics Page 1. Energy in Mechanics

Physics 142 Energy in Mechanics Page 1. Energy in Mechanics Physics 4 Energy in Mechanics Page Energy in Mechanics This set of notes contains a brief review of the laws and theorems of Newtonian mechanics, and a longer section on energy, because of its central

More information

*Be able to use any previous concepts with work & energy, including kinematics & circular motion.

*Be able to use any previous concepts with work & energy, including kinematics & circular motion. AP Physics 1 Chapter 6 Study Guide Work & Energy Topics: Work o W = Fdcosq, where q is the angle between F & d (only using part of force that makes the object move) o Force must make object move to do

More information

Chapters 10 & 11: Energy

Chapters 10 & 11: Energy Chapters 10 & 11: Energy Power: Sources of Energy Tidal Power SF Bay Tidal Power Project Main Ideas (Encyclopedia of Physics) Energy is an abstract quantity that an object is said to possess. It is not

More information

Mechanics and Heat. Chapter 5: Work and Energy. Dr. Rashid Hamdan

Mechanics and Heat. Chapter 5: Work and Energy. Dr. Rashid Hamdan Mechanics and Heat Chapter 5: Work and Energy Dr. Rashid Hamdan 5.1 Work Done by a Constant Force Work Done by a Constant Force A force is said to do work if, when acting on a body, there is a displacement

More information

Potential Energy and Conservation of Energy Chap. 7 & 8

Potential Energy and Conservation of Energy Chap. 7 & 8 Level : AP Physics Potential Energy and Conservation of Energy Chap. 7 & 8 Potential Energy of a System see p.191 in the textbook - Potential energy is the energy associated with the arrangement of a system

More information

Chapter 6. Electromagnetic Oscillations and Alternating Current

Chapter 6. Electromagnetic Oscillations and Alternating Current hapter 6 Electromagnetic Oscillations an Alternating urrent hapter 6: Electromagnetic Oscillations an Alternating urrent (hapter 31, 3 in textbook) 6.1. Oscillations 6.. The Electrical Mechanical Analogy

More information

Physics 211: Lecture 14. Today s Agenda

Physics 211: Lecture 14. Today s Agenda Physics 211: Lecture 14 Today s Agenda Systems of Particles Center of mass Linear Momentum Example problems Momentum Conservation Inelastic collisions in one dimension Ballistic pendulum Physics 211: Lecture

More information

LECTURE 13- PROBLEMS. Chapter 1-9,13 Professor Noronha-Hostler Professor Montalvo

LECTURE 13- PROBLEMS. Chapter 1-9,13 Professor Noronha-Hostler Professor Montalvo LECTURE 13- PROBLEMS Chapter 1-9,13 Professor Noronha-Hostler Professor Montalvo FARADAY LECTURES! Physics Lecture Hall Friday Dec. 7 Demos: 6pm Show: 7-8:30pm Saturday Dec. 8 Demos: 2pm Show: 3-4:30pm

More information

An Introduction. Work

An Introduction. Work Work and Energy An Introduction Work Work tells us how much a force or combination of forces changes the energy of a system. Work is the bridge between force (a vector) and energy (a scalar). W = F Dr

More information

4Mv o. AP Physics Free Response Practice Momentum and Impulse ANSWERS

4Mv o. AP Physics Free Response Practice Momentum and Impulse ANSWERS AP Physics Free Response Practice Momentum and Impulse ANSWERS 1976B. a Apply momentum conservation. p before = p after mv o = (m(v o /3 + (4m(v f v f = v o / 6 b KE f KE i = ½ mv o ½ m (v o / 3 = 4/9

More information

Rutgers University Department of Physics & Astronomy. 01:750:271 Honors Physics I Fall Lecture 10. Home Page. Title Page. Page 1 of 37.

