REGULAR PAPER. The Improvement Avalability of a Double Star Asynchronous Machine Supplied redondant voltage source inverters

Size: px
Start display at page:

Download "REGULAR PAPER. The Improvement Avalability of a Double Star Asynchronous Machine Supplied redondant voltage source inverters"

Transcription

1 FAOUZI BEN AMMAR SAMI GUIZANI REGULAR PAPER The Improvement Avalability of a Double Star Asynchronous Machine Supplied redondant voltage source inverters This paper proposes the availability analysis of a double star stator windings asynchronous machine. Each star is supplied by its own static PWM inverter. The active redundancy of the inverters improves reliability, availability and safety of the system since the loss of a phase does not stopped the motor. Detailed Markov Models are developed to analyze the availability. A reintegration control strategy of the repaired faulty inverter increases system survivability by allowing faulty inverter to regain the drive motor operation. The reintegration control strategy is based on the special use of the field oriented control to resynchronise the output frequency of the repaired inverter with the motor speed. Simulation results are carried out to show the ability of a fault tolerant architecture. Keywords: Double star asynchronous machine Markov model- active redundancy - Reliability Availability field-oriented control. INTRODUCTION To improve reliability [] and availability of the speed drive applications (drive of the compressors in the methane tankers, electric propulsion of the ships, railway traction), the multiphase or multi-stars asynchronous machine, offer multiple redundancy degrees, since the loss of one star does not stop the machine [5]. The dual three-phase induction machine is composed by two sets of stator windings spatially shifted by 30 degrees angle with isolated neutral points [6]-[9]. In the fault tolerant topology, depicted in figure, each star is supplied by its own voltage source inverter, offer redundancy which can be utilized to enable the operation with faulty inverter. The faulty drive can be disconnected or isolated from the corresponding star stator winding to permit operation with the remaining healthy inverter. In case of failure in one inverter the motor will be driven with up to half of maximal torque. In the first part of the paper, the authors have been proposed to analyze availability using transition diagram based on Markov chain. The last part of the paper concerns the description of the fault management cycle software. The reconfiguration and reintegration control strategy of the repaired inverter is based on the special use of the field oriented control.. MARKOV MODELLING A drive-motor in a fault-tolerant configuration employs two identical inverters to supply the dual three phase asynchronous motor. The system detects faults in the inverters, and places a faulty unit offline while continuing to operate using the healthy inverter. The faulty inverter can be repaired or replaced and reintegrated into the system without over-voltage or over-current. A Markov chain is a series of states are described by a directed graph, where the edges are labelled by the probabilities of going from one state to the other states [], [3] [4]. The Markov model is state transition model for which the probability of a state ECE Department Pondicherry University Pondicherry Engineering College INDIA. ajayvimal@yahoo.com ECE Department Pondicherry University Pondicherry Engineering College INDIA. tgpvel@hotmail.com EEE Department Pondicherry University Pondicherry Engineering College INDIAm gnanadass@yahoo.com Copyright JES 007 on-line :

2 transition depends only on the current state; the past states carry no information about future states. Rectifier I Voltage source inverter I T T T 3 Vr T 4 T 5 T 6 Switch device Network 3 ~ Rectifier II Voltage source inverter II DSAM 3 ~ T T T 3 Vr T 4 T 5 T 6 Fig.: A double star asynchronous machine supplied with two voltage source inverter The four possible states of motor-drive Markov model is shown in figure. λ Inverter up Inverter down λ Inverter up Inverter up λ λ Inverter down Inverter down Inverter down Inverter up Fig. : Markov Model of active redundancy of the voltage source inverters. Each drive has the same failure rate λ and the same repair rate. An important assumption is that the failure time of each inverter is exponentially distributed, and failure rate is constant. When a failure occurs, the repair process will start immediately, the repair time of each inverter also follows exponential distribution. If the failure and repair rates are the same for both inverters its possible to combine the states Inverter up and inverter 9

3 Failed and Inverter Failed and inverter up into a single state called inverter Failed. Figure 3, shows the condensed Markov model, the failure rate is λ when inverters are operating and there is single repair maintenance crew with repair rate that either repairs one inverter at a time. λ One Inverter up λ Inverter up Inverter up Inverter down Inverter down Fig.3: Condensed Markov model of active redundancy of the voltage source inverters with single crew repairing inverter at a time Figure 4 describe a single crew repairing both inverter. λ One Inverter up λ Inverter up Inverter up ' Inverter down Inverter down Fig.4: Condensed Markov model of active redundancy of the voltage source inverters with single crew repairing both inverters The failure of one inverter may cause an increase load on the healthy inverter. If that increased load causes a higher inverter failure rate, the transition rate from the inverter failed state to the inverter down and inverter down state could be adjusted to be higher than λ. The rated value λ must be multiplied by the π factors that take into account the overload. This configuration is shown in figure 5, where the failure rate of the inverter with a heavier load has been increased from λ to λ by the following equation: λ ' λ.( π + π + π + π +...) () = A E T Q With: π T : temperature factor, π P : power factor,π S : power stress factor, π E : environment factor and π Q : Quality factor. 0

4 λ One Inverter up λ' Inverter up Inverter up Inverter down Inverter down Fig.5: Condensed Markov model of active redundancy of the voltage source inverters with single crew repairing inverter at a time It has been assumed in all the previous Markov models that a switching device can disconnect or isolate instantaneously the faulty inverter from the corresponding star stator winding. In the Markov chain shown in figure 6, the switch device probability per request γ is incorporated. The switch probability per request may represent software-related issues or the probability of detecting the failure of an active inverter. λ.γ one Inverter up λ' Inverter up Inverter up.λ(-γ) Inverter down Inverter down Fig.6: Condensed Markov model of active redundancy of the voltage source inverters with single crew repairing both inverters including switch device probability per request. 3. AVAILABILITY CALCULATIONS The availability of the speed drive system can be defined us the probability that the system will function satisfactory at a given time t. The transition diagram represents a set of differential equations that can be solved to determine the availability that the system is in each state. dp( t) dt P( t) t [ T ]. P( t) [ P( t) P( t) P3( t) Pn( )] = () = T A probability vector with n components is a column vector whose entries are non negative and sum to. The process starts in one of these states and moves successively from one state to another. [T], [T], [T3], [T4] and [T5] are respectively the transition matrices of the Markov chains M, M, M3, M4 and M5 of the several configurations presented above by the figures,3,4,5 and 6. ' 9

5 [ ] ( λ + λ ) 0 ( ) λ λ+ 0 T = λ 0 ( λ + ) 0 λ λ ( + ) (3). λ 0 T =. λ ( λ ) + 0 λ (4). λ ' T 3 = ( ). λ λ λ ' (5). λ 0 T 4 =. λ ( λ' ) + 0 λ ' (6). λ ' T 5 =. λ. γ ( λ ' +) 0. λ. γ λ' ' (7) ( ) Table I represents the steady state availably calculation of the 5 Markov chains configurations M, M, M3, M4 and M5. A : is the probability that the system will be available at any random point of time. A lim t A( t) = (8) Markov configuration M chain TABLE I: STEADY-STATE AVAILABILITY CALCULATIONS Steady-state Availability calculations A λ + λ + λ λ + λ + λ + λ. + M. λ + λ. + M3 M4 M5 λ. +. λλ' + λ. + 3λ. +. λ + 3λ. + λ' ' +. ' + λγ '. λλ' + λ ( γ ) + λ' ' +. ' + λγ ' Assuming the failure rate is constant (exponential distribution) 0

