DISTRIBUTION AND STRATEGY

Size: px
Start display at page:

Download "DISTRIBUTION AND STRATEGY"

Transcription

1 Polytech Paris Sud June 2014 «ENERGY DISTRIBUTION AND STRATEGY» Prof. A. Bouscayrol (University Lille1, L2EP, MEGEVH, France) based on the course of Master Electrical Engineering & sustainable Development University Lille1

2 - Objective: example of HEV control - BAT VSI EM 2 Parallel HEV Fuel ICE Trans. fast subsystem controls EM control ICE control Trans control slow system supervision Energy management (supervision/strategy) driver request

3 BAT - Different control levels (2) - VSI1 EM1 3 Parallel HEV Fuel ICE EMR Trans. fast subsystem controls EM1 control ICE control Trans control Inversion-based control slow system supervision Energy management (supervision/strategy) How to manage energy? Interaction between both levels? driver request

4 - Outline - 1. Control decomposition Local control structure Strategy level for energy management 2. Various inversions of distribution elements Different kinds of energy management Inversion of the different cases 3. Analysis and strategy Analysis of the system possibilities Strategy level 4 4. Application to the automatic subway VAL 206

5 Polytech Paris Sud June «Local control and energy management»

6 - Principle of Inversion-based methodology - 6 cause input System effect output [Hautier 96] measurements? right cause Control desired effect control = inversion of the causal path 1. Which algorithm? (how many controllers) 2. Which variables to measure? 3. How to tune controllers? 4. How to implement the control? Inversion-based methodology automatic control industrial electronics

7 - EMR and Inversion-based methodology - 7 cause effect input SS 1 SS 2 SS n output measure? measure? measure? right cause C 1 C 2 C n desired effect EMR = system decomposition in basic energetic subsystems (SSs) Remember, divide and conquer! Inversion-based control: systematic inversion of each subsystems using open-loop or closed-loop control

8 - Mirror effect - 8 cause SS 1 SS 2 SS n effect right cause C 1 C 2 C n desired effect The control scheme is developed as a mirror of the model [Hautier 96] [Bouscayrol 03]

9 Legend - Inversion of EMR elements - conversion element direct inversion + disturbance rejection 9 Control = light blue Parallelograms with dark blue contour direct inversion accumulation element controller + disturbance rejection indirect inversion sensor mandatory link facultative link coupling element distribution criteria

10 - Maximum control scheme - 1. EMR of the system 2. Tuning path 3. Inversion step-by-step Strong assumption: all variables can be measured! 10 S1 x 1 x 2 x 3 x 4 x 5 x 6 x 7 y 1 y 2 y 3 y 4 y 5 y 6 y 7 z 23 z 67 S2 x 3-ref x 4-ref x 5-ref x 6-ref x 7-ref 4. Simplification of control 5. Estimation of non-measured variables 6. Tuning of controllers 7. Strategy strategy

11 - Management of the energy distribution - 11 Bat v Env Bat. DCM EP 1 1 ME 1 F res Strategy DCM EP 2 2 ME 2

12 - Different control levels - 12 Energy management of HEVs: Energy management of local subsystems Energy management of the whole system (co-ordination of subsystems) Two control levels can be organized: - local control - system supervision Quasi-static models Dynamic and causal models [Delarue & al 2005] compatibility of the control levels compatibility in term of inputs/outputs

13 - Articulation of control levels - 13 Local control: Fast energy management in each subsystem Objective: ensure the best efficiency of each component in function of the request Inversion of each element, step-step-step, using dynamic causal models Energy management: Coordination of energy between all subsystems Objective: ensure the best energy distribution in function of the global demand Global view for decision using quasi-static or static models Could be considered as an inversion of a global model of the system

14 BAT VSI - Articulation of control & models - EM 14 Fuel ICE Trans. Inversion of causal dynamical models EM control ICE control Trans control Strategy delivers references for local controls Energy management (supervision/strategy) driver request Inversion of a global static model

15 inverter - From dynamical model of IM drive - stator EM windings conversion Park s transformation 15 V DC u d/s inv v s-dq i s-dq i vsi i im i s-dq e s-dq i s-dq-est rd Global behavior of the drive i sd (machine + inverter + control) T im gear r-est e s-dq-est i sd-ref d/s_est r-ref u inv-ref v s-dq-ref i s-dq-ref T im-ref

16 V DC drive - to static and dynamical models - T im T im (Nm) Efficiency map 16 i vsi gear T im-ref gear (rad/s) V DC T im static model i vsi x + - x gear T im-ref

17 - Coherence of dynamical and staticmodel - 17 Static model: no dynamical effect, I/O could be changed V DC T im V DC gear V DC gear i vsi gear i vsi T im i vsi backward T im Tim-ref gear-ref static V DC Dynamic T im What happens if EM = inversion of a static model and IBC = inversion of dynamical models with differents I/O? Bad articulation between control levels i vsi Tim-ref gear

18 Rule-based «Energy Distribution and Strategy» - Energy management of HEVs - deterministic rule-based fuzzy rule-based state machine / power follower/ thermostat control predictive / adpative / conventional 18 Optimization based global optimization real-time optimization Dynamic programming / stochastic DP / Game theory / Optimal control. Robust control / Model predictive / decoupling control / l control Energy management (supervision/strategy) [Salmasi 2007] driver request

19 Polytech Paris Sud June «Inversion of various coupling elements»

20 - Upstream coupling elements - upstream common part Example: differential 20 u 1 y 1 y 21 u 21 diff T gear T ldiff lwh T rdiff rwh Tldif wh T rdif rwh Tdiff 2 2 lwh y 2p u 1p T ldiff m: number of upstream power flows p: number of downstream power flows T gear wh lwh T rdiff rwh m < p objective = distribution of energy into p different power flows m=1, p=2 (m<p) objective = distribution of torque

21 - Downstream coupling elements - downstream common part Example: chassis of a train 21 y 21 u 21 y 2 4 traction bogies y 2p u 1m u 2 F bog1 F bog2 v train F tot m: number of upstream power flows p: number of downstream power flows F bog3 F bog4 v train v train v train v train m > p objective = collect energy into m different power flows m=4, p=1 (m>p) objective = collecting bogie forces

22 - Neutral coupling elements - 22 u 11 y 11 u 21 y 21 Example: Park s transformation d/s u 13 i s1 u 23 v sd i sd v sq u 1m y 1m u 21 y 21 i s2 i sq m: number of upstream power flows p: number of downstream power flows m = p objective = reorganize power flows m=2, p=2 (m=p) objective = convert AC voltages and currents into DC voltages and currents

23 - Inversion of neutral coupling elements - 23 u 11 y 11 u 21 y 21 Example: Park s transformation d/s u 1m y 1m u 2p y 2p u 13 i s1 u 23 i s2 v sd i sd v sq d/s i sq u 11 y 21-ref u 13-ref v sd-ref u 1m y 2p-ref u 23-ref v sq-ref no measurement no controller / direct inversion use of the inverse matrix

24 u 1 «Energy Distribution and Strategy» - Inversion of upstream coupling elements - y 21 u 21 Implement a compromise or prioritize outputs. Example: differential T ldiff 24 y 1 u 1 y 2p-ref y 2p u 2p no measurement no controller (p - m) weighting variables y 21-ref T gear wh T gear lwh T rdiff rwh T diff-ref1 T diff-ref2 u k W1 k W(p-m) ' ' 1 kw1y21ref... ( 1 kwi ) y2 pref T gear k w 2 kwtdiff ref 1 (1 kw ) Tdiff ref 2

25 Case 1: all inputs are used u 11 y 11 - Inversion of downstream coupling elements (1) - Example: chassis of a train F bog1 25 y 2 F bog2 v train F tot u 1m y 1m u 2 F bog3 v train v train v train u 11 no measurement no controller (m - p) distribution variables F bog4 F bog1 F bog2 v train u 1m k D1 k D(m-p) y 2-ref u u 1m 11 k k ' D 1... y ' Dm p 2ref y 2ref F bog3 F bog4 k D1 k D2 F tot-ref k D3

