Evaluation Method to Estimate Position Control Error in Position Sensorless Control Based on Pattern Matching Method

Size: px
Start display at page:

Download "Evaluation Method to Estimate Position Control Error in Position Sensorless Control Based on Pattern Matching Method"

Transcription

1 IEEJ Journal of Industry Applications Vol.7 No.1 pp DOI: /ieejjia.7.73 Paper Evaluation Method to Estimate Position Control Error in Position Sensorless Control Based on Pattern Matching Method Hamin Song a) Student Member, Shinji Doki Senior Member (Manuscript received May 17, 2017, revised July 24, 2017) A sensorless control based on a pattern matching method is proposed for interior permanent magnet synchronous motors which have non-sinusoidal inductance spatial distribution, at a standstill and in very-low-speed regions. A previous study indicated that closed-loop-position sensorless control can be achieved under heavy load conditions. However, position control errors are generated at atypical rotor positions, and the reason for this has not been clarified. Moreover, there remains an issue in which this position error cannot be perceived before position sensorless control is carried out. This study examines why position control errors are generated in the pattern matching method. Furthermore, an evaluation method that estimates position control error in advance is proposed using the clarified mechanism of position error generation. The effectivenessofthe proposedmethodis demonstratedbycomparingexperimentalandevaluation results. Keywords: interior permanent magnet synchronous motor, position sensorless control, pattern matching, position control error, evaluation method, magnetic saturation 1. Introduction Owing to the growth of power electronics technology and the development of permanent magnets, Interior Permanent Magnet Synchronous Motors (IPMSMs) are widely utilized in many applications such as home appliances, industrial equipment, and automobiles because of their compact size, high efficiency, and excellent control response. In order to accurately control IPMSMs, the information of the rotor position is necessary. However, using a position sensor such as an optical encoder has disadvantages such as high cost and installation space requirements. Thus, a position sensorless control that estimates the rotor position without using a position sensor has attracted attention. Many sensorless techniques for IPMSMs have been proposed (1) (8). In medium and high-speed regions, a commonly used method is based on the extended electromotive force (EEMF), which is generated proportional to the rotor speed (1) (2). At a standstill and in very-low-speed regions, a method using the angle dependency of the inductance spatial distribution is generally utilized (3) (8). In Refs. (3) (7), methods were proposed that inject a signal into the estimated coordinate and derive the estimated position from the amplitude of the response current. In addition, a method using both an observer of the EEMF and signal injection was proposed in Ref. (8). a) Correspondence to: Hamin Song. haminsong@nagoyau.jp Department of Information and Communication Engineering, Graduate School of Engineering, Nagoya University Furocho, Chikusa-ku, Nagoya, Aichi , Japan Almost all these position sensorless control methods assume that the phase inductance spatial distribution is sinusoidal. However, in recent years, there are an increasing number of cases where the assumption does not hold. For example, in traction motor drive systems such as Hybrid Electric Vehicles (HEVs) and Electric Vehicles (EVs), there is a tendency to positively utilize the magnetic saturation region to satisfy the strict demands of high power density and high torque density. In previous studies (9) (10), it was reported that IPMSMs driving in the magnetic saturation region have nonsinusoidal spatial distribution, and it is difficult to apply a general position sensorless control method. To achieve the position sensorless control for IPMSMs that are non-sinusoidal, a pattern matching method has been proposed. The proposed pattern matching method estimates the rotor position by matching the feature values measured in real time with the values in a template that is prepared beforehand. In Ref. (10), it was demonstrated that a closed-loop-position sensorless control is possible under heavy load conditions by experimental results. In principle, this position estimation method is heavily depend on phase inductance spatial distributions of a target IPMSM. In fact, even in the Ref. (10), a strange position control error occurred in the results, and the cause of the error was not fully studied. Hence, even if the inductance spatial distribution can be given in advance, the position control error cannot be perceived until actual experiments are performed. Based on this background, this paper reports on the cause of position control errors that occurred during closed-loopposition sensorless control based on a pattern matching c 2018 The Institute of Electrical Engineers of Japan. 73

2 method. Furthermore, an estimation method of position control error by pattern matching method is proposed from phase inductance spatial distribution of target IPMSM without actually performing any experiments. A summary of position sensorless control based on a pattern matching method, and the issues involved, are described in section 2. In section 3, the causes of position control errors are explained. These errors occurred when closed-loopposition sensorless control was carried out. In section 4, a method to estimate position control error from phase inductance spatial distribution of target IPMSM. In section 5, the effectiveness of the proposed method is validated through matching the experimental and evaluation results, and section 6 brings this paper to a conclusion. 2. Pattern Matching Method 2.1 Target IPMSM Having Non-sinusoidal Inductance Spatial Distribution Table 1 lists the parameters of the IPMSM used in this paper for position sensorless control based on a pattern matching method. The target IPMSM was designed to have a power density equal to that of an automobile, and to reach magnetic saturation easily. Figure 1 shows the measured u phase inductance spatial distribution for rotor positions in various load current conditions. As shown in Fig. 1, distortion occurs in the phase inductance even though the load current is zero. Furthermore, the inductance becomes more intricate when the load current is increased. A previous study (10) indicated that the control is unstable when using a conventional method based on the characteristic for which the inductance spatial distribution is sinusoidal. In addition, the study reported that position sensorless control becomes possible by using the proposed pattern matching method under the same conditions. 2.2 Pattern Matching Method An overview of the pattern matching method is shown in Fig. 2. The procedure of Table 1. Specifications of target IPMSM Number of pole pair (P n ) 6 Rated current 60 [A] Rated speed 12,000 [rpm] Volume 1[L] Power Density 9.9 [kw/l] Winding type Concentrated Resistance (R) 0.13 [Ω] d-axis inductance (L d ) 0.14 [mh] q-axis inductance (L q ) 0.47 [mh] EMF constant (K E ) [V/(rad/s)] Inertia (J) [kg m 2 ] the method is as follows. First, template data sets are created beforehand by measuring feature values that vary depending on the rotor position at every position. Then, while position sensorless control is carried out, observation data is measured in the same way as when the template data is created. Finally, the rotor position is estimated by searching for the most similar angle between the template data and observation data by using pattern matching. In the previous study, the current derivatives were utilized as feature values because the current derivatives are inversely proportional to the phase inductance, which changes depending on the rotor position, as represented by (1). where L x is the x phase inductance, V dc is the DC-link voltage, and pi x is a x phase current derivative (x u,v,w). L x V dc (1) pi x If the DC-link voltage is the same, the current derivatives can be used for feature values instead of phase inductance by fixing the voltage vector at which the current derivatives are measured. In the previous study, by injecting highfrequency signals of ±V hu for the u phase and V hvw for the v and w phases at every half carrier period, V1(1,0,0) and V4(0,1,1) voltage vectors are created intentionally, and the current derivatives are measured at the voltage vector. As an example, Fig. 3 shows the switching command, output voltages of the inverter, current behavior after signal injection, and measurement timing for u phase current, in a zero-load condition. By measuring the current derivatives for v and w phase currents in the same way, six feature values can be obtained during every carrier period. Then, the Sum of Squared Difference (SSD) is utilized as an evaluation function for pattern matching, and the rotor position is estimated. 2.3 Issues of Previous Method Figure 4 shows the experimental results of the closed-loop-position sensorless control under each load current condition. By using the pattern matching method, a closed-loop-position sensorless control becomes possible in every load condition, even with the target IPMSM having a non-sinusoidal phase inductance spatial distribution. However, strange position control errors occur under all conditions except for the zero-load condition. This is because the method does not utilize a mathematical Fig. 1. Phase inductance spatial distributions of target IPMSM Fig. 2. Overview of pattern matching method 74 IEEJ Journal IA, Vol.7, No.1, 2018