6 4. THE REDUNDANT FIELD ORIENTED CONTROL As shown in Figure 7, the control strategy and fault manager software of the double stator supplied by redundant voltage source inverters are realised in an orthogonal reference the field rotating (d,q) axes reference frame running at ω dq. d V sd q V sd Vrd V sq V sq Vrq θ dq ψ Sα Sα Fig. 7: The double star asynchronous machine (d,q) System. The model obtained by using Park s transformation in undoubtedly the best adapted for the description of the dual-stator induction motor behavior at the transient, as well as steady state operation. The decoupling between the torque and the flux are be accomplished by properly aligning the rotor flux vector along the d-axis.. In the field rotating (d,q) axes reference frame the electric equivalent scheme is represented by Figure 8. Vsd Rs (Ls Mss)ω s Isd (Lr )ω s (Mss )ω s Rs (Ls - Mss) ω s A Isd Rr/g ω s Vsd B Vsq Rs (Ls Mss)ω s (Mss )ω (Lr )ω s Isq s Rs (Ls - Mss) ω s A Isq Rr/g ω s Vsq B Fig. 8: Equivalent electric scheme of double star induction machine in Park reference frame d,q. 9

7 Rr: Rotor resistance Rs: Stator resistance Mss: Mutual Inductance between two stars of the stator = Mutual cyclic inductance between star and rotor = Mutual cyclic inductance between star and rotor == Ls: stator cyclic Inductance Lr = rotor cyclic Inductance Te: The electromagnetic torque, T L : load torque ψ: Angle between two stars of the stator Φ rd,φ rq : Direct and orthogonal components of rotor flux. I sd, I sq, I sd, I sq : Direct and orthogonal components of star and star current. V sd, V sq, V sd, V sq : Direct and orthogonal components of star and star voltages. 5. THE CONTROL REINTEGRATION OF A REPAIRED INVERTER The availability of the motor drive is assured under 3 states Inverter up inverter up, Inverter up Inverter down and Inverter down inverter up. The block diagram of double star asynchronous machine with field-oriented control strategy is given on figure 9. The control system is divided in two redundant three phase subsystems; this allows a fault tolerant capability. The feedback regulators are working in coordinates which rotates synchronously with the rotor flux. In all operating modes, the direction of axis d is always coincident with the rotor flux representative vector. The measurements stators current are transformed to field oriented quantities Isd, Isq and Isd, Isq. In a large speed range, rotor flux Φrd is kept at constant nominal values controlling direct axis currents isd and/or isd. Tabel II shows the electromagnetic torque, the speed of rotor flux vector and the magnitude of rotor flux in all operating configurations. During operation of feedback loop in limitation the integral component of PI controller is corrected with anti-reset-windup technique. The sampling period, is chosen to be equal to the inverters pulse period (fc=5 khz). 6. SIMULATION RESULTS OF FAULTY OPERATION A fault management software cycle has been defined in phases: detection, location, isolation, reporting repair and reintegration. Once a faulty inverter has been identified, a control system can triggers a system reconfiguration to stop sending switching PWM signals to the faulty inverter and to isolate it from the corresponding star stator windings. The motor drive continues operation with a degraded capability. Figure 0, shows the simulation results of 45 kw dual star windings induction machine under the following cycle of operation: 0 t < 0.s: fluxing of the machine at zero speed. Note that for this operating mode, the fluxing of the machine is ensured by the two currents Isd and Isd, the references flux Φrdref=Φrdref = the half of rated flux Φrnom/. 0. t < 0.8s: acceleration from 0 to 460 rpm. 0.8 t <.49s: steady state of the speed. At t =.49s, failure of inverter occurs..49 t <.59s: the current Isd of the healthy star winding is controlled to impose the rated rotor flux. The motor will be driven with up to half of the speed. 0

8 .6 t <.s: deceleration from 460 rpm to 730 rpm.48 t < 3.s: Once the faulty inverter is replaced or repaired, it will attempt to regain correct state. The necessary precondition for the repaired inverter to regain the healthy state is to resynchronize the output frequency with the motor speed. t 3.s: operation in Steady state at nominal speed. Simulation parameters P = 45 kw; Rs = 0.5Ω; Rr = 0.046Ω; Inertia J = 0.8 kgm, pn= pair poles Ls=7.9 mh Lr=8.6 mh Mss = = =7. mh. ω Blocking Isq r + + Vsq r f θ dq Vs Vs Φ rdref ω Isd r + + Isq Vsd r R(θ dq Vs T 3 Vs Vs Inverter ω Φ rdref Isd Blockin Isq r + + ω Isd r Isq + + Vsq r Vsd R(θ dq - Vs Vs Vs Ψ) - T 3 Inverter Vs Vs MASD Isd θ dq - Ψ Φrd Φrd Tr /x Tr /x Isq x x + + Ψ - + Isq Fig. 9: The block diagram of double star asynchronous machine with field-oriented control strategy 9

9 TABLE II: Electromagnetic torque and rotor flux in (d,q) plane aligned with the rotor flux in four operating inverters states State of motor drive 3. Te = Lr Electromagnetic Torque Inverter p Φ ( I + I ) n rd sq sq up Inverter up ω = ω + ( I + I ) dq Tr.Φ rd sq 3 Te = p Φ ( Lr n rd sq I ) sq Inverter up Inverter down ω = ω + ( I ) dq 3 p Φ Lr n rd Tr.Φ rd sq Inverter Te = ( down Inverter up ω = ω + ( I ) Inverter down Inverter down dq I ) sq Φ rd Rotor flux (p) = + Trp Φ rd ( I sd (p) = + Trp Φ (p) = rd + Trp Tr.Φ sq rd I ) sdq I (p) sd I sd (p) 7. CONCLUSION The active redundancy of the inverters improves reliability, availability and safety of the system since the loss of a phase does not stopped the motor. Five configurations are presented by several Markov Models to analyze the steady state availably. A reintegration control strategy of the repaired faulty inverter increases system survivability by allowing faulty inverter to regain the drive motor operation. The reintegration control strategy is based on the special use of the field oriented control to resynchronise the output frequency of the repaired inverter with the motor speed. Simulation results of 45 kw double star induction machine are carried out to show the ability of a fault tolerant architecture. 0

10 (wb) (wb) (A) 9

11 Speed (rpm) Tem (Nm) Isa (A) Isa (A) Time Fig. 0: Simulation results of a fault tolerant motor drive. (s) REFERENCES [] M. Molaei, H.Oraee, M. Fotuhi-Firuzabad Markov model of Drive Motor Systems for reliability Calculation IEEE ISIE 006, July 9-, 006, Quebec, Canada pp86-9 [] Alain Wood, Availability Modeling /94/S IEEE Circuits and Devices pp -7 [3] Marc Bouissou, Jean Louis Bon A new formalism that combines advantages of fault-trees and Markov models: Boolean logic driven Markov processes, Reliability Engineering and System Safety 8 (003) [4] Shi Jian, Wang Shaoping Integrated availability model based on performance of computer networks Reliability Engineering and System Safety 9 (007) pp [5] Moubayed N., Meibody-Tabar F., Davat B., Rasoanarivo I., Conditions of safely supplying of DSIM by two PWM-VSI, EPE 99, Lausanne. [6] Mogens Blanke, Jesper Sandberg Thomsen Electrical Steering of vehicles fault-tolerant analysis and design Elsevier Microelectronics Reliability 46 (006)pp