26 Polytech Paris Sud June «Analysis of the system possibilities and strategy level»

27 - Critical factors - 27 n O = number of objectives Example: 3-leg Voltage-Source-Inverter i 1 n C = number of constraints (in order to achieve the objectives) V DC s 11 s 12 s 13 i 2 u 13 n T = number of tuning variables (in order to act on the system) s 21 s 22 s 23 i vsi n O = 2 (u 13 and u 23 ) u 23 n C = 3 (3 commutation cells) S i 1 S i 2 for i 1,2,3 n T = 6 (6 switching orders S ij )

28 - Ideal case - 28 n T n O n C They are enough tuning inputs to achieve the objective and realize the constraints Example: 3-phase induction machine Park s transformation u d/s inv i im stator windings v s-dq i s-dq i s-dq e s-dq EM conversion T im rd n O = 1 (T im ) i sd gear n T n O n C n C = 1 (flux r ) n T = 2 (u 13 and u 23 ) Field-oriented control is a way to impose flux and torque by voltages (using a decoupling (d,q) frame)

29 - Optimisation case - 29 n T n O n C Example: 3-leg Voltage-Source-Inverter i 1 They are more tuning inputs than the objective and the constraints V DC s 11 s 21 s 12 s 22 s 13 s 23 i 2 u 23 u 13 i vsi all tuning inputs must be used the degrees of freedom can be used for Optimisation a strategy level is required to define the degrees of freedom n O = 2 (u 13 and u 23 ) n C = 3 (3 commutation cells) n T = 6 (6 switching orders S ij ) Various optimization strategies for VSI such as 3 rd harmonic injection, flat-top modulation

30 - Compromise case - 30 n T n O n C Example: differential T gear T ldiff lwh They are not enough tuning inputs than the objective and the constraints wh T rdiff rwh a compromise must be defined (priorities) a strategy level is required to define the priority T gear k W n O = 2 (T diff1 and T diff1 ) n C = 0 n T = 1 (T gear ) T diff-ref1 T diff-ref2 Ex: k W =1 priority to T diff1

31 - Coupling elements and strategy - 31 All downstream and upstream Coupling elements Example: differential T gear T ldiff lwh Requires criteria (distribution or weighting) wh T rdiff rwh these criteria variables must be defined by the strategy level T gear k W T diff-ref1 T diff-ref2 Strategy Ex: during straight lines, T gear = average value of both resquets

32 - Strategy level - 32 Strategy level: global management of the whole system Has to define: local control references distribution coefficients weighting coefficients optimization inputs compromises For energetic system: definition of priority between performances and efficiency Inversion of a global static model (different possibilities) Example: Flux weakening in EVs U U max rated U depends on the battery voltage V bat depends on velocity v EV ref static plots global view V bat-meas v EV-meas

33 Polytech Paris Sud June «Application to the control of an automatic subway» part II: real system Prof. A. Bouscayrol (University Lille1, L2EP, MEGEVH, France) based on PhD of J. N. Verhille in collaboration with Siemens Transportation Systems

34 - EMR of electrical part - 34 rail filter parallel choppers MCC in series bogies u filter i field1 T mach1 i arm Seq1 ES V DC i filter u filter u filter u chop2 i arm e arm1 bog1 i filter u filter i tot u filter i arm m chop2 e tot Seq2

35 - Control of electrical part - 35 rail filter parallel choppers MCC in series bogies u filter i field1 T mach1 i arm Seq1 ES V DC i filter u filter u filter u chop2 i arm e arm1 bog1 i filter u filter i tot u filter i arm m chop2 e tot Seq2 u filter-mes i field2-ref i arm-ref =k W i arm-ref1 +(1-k W )i arm-ref2 u chop3-ref u chop2-ref i arm-ref i arm-ref2 i arm-ref1 T mach2-ref T mach1-ref u chop1-ref i field1-ref

36 - Control of electrical part - 36 rail filter parallel choppers MCC in series bogies u filter i field1 T mach1 i arm Seq1 ES V DC i filter u filter u filter u chop2 i arm e arm1 bog1 i filter u filter i tot u filter i arm m chop2 e tot Seq2 u filter-mes i field2-ref Strategy has to define the 3 criteria u chop3-ref u chop2-ref i arm-ref i arm-ref2 i arm-ref1 T mach2-ref T mach1-ref u chop1-ref i field1-ref

37 rail filter parallel - Control of electrical part - choppers MCC in series bogies 37 ES V DC T mach1 bog1 Seq1 Seq2 u filter-mes i field2-ref u chop3-ref u chop2-ref u chop1-ref i arm-ref i field1-ref i arm-ref2 T i mach2-ref arm-ref2 arm-ref1 Actual control: no possibility of independent T mach1-ref torque

38 motor - EMR of mechanical part - differential brake gearbox wheels contact chassis environ. 38 T dif1 bk1 T gear1 gear1 v wh1 F cont1 T mach1 m T dif bk1 T gear1 gear1 T wh1 F cont1 v VAL F bog1 v VAL DCM SM m T gear dif T dif2 bk2 T gear2 gear2 v wh2 F cont2 v VAL F res motor MOTEUR TRANSMISSION PONT + DIFFERENTIEL bk2 T gear2 T roue2 F cont2 gear2 v VAL non-linear devices 1/2 ESSIEU 1/2 ESSIEU PNEU REDUCTEUR REDUCTEUR PNEU T red backslash F slip

39 - Control of mechanical part - 39 DCM1 DCM2

40 - Control of mechanical part - 40 DCM1 DCM2 T mach2ref v VAL-ref T mach1ref

41 - Control of mechanical part - 41 DCM1 DCM2 T mcc2-ref Master-slave control v rame-ref T mach1ref

42 - Actual control of mechanical part - 42 DCM1 DCM2 arb-mes v rame-est Merging of control blocs T mach1ref T mach1ref Actual control: no local management of anti-slip v rame-ref

43 - Simulation model - Matlab/Simulink TM electrical part mechanical part 43 Actual control

44 - Validation model (1) - 44 experimental simulation armature current (A) field current (A) experimental simulation

45 Test at normal operating 16 - Validation model (2) - experimental simulation Test at maximal torque velocity (m/s) velocity (m/s) 8 experimental simulation

46 Polytech Paris Sud June «Application to the control of an automatic subway» part III: anti-slip strategy Prof. A. Bouscayrol (University Lille1, L2EP, MEGEVH, France) based on PhD of J. N. Verhille in collaboration with Siemens Transportation Systems

47 - VAL 206 and control - 47 VAL Automatic Subway: Lille, Paris airport, Chicago, Taïpeh... Actual control VAL 206 identical torque for 4 motors global anti-slip (cancellation of torque) 4-mes T ref v ref T 1-ref 1-mes T 2-ref 2-mes T 3-ref 3-mes T 4-ref 4-mes? v ref STS Independent controls with same power structure? Performances with local anti-slip?