3 (a) Zero load current condition (b) 25% load current condition Fig. 3. Principles of Feature Value Measurement for Template Measurement model that assumes the inductance spatial distribution is sinusoidal, but estimates the position by pattern matching. In the pattern matching method, it is not easy to analytically grasp the position error generated by the closed-loop control when IPMSMs are designed. However, it is not desirable for practical use that control performance cannot be evaluated before actual position sensorless control is performed. If control performance can be estimated at the design step, it can be used as a design criterion for how much power density of the IPMSMs can be increased, and how much can be used in the magnetic saturation region. In the following sections, the mechanism of position control error occurrences is clarified, and an evaluation method that can estimate the performance of position sensorless control is proposed only for situations in which the inductance spatial distribution is given. 3. Analysis of Position Control Error 3.1 Relationship between Current Phase Angle and Feature Value Although we examined changing the accuracy of template data and the bandwidth of the LPF in order to improve the strange position control error, it was verified that position estimation errors occur that cannot be explained by using the measurement accuracy of feature values. As a reason for the error, we investigated the possibility that the error occurs by referring to the template data of different currents (due to the position error). Figure 5 shows the coordinate system used in this paper. αβ-axis is the stator-oriented coordinates, dq-axis is the rotororiented coordinates, and γδ-axis is the estimated coordinates. θ re is a real rotor position, ˆθ re is an estimated rotor position, Δθ re is a position estimation error, φ i is a current phase angle in the dq-coordinate system. It is assumed that if an axis error occurs when the closed-loop control is performed, feature values vary by observing the current on the γδ-axis. In addition, it is assumed that if pattern matching is performed via using feature values different from template data sets createdon the dq-axis, a position estimation error is generated. In order to investigate the relationship between the current phase angle and the feature value, the feature values were (c) 50% load current condition (d) 75% load current condition (e) 100% load current condition Fig. 4. Experimental result for closed-loop-position sensorless control Fig. 5. Definition of coordinate system measured while changing the current phase angle from 20 to 20 in 5 increments under a 75% rated current load condition. Figure 6 and Fig. 7 show the feature values of u phase current measured at the V1 and V4 voltage vectors. From the measurement results, it can be verified that the feature values change depending on the current phase angle, the influence of magnetic saturation is different depending on the 75 IEEJ Journal IA, Vol.7, No.1, 2018

4 Fig. 6. pi u V1 value in variable current phase angle (a) Feature values measured at V1 voltage vector state Fig. 7. pi u V4 value in variable current phase angle rotor position, and the change is nonlinear. For example, in the vicinity of 130 of Fig. 6, if the current phase angle deviates by 5, the feature value changes by about 0.5%. By contrast, the current phase angle is hardly affected in the vicinity of 270. Furthermore, for the v and w phase current changes, measurement results for which the feature values vary nonlinearly depending on the current phase angle (such as in the u phase) were obtained. Owing to these results, it is expected that if an axis error occurs, the feature values change as the current phase angle changes, and that it affects the estimated rotor position. In addition, since the relationship between the current phase angle and the feature value is nonlinear, it is difficult to calculate the estimated rotor position by analysis (such as modeling the change of the feature value). 3.2 Calculation of Estimated Position by Evaluation Function In this section, the estimated position is examined when pattern matching is performed using feature values different from the template data. As described previously, if an axis error Δθ re occurs, the current phase angle φ i is varied by an amount corresponding to the error. Owing to this relationship between the axis error and current phase angle, if a feature value table of all current phase angles is prepared, the rotor position can be estimated by calculating the evaluation function while changing the current phase angle that corresponds to the position error. The evaluation function utilized for pattern matching is represented as (2). ( J(θ t,θ re,φ i ) = pi # x Vn (θ t ) pi x Vn (θ re,φ i ) ) 2 (2) x=u,v,w n=1,4 (b) Feature values measured at V4 voltage vector state Fig. 8. Template data and values from the feature value table of u phase current at θ re = 140 where pi # x Vn (θ t) is the template data of x phase current measured at the Vn voltage vector, pi x Vn (θ re,φ i ) is a value from the feature value table when the rotor position is at θ re,and the current phase angle is φ i. Furthermore, the estimated position can be determined so that a value of the evaluation function is minimized and is represented as (3). ˆθ re = arg min J(θ t,θ re,φ i ) (3) To explain the mechanism by which a position error occurs by the deviation of the current phase angle, the u phase template data and values from the feature value table of each current phase angle when the rotor position is 140 are shown in Fig. 8 as an example. Figures 8(a) and (b) are the results measured at the V1andV4 voltage vectors while varying the current phase angle from 20 to 20 in 5 increments. From these results, it can be verified that even the rotor position is same, there are feature values which are likely to occur an obvious differencefrom the template data, andfeature values with little difference to template data also exists at the same time. Hence, the rotor position can only be estimated by calculating the evaluation function with all six feature values. Figure 9(a) shows the calculation result of the evaluation function of each current phase angle, and Fig. 9(b) shows the result of enlarging around the real rotor position. The rotor position where the value of the evaluation function is at the minimum is represented by a circle, and the position is the estimated position of each current phase angle. When the real rotor position is 140 and the position error occurs in the rotation direction of the IPMSM (Δθ re > 0 ), the estimated position tends to converge to 132. On the other hand, when 76 IEEJ Journal IA, Vol.7, No.1, 2018

5 (a) Evaluation function value at θ re = 140 Fig. 11. Flowchart of proposed evaluation method (b) Evaluation function value at θ re = 140 (Expanded view) Fig. 9. Result of evaluation function calculation at θ re = 140 Fig. 10. Result of evaluation function calculation at θ re = 270 the position error occurs in the reverse rotation direction of the IPMSM (Δθ re < 0 ), the estimated position is 142,butit is difficult for a position error to occur because the estimated position is returned to the real rotor position by the rotation of the IPMSM. As an example of a rotor position where a position error rarely occurs, the calculation result of the evaluation function of each current phase angle when the real rotor position is 270 is shown in Fig. 10. In this case, a singular point does not exist regardless of the rotation direction. In addition, it tends to converge to the real rotor position because the smaller the absolute value of the current phase angle, the nearer the estimated position is to the real rotor position. 4. Proposal of Evaluation Method for Position Error Estimation In this section, we introduce an evaluation method to estimate the position control error that occurs during position sensorless control. The procedure of the proposed evaluation method is shown below. (1) Creating the template data sets (φ i = 0 ) (2) Creating the feature value table of variable current phase angle (3) Calculating the estimated rotor position using evaluation function (3.1) Determining the real rotor position θ re and current phase angle φ i (φ i = Δθ re ) (3.2) Calculating the evaluation function J(θ t,θ re,φ i ) (Eq. (2)) (3.3) Calculating the estimated rotor position (Eq. (3)) (3.4) Calculating the position error (Δθ re = θ re ˆθ re ) If the template data sets and feature value table of all current phase angles can be prepared in advance, the estimated position error can be calculated by repeating the calculation from (3.1) to (3.4) until the estimated position converges. Figure 11 shows a flowchart of the proposed evaluation method. θ 0 is the initial rotor position, ω rm is the rotation speed of the IPMSM, and Δt is the period of evaluation. In the proposed evaluation, the initial position error is assumed to be zero, and the position error is generated by the rotation of the rotor. 5. Comparison of Proposed Evaluation Method and Experimental Results 5.1 Experimental Setup In order to indicate the validity of the proposed evaluation method, evaluation and experimental results are compared. Figure 12 shows the configuration of the control system. The target IPMSM is operated at 0.1% rated speed by a load machine. The rotor position is estimated by a position estimator based on the pattern matching method, and the estimated rotor position is used for dq-transformation. Table 2 lists the parameters and experimental setup for measuring the feature values. The V1 77 IEEJ Journal IA, Vol.7, No.1, 2018