12 [7] G.K Singh, V.Pant, Y.P Singh Voltage source inverter driven multi-phase induction machine Journal of computer and Electrical Engineering Elsevier 9 (003) pp [8] S.N Vukosavic, M. Jones, E. Levi and J. Varga, Rotor flux control of symmetrical six phase induction machine Journal of Electric Power Systems Research Elsevier 75 (005) pp4-5.j. [9] Hadiouche D., Razik H., Rezzoug A., Modelling of a double-star induction motor with an arbitrary shift angle between its three phase winding. 9 th international conference on EPE, PEMC 000 Kosice, Slovak Republic. [0] Mantero S., De paola E., Marina G. An optimised control strategy for double star motors configuration in redundancy operation mode, EPE 99, Lausanne. [] Lyra R.O.C., member, IEEE, and T.A.Lipo,Fellow, Six-phase induction machine with third harmonic current injection, ELECTRIMACS 8- August 00 9

Modelling of Closed Loop Speed Control for Pmsm Drive

Modelling of Closed Loop Speed Control for Pmsm Drive Modelling of Closed Loop Speed Control for Pmsm Drive Vikram S. Sathe, Shankar S. Vanamane M. Tech Student, Department of Electrical Engg, Walchand College of Engineering, Sangli. Associate Prof, Department

More information

Dynamic Modeling of Surface Mounted Permanent Synchronous Motor for Servo motor application

Dynamic Modeling of Surface Mounted Permanent Synchronous Motor for Servo motor application 797 Dynamic Modeling of Surface Mounted Permanent Synchronous Motor for Servo motor application Ritu Tak 1, Sudhir Y Kumar 2, B.S.Rajpurohit 3 1,2 Electrical Engineering, Mody University of Science & Technology,

More information

Three phase induction motor using direct torque control by Matlab Simulink

Three phase induction motor using direct torque control by Matlab Simulink Three phase induction motor using direct torque control by Matlab Simulink Arun Kumar Yadav 1, Dr. Vinod Kumar Singh 2 1 Reaserch Scholor SVU Gajraula Amroha, U.P. 2 Assistant professor ABSTRACT Induction

More information

DEVELOPMENT OF DIRECT TORQUE CONTROL MODELWITH USING SVI FOR THREE PHASE INDUCTION MOTOR

DEVELOPMENT OF DIRECT TORQUE CONTROL MODELWITH USING SVI FOR THREE PHASE INDUCTION MOTOR DEVELOPMENT OF DIRECT TORQUE CONTROL MODELWITH USING SVI FOR THREE PHASE INDUCTION MOTOR MUKESH KUMAR ARYA * Electrical Engg. Department, Madhav Institute of Technology & Science, Gwalior, Gwalior, 474005,

More information

PERFORMANCE ANALYSIS OF DIRECT TORQUE CONTROL OF 3-PHASE INDUCTION MOTOR

PERFORMANCE ANALYSIS OF DIRECT TORQUE CONTROL OF 3-PHASE INDUCTION MOTOR PERFORMANCE ANALYSIS OF DIRECT TORQUE CONTROL OF 3-PHASE INDUCTION MOTOR 1 A.PANDIAN, 2 Dr.R.DHANASEKARAN 1 Associate Professor., Department of Electrical and Electronics Engineering, Angel College of

More information

Direct Flux Vector Control Of Induction Motor Drives With Maximum Efficiency Per Torque

Direct Flux Vector Control Of Induction Motor Drives With Maximum Efficiency Per Torque Direct Flux Vector Control Of Induction Motor Drives With Maximum Efficiency Per Torque S. Rajesh Babu 1, S. Sridhar 2 1 PG Scholar, Dept. Of Electrical & Electronics Engineering, JNTUACEA, Anantapuramu,

More information

Mathematical Modeling and Dynamic Simulation of a Class of Drive Systems with Permanent Magnet Synchronous Motors

Mathematical Modeling and Dynamic Simulation of a Class of Drive Systems with Permanent Magnet Synchronous Motors Applied and Computational Mechanics 3 (2009) 331 338 Mathematical Modeling and Dynamic Simulation of a Class of Drive Systems with Permanent Magnet Synchronous Motors M. Mikhov a, a Faculty of Automatics,

More information

MATLAB SIMULINK Based DQ Modeling and Dynamic Characteristics of Three Phase Self Excited Induction Generator

MATLAB SIMULINK Based DQ Modeling and Dynamic Characteristics of Three Phase Self Excited Induction Generator 628 Progress In Electromagnetics Research Symposium 2006, Cambridge, USA, March 26-29 MATLAB SIMULINK Based DQ Modeling and Dynamic Characteristics of Three Phase Self Excited Induction Generator A. Kishore,

More information

International Journal of Advance Engineering and Research Development SIMULATION OF FIELD ORIENTED CONTROL OF PERMANENT MAGNET SYNCHRONOUS MOTOR

International Journal of Advance Engineering and Research Development SIMULATION OF FIELD ORIENTED CONTROL OF PERMANENT MAGNET SYNCHRONOUS MOTOR Scientific Journal of Impact Factor(SJIF): 3.134 e-issn(o): 2348-4470 p-issn(p): 2348-6406 International Journal of Advance Engineering and Research Development Volume 2,Issue 4, April -2015 SIMULATION

More information

2016 Kappa Electronics Motor Control Training Series Kappa Electronics LLC. -V th. Dave Wilson Co-Owner Kappa Electronics.

2016 Kappa Electronics Motor Control Training Series Kappa Electronics LLC. -V th. Dave Wilson Co-Owner Kappa Electronics. 2016 Kappa Electronics Motor Control Training Series 2016 Kappa Electronics C V th CoOwner Kappa Electronics www.kappaiq.com Benefits of Field Oriented Control NewtonMeters Maximum Torque Per Amp (MTPA)

More information

Parametric Variations Sensitivity Analysis on IM Discrete Speed Estimation

Parametric Variations Sensitivity Analysis on IM Discrete Speed Estimation Leonardo Electronic Journal of Practices and Technologies ISSN 1583-1078 Issue 11, July-December 007 p. 19-36 Parametric Variations Sensitivity Analysis on IM Discrete Speed Estimation Mohamed BEN MESSAOUD

More information

Mathematical MATLAB Model and Performance Analysis of Asynchronous Machine

Mathematical MATLAB Model and Performance Analysis of Asynchronous Machine Mathematical MATLAB Model and Performance Analysis of Asynchronous Machine Bikram Dutta 1, Suman Ghosh 2 Assistant Professor, Dept. of EE, Guru Nanak Institute of Technology, Kolkata, West Bengal, India

More information

Fault-tolerant Control of a Wind Turbine with a Squirrel-cage Induction Generator and Rotor Bar Defects

Fault-tolerant Control of a Wind Turbine with a Squirrel-cage Induction Generator and Rotor Bar Defects Fault-tolerant Control of a Wind Turbine with a Squirrel-cage Induction Generator and Rotor Bar Defects V. Lešić 1, M. Vašak 1, N. Perić 1, T. Wolbank 2 and G. Joksimović 3 vinko.lesic@fer.hr 1 University

More information

INDUCTION MOTOR MODEL AND PARAMETERS

INDUCTION MOTOR MODEL AND PARAMETERS APPENDIX C INDUCTION MOTOR MODEL AND PARAMETERS C.1 Dynamic Model of the Induction Motor in Stationary Reference Frame A three phase induction machine can be represented by an equivalent two phase machine

More information

Characteristic Study for Integration of Fixed and Variable Speed Wind Turbines into Transmission Grid

Characteristic Study for Integration of Fixed and Variable Speed Wind Turbines into Transmission Grid Characteristic Study for Integration of Fixed and Variable Speed Wind Turbines into Transmission Grid Shuhui Li 1, Tim Haskew 1, R. Challoo 1 Department of Electrical and Computer Engineering The University