48 Tdcm_ref wh22_mes wh21_mes wh12_mes wh11_mes strategy - Anti-slip control - v sub_mes F tot1_ref v sub_ref Actual control: slip detection 48 Torque set to zero T dcm_ref F bog_ref shaft2_mes T dcm2_ref shaft2_ref wh2_ref k W2 k D2 F bog2_ref v sub_mes New strategy: slip detection wh22_mes wh21_mes wh12_mes wh11_mes new strategy k D F tot1_ref v sub_ref Reduction of torque of the slipping wheel T dcm1_ref shaft1_mes shaft1_ref wh1_ref k W1 k D1 F bog1_ref Increase of other torques

49 - Philosophy of the strategy - 49 F F Normal operation: equal distribution of traction forces 1 kd kd1 kd2 kw1 kw 2 2 Bog1 tot F Bog2 FBog i F Bog3 F Bog4 1 4 F tot k W2 k D2 Slipping on bogie 1: cancelation of F bog1 and new distribution of other forces k k k D D2 D1 1 2 k k W 2 W1 1 0 wh22_mes wh21_mes wh12_mes wh11_mes new strategy k W1 k D1 k D F F F tot Bog1 Bog2 0 F Bog3 F Bog i F Bog4 1 3 F tot

50 - Simulation results - Loss of adhesion of wheel no actual control velocity (m/s) New anti-slip strategy velocity (m/s) v sub_ref v sub v sub_ref v sub traction force (Nm) F tot (Nm) traction force (Nm)

51 - HIL simulation of the VAL traction system - 51 traction drive T im mechanical AC load drive power train drive control T im ref = mod mechanical power train drive control power train control T im-ref v ev-ref power control model

52 - Experimental results - 52 current (A) i arm velocities (m/s) i field2 current (A) v sub_ref v sub i field1 Loss of adhesion on wheel 1 F bog1 is decreased by acting on i field1 F bog2 is increased by acting on i arm

53 -Conclusion- 53 New anti-slip control Energetic Macroscopic Representation of VAL traction Inversion-based control from EMR Best repartition of traction effort Best performances during slipping phenomena HIL simulation real-time validation of the control dual drive system to be implemented on the actual system

54 Polytech Paris Sud June 2014 «Conclusion» Inversion based control = inversion of EMR inversion of dynamic causal models a unique Maximum Control Schemes Strategy Level = inversion of a global static model global model and local dynamic models must have same I/O different strategies are possible Distribution elements Highlight degree of freedom, to be defined in the strategy level Efficient energy management of EVs and HEVs Well-defined local controls of subsystems coherent articulation between control levels efficient strategy level

55 - References - 55 A. Bouscayrol, B. Davat, B. de Fornel, B. François, J. P. Hautier, F. Meibody-Tabar, M. Pietrzak- David, Multimachine multiconverter system: application for electromechanical drives, European Physics Journal - Applied Physics, vol. 10, no. 2, May 2000, p (common paper GREEN Nancy, L2EP Lille and LEEI Toulouse, according to the SMM project of the GDR-SDSE). P. Delarue, A. Bouscayrol, A. Tounzi, X. Guillaud, G. Lancigu, Modelling, control and simulation of an overall wind energy conversion system, Renewable Energy, July 2003, vol. 28, no. 8, p (common paper L2EP Lille and Jeumont SA). A. Bouscayrol, M. Pietrzak-David, P. Delarue, R. Peña-Eguiluz, P. E. Vidal, X. Kestelyn, Weighted control of traction drives with parallel-connected AC machines, IEEE Transactions on Industrial Electronics, December 2006, vol. 53, no. 6, p (common paper of L2EP Lille and LEEI Toulouse). J. N. Verhille, A. Bouscayrol, P. J. Barre, J. C. Mercieca, J. P. Hautier, E. S , "Torque tracking strategy for anti-slip control in railway traction systems with common supplies", IEEE-IAS 04, proceeding vol. 4. pp , Seattle (USA), October 2004 (common paper L2EP Lille and Siemens Transportation Systems).. J. N. Verhille, A. Bouscayrol, P. J. Barre, J. P. Hautier, Validation of anti-slip control for a subway traction system using Hardware-In-the-Loop simulation, IEEE-VPPC 07, Arlington (USA), September 2007 (common paper L2EP Lille and Siemens Transportation System) L. Horrein, V. Derache, A. Bouscayrol, J. N.Verhille, P. Delarue, Different models of the traction system of an automatic subway, ElectrIMAC 11, Cergy Pointoise (France), June 2011 (common paper of L2EP and Siemens Transportation Systems).

DEDUCED FROM EMR» Prof. B. Lemaire-S , Prof. A. Bouscayrol (Université Lille1, L2EP, France)

DEDUCED FROM EMR» Prof. B. Lemaire-S , Prof. A. Bouscayrol (Université Lille1, L2EP, France) Polytech Paris Sud June 2014 «INVERSION-BASED CONTROL DEDUCED FROM EMR» Prof. B. Lemaire-Semail, Prof. A. Bouscayrol (Université Lille1, L2EP, France) based on the course of Master Electrical Engineering

More information

«Energetic Macroscopic Representation for organization of HIL simulation»

«Energetic Macroscopic Representation for organization of HIL simulation» HIL 16 summer school Lille, 1-2 September 2016 http://l2ep.univ-lille1.fr/hil2016/ «Energetic Macroscopic Representation for organization of HIL simulation» Dr. Clément MAYET Prof. Alain BOUSCAYROL (L2EP,

More information

Technical University of Graz, April 2012

Technical University of Graz, April 2012 Technical University of Graz, April 2012 «Energy Management of EVs & HEVs using Energetic Macroscopic Representation» Dr. Philippe Barrade*, Dr. Walter LHOMME**, Prof. Alain BOUSCAYROL** * LEI, Ecole Polytechnique

More information

CAUSALITY AND ENERGY. Prof. A. Bouscayrol (University Lille1, L2EP, MEGEVH, France) Prof. C. C. Chan (University of Hong-Kong, China)

CAUSALITY AND ENERGY. Prof. A. Bouscayrol (University Lille1, L2EP, MEGEVH, France) Prof. C. C. Chan (University of Hong-Kong, China) Aalto University Finland May 2011 «Energy Management of EVs & HEVs using Energetic Macroscopic Representation» «SYSTEM, CAUSALITY AND ENERGY» Prof. A. Bouscayrol (University Lille1, L2EP, MEGEVH, France)

More information

«SYSTEM, ENERGY AND CAUSALITY»

«SYSTEM, ENERGY AND CAUSALITY» EMR 17 Lille June 2017 Summer School EMR 17 Energetic Macroscopic Representation «SYSTEM, ENERGY AND CAUSALITY» Prof. Alain BOUSCAYROL (L2EP, University Lille1, France) Prof. C.C. CHAN (University of Hong-Kong,

More information

VEHICLE. Dr. Walter LHOMME L2EP, University Lille1, MEGEVH network.

VEHICLE. Dr. Walter LHOMME L2EP, University Lille1, MEGEVH network. Aalto University Finland May 2011 «Energy Management of EVs & HEVs using Energetic Macroscopic Representation» «MODELLING AND EMR OF AN ELECTRIC VEHICLE» Dr. Walter LHOMME L2EP, University Lille1, MEGEVH

More information

Seminar on Energetic Macroscopic Representation

Seminar on Energetic Macroscopic Representation Seminar on Energetic Macroscopic Representation From Modelling to Representation and Real-Time Control Implementation Philippe Barrade EPFL Laboratoire d Electronique Industrielle EPFL-STI-IEL-LEI, Station

More information

«EMR of an ICE taking into account the thermal energy»

«EMR of an ICE taking into account the thermal energy» EMR 2 Madrid June 202 Joint Summer School EMR 2 Energetic Macroscopic Representation «EMR of an ICE taking into account the thermal energy» Mr. Ludovic HORREIN L2EP University Lille, PSA Peugeot Citroën

More information

«EMR AND INVERSION-BASED CONTROL

«EMR AND INVERSION-BASED CONTROL EMR 17 ille June 2017 Summer School EMR 17 Energetic Macroscopic Representation «EMR AND INVERSION-BASED ONTRO OF RENEWABE ENERGY SYSTEMS» Prof. Betty EMAIRE-SEMAI, Dr. Walter HOMME, Dr. Philippe DEARUE,

More information

«EMR AND INVERSION-BASED CONTROL OF RENEWABLE ENERGY SYSTEMS»

«EMR AND INVERSION-BASED CONTROL OF RENEWABLE ENERGY SYSTEMS» EMR 16 UeS - Longueuil June 016 Summer School EMR 16 Energetic Macroscopic Representation «EMR AND INVERSION-BASED CONTROL OF RENEWABLE ENERGY SYSTEMS» Dr. Walter LHOMME 1, Pr. Loïc BOULON, Dr. Philippe