6 Fig. 12. Control system Table 2. Experimental setup DC-link voltage (V dc ) Carrier frequency ( f c ) Amplitude of Injection signal (V hu, V hvw ) Sampling time interval (t min ) Position interval of template data set 60 [V] 2.5 [khz] 20 [V] 45 [μs] 1 [deg] Table 3. Setup of evaluation Angular resolution of template data set 1 [deg] Angular resolution of table 1 [deg] Current phase angle resolution of table ( 20 φ i 20 ) 1 [deg] Current phase angle resolution of table (20 φ i 70 ) 5 [deg] Initial rotor position (θ 0 ) 1 [deg] Initial position error 0 [deg] Period of evaluation (Δt) 200 [μs] Rotational speed (ω re ) 10 [rpm] Number of pole pairs (P n ) 6 and V4 voltage vectors for which the feature values are measured are generated by signal injection. The amplitude of the injection signal was set to 33.3% of the DC-link voltage, and the current sampling time interval was set to 45 [μs] to obtain the current derivative. The angular resolution of the template data was set to 1 [deg]. In addition, the general PI control system with a bandwidth of 1000 [rad/s] is consistent. The bandwidth of the LPF was set to 500 [rad/s] to avoid unnecessary switching noise. 5.2 Setup of Evaluation The evaluation is performed as shown in Fig. 11, and the parameters used in the evaluation are listed in Table 3. The used feature value tables for the current phase angle are prepared by measuring the feature value while changing the phase angle of the current command during the experiment instead of during the magnetic field analysis. To estimate the position control error more accurately, the angular resolution of the feature value table is set to 1 in the vicinity of the current phase angle of the current command, and the resolution is set to 5 for other current phase angles. In addition, the initial position error is set to 0,and the position error is generated by the rotation of the rotor. However, for a position error to occur, the rotor position (θ re ) was rounded up, and the estimated position (ˆθ re ) was rounded down. This is because the angular resolution of the prepared table (1 ) is very large as compared with the rotation angle of the motor during one period of evaluation (0.075 ). 5.3 Results of Experiment and Evaluation The experimental and evaluation results from 25% to 100% with 25% intervals of rated current are shown in Fig. 13 Fig. 16. The average estimated position error and the maximum error Fig % load current result Fig % load current result Fig % load current result of the proposed evaluation method are almost the same as those in the experimental results. In addition, the rotor positions at which strange position errors occur also are the same. From the vicinity of 140 and 320 in Fig. 14, it can be 78 IEEJ Journal IA, Vol.7, No.1, 2018

7 also be effective when applying pattern matching method to other IPMSMs. It is necessary to confirm the effectiveness of proposed method with multiple IPMSMs, in the future. In this evaluation, the feature value table of the current phase angle through experiments is utilized, but it is necessary to confirm whether the evaluation is possible using the feature value table prepared by magnetic field analysis. Moreover, although the mechanism by which the position error occurs is clarified, a method to improve upon the error has not yet been studied. These are future works. References Fig % load current result verified that a position error rarely occurs in the direction of the rotor rotation since the position error is returned. These results demonstrate that the proposed evaluation method can estimate the position control error beforehand if a feature value table of all current phase angles is prepared. 6. Conclusion In this paper, an evaluation method to estimate the position control errors that occur during closed-loop-position sensorless control based on a pattern matching method is proposed. Using the pattern matching method, closed-loopposition sensorless control under heavy load conditions for an IPMSM with non-sinusoidal inductance spatial distribution is possible. However, a position control error can occur, and it is difficult to perceive the error before position sensorless control is performed. This paper indicated that the current phase angle changes by observing the current in the estimated coordinate axis including the axis error, and that feature values different from the template data sets are measured. In addition, position estimation errors occurred as a result of pattern matching using different feature values with template data sets. Furthermore, a novel method was proposed that evaluates the position control error in advance if the inductance spatial distribution is provided. In order to perform the proposed evaluation method, it is necessary to prepare feature value tables of every current phase angle. Simultaneously, it is necessary to select feature values from the table according to the position errors, and to perform pattern matching using the evaluation function. The validity of the proposed evaluation method was indicated because the evaluation results for various load conditions coincided with the experimental results. In this paper, the effectiveness of position sensorless control based on pattern matching method and the proposed evaluation method was demonstrated with one target IPMSM. The pattern matching method is expected to applicable with other IPMSMs, if the feature values depend on the rotor position and if the feature values having reproducibility can be measured. In addition, if the cause of the position control error is only that the feature values change as the current phase angle changes, the proposed evaluation method may ( 1 ) Z. Chen, M. Tomita, S. Doki, and S. Okuma: An Extended Electromotive Force Model for Sensorless Control of Interior Permanent-Magnet Synchronous Motors, IEEE Trans. Industrial Electronics, Vol.50, No.2, pp (2003) ( 2 ) M. Hasegawa and K. Matsui: IPMSM Position Sensorless Drives Using Robust Adaptive Observer on Stationary Reference Frame, IEEJ Trans. on EEE, Vol.3, No.1 pp (2008) ( 3 ) N. Imai, S. Morimoto, M. Sanada, and Y. Takeda: Influence of Magnetic Saturation on Sensorless Control for Interior Permanent-Magnet Synchronous Motors with Concentrated Windings, IEEE Trans. Ind. Appli., Vol.42, No.5, pp (2006) ( 4 ) Y.S. Jeong, R.D. Lorentz, T.M. Jahns, and S.K. Sul: Initial Rotor Position Estimation of an Interior Permanent-Magnet Synchronous Machine Using Carrier-Frequency Injection Methods, IEEE Trans. Ind. Appli., Vol.41, No.1, pp (2005) ( 5 ) T. Noguchi, K. Takehana, and S. Kondo: Mechanical-Sensorless Robust Control of Permanent-Magnet Synchronous Motor Using Phase Information of Harmonic Reactive Power, IEEE Trans. Ind. Appli., Vol.37, No.6, pp (2001) ( 6 ) R. Leidhold and P. Mutschler: Sensorless Position Estimation by Using the High Frequency Zero-sequence Generated by the Inverter, IECON Proceeding, pp (2009) ( 7 ) T. Noguchi and K. Motono: Performance Improvement of Mechanical Sensorless IPM Motor Drive Using Harmonic Current Injection, IEEJ Trans. IA, Vol.126-D, No.3, pp (2006) (in Japanese) ( 8 ) R. Saitoh, Y. Makaino, and T. Ohnuma: Adaptive Signal Injection Method Combined with EEMF-based Position Sensorless Control of IPMSM Drives, IEEJ Journal of IA, Vol.4, No.4, pp (2015) ( 9 ) T. Yuan and S. Doki: An Experimental Study of Position Sensorless Control at low speed of IPMSM with Heavy Magnetic Saturation, IECON Proceeding, pp (2014) (10) Y. Makaino and S. Doki: Position sensorless control for high-power density IPMSM based on pattern matching method, ICIT Proceeding, pp (2016) Hamin Song (Student Member) was born in Changwon, Korea, in He received his B.E. degree in mechanical engineering from Nagasaki University, Japan, in 2005, and his M.E. degree in mechanical engineering from Tohoku University, Japan, in Since 2007, he has been working as a research engineer at LG Electronics, Korea. At the same time, since 2015, he has been a member of the Department of Information and Communication Engineering at Nagoya University, Japan, as a Ph.D. student. Shinji Doki (Senior Member) was born in Nagoya, Japan, in He received his B.E., M.E., and Ph.D. degrees in Electronic-mechanical Engineering from Nagoya University, Japan, in 1990, 1992, and 1995, respectively. Since 2012, he has been a professor at Nagoya University, Japan. His research interests are in the areas of control, modeling, signal/information processing, and its applications to motor drive systems. Prof. Doki received the IEEE IECON 92 best paper award, and awards from FANUC FA, Robot Foundation, and the Institute of Electrical Engineers of Japan. He is a senior member of the IEEJ. He is also a member of the IEEE. 79 IEEJ Journal IA, Vol.7, No.1, 2018

Maximum Torque per Ampere and Maximum Efficiency Control Methods based on V/f Control for IPM Synchronous Motors

Maximum Torque per Ampere and Maximum Efficiency Control Methods based on V/f Control for IPM Synchronous Motors IEEJ Journal of Industry Applications Vol.3 No.2 pp.112 120 DOI: 10.1541/ieejjia.3.112 Maximum Torque per Ampere and Maximum Efficiency Control Methods based on V/f Control for IPM Synchronous Motors Jun-ichi

More information

970 IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, VOL. 48, NO. 3, MAY/JUNE 2012

970 IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, VOL. 48, NO. 3, MAY/JUNE 2012 970 IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, VOL. 48, NO. 3, MAY/JUNE 2012 Control Method Suitable for Direct-Torque-Control-Based Motor Drive System Satisfying Voltage and Current Limitations Yukinori

More information

Torque Performance and Permanent Magnet Arrangement for Interior Permanent Magnet Synchronous Motor

Torque Performance and Permanent Magnet Arrangement for Interior Permanent Magnet Synchronous Motor Extended Summary pp.954 960 Torque Performance and Permanent Magnet Arrangement for Interior Permanent Magnet Synchronous Motor Naohisa Matsumoto Student Member (Osaka Prefecture University, matumoto@eis.osakafu-u.ac.jp)

More information

Parameter Prediction and Modelling Methods for Traction Motor of Hybrid Electric Vehicle