More information

CHAPTER 5 SIMULATION AND TEST SETUP FOR FAULT ANALYSIS

CHAPTER 5 SIMULATION AND TEST SETUP FOR FAULT ANALYSIS 47 CHAPTER 5 SIMULATION AND TEST SETUP FOR FAULT ANALYSIS 5.1 INTRODUCTION This chapter describes the simulation model and experimental set up used for the fault analysis. For the simulation set up, the

More information

Parameter Estimation of Three Phase Squirrel Cage Induction Motor

Parameter Estimation of Three Phase Squirrel Cage Induction Motor International Conference On Emerging Trends in Mechanical and Electrical Engineering RESEARCH ARTICLE OPEN ACCESS Parameter Estimation of Three Phase Squirrel Cage Induction Motor Sonakshi Gupta Department

More information

Modeling Free Acceleration of a Salient Synchronous Machine Using Two-Axis Theory

Modeling Free Acceleration of a Salient Synchronous Machine Using Two-Axis Theory 1 Modeling ree Acceleration of a Salient Synchronous Machine Using Two-Axis Theory Abdullah H. Akca and Lingling an, Senior Member, IEEE Abstract This paper investigates a nonlinear simulation model of

More information

Sensorless Torque and Speed Control of Traction Permanent Magnet Synchronous Motor for Railway Applications based on Model Reference Adaptive System

Sensorless Torque and Speed Control of Traction Permanent Magnet Synchronous Motor for Railway Applications based on Model Reference Adaptive System 5 th SASTech 211, Khavaran Higher-education Institute, Mashhad, Iran. May 12-14. 1 Sensorless Torue and Speed Control of Traction Permanent Magnet Synchronous Motor for Railway Applications based on Model

More information

DTC Based Induction Motor Speed Control Using 10-Sector Methodology For Torque Ripple Reduction

DTC Based Induction Motor Speed Control Using 10-Sector Methodology For Torque Ripple Reduction DTC Based Induction Motor Speed Control Using 10-Sector Methodology For Torque Ripple Reduction S. Pavithra, Dinesh Krishna. A. S & Shridharan. S Netaji Subhas Institute of Technology, Delhi University

More information

Sensorless DTC-SVM of Induction Motor by Applying Two Neural Controllers

Sensorless DTC-SVM of Induction Motor by Applying Two Neural Controllers Sensorless DTC-SVM of Induction Motor by Applying Two Neural Controllers Abdallah Farahat Mahmoud Dept. of Electrical Engineering, Al-Azhar University, Qena, Egypt engabdallah2012@azhar.edu.eg Adel S.

More information

TRANSIENT ANALYSIS OF SELF-EXCITED INDUCTION GENERATOR UNDER BALANCED AND UNBALANCED OPERATING CONDITIONS

TRANSIENT ANALYSIS OF SELF-EXCITED INDUCTION GENERATOR UNDER BALANCED AND UNBALANCED OPERATING CONDITIONS TRANSIENT ANALYSIS OF SELF-EXCITED INDUCTION GENERATOR UNDER BALANCED AND UNBALANCED OPERATING CONDITIONS G. HARI BABU Assistant Professor Department of EEE Gitam(Deemed to be University), Visakhapatnam

More information

Novel DTC-SVM for an Adjustable Speed Sensorless Induction Motor Drive

Novel DTC-SVM for an Adjustable Speed Sensorless Induction Motor Drive Novel DTC-SVM for an Adjustable Speed Sensorless Induction Motor Drive Nazeer Ahammad S1, Sadik Ahamad Khan2, Ravi Kumar Reddy P3, Prasanthi M4 1*Pursuing M.Tech in the field of Power Electronics 2*Working

More information

MODIFIED SCHEME OF PREDICTIVE TORQUE CONTROL FOR THREE-PHASE FOUR-SWITCH INVERTER-FED MOTOR DRIVE WITH ADAPTIVE DC-LINK VOLTAGE IMBALANCE SUPPRESSION

MODIFIED SCHEME OF PREDICTIVE TORQUE CONTROL FOR THREE-PHASE FOUR-SWITCH INVERTER-FED MOTOR DRIVE WITH ADAPTIVE DC-LINK VOLTAGE IMBALANCE SUPPRESSION POWER ELECTRONICS AND DRIVES 2(37), No. 2, 217 DOI: 1.5277/PED1728 MODIFIED SCHEME OF PREDICTIVE TORQUE CONTROL FOR THREE-PHASE FOUR-SWITCH INVERTER-FED MOTOR DRIVE WITH ADAPTIVE DC-LINK VOLTAGE IMBALANCE

More information

Three-Level Direct Torque Control Based on Artificial Neural Network of Double Star Synchronous Machine

Three-Level Direct Torque Control Based on Artificial Neural Network of Double Star Synchronous Machine ISSN 1583-233 Issue 24, January-June 214 Three-Level Direct Torque Control Based on Artificial Neural Network of Double Star Synchronous Machine Elakhdar BENYOUSSEF 1, Abdelkader MEROUFEL 1 and Said BARKAT

More information

Sensorless Control for High-Speed BLDC Motors With Low Inductance and Nonideal Back EMF

Sensorless Control for High-Speed BLDC Motors With Low Inductance and Nonideal Back EMF Sensorless Control for High-Speed BLDC Motors With Low Inductance and Nonideal Back EMF P.Suganya Assistant Professor, Department of EEE, Bharathiyar Institute of Engineering for Women Salem (DT). Abstract

More information

Independent Control of Speed and Torque in a Vector Controlled Induction Motor Drive using Predictive Current Controller and SVPWM

Independent Control of Speed and Torque in a Vector Controlled Induction Motor Drive using Predictive Current Controller and SVPWM Independent Control of Speed and Torque in a Vector Controlled Induction Motor Drive using Predictive Current Controller and SVPWM Vandana Peethambaran 1, Dr.R.Sankaran 2 Assistant Professor, Dept. of

More information

A GENERALISED OPERATIONAL EQUIVALENT CIRCUIT OF INDUCTION MACHINES FOR TRANSIENT/DYNAMIC STUDIES UNDER DIFFERENT OPERATING CONDITIONS

A GENERALISED OPERATIONAL EQUIVALENT CIRCUIT OF INDUCTION MACHINES FOR TRANSIENT/DYNAMIC STUDIES UNDER DIFFERENT OPERATING CONDITIONS A GENERALISED OPERATIONAL EQUIVALENT CIRCUIT OF INDUCTION MACHINES FOR TRANSIENT/DYNAMIC STUDIES UNDER DIFFERENT OPERATING CONDITIONS S. S. Murthy Department of Electrical Engineering Indian Institute

More information

AC Induction Motor Stator Resistance Estimation Algorithm

AC Induction Motor Stator Resistance Estimation Algorithm 7th WSEAS International Conference on Electric Power Systems, High Voltages, Electric Machines, Venice, Italy, November 21-23, 27 86 AC Induction Motor Stator Resistance Estimation Algorithm PETR BLAHA

More information

EFFECTS OF LOAD AND SPEED VARIATIONS IN A MODIFIED CLOSED LOOP V/F INDUCTION MOTOR DRIVE

EFFECTS OF LOAD AND SPEED VARIATIONS IN A MODIFIED CLOSED LOOP V/F INDUCTION MOTOR DRIVE Nigerian Journal of Technology (NIJOTECH) Vol. 31, No. 3, November, 2012, pp. 365 369. Copyright 2012 Faculty of Engineering, University of Nigeria. ISSN 1115-8443 EFFECTS OF LOAD AND SPEED VARIATIONS