More information

«Towards an energetic modeling of a helicopter using EMR and BG»

«Towards an energetic modeling of a helicopter using EMR and BG» EMR 2 Madrid June 202 Joint Summer School EMR 2 Energetic Macroscopic Representation «Towards an energetic modeling of a helicopter using EMR and BG» Phd. Zeineb CHIKHAOUI, Dr. François MALBURET, Dr. Julien

More information

«Different concepts for Hardware-In-the-Loop simulation»

«Different concepts for Hardware-In-the-Loop simulation» HIL 16 summer school Lille, 1-2 September 2016 http://l2ep.univ-lille1.fr/hil2016/ «Different concepts for Hardware-In-the-Loop simulation» Prof. Alain BOUSCAYROL L2EP, University Lille1, MEGEVH network,

More information

«IBC AND BACKSTEPPING CONTROL OF AN ELECTRIC

«IBC AND BACKSTEPPING CONTROL OF AN ELECTRIC EMR 5 Lille June 205 Summer School EMR 5 Energetic Macroscopic Representation «IBC AND BACKSTEPPING CONTROL OF AN ELECTRIC VEHICLE» C. DEPATURE, Prof. A. BOUSCAYROL, Dr. W. LHOMME 2 Prof. L. BOULON, Prof.

More information

«About energy and causality principles»

«About energy and causality principles» EMR 16 UdeS - Longueuil June 2016 Summer School EMR 16 Energetic Macroscopic Representation «About energy and causality principles» Prof. X. KESTELYN 1, Prof. A. BOUSCAYROL 2, Prof. CC. CHAN 3 1 L2EP,

More information

EMR coupled with Power-Oriented Graphs for automotive application

EMR coupled with Power-Oriented Graphs for automotive application EMR 11 Lausanne July 2011 Joint Summer School EMR 11 Energetic Macroscopic Representation EMR coupled with Power-Oriented Graphs for automotive application Dr. Federica GROSSI, Prof. Roberto ZANASI Università

More information

«EMR AND CONTROL OF A SEGWAY

«EMR AND CONTROL OF A SEGWAY EMR 16 UdeS - Longueuil June 2016 Summer School EMR 16 Energetic Macroscopic Representation «EMR AND CONTROL OF A SEGWAY BASED ON REVERSE ENGINEERING» Gianluca Dorian Petrucci 1, Dr. Walter Lhomme 2 1

More information

Mathematical Modeling and Dynamic Simulation of a Class of Drive Systems with Permanent Magnet Synchronous Motors

Mathematical Modeling and Dynamic Simulation of a Class of Drive Systems with Permanent Magnet Synchronous Motors Applied and Computational Mechanics 3 (2009) 331 338 Mathematical Modeling and Dynamic Simulation of a Class of Drive Systems with Permanent Magnet Synchronous Motors M. Mikhov a, a Faculty of Automatics,

More information

FUZZY LOGIC BASED ADAPTATION MECHANISM FOR ADAPTIVE LUENBERGER OBSERVER SENSORLESS DIRECT TORQUE CONTROL OF INDUCTION MOTOR

FUZZY LOGIC BASED ADAPTATION MECHANISM FOR ADAPTIVE LUENBERGER OBSERVER SENSORLESS DIRECT TORQUE CONTROL OF INDUCTION MOTOR Journal of Engineering Science and Technology Vol., No. (26) 46-59 School of Engineering, Taylor s University FUZZY LOGIC BASED ADAPTATION MECHANISM FOR ADAPTIVE LUENBERGER OBSERVER SENSORLESS DIRECT TORQUE

More information

«EMR for Li-ion Battery electrothermal model taking into account the charge transfer delay»

«EMR for Li-ion Battery electrothermal model taking into account the charge transfer delay» EMR 17 University Lille 1 June 2017 Summer School EMR 17 Energetic Macroscopic Representation «EMR for Li-ion Battery electrothermal model taking into account the charge transfer delay» Dr. Ronan GERMAN

More information

A New Model Reference Adaptive Formulation to Estimate Stator Resistance in Field Oriented Induction Motor Drive

A New Model Reference Adaptive Formulation to Estimate Stator Resistance in Field Oriented Induction Motor Drive A New Model Reference Adaptive Formulation to Estimate Stator Resistance in Field Oriented Induction Motor Drive Saptarshi Basak 1, Chandan Chakraborty 1, Senior Member IEEE and Yoichi Hori 2, Fellow IEEE

More information

REAL TIME CONTROL OF DOUBLY FED INDUCTION GENERATOR. Benmeziane Meriem, Zebirate Soraya, Chaker Abelkader Laboratory SCAMRE, ENPO, Oran, Algeria

REAL TIME CONTROL OF DOUBLY FED INDUCTION GENERATOR. Benmeziane Meriem, Zebirate Soraya, Chaker Abelkader Laboratory SCAMRE, ENPO, Oran, Algeria REAL TIME CONTROL OF DOUBLY FED INDUCTION GENERATOR Benmeziane Meriem, Zebirate Soraya, Chaker Abelkader Laboratory SCAMRE, ENPO, Oran, Algeria This paper presents a real time simulation method of wind

More information

«EMR and inversion-based control of a multi-piezo-actuator system»

«EMR and inversion-based control of a multi-piezo-actuator system» EMR 15 Lille June 2015 Summer School EMR 15 Energetic Macroscopic Representation «EMR and inversion-based control of a multi-piezo-actuator system» Dr. Thanh Hung NGUYEN, Prof. Betty LEMAIRE-SEMAIL, L2EP,

More information

«SYSTEM, CAUSALITY AND ENERGY

«SYSTEM, CAUSALITY AND ENERGY EMR 14 Coimbra June 2014 Summer School EMR 14 Energetic Macrocopic Repreentation «SYSTEM, CAUSALITY AND ENERGY» Prof. A. Boucayrol, Prof. L. Boulon, Prof. C.C. Chan (L2EP, Univ. Lille1, L2EP, France, IRH,

More information

Three phase induction motor using direct torque control by Matlab Simulink

Three phase induction motor using direct torque control by Matlab Simulink Three phase induction motor using direct torque control by Matlab Simulink Arun Kumar Yadav 1, Dr. Vinod Kumar Singh 2 1 Reaserch Scholor SVU Gajraula Amroha, U.P. 2 Assistant professor ABSTRACT Induction

More information

Vehicle Stability Improvement Based on Electronic Differential Using Sliding Mode Control

Vehicle Stability Improvement Based on Electronic Differential Using Sliding Mode Control 7th WSEAS International Conference on Electric Power Systems, High Voltages, Electric Machines, Venice, Italy, November 1-3, 007 331 Vehicle Stability Improvement Base on Electronic Differential Using

More information

Electric Vehicle Performance Power and Efficiency

Electric Vehicle Performance Power and Efficiency Electric Vehicle Performance Power and Efficiency 1 Assignment a) Examine measurement guide and electric vehicle (EV) arrangement. b) Drive the route according to teacher s instruction and download measured

More information

J. Electrical Systems x-x (2010): x-xx. Electromechanical Multi-machine System for Railway Modelling, Analysis and Control

J. Electrical Systems x-x (2010): x-xx. Electromechanical Multi-machine System for Railway Modelling, Analysis and Control W. BEN MABROUK J. BELHADJ M. PIETRZAK-DAVID J. Electrical Systems x-x (1): x-xx.1. Regular paper Electromechanical Multi-machine System for Railway Modelling, Analysis and Control The authors develop an

More information

EFFICIENCY OPTIMIZATION OF VECTOR-CONTROLLED INDUCTION MOTOR DRIVE

EFFICIENCY OPTIMIZATION OF VECTOR-CONTROLLED INDUCTION MOTOR DRIVE EFFICIENCY OPTIMIZATION OF VECTOR-CONTROLLED INDUCTION MOTOR DRIVE Hussein Sarhan Department of Mechatronics Engineering, Faculty of Engineering Technology, Amman, Jordan ABSTRACT This paper presents a