Parameter Prediction and Modelling Methods for Traction Motor of Hybrid Electric Vehicle Page 359 World Electric Vehicle Journal Vol. 3 - ISSN 232-6653 - 29 AVERE Parameter Prediction and Modelling Methods for Traction Motor of Hybrid Electric Vehicle Tao Sun, Soon-O Kwon, Geun-Ho Lee, Jung-Pyo

More information

Speed Sensorless Control of a Long-Stator Linear Synchronous-Motor arranged by Multiple Sections

Speed Sensorless Control of a Long-Stator Linear Synchronous-Motor arranged by Multiple Sections Speed Sensorless Control of a Long-Stator Linear Synchronous-Motor arranged by Multiple Sections Roberto Leidhold Peter Mutschler Department of Power Electronics and Control of Drives Darmsta University

More information

Characteristics Analysis of Claw-Pole Alternator for Automobiles by Nonlinear Magnetic Field Decomposition for Armature Reaction

Characteristics Analysis of Claw-Pole Alternator for Automobiles by Nonlinear Magnetic Field Decomposition for Armature Reaction IEEJ Journal of Industry Applications Vol.6 No.6 pp.362 369 DOI: 10.1541/ieejjia.6.362 Paper Characteristics Analysis of Claw-Pole Alternator for Automobiles by Nonlinear Magnetic Field Decomposition for

More information

Lecture 8: Sensorless Synchronous Motor Drives

Lecture 8: Sensorless Synchronous Motor Drives 1 / 22 Lecture 8: Sensorless Synchronous Motor Drives ELEC-E8402 Control of Electric Drives and Power Converters (5 ECTS) Marko Hinkkanen Spring 2017 2 / 22 Learning Outcomes After this lecture and exercises

More information

Simplified EKF Based Sensorless Direct Torque Control of Permanent Magnet Brushless AC Drives

Simplified EKF Based Sensorless Direct Torque Control of Permanent Magnet Brushless AC Drives International Journal of Automation and Computing (24) 35-4 Simplified EKF Based Sensorless Direct Torque Control of Permanent Magnet Brushless AC Drives Yong Liu, Ziqiang Zhu, David Howe Department of

More information

PERFORMANCE ANALYSIS OF DIRECT TORQUE CONTROL OF 3-PHASE INDUCTION MOTOR

PERFORMANCE ANALYSIS OF DIRECT TORQUE CONTROL OF 3-PHASE INDUCTION MOTOR PERFORMANCE ANALYSIS OF DIRECT TORQUE CONTROL OF 3-PHASE INDUCTION MOTOR 1 A.PANDIAN, 2 Dr.R.DHANASEKARAN 1 Associate Professor., Department of Electrical and Electronics Engineering, Angel College of

More information

Loss Minimization Design Using Magnetic Equivalent Circuit for a Permanent Magnet Synchronous Motor

Loss Minimization Design Using Magnetic Equivalent Circuit for a Permanent Magnet Synchronous Motor Loss Minimization Design Using Magnetic Equivalent Circuit for a Permanent Magnet Synchronous Motor Daisuke Sato Department of Electrical Engineering Nagaoka University of Technology Nagaoka, Niigata,

More information

Speed Sensor less Control and Estimation Based on Mars for Pmsm under Sudden Load Change

Speed Sensor less Control and Estimation Based on Mars for Pmsm under Sudden Load Change International Journal of Engineering Inventions e-issn: 2278-7461, p-isbn: 2319-6491 Volume 2, Issue 3 (February 2013) PP: 77-86 Speed Sensor less Control and Estimation Based on Mars for Pmsm under Sudden

More information

SHAPE DESIGN OPTIMIZATION OF INTERIOR PERMANENT MAGNET MOTOR FOR VIBRATION MITIGATION USING LEVEL SET METHOD

SHAPE DESIGN OPTIMIZATION OF INTERIOR PERMANENT MAGNET MOTOR FOR VIBRATION MITIGATION USING LEVEL SET METHOD International Journal of Automotive Technology, Vol. 17, No. 5, pp. 917 922 (2016) DOI 10.1007/s12239 016 0089 7 Copyright 2016 KSAE/ 092 17 pissn 1229 9138/ eissn 1976 3832 SHAPE DESIGN OPTIMIZATION OF

More information

Analytical Model for Sizing the Magnets of Permanent Magnet Synchronous Machines

Analytical Model for Sizing the Magnets of Permanent Magnet Synchronous Machines Journal of Electrical Engineering 3 (2015) 134-141 doi: 10.17265/2328-2223/2015.03.004 D DAVID PUBLISHING Analytical Model for Sizing Magnets of Permanent Magnet Synchronous Machines George Todorov and

More information

Proceedings of the 6th WSEAS/IASME Int. Conf. on Electric Power Systems, High Voltages, Electric Machines, Tenerife, Spain, December 16-18,

Proceedings of the 6th WSEAS/IASME Int. Conf. on Electric Power Systems, High Voltages, Electric Machines, Tenerife, Spain, December 16-18, Proceedings of the 6th WSEAS/IASME Int. Conf. on Electric Power Systems, High Voltages, Electric Machines, Tenerife, Spain, December 16-18, 2006 196 A Method for the Modeling and Analysis of Permanent

More information

International Journal of Advance Engineering and Research Development SIMULATION OF FIELD ORIENTED CONTROL OF PERMANENT MAGNET SYNCHRONOUS MOTOR

International Journal of Advance Engineering and Research Development SIMULATION OF FIELD ORIENTED CONTROL OF PERMANENT MAGNET SYNCHRONOUS MOTOR Scientific Journal of Impact Factor(SJIF): 3.134 e-issn(o): 2348-4470 p-issn(p): 2348-6406 International Journal of Advance Engineering and Research Development Volume 2,Issue 4, April -2015 SIMULATION

More information

Sensorless Control for High-Speed BLDC Motors With Low Inductance and Nonideal Back EMF

Sensorless Control for High-Speed BLDC Motors With Low Inductance and Nonideal Back EMF Sensorless Control for High-Speed BLDC Motors With Low Inductance and Nonideal Back EMF P.Suganya Assistant Professor, Department of EEE, Bharathiyar Institute of Engineering for Women Salem (DT). Abstract

More information

Robust Speed Controller Design for Permanent Magnet Synchronous Motor Drives Based on Sliding Mode Control

Robust Speed Controller Design for Permanent Magnet Synchronous Motor Drives Based on Sliding Mode Control Available online at www.sciencedirect.com ScienceDirect Energy Procedia 88 (2016 ) 867 873 CUE2015-Applied Energy Symposium and Summit 2015: ow carbon cities and urban energy systems Robust Speed Controller

More information

Wide-Speed Operation of Direct Torque-Controlled Interior Permanent-Magnet Synchronous Motors

Wide-Speed Operation of Direct Torque-Controlled Interior Permanent-Magnet Synchronous Motors Wide-Speed Operation of Direct Torque-Controlled Interior Permanent-Magnet Synchronous Motors Adina Muntean, M.M. Radulescu Small Electric Motors and Electric Traction (SEMET) Group, Technical University

More information

Sensorless Torque and Speed Control of Traction Permanent Magnet Synchronous Motor for Railway Applications based on Model Reference Adaptive System

Sensorless Torque and Speed Control of Traction Permanent Magnet Synchronous Motor for Railway Applications based on Model Reference Adaptive System 5 th SASTech 211, Khavaran Higher-education Institute, Mashhad, Iran. May 12-14. 1 Sensorless Torue and Speed Control of Traction Permanent Magnet Synchronous Motor for Railway Applications based on Model

More information

Influence of Permanent Magnet Properties and Arrangement on Performance of IPMSMs for Automotive Applications

Influence of Permanent Magnet Properties and Arrangement on Performance of IPMSMs for Automotive Applications IEEJ Journal of Industry Applications Vol.6 No.6 pp.401 408 DOI: 10.1541/ieejjia.6.401 Influence of Permanent Magnet Properties and Arrangement on Performance of IPMSMs for Automotive Applications Yuki

More information

On-line Parameter Estimation Method for IPMSM Based on Decoupling Control

On-line Parameter Estimation Method for IPMSM Based on Decoupling Control World Electric Vehicle Journal Vol. 4 - ISSN 232-6653 - 21 WEVA Page61 EVS25 Shenzhen, China, Nov 5-9, 21 On-line Parameter Estimation Method for IPMSM Based on Decoupling Control Aimeng Wang,Xingwang