More information

Implementation of Twelve-Sector based Direct Torque Control for Induction motor

Implementation of Twelve-Sector based Direct Torque Control for Induction motor International Journal of Engineering Science Invention ISSN (Online): 2319 6734, ISSN (Print): 2319 6726 Volume 2 Issue 4 ǁ April. 2013 ǁ PP.32-37 Implementation of Twelve-Sector based Direct Torque Control

More information

Mathematical Modelling of Permanent Magnet Synchronous Motor with Rotor Frame of Reference

Mathematical Modelling of Permanent Magnet Synchronous Motor with Rotor Frame of Reference Mathematical Modelling of Permanent Magnet Synchronous Motor with Rotor Frame of Reference Mukesh C Chauhan 1, Hitesh R Khunt 2 1 P.G Student (Electrical),2 Electrical Department, AITS, rajkot 1 mcchauhan1@aits.edu.in

More information

A High Performance DTC Strategy for Torque Ripple Minimization Using duty ratio control for SRM Drive

A High Performance DTC Strategy for Torque Ripple Minimization Using duty ratio control for SRM Drive A High Performance DTC Strategy for Torque Ripple Minimization Using duty ratio control for SRM Drive Veena P & Jeyabharath R 1, Rajaram M 2, S.N.Sivanandam 3 K.S.Rangasamy College of Technology, Tiruchengode-637

More information

Sunita.Ch 1, M.V.Srikanth 2 1, 2 Department of Electrical and Electronics, Shri Vishnu engineering college for women, India

Sunita.Ch 1, M.V.Srikanth 2 1, 2 Department of Electrical and Electronics, Shri Vishnu engineering college for women, India MODELING AND ANALYSIS OF 6/4 SWITCHED RELUCTANCE MOTOR WITH TORQUE RIPPLE REDUCTION Sunita.Ch 1, M.V.Srikanth 2 1, 2 Department of Electrical and Electronics, Shri Vishnu engineering college for women,

More information

PARAMETER SENSITIVITY ANALYSIS OF AN INDUCTION MOTOR

PARAMETER SENSITIVITY ANALYSIS OF AN INDUCTION MOTOR HUNGARIAN JOURNAL OF INDUSTRIAL CHEMISTRY VESZPRÉM Vol. 39(1) pp. 157-161 (2011) PARAMETER SENSITIVITY ANALYSIS OF AN INDUCTION MOTOR P. HATOS, A. FODOR, A. MAGYAR University of Pannonia, Department of

More information

Inertia Identification and Auto-Tuning. of Induction Motor Using MRAS

Inertia Identification and Auto-Tuning. of Induction Motor Using MRAS Inertia Identification and Auto-Tuning of Induction Motor Using MRAS Yujie GUO *, Lipei HUANG *, Yang QIU *, Masaharu MURAMATSU ** * Department of Electrical Engineering, Tsinghua University, Beijing,

More information

Modelling of Electrical Faults in Induction Machines Using Modelica R

Modelling of Electrical Faults in Induction Machines Using Modelica R SIMS 27 Modelling of Electrical Faults in Induction Machines Using Modelica R Dietmar Winkler Clemens Gühmann Technische Universität Berlin Department of Electronic Measurement and Diagnostic Technology

More information

Available online at ScienceDirect. Procedia Technology 25 (2016 )

Available online at   ScienceDirect. Procedia Technology 25 (2016 ) Available online at www.sciencedirect.com ScienceDirect Procedia Technology 25 (2016 ) 801 807 Global Colloquium in Recent Advancement and Effectual Researches in Engineering, Science and Technology (RAEREST

More information

Direct torque control of doubly fed induction machine

Direct torque control of doubly fed induction machine BULLETIN OF THE POLISH ACADEMY OF SCIENCES TECHNICAL SCIENCES Vol. 54, No. 3, 2006 Direct torque control of doubly fed induction machine F. BONNET, P.E. VIDAL, and M. PIETRZAK-DAVID Laboratoire d Électrotechnique

More information

DIRECT TORQUE CONTROL OF PERMANENT MAGNET SYNCHRONOUS MOTOR USING TWO LEVEL INVERTER- SURVEY PAPER

DIRECT TORQUE CONTROL OF PERMANENT MAGNET SYNCHRONOUS MOTOR USING TWO LEVEL INVERTER- SURVEY PAPER DIRECT TORQUE CONTROL OF PERMANENT MAGNET SYNCHRONOUS MOTOR USING TWO LEVEL INVERTER- SURVEY PAPER 1 PREETI SINGH, BHUPAL SINGH 1 M.Tech (scholar) Electrical Power & Energy System, lecturer Ajay Kumar

More information

PRINCIPLE OF DESIGN OF FOUR PHASE LOW POWER SWITCHED RELUCTANCE MACHINE AIMED TO THE MAXIMUM TORQUE PRODUCTION

PRINCIPLE OF DESIGN OF FOUR PHASE LOW POWER SWITCHED RELUCTANCE MACHINE AIMED TO THE MAXIMUM TORQUE PRODUCTION Journal of ELECTRICAL ENGINEERING, VOL. 55, NO. 5-6, 24, 138 143 PRINCIPLE OF DESIGN OF FOUR PHASE LOW POWER SWITCHED RELUCTANCE MACHINE AIMED TO THE MAXIMUM TORQUE PRODUCTION Martin Lipták This paper

More information

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science Electric Machines

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science Electric Machines Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.685 Electric Machines Problem Set 10 Issued November 11, 2013 Due November 20, 2013 Problem 1: Permanent

More information

A New Model Reference Adaptive Formulation to Estimate Stator Resistance in Field Oriented Induction Motor Drive

A New Model Reference Adaptive Formulation to Estimate Stator Resistance in Field Oriented Induction Motor Drive A New Model Reference Adaptive Formulation to Estimate Stator Resistance in Field Oriented Induction Motor Drive Saptarshi Basak 1, Chandan Chakraborty 1, Senior Member IEEE and Yoichi Hori 2, Fellow IEEE

More information

Simulation of Direct Torque Control of Induction motor using Space Vector Modulation Methodology

Simulation of Direct Torque Control of Induction motor using Space Vector Modulation Methodology International OPEN ACCESS Journal Of Modern Engineering Research (IJMER) Simulation of Direct Torque Control of Induction motor using Space Vector Modulation Methodology Arpit S. Bhugul 1, Dr. Archana

More information

Performance Analysis of Six-Phase Induction Motor

Performance Analysis of Six-Phase Induction Motor Performance Analysis of Six-Phase Induction Motor Mr. Sumit Mandal 1 Electrical Engineering Department JIS college of Engineering Kalyani, India Abstract This paper presents a mathematical d-q model of

More information

COMPARISION BETWEEN TWO LEVEL AND THREE LEVEL INVERTER FOR DIRECT TORQUE CONTROL INDUCTION MOTOR DRIVE

COMPARISION BETWEEN TWO LEVEL AND THREE LEVEL INVERTER FOR DIRECT TORQUE CONTROL INDUCTION MOTOR DRIVE COMPARISION BETWEEN TWO LEVEL AND THREE LEVEL INVERTER FOR DIRECT TORQUE CONTROL INDUCTION MOTOR DRIVE Shailesh B. Kadu 1, Prof. J.G. Choudhari 2 Research Scholar (Department of Electrical Engineering,

More information

International Journal of Advance Engineering and Research Development

International Journal of Advance Engineering and Research Development Scientific Journal of Impact Factor (SJIF): 4.7 International Journal of Advance Engineering and Research Development Volume 4, Issue 5, May-07 e-issn (O): 348-4470 p-issn (P): 348-6406 Mathematical modeling

More information

Speed Sensor less DTC of VSI fed Induction Motor with Simple Flux Regulation for Improving State Estimation at Low Speed