More information

Mathematical Modelling of Permanent Magnet Synchronous Motor with Rotor Frame of Reference

Mathematical Modelling of Permanent Magnet Synchronous Motor with Rotor Frame of Reference Mathematical Modelling of Permanent Magnet Synchronous Motor with Rotor Frame of Reference Mukesh C Chauhan 1, Hitesh R Khunt 2 1 P.G Student (Electrical),2 Electrical Department, AITS, rajkot 1 mcchauhan1@aits.edu.in

More information

MODELING AND HIGH-PERFORMANCE CONTROL OF ELECTRIC MACHINES

MODELING AND HIGH-PERFORMANCE CONTROL OF ELECTRIC MACHINES MODELING AND HIGH-PERFORMANCE CONTROL OF ELECTRIC MACHINES JOHN CHIASSON IEEE PRESS ü t SERIES ON POWER ENGINEERING IEEE Press Series on Power Engineering Mohamed E. El-Hawary, Series Editor The Institute

More information

Doubly-Fed Induction Generator Wind Turbine Model for Fault Ride-Through Investigation

Doubly-Fed Induction Generator Wind Turbine Model for Fault Ride-Through Investigation 32 ECTI TRANSACTIONS ON ELECTRICAL ENG., ELECTRONICS, AND COMMUNICATIONS VOL.11, NO.1 February 2013 Doubly-Fed Induction Generator Wind Turbine Model for Fault Ride-Through Investigation Yutana Chongjarearn

More information

Hysteresis Control and Constant-Switching Strategy in Direct Torque Control Drive A Comparative Analysis

Hysteresis Control and Constant-Switching Strategy in Direct Torque Control Drive A Comparative Analysis Hysteresis Control and ConstantSwitching Strategy in Direct Torque Control Drive A Comparative Analysis Aleksandar Nikolic, Borislav Jeftenic Department for electrical measurements, Electrical drives department.

More information

EFFECTS OF LOAD AND SPEED VARIATIONS IN A MODIFIED CLOSED LOOP V/F INDUCTION MOTOR DRIVE

EFFECTS OF LOAD AND SPEED VARIATIONS IN A MODIFIED CLOSED LOOP V/F INDUCTION MOTOR DRIVE Nigerian Journal of Technology (NIJOTECH) Vol. 31, No. 3, November, 2012, pp. 365 369. Copyright 2012 Faculty of Engineering, University of Nigeria. ISSN 1115-8443 EFFECTS OF LOAD AND SPEED VARIATIONS

More information

DESIGN AND MODELLING OF SENSORLESS VECTOR CONTROLLED INDUCTION MOTOR USING MODEL REFERENCE ADAPTIVE SYSTEMS

DESIGN AND MODELLING OF SENSORLESS VECTOR CONTROLLED INDUCTION MOTOR USING MODEL REFERENCE ADAPTIVE SYSTEMS DESIGN AND MODELLING OF SENSORLESS VECTOR CONTROLLED INDUCTION MOTOR USING MODEL REFERENCE ADAPTIVE SYSTEMS Janaki Pakalapati 1 Assistant Professor, Dept. of EEE, Avanthi Institute of Engineering and Technology,

More information

«EMR of a Supply System for Medical Application»

«EMR of a Supply System for Medical Application» EMR 17 University Lille 1 June 2017 Summer School EMR 17 Energetic Macroscopic Representation «EMR of a Supply System for Medical Application» Prof. Philippe BARRADE HES-SO Valais/Wallis, Switzerland University

More information

Parameter Prediction and Modelling Methods for Traction Motor of Hybrid Electric Vehicle

Parameter Prediction and Modelling Methods for Traction Motor of Hybrid Electric Vehicle Page 359 World Electric Vehicle Journal Vol. 3 - ISSN 232-6653 - 29 AVERE Parameter Prediction and Modelling Methods for Traction Motor of Hybrid Electric Vehicle Tao Sun, Soon-O Kwon, Geun-Ho Lee, Jung-Pyo

More information

PERFORMANCE ANALYSIS OF DIRECT TORQUE CONTROL OF 3-PHASE INDUCTION MOTOR

PERFORMANCE ANALYSIS OF DIRECT TORQUE CONTROL OF 3-PHASE INDUCTION MOTOR PERFORMANCE ANALYSIS OF DIRECT TORQUE CONTROL OF 3-PHASE INDUCTION MOTOR 1 A.PANDIAN, 2 Dr.R.DHANASEKARAN 1 Associate Professor., Department of Electrical and Electronics Engineering, Angel College of

More information

Sensorless Speed Control for PMSM Based On the DTC Method with Adaptive System R. Balachandar 1, S. Vinoth kumar 2, C. Vignesh 3

Sensorless Speed Control for PMSM Based On the DTC Method with Adaptive System R. Balachandar 1, S. Vinoth kumar 2, C. Vignesh 3 Sensorless Speed Control for PMSM Based On the DTC Method with Adaptive System R. Balachandar 1, S. Vinoth kumar 2, C. Vignesh 3 P.G Scholar, Sri Subramanya College of Engg & Tech, Palani, Tamilnadu, India

More information

Sensorless Torque and Speed Control of Traction Permanent Magnet Synchronous Motor for Railway Applications based on Model Reference Adaptive System

Sensorless Torque and Speed Control of Traction Permanent Magnet Synchronous Motor for Railway Applications based on Model Reference Adaptive System 5 th SASTech 211, Khavaran Higher-education Institute, Mashhad, Iran. May 12-14. 1 Sensorless Torue and Speed Control of Traction Permanent Magnet Synchronous Motor for Railway Applications based on Model

More information

Modelling and control using ENERGETIC MACROSCOPIC REPRESENTATION Application to hybrid electric vehicles and others

Modelling and control using ENERGETIC MACROSCOPIC REPRESENTATION Application to hybrid electric vehicles and others INTERNATIONAL SUMMER SCHOOL EMR 2018 Modelling and control using ENERGETIC MACROSCOPIC REPRESENTATION Application to hybrid electric vehicles and others 13 th 15 th June 2018 Centre for Technology Innovation

More information

Direct torque control of doubly fed induction machine

Direct torque control of doubly fed induction machine BULLETIN OF THE POLISH ACADEMY OF SCIENCES TECHNICAL SCIENCES Vol. 54, No. 3, 2006 Direct torque control of doubly fed induction machine F. BONNET, P.E. VIDAL, and M. PIETRZAK-DAVID Laboratoire d Électrotechnique

More information

Mono inverter Multi parallel PMSM - Structure and Control strategy

Mono inverter Multi parallel PMSM - Structure and Control strategy Mono inverter Multi parallel PMSM - Structure and Control strategy Damien Bidart, Maria Pietrzak-David, Pascal Maussion, Maurice Fadel To cite this version: Damien Bidart, Maria Pietrzak-David, Pascal

More information

Independent Control of Speed and Torque in a Vector Controlled Induction Motor Drive using Predictive Current Controller and SVPWM

Independent Control of Speed and Torque in a Vector Controlled Induction Motor Drive using Predictive Current Controller and SVPWM Independent Control of Speed and Torque in a Vector Controlled Induction Motor Drive using Predictive Current Controller and SVPWM Vandana Peethambaran 1, Dr.R.Sankaran 2 Assistant Professor, Dept. of

More information

Mechatronics Modeling and Analysis of Dynamic Systems Case-Study Exercise

Mechatronics Modeling and Analysis of Dynamic Systems Case-Study Exercise Mechatronics Modeling and Analysis of Dynamic Systems Case-Study Exercise Goal: This exercise is designed to take a real-world problem and apply the modeling and analysis concepts discussed in class. As

More information

REGULAR PAPER. The Improvement Avalability of a Double Star Asynchronous Machine Supplied redondant voltage source inverters