More information

Sensorless Speed Control for PMSM Based On the DTC Method with Adaptive System R. Balachandar 1, S. Vinoth kumar 2, C. Vignesh 3

Sensorless Speed Control for PMSM Based On the DTC Method with Adaptive System R. Balachandar 1, S. Vinoth kumar 2, C. Vignesh 3 Sensorless Speed Control for PMSM Based On the DTC Method with Adaptive System R. Balachandar 1, S. Vinoth kumar 2, C. Vignesh 3 P.G Scholar, Sri Subramanya College of Engg & Tech, Palani, Tamilnadu, India

More information

AC Induction Motor Stator Resistance Estimation Algorithm

AC Induction Motor Stator Resistance Estimation Algorithm 7th WSEAS International Conference on Electric Power Systems, High Voltages, Electric Machines, Venice, Italy, November 21-23, 27 86 AC Induction Motor Stator Resistance Estimation Algorithm PETR BLAHA

More information

PARAMETER SENSITIVITY ANALYSIS OF AN INDUCTION MOTOR

PARAMETER SENSITIVITY ANALYSIS OF AN INDUCTION MOTOR HUNGARIAN JOURNAL OF INDUSTRIAL CHEMISTRY VESZPRÉM Vol. 39(1) pp. 157-161 (2011) PARAMETER SENSITIVITY ANALYSIS OF AN INDUCTION MOTOR P. HATOS, A. FODOR, A. MAGYAR University of Pannonia, Department of

More information

Zero speed sensorless drive capability of fractional slot inset PM machine

Zero speed sensorless drive capability of fractional slot inset PM machine Zero speed sensorless drive capability of fractional slot inset PM Adriano Faggion Nicola Bianchi Silverio Bolognani Emanuele Fornasiero Electric Drives Laboratory Department of Industrial Engineering

More information

A Direct Torque Controlled Induction Motor with Variable Hysteresis Band

A Direct Torque Controlled Induction Motor with Variable Hysteresis Band UKSim 2009: th International Conference on Computer Modelling and Simulation A Direct Torque Controlled Induction Motor with Variable Hysteresis Band Kanungo Barada Mohanty Electrical Engineering Department,

More information

An improved deadbeat predictive current control for permanent magnet linear synchronous motor

An improved deadbeat predictive current control for permanent magnet linear synchronous motor Indian Journal of Engineering & Materials Sciences Vol. 22, June 2015, pp. 273-282 An improved deadbeat predictive current control for permanent magnet linear synchronous motor Mingyi Wang, iyi i, Donghua

More information

MATRIX Motor with Individual Control Capability for Iron Loss Suppression under Flux Weakening Control

MATRIX Motor with Individual Control Capability for Iron Loss Suppression under Flux Weakening Control IEEJ Journal of Industry Applications Vol.5 No. pp.17 18 DOI: 10.1541/ieejjia.5.17 Paper MATRIX Motor with Individual Control Capability for Iron Loss Suppression under Flux Weakening Control Hiroki Hijikata

More information

Magnetic Saturation and Iron Loss Influence on Max Torque per Ampere Current Vector Variation of Synchronous Reluctance Machine

Magnetic Saturation and Iron Loss Influence on Max Torque per Ampere Current Vector Variation of Synchronous Reluctance Machine EVS28 KINTEX, Korea, May 3-6, 215 Magnetic Saturation and Iron Loss Influence on Max Torque per Ampere Current Vector Variation of Synchronous Reluctance Machine Huai-Cong Liu 1, In-Gun Kim 1, Ju lee 1

More information

Robust Non-Linear Direct Torque and Flux Control of Adjustable Speed Sensorless PMSM Drive Based on SVM Using a PI Predictive Controller

Robust Non-Linear Direct Torque and Flux Control of Adjustable Speed Sensorless PMSM Drive Based on SVM Using a PI Predictive Controller Journal of Engineering Science and Technology Review 3 (1) (2010) 168-175 Research Article JOURNAL OF Engineering Science and Technology Review www.jestr.org Robust Non-Linear Direct Torque and Flux Control

More information

Experimental Tests and Efficiency Improvement of Surface Permanent Magnet Magnetic Gear

Experimental Tests and Efficiency Improvement of Surface Permanent Magnet Magnetic Gear IEEJ Journal of Industry Applications Vol.3 No.1 pp.62 67 DOI: 10.1541/ieejjia.3.62 Paper Experimental Tests and Efficiency Improvement of Surface Permanent Magnet Magnetic Gear Michinari Fukuoka a) Student

More information

ISSN: (Online) Volume 2, Issue 2, February 2014 International Journal of Advance Research in Computer Science and Management Studies

ISSN: (Online) Volume 2, Issue 2, February 2014 International Journal of Advance Research in Computer Science and Management Studies ISSN: 2321-7782 (Online) Volume 2, Issue 2, February 2014 International Journal of Advance Research in Computer Science and Management Studies Research Article / Paper / Case Study Available online at:

More information

POLITECNICO DI TORINO Repository ISTITUZIONALE

POLITECNICO DI TORINO Repository ISTITUZIONALE POLITECNICO DI TORINO Repository ISTITUZIONALE Position-sensorless control of permanent-magnet-assisted synchronous reluctance motor Original Position-sensorless control of permanent-magnet-assisted synchronous

More information

Sliding-Mode Observer based Direct Torque Control of an IPM- Synchronous Motor Drive at Very Low Speed

Sliding-Mode Observer based Direct Torque Control of an IPM- Synchronous Motor Drive at Very Low Speed IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE) e-issn: 2278-1676,p-ISSN: 2320-3331, Volume 9, Issue 6 Ver. IV (Nov Dec. 2014), PP 08-17 www.iosrjournals.org Sliding-Mode Observer based

More information

Lecture 7: Synchronous Motor Drives

Lecture 7: Synchronous Motor Drives 1 / 46 Lecture 7: Synchronous Motor Drives ELEC-E8402 Control of Electric Drives and Power Converters (5 ECTS) Marko Hinkkanen Spring 2017 2 / 46 Learning Outcomes After this lecture and exercises you

More information

Modelling of Closed Loop Speed Control for Pmsm Drive

Modelling of Closed Loop Speed Control for Pmsm Drive Modelling of Closed Loop Speed Control for Pmsm Drive Vikram S. Sathe, Shankar S. Vanamane M. Tech Student, Department of Electrical Engg, Walchand College of Engineering, Sangli. Associate Prof, Department

More information

Effect of the number of poles on the acoustic noise from BLDC motors

Effect of the number of poles on the acoustic noise from BLDC motors Journal of Mechanical Science and Technology 25 (2) (211) 273~277 www.springerlink.com/content/1738-494x DOI 1.17/s1226-1-1216-4 Effect of the number of poles on the acoustic noise from BLDC motors Kwang-Suk

More information

The Optimum Design of the Magnetic Orientation of Permanent Magnets for IPMSM under Hot Environments

The Optimum Design of the Magnetic Orientation of Permanent Magnets for IPMSM under Hot Environments 380 IEEE PEDS 2017, Honolulu, USA 12 15 December 2017 The Optimum Design of the Magnetic Orientation of Permanent Magnets for IPMSM under Hot Environments Noriyoshi Nishiyama 1. Hiroki Uemura 2, Yukio

More information

CHAPTER 2 MODELLING OF INTERIOR PERMANENT MAGNET SYNCHRONOUS MOTOR

CHAPTER 2 MODELLING OF INTERIOR PERMANENT MAGNET SYNCHRONOUS MOTOR 21 CHAPTER 2 MODELLING OF INTERIOR PERMANENT MAGNET SYNCHRONOUS MOTOR 2.1 INTRODUCTION The need for adjustable speed drives in industrial applications has been increasing progressively. The variable speed

More information

Impact of the Motor Magnetic Model on Direct Flux Vector Control of Interior PM Motors

Impact of the Motor Magnetic Model on Direct Flux Vector Control of Interior PM Motors Impact of the Motor Magnetic Model on Direct Flux Vector Control of Interior PM Motors Gianmario Pellegrino, Radu Bojoi, Paolo Guglielmi Politecnico di Torino, Italy (gianmario.pellegrino,radu.bojoi,paolo.guglielmi)@polito.it