Speed Sensor less DTC of VSI fed Induction Motor with Simple Flux Regulation for Improving State Estimation at Low Speed Speed Sensor less DTC of VSI fed Induction Motor with Simple Flux Regulation for Improving State Estimation at Low Speed K. Farzand Ali 1, S.Sridhar 2 1 PG Scholar, Dept. Of Electrical & Electronics Engineering,

More information

Direct Quadrate (D-Q) Modeling of 3-Phase Induction Motor Using MatLab / Simulink

Direct Quadrate (D-Q) Modeling of 3-Phase Induction Motor Using MatLab / Simulink Direct Quadrate (D-Q) Modeling of 3-Phase Induction Motor Using MatLab / Simulink Sifat Shah, A. Rashid, MKL Bhatti COMSATS Institute of Information and Technology, Abbottabad, Pakistan Abstract This paper

More information

Third harmonic current injection into highly saturated multi-phase machines

Third harmonic current injection into highly saturated multi-phase machines ARCHIVES OF ELECTRICAL ENGINEERING VOL. 66(1), pp. 179-187 (017) DOI 10.1515/aee-017-001 Third harmonic current injection into highly saturated multi-phase machines FELIX KLUTE, TORBEN JONSKY Ostermeyerstraße

More information

Mathematical Modelling of an 3 Phase Induction Motor Using MATLAB/Simulink

Mathematical Modelling of an 3 Phase Induction Motor Using MATLAB/Simulink 2016 IJSRSET Volume 2 Issue 3 Print ISSN : 2395-1990 Online ISSN : 2394-4099 Themed Section: Engineering and Technology Mathematical Modelling of an 3 Phase Induction Motor Using MATLAB/Simulink ABSTRACT

More information

Anakapalli Andhra Pradesh, India I. INTRODUCTION

Anakapalli Andhra Pradesh, India I. INTRODUCTION Robust MRAS Based Sensorless Rotor Speed Measurement of Induction Motor against Variations in Stator Resistance Using Combination of Back Emf and Reactive Power Methods Srikanth Mandarapu Pydah College

More information

FUZZY LOGIC BASED ADAPTATION MECHANISM FOR ADAPTIVE LUENBERGER OBSERVER SENSORLESS DIRECT TORQUE CONTROL OF INDUCTION MOTOR

FUZZY LOGIC BASED ADAPTATION MECHANISM FOR ADAPTIVE LUENBERGER OBSERVER SENSORLESS DIRECT TORQUE CONTROL OF INDUCTION MOTOR Journal of Engineering Science and Technology Vol., No. (26) 46-59 School of Engineering, Taylor s University FUZZY LOGIC BASED ADAPTATION MECHANISM FOR ADAPTIVE LUENBERGER OBSERVER SENSORLESS DIRECT TORQUE

More information

Linearizing control input-output of a wind turbine permanent magnet synchronous Riad AISSOU #1, Toufik REKIOUA #2

Linearizing control input-output of a wind turbine permanent magnet synchronous Riad AISSOU #1, Toufik REKIOUA #2 Linearizing control input-output of a wind turbine permanent magnet synchronous Riad AISSOU #1, Toufik REKIOUA #2 1,2 Laboratory of Industrial Technology and the Information «LT2I», Faculty of Technology,

More information

Robust Speed Controller Design for Permanent Magnet Synchronous Motor Drives Based on Sliding Mode Control

Robust Speed Controller Design for Permanent Magnet Synchronous Motor Drives Based on Sliding Mode Control Available online at www.sciencedirect.com ScienceDirect Energy Procedia 88 (2016 ) 867 873 CUE2015-Applied Energy Symposium and Summit 2015: ow carbon cities and urban energy systems Robust Speed Controller

More information

A New Predictive Control Strategy Dedicated to Salient Pole Synchronous Machines

A New Predictive Control Strategy Dedicated to Salient Pole Synchronous Machines A New Predictive Control Strategy Dedicated to Salient Pole Synchronous Machines Nicolas Patin Member IEEE University of Technology of Compiègne Laboratoire d Electromécanique de Compiègne Rue Personne

More information

Offline Parameter Identification of an Induction Machine Supplied by Impressed Stator Voltages

Offline Parameter Identification of an Induction Machine Supplied by Impressed Stator Voltages POSTER 2016, PRAGUE MAY 24 1 Offline Parameter Identification of an Induction Machine Supplied by Impressed Stator Voltages Tomáš KOŠŤÁL Dept. of Electric Drives and Traction, Czech Technical University,

More information

Vector Controlled Sensorless Estimation and Control of Speed of Induction Motors

Vector Controlled Sensorless Estimation and Control of Speed of Induction Motors Vector Controlled Sensorless Estimation and Control of Speed of Induction Motors Gayatri Gite Electrical Engineering Department SSSIST Sehore Bhopal, India Prabodh Khampariya Electrical Engineering Department

More information

A Direct Torque Controlled Induction Motor with Variable Hysteresis Band

A Direct Torque Controlled Induction Motor with Variable Hysteresis Band UKSim 2009: th International Conference on Computer Modelling and Simulation A Direct Torque Controlled Induction Motor with Variable Hysteresis Band Kanungo Barada Mohanty Electrical Engineering Department,

More information

SPEED CONTROL OF PMSM BY USING DSVM -DTC TECHNIQUE

SPEED CONTROL OF PMSM BY USING DSVM -DTC TECHNIQUE SPEED CONTROL OF PMSM BY USING DSVM -DTC TECHNIQUE J Sinivas Rao #1, S Chandra Sekhar *2, T Raghu #3 1 Asst Prof, Dept Of EEE, Anurag Engineering College, AP, INDIA 3 Asst Prof, Dept Of EEE, Anurag Engineering

More information

Chapter 5. System Reliability and Reliability Prediction.

Chapter 5. System Reliability and Reliability Prediction. Chapter 5. System Reliability and Reliability Prediction. Problems & Solutions. Problem 1. Estimate the individual part failure rate given a base failure rate of 0.0333 failure/hour, a quality factor of

More information

Research on Control Method of Brushless DC Motor Based on Continuous Three-Phase Current

Research on Control Method of Brushless DC Motor Based on Continuous Three-Phase Current 6th International onference on Measurement, Instrumentation and Automation (IMIA 017 Research on ontrol Method of Brushless D Motor Based on ontinuous hree-phase urrent Li Ding 1,Mingliang Hu, Jun Zhao

More information

Sensorless Speed Control for PMSM Based On the DTC Method with Adaptive System R. Balachandar 1, S. Vinoth kumar 2, C. Vignesh 3

Sensorless Speed Control for PMSM Based On the DTC Method with Adaptive System R. Balachandar 1, S. Vinoth kumar 2, C. Vignesh 3 Sensorless Speed Control for PMSM Based On the DTC Method with Adaptive System R. Balachandar 1, S. Vinoth kumar 2, C. Vignesh 3 P.G Scholar, Sri Subramanya College of Engg & Tech, Palani, Tamilnadu, India

More information

MANAGEMENT FLOW CONTROL ROTOR INDUCTION MACHINE USING FUZZY REGULATORS

MANAGEMENT FLOW CONTROL ROTOR INDUCTION MACHINE USING FUZZY REGULATORS 1. Stela RUSU-ANGHEL, 2. Lucian GHERMAN MANAGEMENT FLOW CONTROL ROTOR INDUCTION MACHINE USING FUZZY REGULATORS 1-2. UNIVERSITY POLITEHNICA OF TIMISOARA, FACULTY OF ENGINEERING FROM HUNEDOARA, ROMANIA ABSTRACT:

More information

Research on Permanent Magnet Linear Synchronous Motor Control System Simulation *

Research on Permanent Magnet Linear Synchronous Motor Control System Simulation * Available online at www.sciencedirect.com AASRI Procedia 3 (2012 ) 262 269 2012 AASRI Conference on Modeling, Identification and Control Research on Permanent Magnet Linear Synchronous Motor Control System

More information

DESIGN AND MODELLING OF SENSORLESS VECTOR CONTROLLED INDUCTION MOTOR USING MODEL REFERENCE ADAPTIVE SYSTEMS

DESIGN AND MODELLING OF SENSORLESS VECTOR CONTROLLED INDUCTION MOTOR USING MODEL REFERENCE ADAPTIVE SYSTEMS DESIGN AND MODELLING OF SENSORLESS VECTOR CONTROLLED INDUCTION MOTOR USING MODEL REFERENCE ADAPTIVE SYSTEMS Janaki Pakalapati 1 Assistant Professor, Dept. of EEE, Avanthi Institute of Engineering and Technology,

More information

Speed Sensor less Control and Estimation Based on Mars for Pmsm under Sudden Load Change

Speed Sensor less Control and Estimation Based on Mars for Pmsm under Sudden Load Change International Journal of Engineering Inventions e-issn: 2278-7461, p-isbn: 2319-6491 Volume 2, Issue 3 (February 2013) PP: 77-86 Speed Sensor less Control and Estimation Based on Mars for Pmsm under Sudden

More information

Alexander M. Weinger CONTROLLED AC DRIVES

Alexander M. Weinger CONTROLLED AC DRIVES Alexander M. Weinger CONTROLLED AC DRIVES Shortened introductory course Moscow 28 CONTENTS 1. MAIN REQUIREMENTS TO CONTROLLED ELECTRIC DRIVES AND THEIR MAIN FEATURES... 5 1.1. Definition of a controlled

More information

Digitization of Vector Control Algorithm Using FPGA

Digitization of Vector Control Algorithm Using FPGA Digitization of Vector Control Algorithm Using FPGA M. P. Priyadarshini[AP] 1, K. G. Dharani[AP] 2, D. Kavitha[AP] 3 DEPARTMENT OF ECE, MVJ COLLEGE OF ENGINEERING, BANGALORE Abstract: The paper is concerned

More information

Fuzzy optimum opertaing of a wind power pumping system

Fuzzy optimum opertaing of a wind power pumping system Fuzzy optimum opertaing of a wind power pumping system Olfa Gam, Riadh Abdelati, Mohamed Faouzi Mimouni Research Unit of Industrial Systems and Renewable Energy (ESIER), National Engineering School of

More information

Control of Wind Turbine Generators. James Cale Guest Lecturer EE 566, Fall Semester 2014 Colorado State University

Control of Wind Turbine Generators. James Cale Guest Lecturer EE 566, Fall Semester 2014 Colorado State University Control of Wind Turbine Generators James Cale Guest Lecturer EE 566, Fall Semester 2014 Colorado State University Review from Day 1 Review Last time, we started with basic concepts from physics such as

More information

Synergetic Control for Electromechanical Systems

Synergetic Control for Electromechanical Systems Synergetic Control for Electromechanical Systems Anatoly A. Kolesnikov, Roger Dougal, Guennady E. Veselov, Andrey N. Popov, Alexander A. Kolesnikov Taganrog State University of Radio-Engineering Automatic

More information

MODELING AND SIMULATION OF ENGINE DRIVEN INDUCTION GENERATOR USING HUNTING NETWORK METHOD

MODELING AND SIMULATION OF ENGINE DRIVEN INDUCTION GENERATOR USING HUNTING NETWORK METHOD MODELING AND SIMULATION OF ENGINE DRIVEN INDUCTION GENERATOR USING HUNTING NETWORK METHOD K. Ashwini 1, G. N. Sreenivas 1 and T. Giribabu 2 1 Department of Electrical and Electronics Engineering, JNTUH

More information

The synchronous machine (detailed model)

The synchronous machine (detailed model) ELEC0029 - Electric Power System Analysis The synchronous machine (detailed model) Thierry Van Cutsem t.vancutsem@ulg.ac.be www.montefiore.ulg.ac.be/~vct February 2018 1 / 6 Objectives The synchronous

More information

Model Predictive Torque and Flux Control Minimizing Current Distortions

Model Predictive Torque and Flux Control Minimizing Current Distortions Model Predictive Torque and Flux Control Minimizing Current istortions Petros Karamanakos, Member, IEEE, and Tobias Geyer, Senior Member, IEEE Abstract A new model predictive torque and flux controller

More information

Control of an Induction Motor Drive

Control of an Induction Motor Drive Control of an Induction Motor Drive 1 Introduction This assignment deals with control of an induction motor drive. First, scalar control (or Volts-per-Hertz control) is studied in Section 2, where also

More information

MATLAB SIMULATION OF DIRECT TORQUE CONTROL OF INDUCTION MOTOR USING CONVENTIONAL METHOD AND SPACE VECTOR PULSE WIDTH MODULATION

MATLAB SIMULATION OF DIRECT TORQUE CONTROL OF INDUCTION MOTOR USING CONVENTIONAL METHOD AND SPACE VECTOR PULSE WIDTH MODULATION MATLAB SIMULATION OF DIRECT TORQUE CONTROL OF INDUCTION MOTOR USING CONVENTIONAL METHOD AND SPACE VECTOR PULSE WIDTH MODULATION Naveen Chander Assistant Professor, Department of Electrical and Electronics

More information

Dynamic Modeling Of A Dual Winding Induction Motor Using Rotor Reference Frame

Dynamic Modeling Of A Dual Winding Induction Motor Using Rotor Reference Frame American Journal of Engineering Research (AJER) e-issn: 2320-0847 p-issn : 2320-0936 Volume-7, Issue-11, pp-323-329 www.ajer.org Research Paper Open Access Dynamic Modeling Of A Dual Winding Induction

More information

Robust Controller Design for Speed Control of an Indirect Field Oriented Induction Machine Drive

Robust Controller Design for Speed Control of an Indirect Field Oriented Induction Machine Drive Leonardo Electronic Journal of Practices and Technologies ISSN 1583-1078 Issue 6, January-June 2005 p. 1-16 Robust Controller Design for Speed Control of an Indirect Field Oriented Induction Machine Drive

More information

Digital Control of Electric Drives. Induction Motor Vector Control. Czech Technical University in Prague Faculty of Electrical Engineering

Digital Control of Electric Drives. Induction Motor Vector Control. Czech Technical University in Prague Faculty of Electrical Engineering Digital Control of Electric Drives Induction Motor Vector Control Czech Technical University in Prague Faculty of Electrical Engineering BE1M14DEP O. Zoubek, J. Zdenek 1 Induction Motor Control Methods

More information

A Novel Three-phase Matrix Converter Based Induction Motor Drive Using Power Factor Control

A Novel Three-phase Matrix Converter Based Induction Motor Drive Using Power Factor Control Australian Journal of Basic and Applied Sciences, 8(4) Special 214, Pages: 49-417 AENSI Journals Australian Journal of Basic and Applied Sciences ISSN:1991-8178 Journal home page: www.ajbasweb.com A Novel

More information

ECE 585 Power System Stability

ECE 585 Power System Stability Homework 1, Due on January 29 ECE 585 Power System Stability Consider the power system below. The network frequency is 60 Hz. At the pre-fault steady state (a) the power generated by the machine is 400

More information

The Application of Anti-windup PI Controller, SIPIC on FOC of PMSM

The Application of Anti-windup PI Controller, SIPIC on FOC of PMSM Electrical and Electronic Engineering 2016, 6(3): 39-48 DOI: 10.5923/j.eee.20160603.01 The Application of Anti-windup PI Controller, SIPIC on FOC of PMSM Hoo Choon Lih School of Engineering, Taylor s University,

More information

Small-Signal Analysis of a Saturated Induction Motor

Small-Signal Analysis of a Saturated Induction Motor 1 Small-Signal Analysis of a Saturated Induction Motor Mikaela Ranta, Marko Hinkkanen, Anna-Kaisa Repo, and Jorma Luomi Helsinki University of Technology Department of Electrical Engineering P.O. Box 3,

More information

Different Methods for Direct Torque Control of Induction Motor Fed From Current Source Inverter

Different Methods for Direct Torque Control of Induction Motor Fed From Current Source Inverter Different Methods for Direct Torque Control of Induction Motor Fed From Current Source Inverter Aleksandar Nikolic, Borislav Jeftenic Department for electrical measurements, Electrical drives department.