REGULAR PAPER. The Improvement Avalability of a Double Star Asynchronous Machine Supplied redondant voltage source inverters FAOUZI BEN AMMAR SAMI GUIZANI REGULAR PAPER The Improvement Avalability of a Double Star Asynchronous Machine Supplied redondant voltage source inverters This paper proposes the availability analysis of

More information

Linear Analysis of Railway Vehicle as Mechatronic System

Linear Analysis of Railway Vehicle as Mechatronic System Linear Analysis of Railway Vehicle as Mechatronic System Dr. Heinz-Peter Kotz TS BG EN Separated worlds and how to reunify them Power Line Line Filters Converter Power Train Carbody Bogie Wheel-Rail Noise

More information

Direct Torque Control of Three Phase Induction Motor FED with Three Leg Inverter Using Proportional Controller

Direct Torque Control of Three Phase Induction Motor FED with Three Leg Inverter Using Proportional Controller Direct Torque Control of Three Phase Induction Motor FED with Three Leg Inverter Using Proportional Controller Bijay Kumar Mudi 1, Sk. Rabiul Hossain 2,Sibdas Mondal 3, Prof. Gautam Kumar Panda 4, Prof.

More information

MATLAB SIMULINK Based DQ Modeling and Dynamic Characteristics of Three Phase Self Excited Induction Generator

MATLAB SIMULINK Based DQ Modeling and Dynamic Characteristics of Three Phase Self Excited Induction Generator 628 Progress In Electromagnetics Research Symposium 2006, Cambridge, USA, March 26-29 MATLAB SIMULINK Based DQ Modeling and Dynamic Characteristics of Three Phase Self Excited Induction Generator A. Kishore,

More information

A Novel Three-phase Matrix Converter Based Induction Motor Drive Using Power Factor Control

A Novel Three-phase Matrix Converter Based Induction Motor Drive Using Power Factor Control Australian Journal of Basic and Applied Sciences, 8(4) Special 214, Pages: 49-417 AENSI Journals Australian Journal of Basic and Applied Sciences ISSN:1991-8178 Journal home page: www.ajbasweb.com A Novel

More information

The Application of Anti-windup PI Controller, SIPIC on FOC of PMSM

The Application of Anti-windup PI Controller, SIPIC on FOC of PMSM Electrical and Electronic Engineering 2016, 6(3): 39-48 DOI: 10.5923/j.eee.20160603.01 The Application of Anti-windup PI Controller, SIPIC on FOC of PMSM Hoo Choon Lih School of Engineering, Taylor s University,

More information

Analysis the Fault Detection under Constraint of Command

Analysis the Fault Detection under Constraint of Command Analysis the Fault Detection under Constraint of Command Mohssen fisli #1, Said Benagoune *2,Tahar Bahi #3 #1, 2 Electrotechnical Department, BatnaUniversity,Batna, Algeria 1 m.fisli@hotmail.com 2 s_benaggoune@yahoo.fr

More information

«ENERGETIC MACROSCOPIC REPRESENTATION (EMR)»

«ENERGETIC MACROSCOPIC REPRESENTATION (EMR)» EMR 17 Llle June 017 Summer School EMR 17 Energetc Macroscopc Representaton «ENERGETIC MACROSCOPIC REPRESENTATION (EMR)» Prof. Alan BOUSCAYROL 1, Prof. Phlppe BARRADE, 1 LEP, Unversté Llle1, MEGEVH network,

More information

Sensorless Control for High-Speed BLDC Motors With Low Inductance and Nonideal Back EMF

Sensorless Control for High-Speed BLDC Motors With Low Inductance and Nonideal Back EMF Sensorless Control for High-Speed BLDC Motors With Low Inductance and Nonideal Back EMF P.Suganya Assistant Professor, Department of EEE, Bharathiyar Institute of Engineering for Women Salem (DT). Abstract

More information

AC Induction Motor Stator Resistance Estimation Algorithm

AC Induction Motor Stator Resistance Estimation Algorithm 7th WSEAS International Conference on Electric Power Systems, High Voltages, Electric Machines, Venice, Italy, November 21-23, 27 86 AC Induction Motor Stator Resistance Estimation Algorithm PETR BLAHA

More information

«Modelling of piezoelectric actuators : an EMR approach»

«Modelling of piezoelectric actuators : an EMR approach» EMR 15 Lille Sept. 215 Summer School EMR 15 Energetic Macroscopic Representation «Modelling of piezoelectric actuators : an EMR approach» Dr. C.Giraud-Audine (1), Dr. F. Giraud (2) L2EP, (1) Arts et Métiers

More information

An adaptive sliding mode control scheme for induction motor drives

An adaptive sliding mode control scheme for induction motor drives An adaptive sliding mode control scheme for induction motor drives Oscar Barambones, Patxi Alkorta, Aitor J. Garrido, I. Garrido and F.J. Maseda ABSTRACT An adaptive sliding-mode control system, which

More information

DEVELOPMENT OF DIRECT TORQUE CONTROL MODELWITH USING SVI FOR THREE PHASE INDUCTION MOTOR

DEVELOPMENT OF DIRECT TORQUE CONTROL MODELWITH USING SVI FOR THREE PHASE INDUCTION MOTOR DEVELOPMENT OF DIRECT TORQUE CONTROL MODELWITH USING SVI FOR THREE PHASE INDUCTION MOTOR MUKESH KUMAR ARYA * Electrical Engg. Department, Madhav Institute of Technology & Science, Gwalior, Gwalior, 474005,

More information

Novel DTC-SVM for an Adjustable Speed Sensorless Induction Motor Drive

Novel DTC-SVM for an Adjustable Speed Sensorless Induction Motor Drive Novel DTC-SVM for an Adjustable Speed Sensorless Induction Motor Drive Nazeer Ahammad S1, Sadik Ahamad Khan2, Ravi Kumar Reddy P3, Prasanthi M4 1*Pursuing M.Tech in the field of Power Electronics 2*Working

More information

Single-Phase Synchronverter for DC Microgrid Interface with AC Grid

Single-Phase Synchronverter for DC Microgrid Interface with AC Grid The First Power Electronics and Renewable Energy Workshop (PEREW 2017) March 1-2, 2017- Aswan Faculty of Engineering, Aswan Egypt Single-Phase Synchronverter for Microgrid Interface with AC Grid Presenter:

More information

Speed Sensor less DTC of VSI fed Induction Motor with Simple Flux Regulation for Improving State Estimation at Low Speed

Speed Sensor less DTC of VSI fed Induction Motor with Simple Flux Regulation for Improving State Estimation at Low Speed Speed Sensor less DTC of VSI fed Induction Motor with Simple Flux Regulation for Improving State Estimation at Low Speed K. Farzand Ali 1, S.Sridhar 2 1 PG Scholar, Dept. Of Electrical & Electronics Engineering,

More information

Vehicle Propulsion Systems. Electric & Hybrid Electric Propulsion Systems Part III

Vehicle Propulsion Systems. Electric & Hybrid Electric Propulsion Systems Part III Vehicle Propulsion Systems Electric & Hybrid Electric Propulsion Systems Part III 1 Planning of Lectures and Exercises: Week Lecture, Friday, 8:15-10:00, ML F34 Book chp. 38, 21.09.2018 Introduction, goals,

More information

International Journal of Advance Engineering and Research Development SIMULATION OF FIELD ORIENTED CONTROL OF PERMANENT MAGNET SYNCHRONOUS MOTOR

International Journal of Advance Engineering and Research Development SIMULATION OF FIELD ORIENTED CONTROL OF PERMANENT MAGNET SYNCHRONOUS MOTOR Scientific Journal of Impact Factor(SJIF): 3.134 e-issn(o): 2348-4470 p-issn(p): 2348-6406 International Journal of Advance Engineering and Research Development Volume 2,Issue 4, April -2015 SIMULATION