More information

Modeling of Direct Torque Control (DTC) of BLDC Motor Drive

Modeling of Direct Torque Control (DTC) of BLDC Motor Drive IJSTE - International Journal of Science Technology & Engineering Volume 3 Issue 09 March 2017 ISSN (online): 2349-784X Modeling of Direct Torque Control (DTC) of BLDC Motor Drive Addagatla Nagaraju Lecturer

More information

Direct Flux Vector Control Of Induction Motor Drives With Maximum Efficiency Per Torque

Direct Flux Vector Control Of Induction Motor Drives With Maximum Efficiency Per Torque Direct Flux Vector Control Of Induction Motor Drives With Maximum Efficiency Per Torque S. Rajesh Babu 1, S. Sridhar 2 1 PG Scholar, Dept. Of Electrical & Electronics Engineering, JNTUACEA, Anantapuramu,

More information

Improved efficiency of a fan drive system without using an encoder or current sensors

Improved efficiency of a fan drive system without using an encoder or current sensors Improved efficiency of a fan drive system without using an encoder or current sensors Tian-Hua Liu, Jyun-Jie Huang Department of Electrical Engineering, National Taiwan University of Science Technology,

More information

Independent Control of Speed and Torque in a Vector Controlled Induction Motor Drive using Predictive Current Controller and SVPWM

Independent Control of Speed and Torque in a Vector Controlled Induction Motor Drive using Predictive Current Controller and SVPWM Independent Control of Speed and Torque in a Vector Controlled Induction Motor Drive using Predictive Current Controller and SVPWM Vandana Peethambaran 1, Dr.R.Sankaran 2 Assistant Professor, Dept. of

More information

Sensorless Control of Two-phase Switched Reluctance Drive in the Whole Speed Range

Sensorless Control of Two-phase Switched Reluctance Drive in the Whole Speed Range Sensorless Control of Two-phase Switched Reluctance Drive in the Whole Speed Range Dmitry Aliamkin, Alecksey Anuchin, Maxim Lashkevich Electric Drives Department of Moscow Power Engineering Institute,

More information

Novel DTC-SVM for an Adjustable Speed Sensorless Induction Motor Drive

Novel DTC-SVM for an Adjustable Speed Sensorless Induction Motor Drive Novel DTC-SVM for an Adjustable Speed Sensorless Induction Motor Drive Nazeer Ahammad S1, Sadik Ahamad Khan2, Ravi Kumar Reddy P3, Prasanthi M4 1*Pursuing M.Tech in the field of Power Electronics 2*Working

More information

A New Moving-magnet Type Linear Actuator utilizing Flux Concentration Permanent Magnet Arrangement

A New Moving-magnet Type Linear Actuator utilizing Flux Concentration Permanent Magnet Arrangement 342 Journal of Electrical Engineering & Technology Vol. 7, No. 3, pp. 342~348, 2012 http://dx.doi.org/10.5370/jeet.2012.7.3.342 A New Moving-magnet Type Linear Actuator utilizing Flux Concentration Permanent

More information

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science Electric Machines

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science Electric Machines Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.685 Electric Machines Problem Set 10 Issued November 11, 2013 Due November 20, 2013 Problem 1: Permanent

More information

Deriving a Fast and Accurate PMSM Motor Model from Finite Element Analysis The MathWorks, Inc. 1

Deriving a Fast and Accurate PMSM Motor Model from Finite Element Analysis The MathWorks, Inc. 1 Deriving a Fast and Accurate PMSM Motor Model from Finite Element Analysis Dakai Hu, Ph.D Haiwei Cai, Ph.D MathWorks Application Engineer ANSYS Application Engineer 2017 The MathWorks, Inc. 1 Motivation

More information

Mathematical Modeling and Dynamic Simulation of a Class of Drive Systems with Permanent Magnet Synchronous Motors

Mathematical Modeling and Dynamic Simulation of a Class of Drive Systems with Permanent Magnet Synchronous Motors Applied and Computational Mechanics 3 (2009) 331 338 Mathematical Modeling and Dynamic Simulation of a Class of Drive Systems with Permanent Magnet Synchronous Motors M. Mikhov a, a Faculty of Automatics,

More information

A Novel Three-phase Matrix Converter Based Induction Motor Drive Using Power Factor Control

A Novel Three-phase Matrix Converter Based Induction Motor Drive Using Power Factor Control Australian Journal of Basic and Applied Sciences, 8(4) Special 214, Pages: 49-417 AENSI Journals Australian Journal of Basic and Applied Sciences ISSN:1991-8178 Journal home page: www.ajbasweb.com A Novel

More information

A new FOC technique based on predictive current control for PMSM drive

A new FOC technique based on predictive current control for PMSM drive ISSN 1 746-7, England, UK World Journal of Modelling and Simulation Vol. 5 (009) No. 4, pp. 87-94 A new FOC technique based on predictive current control for PMSM drive F. Heydari, A. Sheikholeslami, K.

More information

Mathematical Modelling of Permanent Magnet Synchronous Motor with Rotor Frame of Reference

Mathematical Modelling of Permanent Magnet Synchronous Motor with Rotor Frame of Reference Mathematical Modelling of Permanent Magnet Synchronous Motor with Rotor Frame of Reference Mukesh C Chauhan 1, Hitesh R Khunt 2 1 P.G Student (Electrical),2 Electrical Department, AITS, rajkot 1 mcchauhan1@aits.edu.in

More information

Cogging torque reduction of Interior Permanent Magnet Synchronous Motor (IPMSM)

Cogging torque reduction of Interior Permanent Magnet Synchronous Motor (IPMSM) Scientia Iranica D (2018) 25(3), 1471{1477 Sharif University of Technology Scientia Iranica Transactions D: Computer Science & Engineering and Electrical Engineering http://scientiairanica.sharif.edu Cogging

More information

Unity Power Factor Control of Permanent Magnet Motor Drive System

Unity Power Factor Control of Permanent Magnet Motor Drive System Unity Power Factor Control of Permanent Magnet Motor Drive System M. F. Moussa* A. Helal Y. Gaber H. A. Youssef (Arab Academy for science and technology) Alexandria University *mona.moussa@yahoo.com Abstract-The

More information

II. Mathematical Modeling of

II. Mathematical Modeling of SICE Annual Conference in Fukui, August 4-62003 Fukui University, Japan MRAS Based Sensorless Control of Permanent Magnet Synchronous Motor Young Sam Kim, Sang Kyoon Kim and Young Ahn Kwon Department of

More information

Chapter 4. Synchronous Generators. Basic Topology

Chapter 4. Synchronous Generators. Basic Topology Basic Topology Chapter 4 ynchronous Generators In stator, a three-phase winding similar to the one described in chapter 4. ince the main voltage is induced in this winding, it is also called armature winding.

More information

International Journal of Advance Engineering and Research Development

International Journal of Advance Engineering and Research Development Scientific Journal of Impact Factor (SJIF): 4.7 International Journal of Advance Engineering and Research Development Volume 4, Issue 5, May-07 e-issn (O): 348-4470 p-issn (P): 348-6406 Mathematical modeling

More information

JRE SCHOOL OF Engineering

JRE SCHOOL OF Engineering JRE SCHOOL OF Engineering Class Test-1 Examinations September 2014 Subject Name Electromechanical Energy Conversion-II Subject Code EEE -501 Roll No. of Student Max Marks 30 Marks Max Duration 1 hour Date

More information

Lecture 1: Induction Motor

Lecture 1: Induction Motor 1 / 22 Lecture 1: Induction Motor ELEC-E8402 Control of Electric Drives and Power Converters (5 ECTS) Marko Hinkkanen Aalto University School of Electrical Engineering Spring 2016 2 / 22 Learning Outcomes

More information

DIRECT TORQUE CONTROL OF PERMANENT MAGNET SYNCHRONOUS MOTOR USING TWO LEVEL INVERTER- SURVEY PAPER

DIRECT TORQUE CONTROL OF PERMANENT MAGNET SYNCHRONOUS MOTOR USING TWO LEVEL INVERTER- SURVEY PAPER DIRECT TORQUE CONTROL OF PERMANENT MAGNET SYNCHRONOUS MOTOR USING TWO LEVEL INVERTER- SURVEY PAPER 1 PREETI SINGH, BHUPAL SINGH 1 M.Tech (scholar) Electrical Power & Energy System, lecturer Ajay Kumar