More information

SSC-JE EE POWER SYSTEMS: GENERATION, TRANSMISSION & DISTRIBUTION SSC-JE STAFF SELECTION COMMISSION ELECTRICAL ENGINEERING STUDY MATERIAL

SSC-JE EE POWER SYSTEMS: GENERATION, TRANSMISSION & DISTRIBUTION SSC-JE STAFF SELECTION COMMISSION ELECTRICAL ENGINEERING STUDY MATERIAL 1 SSC-JE STAFF SELECTION COMMISSION ELECTRICAL ENGINEERING STUDY MATERIAL Power Systems: Generation, Transmission and Distribution Power Systems: Generation, Transmission and Distribution Power Systems:

More information

Doubly salient reluctance machine or, as it is also called, switched reluctance machine. [Pyrhönen et al 2008]

Doubly salient reluctance machine or, as it is also called, switched reluctance machine. [Pyrhönen et al 2008] Doubly salient reluctance machine or, as it is also called, switched reluctance machine [Pyrhönen et al 2008] Pros and contras of a switched reluctance machine Advantages Simple robust rotor with a small

More information

Wide-Speed Operation of Direct Torque-Controlled Interior Permanent-Magnet Synchronous Motors

Wide-Speed Operation of Direct Torque-Controlled Interior Permanent-Magnet Synchronous Motors Wide-Speed Operation of Direct Torque-Controlled Interior Permanent-Magnet Synchronous Motors Adina Muntean, M.M. Radulescu Small Electric Motors and Electric Traction (SEMET) Group, Technical University

More information

An adaptive sliding mode control scheme for induction motor drives

An adaptive sliding mode control scheme for induction motor drives An adaptive sliding mode control scheme for induction motor drives Oscar Barambones, Patxi Alkorta, Aitor J. Garrido, I. Garrido and F.J. Maseda ABSTRACT An adaptive sliding-mode control system, which

More information

Verification of Nine-phase PMSM Model in d-q Coordinates with Mutual Couplings

Verification of Nine-phase PMSM Model in d-q Coordinates with Mutual Couplings dspace.vutbr.cz Verification of Nine-phase PMSM Model in d-q Coordinates with Mutual Couplings KOZOVSKÝ, M.; BLAHA, P.; VÁCLAVEK, P 6th IEEE International Conference on Control System, Computing and Engineering

More information

Loss analysis of a 1 MW class HTS synchronous motor

Loss analysis of a 1 MW class HTS synchronous motor Journal of Physics: Conference Series Loss analysis of a 1 MW class HTS synchronous motor To cite this article: S K Baik et al 2009 J. Phys.: Conf. Ser. 153 012003 View the article online for updates and

More information

Finite Element Analysis of Hybrid Excitation Axial Flux Machine for Electric Cars

Finite Element Analysis of Hybrid Excitation Axial Flux Machine for Electric Cars 223 Finite Element Analysis of Hybrid Excitation Axial Flux Machine for Electric Cars Pelizari, A. ademir.pelizari@usp.br- University of Sao Paulo Chabu, I.E. ichabu@pea.usp.br - University of Sao Paulo

More information

Simulation of 3-Phase 2- Stator Induction Motor Using MATLAB Platform

Simulation of 3-Phase 2- Stator Induction Motor Using MATLAB Platform International Journal of Alied Engineering Research ISSN 0973-456 Volume 3, Number (08). 9437-944 Simulation of 3-Phase - Stator Induction Motor Using MATLAB Platform Pallavi R.Burande Deartment of Electrical

More information

A Novel Adaptive Estimation of Stator and Rotor Resistance for Induction Motor Drives

A Novel Adaptive Estimation of Stator and Rotor Resistance for Induction Motor Drives A Novel Adaptive Estimation of Stator and Rotor Resistance for Induction Motor Drives Nagaraja Yadav Ponagani Asst.Professsor, Department of Electrical & Electronics Engineering Dhurva Institute of Engineering

More information

NEURAL NETWORKS APPLICATION FOR MECHANICAL PARAMETERS IDENTIFICATION OF ASYNCHRONOUS MOTOR

NEURAL NETWORKS APPLICATION FOR MECHANICAL PARAMETERS IDENTIFICATION OF ASYNCHRONOUS MOTOR NEURAL NETWORKS APPLICATION FOR MECHANICAL PARAMETERS IDENTIFICATION OF ASYNCHRONOUS MOTOR D. Balara, J. Timko, J. Žilková, M. Lešo Abstract: A method for identification of mechanical parameters of an

More information

Equal Pitch and Unequal Pitch:

Equal Pitch and Unequal Pitch: Equal Pitch and Unequal Pitch: Equal-Pitch Multiple-Stack Stepper: For each rotor stack, there is a toothed stator segment around it, whose pitch angle is identical to that of the rotor (θs = θr). A stator

More information

AN ASYNCHRONOUS ELECTRIC DRIVE WITH THE INDIRECT CONTROL OF THE OUTPUT VARIABLES

AN ASYNCHRONOUS ELECTRIC DRIVE WITH THE INDIRECT CONTROL OF THE OUTPUT VARIABLES AN ASYNCHRONOUS ELECTRIC DRIVE WITH THE INDIRECT CONTROL OF THE OUTPUT VARIABLES Alexander V. Glazachev 1, Yuri N. Dementyev 1*, Ivan V. Rakov 1, and Anara D. Umurzakova 1,2 1 Tomsk Polytechnic University,

More information

Comparison Between Direct and Indirect Field Oriented Control of Induction Motor

Comparison Between Direct and Indirect Field Oriented Control of Induction Motor Comparison Between Direct and Indirect Field Oriented Control of Induction Motor Venu Gopal B T Research Scholar, Department of Electrical Engineering UVCE, Bangalore University, Bengaluru ABSTRACT - Vector

More information

Lecture 8: Sensorless Synchronous Motor Drives

Lecture 8: Sensorless Synchronous Motor Drives 1 / 22 Lecture 8: Sensorless Synchronous Motor Drives ELEC-E8402 Control of Electric Drives and Power Converters (5 ECTS) Marko Hinkkanen Spring 2017 2 / 22 Learning Outcomes After this lecture and exercises

More information

A Novel Linear Switched Reluctance Machine: Analysis and Experimental Verification

A Novel Linear Switched Reluctance Machine: Analysis and Experimental Verification American J. of Engineering and Applied Sciences 3 (2): 433-440, 2010 ISSN 1941-7020 2010 Science Publications A Novel Linear Switched Reluctance Machine: Analysis and Experimental Verification 1 N.C. Lenin

More information