More information

A New Stator Resistance Tuning Method for Stator-Flux-Oriented Vector-Controlled Induction Motor Drive

A New Stator Resistance Tuning Method for Stator-Flux-Oriented Vector-Controlled Induction Motor Drive 1148 IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 48, NO. 6, DECEMBER 2001 A New Stator Resistance Tuning Method for Stator-Flux-Oriented Vector-Controlled Induction Motor Drive Epaminondas D. Mitronikas,

More information

«ENERGETIC MACROSCOPIC REPRESENTATION (EMR)»

«ENERGETIC MACROSCOPIC REPRESENTATION (EMR)» EMR 15 Llle June 2015 Summer School EMR 15 Energetc Macroscopc Representaton «ENERGETIC MACROSCOPIC REPRESENTATION (EMR)» Prof. Loïc BOULON, Prof. Alan BOUSCAYROL, (Unversté du Québec à Tros Rvères, IRH,

More information

CHAPTER 8 DC MACHINERY FUNDAMENTALS

CHAPTER 8 DC MACHINERY FUNDAMENTALS CHAPTER 8 DC MACHINERY FUNDAMENTALS Summary: 1. A Simple Rotating Loop between Curved Pole Faces - The Voltage Induced in a Rotating Loop - Getting DC voltage out of the Rotating Loop - The Induced Torque

More information

Modeling and Simulation of Flux-Optimized Induction Motor Drive

Modeling and Simulation of Flux-Optimized Induction Motor Drive Research Journal of Applied Sciences, Engineering and Technology 2(6): 603-613, 2010 ISSN: 2040-7467 Maxwell Scientific Organization, 2010 Submitted Date: July 21, 2010 Accepted Date: August 20, 2010 Published

More information

Internal Model Control Approach to PI Tunning in Vector Control of Induction Motor

Internal Model Control Approach to PI Tunning in Vector Control of Induction Motor Internal Model Control Approach to PI Tunning in Vector Control of Induction Motor Vipul G. Pagrut, Ragini V. Meshram, Bharat N. Gupta, Pranao Walekar Department of Electrical Engineering Veermata Jijabai

More information

Modeling for Designing. An essential Stage

Modeling for Designing. An essential Stage Modeling for Designing An essential Stage Geneviève Dauphin-Tanguy École Centrale de Lille E-mail : genevieve.dauphin-tanguy@ec-lille.fr Outline Introduction Bond Graph methodology Industrial applications

More information

Analysis and Design of an Electric Vehicle using Matlab and Simulink

Analysis and Design of an Electric Vehicle using Matlab and Simulink Analysis and Design of an Electric Vehicle using Matlab and Simulink Advanced Support Group January 22, 29 23-27: University of Michigan Research: Optimal System Partitioning and Coordination Original

More information

NONLINEAR MPPT CONTROL OF SQUIRREL CAGE INDUCTION GENERATOR-WIND TURBINE

NONLINEAR MPPT CONTROL OF SQUIRREL CAGE INDUCTION GENERATOR-WIND TURBINE NONLINEAR MPPT CONTROL OF SQUIRREL CAGE INDUCTION GENERATOR-WIND TURBINE 1 M. BENCHAGRA, 2 M. MAAROUFI. 3 M. OUASSAID 1, 2 Department of Electrical Engineering, Mohammadia School of Engineering- BP 767-Rabat-

More information

Fuzzy optimum opertaing of a wind power pumping system

Fuzzy optimum opertaing of a wind power pumping system Fuzzy optimum opertaing of a wind power pumping system Olfa Gam, Riadh Abdelati, Mohamed Faouzi Mimouni Research Unit of Industrial Systems and Renewable Energy (ESIER), National Engineering School of

More information

Robust Speed Controller Design for Permanent Magnet Synchronous Motor Drives Based on Sliding Mode Control

Robust Speed Controller Design for Permanent Magnet Synchronous Motor Drives Based on Sliding Mode Control Available online at www.sciencedirect.com ScienceDirect Energy Procedia 88 (2016 ) 867 873 CUE2015-Applied Energy Symposium and Summit 2015: ow carbon cities and urban energy systems Robust Speed Controller

More information

Simulation of Direct Torque Control of Induction motor using Space Vector Modulation Methodology

Simulation of Direct Torque Control of Induction motor using Space Vector Modulation Methodology International OPEN ACCESS Journal Of Modern Engineering Research (IJMER) Simulation of Direct Torque Control of Induction motor using Space Vector Modulation Methodology Arpit S. Bhugul 1, Dr. Archana

More information

Iterative Feedback Tuning

Iterative Feedback Tuning Iterative Feedback Tuning Michel Gevers CESAME - UCL Louvain-la-Neuve Belgium Collaboration : H. Hjalmarsson, S. Gunnarsson, O. Lequin, E. Bosmans, L. Triest, M. Mossberg Outline Problem formulation Iterative

More information

Lecture 8: Sensorless Synchronous Motor Drives

Lecture 8: Sensorless Synchronous Motor Drives 1 / 22 Lecture 8: Sensorless Synchronous Motor Drives ELEC-E8402 Control of Electric Drives and Power Converters (5 ECTS) Marko Hinkkanen Spring 2017 2 / 22 Learning Outcomes After this lecture and exercises

More information

D O T 1 ; O T 2 ; O T 3 ; O T i

D O T 1 ; O T 2 ; O T 3 ; O T i 156 6 Fault diagnosis of pumps The model parameters O T h D O T 1 ; O T 2 ; O T 3 ; O T i 4 (6.1.38) were estimated by the leastsquares method in the form of discrete squareroot filtering (DSFI). Based

More information

Comparative Analysis of Speed Control of Induction Motor by DTC over Scalar Control Technique

Comparative Analysis of Speed Control of Induction Motor by DTC over Scalar Control Technique Comparative Analysis of Speed Control of Induction Motor by DTC over Scalar Control Technique S.Anuradha 1, N.Amarnadh Reddy 2 M.Tech (PE), Dept. of EEE, VNRVJIET, T.S, India 1 Assistant Professor, Dept.

More information

MODELLING ANALYSIS & DESIGN OF DSP BASED NOVEL SPEED SENSORLESS VECTOR CONTROLLER FOR INDUCTION MOTOR DRIVE

MODELLING ANALYSIS & DESIGN OF DSP BASED NOVEL SPEED SENSORLESS VECTOR CONTROLLER FOR INDUCTION MOTOR DRIVE International Journal of Advanced Research in Engineering and Technology (IJARET) Volume 6, Issue 3, March, 2015, pp. 70-81, Article ID: IJARET_06_03_008 Available online at http://www.iaeme.com/ijaret/issues.asp?jtypeijaret&vtype=6&itype=3

More information

Position with Force Feedback Control of Manipulator Arm

Position with Force Feedback Control of Manipulator Arm Position with Force Feedback Control of Manipulator Arm 1 B. K. Chitra, 2 J. Nandha Gopal, 3 Dr. K. Rajeswari PG Student, Department of EIE Assistant Professor, Professor, Department of EEE Abstract This

More information

Robust sliding mode speed controller for hybrid SVPWM based direct torque control of induction motor

Robust sliding mode speed controller for hybrid SVPWM based direct torque control of induction motor ISSN 1 746-7233, England, UK World Journal of Modelling and Simulation Vol. 3 (2007) No. 3, pp. 180-188 Robust sliding mode speed controller for hybrid SVPWM based direct torque control of induction motor

More information

Indirect Field Orientation for Induction Motors without Speed Sensor

Indirect Field Orientation for Induction Motors without Speed Sensor Indirect Field Orientation for Induction Motors without Speed Sensor C. C. de Azevedol, C.B. Jacobinal, L.A.S. Ribeiro2, A.M.N. Lima1 and A.C. Oliveira1j2 UFPB/CCT/DEE/LEIAM - Campus II - Caixa Postal

More information

Available online at ScienceDirect. Procedia Technology 25 (2016 )

Available online at   ScienceDirect. Procedia Technology 25 (2016 ) Available online at www.sciencedirect.com ScienceDirect Procedia Technology 25 (2016 ) 801 807 Global Colloquium in Recent Advancement and Effectual Researches in Engineering, Science and Technology (RAEREST

More information

1 Introduction. Nomenclature

1 Introduction. Nomenclature Comparative Study between Different Speed Controller Techniques Applied to the Indirect Field-Oriented Control of an Induction Machine-Performances and Limits CHAYMAE LAOUFI, AHMED ABBOU and MOHAMMED AKHERRAZ

More information

Contouring Control for a CNC Milling Machine Driven by Direct thrust Controlled Linear Induction Motors

Contouring Control for a CNC Milling Machine Driven by Direct thrust Controlled Linear Induction Motors From the SelectedWorks of Innovative Research Publications IRP India Winter December, 5 Contouring Control for a CNC Milling Machine Driven by Direct thrust Controlled Linear Induction Motors Khaled N.