More information

Sensorless Field Oriented Control of Permanent Magnet Synchronous Motor

Sensorless Field Oriented Control of Permanent Magnet Synchronous Motor International Journal of Current Engineering and Technology E-ISSN 2277 4106, P-ISSN 2347 5161 2015 INPRESSCO, All Rights Reserved Available at http://inpressco.com/category/ijcet Research Article Sensorless

More information

Wide Speed Direct Torque and Flux Controlled IPM Synchronous Motor Drive Using a Combined Adaptive Sliding Mode Observer and HF Signal Injection

Wide Speed Direct Torque and Flux Controlled IPM Synchronous Motor Drive Using a Combined Adaptive Sliding Mode Observer and HF Signal Injection 8 Journal of Power Electronics, Vol. 9, No. 4, July 9 JPE 9-4-8 Wide Speed Direct Torque and Flux Controlled IPM Synchronous Motor Drive Using a Combined Adaptive Sliding Mode Observer and HF Signal Injection

More information

Model-based Voltage Phase Control for IPMSM with Equilibrium Point Search

Model-based Voltage Phase Control for IPMSM with Equilibrium Point Search Model-based Voltage Phase Control for IPMSM with Equilibrium Point Search Takayuki Miyajima Hiroshi Fujimoto Masami Fujitsuna The University of Tokyo DENSO CORPORATION 5--5 Kashiwanoha Kashiwa Chiba Japan

More information

A Novel Adaptive Estimation of Stator and Rotor Resistance for Induction Motor Drives

A Novel Adaptive Estimation of Stator and Rotor Resistance for Induction Motor Drives A Novel Adaptive Estimation of Stator and Rotor Resistance for Induction Motor Drives Nagaraja Yadav Ponagani Asst.Professsor, Department of Electrical & Electronics Engineering Dhurva Institute of Engineering

More information

On-line Parameter Identification Scheme for Vector Controlled Drive of Synchronous Reluctance Motor without Shaft Encoder

On-line Parameter Identification Scheme for Vector Controlled Drive of Synchronous Reluctance Motor without Shaft Encoder Global Advanced Research Journal of Engineering, Technology and Innovation (ISSN: 2315-5124) Vol. 2(1) pp. 001-010, January, 2013 Available online http://garj.org/garjeti/index.htm Copyright 2013 Global

More information

PRINCIPLE OF DESIGN OF FOUR PHASE LOW POWER SWITCHED RELUCTANCE MACHINE AIMED TO THE MAXIMUM TORQUE PRODUCTION

PRINCIPLE OF DESIGN OF FOUR PHASE LOW POWER SWITCHED RELUCTANCE MACHINE AIMED TO THE MAXIMUM TORQUE PRODUCTION Journal of ELECTRICAL ENGINEERING, VOL. 55, NO. 5-6, 24, 138 143 PRINCIPLE OF DESIGN OF FOUR PHASE LOW POWER SWITCHED RELUCTANCE MACHINE AIMED TO THE MAXIMUM TORQUE PRODUCTION Martin Lipták This paper

More information

2014 Texas Instruments Motor Control Training Series. -V th. Dave Wilson

2014 Texas Instruments Motor Control Training Series. -V th. Dave Wilson 204 Texas Instruments Motor Control Training Series V th Speed Sensorless FOC P Commanded Rotor Speed Commanded i d = 0 Commanded i q (torque) P I P V d V q Reverse ClarkePark Transform θ d V a V b V c

More information

Improved Sliding Mode Observer for Position Sensorless Open-Winding Permanent Magnet Brushless Motor Drives

Improved Sliding Mode Observer for Position Sensorless Open-Winding Permanent Magnet Brushless Motor Drives Progress In Electromagnetics Research M, Vol. 77, 147 156, 219 Improved Sliding Mode Observer for Position Sensorless Open-Winding Permanent Magnet Brushless Motor Drives Qing Lu 1, 2,LiQuan 1, *, Xiaoyong

More information

Anakapalli Andhra Pradesh, India I. INTRODUCTION

Anakapalli Andhra Pradesh, India I. INTRODUCTION Robust MRAS Based Sensorless Rotor Speed Measurement of Induction Motor against Variations in Stator Resistance Using Combination of Back Emf and Reactive Power Methods Srikanth Mandarapu Pydah College

More information

Dynamic Modeling of Surface Mounted Permanent Synchronous Motor for Servo motor application

Dynamic Modeling of Surface Mounted Permanent Synchronous Motor for Servo motor application 797 Dynamic Modeling of Surface Mounted Permanent Synchronous Motor for Servo motor application Ritu Tak 1, Sudhir Y Kumar 2, B.S.Rajpurohit 3 1,2 Electrical Engineering, Mody University of Science & Technology,

More information

Third harmonic current injection into highly saturated multi-phase machines

Third harmonic current injection into highly saturated multi-phase machines ARCHIVES OF ELECTRICAL ENGINEERING VOL. 66(1), pp. 179-187 (017) DOI 10.1515/aee-017-001 Third harmonic current injection into highly saturated multi-phase machines FELIX KLUTE, TORBEN JONSKY Ostermeyerstraße

More information

Three phase induction motor using direct torque control by Matlab Simulink

Three phase induction motor using direct torque control by Matlab Simulink Three phase induction motor using direct torque control by Matlab Simulink Arun Kumar Yadav 1, Dr. Vinod Kumar Singh 2 1 Reaserch Scholor SVU Gajraula Amroha, U.P. 2 Assistant professor ABSTRACT Induction

More information

IN the above paper [1] the local observability of the induction machine (IM) and the permanent

IN the above paper [1] the local observability of the induction machine (IM) and the permanent IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS 1 Discussion on AC Drive Observability Analysis Mohamad Koteich, Student Member, IEEE, Abdelmalek Maloum, Gilles Duc and Guillaume Sandou arxiv:1512.01462v1

More information

Unity Power Factor Control of Permanent Magnet Motor Drive System

Unity Power Factor Control of Permanent Magnet Motor Drive System Unity Power Factor Control of Permanent Magnet Motor Drive System M. F. Moussa* A. Helal Y. Gaber H. A. Youssef (Arab Academy for science and technology) Alexandria University *mona.moussa@yahoo.com Abstract-The

More information

DTC Based Induction Motor Speed Control Using 10-Sector Methodology For Torque Ripple Reduction

DTC Based Induction Motor Speed Control Using 10-Sector Methodology For Torque Ripple Reduction DTC Based Induction Motor Speed Control Using 10-Sector Methodology For Torque Ripple Reduction S. Pavithra, Dinesh Krishna. A. S & Shridharan. S Netaji Subhas Institute of Technology, Delhi University

More information

DEVELOPMENT OF DIRECT TORQUE CONTROL MODELWITH USING SVI FOR THREE PHASE INDUCTION MOTOR

DEVELOPMENT OF DIRECT TORQUE CONTROL MODELWITH USING SVI FOR THREE PHASE INDUCTION MOTOR DEVELOPMENT OF DIRECT TORQUE CONTROL MODELWITH USING SVI FOR THREE PHASE INDUCTION MOTOR MUKESH KUMAR ARYA * Electrical Engg. Department, Madhav Institute of Technology & Science, Gwalior, Gwalior, 474005,

More information

Lesson 17: Synchronous Machines

Lesson 17: Synchronous Machines Lesson 17: Synchronous Machines ET 332b Ac Motors, Generators and Power Systems Lesson 17_et332b.pptx 1 Learning Objectives After this presentation you will be able to: Explain how synchronous machines

More information

Angle-Sensorless Zero- and Low-Speed Control of Bearingless Machines

Angle-Sensorless Zero- and Low-Speed Control of Bearingless Machines 216 IEEE IEEE Transactions on Magnetics, Vol. 52, No. 7, July 216 Angle-Sensorless Zero- and Low-Speed Control of Bearingless Machines T. Wellerdieck, T. Nussbaumer, J. W. Kolar This material is published

More information

Nonlinear Electrical FEA Simulation of 1MW High Power. Synchronous Generator System

Nonlinear Electrical FEA Simulation of 1MW High Power. Synchronous Generator System Nonlinear Electrical FEA Simulation of 1MW High Power Synchronous Generator System Jie Chen Jay G Vaidya Electrodynamics Associates, Inc. 409 Eastbridge Drive, Oviedo, FL 32765 Shaohua Lin Thomas Wu ABSTRACT

More information

An adaptive sliding mode control scheme for induction motor drives

An adaptive sliding mode control scheme for induction motor drives An adaptive sliding mode control scheme for induction motor drives Oscar Barambones, Patxi Alkorta, Aitor J. Garrido, I. Garrido and F.J. Maseda ABSTRACT An adaptive sliding-mode control system, which

More information

Preprint.