Rutgers University Department of Physics & Astronomy. 01:750:271 Honors Physics I Fall Lecture 10. Home Page. Title Page. Page 1 of 37. Rutgers University Department of Physics & Astronomy 01:750:271 Honors Physics I Fall 2015 Lecture 10 Page 1 of 37 Midterm I summary 100 90 80 70 60 50 40 30 20 39 43 56 28 11 5 3 0 1 Average: 82.00 Page

More information

Phys101 Lectures 9 and 10 Conservation of Mechanical Energy

Phys101 Lectures 9 and 10 Conservation of Mechanical Energy Phys101 Lectures 9 and 10 Conservation of Mechanical Energy Key points: Conservative and Nonconservative Forces Potential Energy Generalized work-energy principle Mechanical Energy and Its Conservation

More information

Slide. King Saud University College of Science Physics & Astronomy Dept. PHYS 103 (GENERAL PHYSICS) CHAPTER 8: POTENTIAL ENERGY LECTURE NO.

Slide. King Saud University College of Science Physics & Astronomy Dept. PHYS 103 (GENERAL PHYSICS) CHAPTER 8: POTENTIAL ENERGY LECTURE NO. Slide King Saud University College of Science Physics & Astronomy Dept. PHYS 103 (GENERAL PHYSICS) CHAPTER 8: POTENTIAL ENERGY LECTURE NO. 11 THIS PRESENTATION HAS EEN PREPARED Y: DR. NASSR S. ALZAYED

More information

Conservation of Energy and Momentum

Conservation of Energy and Momentum Conservation of Energy and Momentum Three criteria for Work There must be a force. There must be a displacement, d. The force must have a component parallel to the displacement. Work, W = F x d, W = Fd

More information

u t v t v t c a u t b a v t u t v t b a

u t v t v t c a u t b a v t u t v t b a Nonlinear Dynamical Systems In orer to iscuss nonlinear ynamical systems, we must first consier linear ynamical systems. Linear ynamical systems are just systems of linear equations like we have been stuying

More information

Mechanics. Time (s) Distance (m) Velocity (m/s) Acceleration (m/s 2 ) = + displacement/time.

Mechanics. Time (s) Distance (m) Velocity (m/s) Acceleration (m/s 2 ) = + displacement/time. Mechanics Symbols: Equations: Kinematics The Study of Motion s = distance or displacement v = final speed or velocity u = initial speed or velocity a = average acceleration s u+ v v v u v= also v= a =

More information

ENERGY. Conservative Forces Non-Conservative Forces Conservation of Mechanical Energy Power

ENERGY. Conservative Forces Non-Conservative Forces Conservation of Mechanical Energy Power ENERGY Conservative Forces Non-Conservative Forces Conservation of Mechanical Energy Power Conservative Forces A force is conservative if the work it does on an object moving between two points is independent

More information

General Physics I Momentum

General Physics I Momentum General Physics I Momentum Linear Momentum: Definition: For a single particle, the momentum p is defined as: p = mv (p is a vector since v is a vector). So p x = mv x etc. Units of linear momentum are

More information

106 PHYS - CH6 - Part2

106 PHYS - CH6 - Part2 106 PHYS - CH6 - Part Conservative Forces (a) A force is conservative if work one by tat force acting on a particle moving between points is inepenent of te pat te particle takes between te two points

More information

Continuum Mechanics Lecture 4 Fluid dynamics

Continuum Mechanics Lecture 4 Fluid dynamics Continuum Mechanics Lecture 4 Flui ynamics Prof. http://www.itp.uzh.ch/~teyssier Outline - Flui kinematics - Mass an momentum conservation laws - The energy equation - Real fluis - Ieal fluis - Incompressible

More information

WORK ENERGY AND POWER

WORK ENERGY AND POWER WORK ENERGY AND POWER WORK PHYSICAL DEINITION When the point of application of force moves in the direction of the applied force under its effect then work is said to be done. MATHEMATICAL DEINITION O

More information

Scaler Quantity (definition and examples) Average speed. (definition and examples)

Scaler Quantity (definition and examples) Average speed. (definition and examples) Newton s First Law Newton s Second Law Newton s Third Law Vector Quantity Scaler Quantity (definition and examples) Average speed (definition and examples) Instantaneous speed Acceleration An object at

More information