More information

A Robust Nonlinear Luenberger Observer for the Sensorless Control of SM-PMSM: Rotor Position and Magnets Flux Estimation

A Robust Nonlinear Luenberger Observer for the Sensorless Control of SM-PMSM: Rotor Position and Magnets Flux Estimation A Robust Nonlinear Luenberger Observer for the Sensorless Control of SM-PMSM: Rotor Position and Magnets Flux Estimation Nicolas Henwood 1, 2, Jeremy Malaize 1, and Laurent Praly 2 1 Control, Signal and

More information

Power System Stability and Control. Dr. B. Kalyan Kumar, Department of Electrical Engineering, Indian Institute of Technology Madras, Chennai, India

Power System Stability and Control. Dr. B. Kalyan Kumar, Department of Electrical Engineering, Indian Institute of Technology Madras, Chennai, India Power System Stability and Control Dr. B. Kalyan Kumar, Department of Electrical Engineering, Indian Institute of Technology Madras, Chennai, India Contents Chapter 1 Introduction to Power System Stability

More information

Design and implementation of a sliding-mode observer of the rotor flux and rotor speed in induction machines

Design and implementation of a sliding-mode observer of the rotor flux and rotor speed in induction machines 1 Design and implementation of a sliding-mode observer of the rotor flux and rotor speed in induction machines João Ferraz, Paulo Branco Phd. Abstract A sliding-mode observer for the rotor flux and speed

More information

Evaluation Method to Estimate Position Control Error in Position Sensorless Control Based on Pattern Matching Method

Evaluation Method to Estimate Position Control Error in Position Sensorless Control Based on Pattern Matching Method IEEJ Journal of Industry Applications Vol.7 No.1 pp.73 79 DOI: 10.1541/ieejjia.7.73 Paper Evaluation Method to Estimate Position Control Error in Position Sensorless Control Based on Pattern Matching Method

More information

Fault-tolerant Control of a Wind Turbine with a Squirrel-cage Induction Generator and Rotor Bar Defects

Fault-tolerant Control of a Wind Turbine with a Squirrel-cage Induction Generator and Rotor Bar Defects Fault-tolerant Control of a Wind Turbine with a Squirrel-cage Induction Generator and Rotor Bar Defects V. Lešić 1, M. Vašak 1, N. Perić 1, T. Wolbank 2 and G. Joksimović 3 vinko.lesic@fer.hr 1 University

More information

Modeling Free Acceleration of a Salient Synchronous Machine Using Two-Axis Theory

Modeling Free Acceleration of a Salient Synchronous Machine Using Two-Axis Theory 1 Modeling ree Acceleration of a Salient Synchronous Machine Using Two-Axis Theory Abdullah H. Akca and Lingling an, Senior Member, IEEE Abstract This paper investigates a nonlinear simulation model of

More information

An improved deadbeat predictive current control for permanent magnet linear synchronous motor

An improved deadbeat predictive current control for permanent magnet linear synchronous motor Indian Journal of Engineering & Materials Sciences Vol. 22, June 2015, pp. 273-282 An improved deadbeat predictive current control for permanent magnet linear synchronous motor Mingyi Wang, iyi i, Donghua

More information

A New Predictive Control Strategy Dedicated to Salient Pole Synchronous Machines

A New Predictive Control Strategy Dedicated to Salient Pole Synchronous Machines A New Predictive Control Strategy Dedicated to Salient Pole Synchronous Machines Nicolas Patin Member IEEE University of Technology of Compiègne Laboratoire d Electromécanique de Compiègne Rue Personne

More information

Prof. A. Bouscayrol (University Lille1, L2EP, MEGEVH, France)

Prof. A. Bouscayrol (University Lille1, L2EP, MEGEVH, France) Aalto Unversty Fnland May 011 «Energy Management of EVs & HEVs usng Energetc Macroscopc Representaton» «ENERGETIC MACROSCOPIC REPRESENTATION (EMR)» Prof. A. Bouscayrol (Unversty Llle1, LEP, MEGEVH, France)

More information

Study on re-adhesion control by monitoring excessive angular momentum in electric railway tractions

Study on re-adhesion control by monitoring excessive angular momentum in electric railway tractions Study on re-adhesion control by monitoring excessive angular momentum in electric railway tractions Takafumi Hara and Takafumi Koseki Department of Electrical Engeneering and Information Systems Graduate

More information

SYNCHRONOUS GENERATOR s ROTOR INVESTIGATION OF A HYBRID POWER SYSTEM INCLUDING A.G.

SYNCHRONOUS GENERATOR s ROTOR INVESTIGATION OF A HYBRID POWER SYSTEM INCLUDING A.G. Proc. of the 5th WSEAS/IASME Int. Conf. on Electric Power Systems, High Voltages, Electric Machines, Tenerife, Spain, December 16-18, 25 (pp59-514) SYNCHRONOUS GENERATOR s ROTOR INVESTIGATION OF A HYBRID

More information

Simplified Analysis Technique for Double Layer Non-overlap Multiphase Slip Permanent Magnet Couplings in Wind Energy Applications

Simplified Analysis Technique for Double Layer Non-overlap Multiphase Slip Permanent Magnet Couplings in Wind Energy Applications Simplified Analysis Technique for Double Layer Non-overlap Multiphase Slip Permanent Magnet Couplings in Wind Energy Applications Petrus JJ van Wyk - Prof. Maarten J. Kamper Renewable Energy Postgraduate

More information

On-line Parameter Estimation Method for IPMSM Based on Decoupling Control

On-line Parameter Estimation Method for IPMSM Based on Decoupling Control World Electric Vehicle Journal Vol. 4 - ISSN 232-6653 - 21 WEVA Page61 EVS25 Shenzhen, China, Nov 5-9, 21 On-line Parameter Estimation Method for IPMSM Based on Decoupling Control Aimeng Wang,Xingwang

More information

POG Modeling of Automotive Systems

POG Modeling of Automotive Systems POG Modeling of Automotive Systems MORE on Automotive - 28 Maggio 2018 Prof. Roberto Zanasi Graphical Modeling Techniques Graphical Techniques for representing the dynamics of physical systems: 1) Bond-Graph

More information

Modelling of Closed Loop Speed Control for Pmsm Drive

Modelling of Closed Loop Speed Control for Pmsm Drive Modelling of Closed Loop Speed Control for Pmsm Drive Vikram S. Sathe, Shankar S. Vanamane M. Tech Student, Department of Electrical Engg, Walchand College of Engineering, Sangli. Associate Prof, Department

More information

ADVANCES in NATURAL and APPLIED SCIENCES

ADVANCES in NATURAL and APPLIED SCIENCES ADVACES in ATURAL and APPLIED SCIECES ISS 1995772 Published BY AESI Publication EISS 199819 http//wwwaensiwebcom/aas 216 April 1(4) pages 233238 Open Access Journal Control of Doubly Fed Induction Generator

More information