Preprint. http://www.diva-portal.org Preprint This is the submitted version of a paper presented at the 20th European Conference on Power Electronics and Applications (EPE 2018). Citation for the original published

More information

INDUCTION MOTOR MODEL AND PARAMETERS

INDUCTION MOTOR MODEL AND PARAMETERS APPENDIX C INDUCTION MOTOR MODEL AND PARAMETERS C.1 Dynamic Model of the Induction Motor in Stationary Reference Frame A three phase induction machine can be represented by an equivalent two phase machine

More information

Modelling and Simulation of Direct Self-Control Systems*

Modelling and Simulation of Direct Self-Control Systems* Int. J. Engng Ed. Vol. 19, No., pp. ±, 003 099-19X/91 $3.00+0.00 Printed in Great Britain. # 003 TEMPUS Publications. Modelling and Simulation of Direct Self-Control Systems* K. L. SHI, T. F. CHAN, Y.

More information

DESIGN AND MODELLING OF SENSORLESS VECTOR CONTROLLED INDUCTION MOTOR USING MODEL REFERENCE ADAPTIVE SYSTEMS

DESIGN AND MODELLING OF SENSORLESS VECTOR CONTROLLED INDUCTION MOTOR USING MODEL REFERENCE ADAPTIVE SYSTEMS DESIGN AND MODELLING OF SENSORLESS VECTOR CONTROLLED INDUCTION MOTOR USING MODEL REFERENCE ADAPTIVE SYSTEMS Janaki Pakalapati 1 Assistant Professor, Dept. of EEE, Avanthi Institute of Engineering and Technology,

More information

School of Mechanical Engineering Purdue University. ME375 ElectroMechanical - 1

School of Mechanical Engineering Purdue University. ME375 ElectroMechanical - 1 Electro-Mechanical Systems DC Motors Principles of Operation Modeling (Derivation of fg Governing Equations (EOM)) Block Diagram Representations Using Block Diagrams to Represent Equations in s - Domain

More information

Lecture 9: Space-Vector Models

Lecture 9: Space-Vector Models 1 / 30 Lecture 9: Space-Vector Models ELEC-E8405 Electric Drives (5 ECTS) Marko Hinkkanen Autumn 2017 2 / 30 Learning Outcomes After this lecture and exercises you will be able to: Include the number of

More information

Sensorless DTC-SVM of Induction Motor by Applying Two Neural Controllers

Sensorless DTC-SVM of Induction Motor by Applying Two Neural Controllers Sensorless DTC-SVM of Induction Motor by Applying Two Neural Controllers Abdallah Farahat Mahmoud Dept. of Electrical Engineering, Al-Azhar University, Qena, Egypt engabdallah2012@azhar.edu.eg Adel S.

More information

LAB REPORT: THREE-PHASE INDUCTION MACHINE

LAB REPORT: THREE-PHASE INDUCTION MACHINE LAB REPORT: THREE-PHASE INDUCTION MACHINE ANDY BENNETT 1. Summary This report details the operation, modelling and characteristics of a three-phase induction machine. It attempts to provide a concise overview

More information

1234. Sensorless speed control of a vector controlled three-phase induction motor drive by using MRAS

1234. Sensorless speed control of a vector controlled three-phase induction motor drive by using MRAS 1234. Sensorless speed control of a vector controlled three-phase induction motor drive by using MRAS Ali Saffet Altay 1, Mehmet Emin Tacer 2, Ahmet Faik Mergen 3 1, 3 Istanbul Technical University, Department

More information

Speed Sensorless Field Oriented Control of Induction Machines using Flux Observer. Hisao Kubota* and Kouki Matsuse**

Speed Sensorless Field Oriented Control of Induction Machines using Flux Observer. Hisao Kubota* and Kouki Matsuse** Speed Sensorless Field Oriented Control of Induction Machines using Flux Observer Hisao Kubota* and Kouki Matsuse** Dept. of Electrical Engineering, Meiji University, Higashimit Tama-ku, Kawasaki 214,

More information

Four-Switch Inverter-Fed Direct Torque control of Three Phase Induction Motor

Four-Switch Inverter-Fed Direct Torque control of Three Phase Induction Motor Four-Switch Inverter-Fed Direct Torque control of Three Phase Induction Motor R.Dharmaprakash 1, Joseph Henry 2, P.Gowtham 3 Research Scholar, Department of EEE, JNT University, Hyderabad, India 1 Professor,

More information

Comparative Analysis of Speed Control of Induction Motor by DTC over Scalar Control Technique

Comparative Analysis of Speed Control of Induction Motor by DTC over Scalar Control Technique Comparative Analysis of Speed Control of Induction Motor by DTC over Scalar Control Technique S.Anuradha 1, N.Amarnadh Reddy 2 M.Tech (PE), Dept. of EEE, VNRVJIET, T.S, India 1 Assistant Professor, Dept.

More information

Offline Parameter Identification of an Induction Machine Supplied by Impressed Stator Voltages

Offline Parameter Identification of an Induction Machine Supplied by Impressed Stator Voltages POSTER 2016, PRAGUE MAY 24 1 Offline Parameter Identification of an Induction Machine Supplied by Impressed Stator Voltages Tomáš KOŠŤÁL Dept. of Electric Drives and Traction, Czech Technical University,

More information

Simulation of Direct Torque Control of Induction motor using Space Vector Modulation Methodology

Simulation of Direct Torque Control of Induction motor using Space Vector Modulation Methodology International OPEN ACCESS Journal Of Modern Engineering Research (IJMER) Simulation of Direct Torque Control of Induction motor using Space Vector Modulation Methodology Arpit S. Bhugul 1, Dr. Archana

More information

Guangjin Li, Javier Ojeda, Emmanuel Hoang, Mohamed Gabsi, Cederic Balpe. To cite this version:

Guangjin Li, Javier Ojeda, Emmanuel Hoang, Mohamed Gabsi, Cederic Balpe. To cite this version: Design of Double Salient Interior Permanent Magnet Machine Based on Mutually Coupled Reluctance Machine for Increasing the Torque Density and Flux-Weakening Capability Guangjin Li, Javier Ojeda, Emmanuel

More information

A NOVEL FLUX-SPACE-VECTOR-BASED DIRECT TORQUE CONTROL SCHEME FOR PMSG USED IN VARIABLE-SPEED DIRECT-DRIVE WECS

A NOVEL FLUX-SPACE-VECTOR-BASED DIRECT TORQUE CONTROL SCHEME FOR PMSG USED IN VARIABLE-SPEED DIRECT-DRIVE WECS A NOVEL FLUX-SPACE-VECTOR-BASED DIRECT TORQUE CONTROL SCHEME FOR PMSG USED IN VARIABLE-SPEED DIRECT-DRIVE WECS B.VENKATESWARARAJU 1, B. YELLA REDDY 2 1 Mtech Scholar, 2 Assistant Professor Department of

More information

Modeling Free Acceleration of a Salient Synchronous Machine Using Two-Axis Theory

Modeling Free Acceleration of a Salient Synchronous Machine Using Two-Axis Theory 1 Modeling ree Acceleration of a Salient Synchronous Machine Using Two-Axis Theory Abdullah H. Akca and Lingling an, Senior Member, IEEE Abstract This paper investigates a nonlinear simulation model of

More information

Design and implementation of a sliding-mode observer of the rotor flux and rotor speed in induction machines

Design and implementation of a sliding-mode observer of the rotor flux and rotor speed in induction machines 1 Design and implementation of a sliding-mode observer of the rotor flux and rotor speed in induction machines João Ferraz, Paulo Branco Phd. Abstract A sliding-mode observer for the rotor flux and speed

More information

POSITION/SPEED SENSORLESS CONTROL FOR PERMANENT-MAGNET SYNCHRONOUS MACHINES

POSITION/SPEED SENSORLESS CONTROL FOR PERMANENT-MAGNET SYNCHRONOUS MACHINES University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Theses, Dissertations, and Student Research from Electrical & Computer Engineering Electrical & Computer Engineering, Department

More information