Kadanoff-Baym Equations and Baryogenesis

Size: px
Start display at page:

Download "Kadanoff-Baym Equations and Baryogenesis"

Transcription

1 KBE, Kiel,

2 Nonequilibrium dynamics at high energy Heavy Ion Collisions LHC: ALICE RHIC Early universe Reheating after Inflation Dark matter freeze-out Baryogenesis...

3 Outline Matter-Antimatter asymmetry Baryogenesis and Leptogenesis Relativistic quantum kinetic theory for leptogenesis Results in Marcovian and Thermal-bath limits

4 Standard Model of Cosmology

5 No antimatter Ratio of cosmic ray fluxes observed at Earth Φ(anti-proton) Φ(proton) p/p BESS 2000 (Y. Asaoka et al.) 5 10 BESS 1999 (Y. Asaoka et al.) BESS polar 2004 (K. Abe et al.) CAPRICE 1994 (M. Boezio et al.) CAPRICE 1998 (M. Boezio et al.) HEAT pbar 2000 (A. S. Beach et al.) PAMELA kinetic energy [GeV] PAMELA Phys.Rev.Lett. 105 (2010) Antinuclei (e.g. anti-helium) < 10 6 A. Alcaraz et al., Phys. Lett. B 461, 387 (1999) Consistent with secondary production p + N p + p +...

6 No antimatter Galaxy: Antistars would accrete interstellar gas, leading to annihilation gamma-rays. Observations of discrete Galactic gamma-ray sources limit the fraction of antistars in the Galaxy to < 10 4 Galaxy clusters ( lyr): annihilations would produce high-energy gamma ray flux N + N π 0, π ± γ E γ 100MeV Non-observation yields a limit anti-matter matter G. Steigman JCAP 0810 (2008) 001

7 No antimatter Particle physics: symmetry between particles and anti-particles (opposite charge, same mass, (almost) same interaction strength) Paul Dirac (Nobel lecture 1933) proposed a symmetric universe (50% of the stars made out of anti-nuclei and positrons) Why is there a matter/antimatter asymmetry?

8 Matter-Antimatter asymmetry Asymmetry parameter η = n b n b n γ n b = baryon density n b = anti-baryon density n γ = photon density Consistent value inferred from Big Bang Nucleosynthesis (T kev) and the cosmic microwave background (T ev) η = n b n b n γ = (6.21 ± 0.16) 10 10

9 Matter-Antimatter asymmetry

10 Matter-Antimatter asymmetry (1) Initial baryon asymmetry after Big Bang Problem: Diluted by inflation Washed out by B 0 processes at high energy

11 Matter-Antimatter asymmetry (1) Initial baryon asymmetry after Big Bang Problem: Diluted by inflation Washed out by B 0 processes at high energy (2) Dynamical creation: Baryogenesis

12 Baryogenesis Sakharov conditions Sakharov 1967 baryon number violation: B const. C,CP violation: γ(i f ) γ(ī f ) deviation from thermal equilibrium: γ(i f ) γ(f i)

13 Baryogenesis within the Standard Model of particles? SU(3) c SU(2) L U(1) Y

14 Baryogenesis within the Standard Model of particles? B-violation at quantum level t Hooft 76 µ j µ = g 2 32π 2 F µν µν F Exponentially suppressed for T < T EW 100GeV Γ proton e 16π2 /g 2 = Unsupressed for T > T EW (sphaleron) Shaposhnikov 85 B = L Klinkhamer, Manton 84; Kuzmin, Rubakov, CP-violation in quark mixing K 0 / K 0 decay, B d,s decay Electroweak phase-transition: first-order for m H < 60 80GeV LEP limit m H > 114GeV Third Sakharov condition is not fulfilled

15 Baryogenesis Baryogenesis in models beyond the Standard Model of particles Electroweak baryogenesis GUT baryogenesis Affleck-Dine baryogenesis Leptogenesis...

16 Motivation: Observation of massive neutrinos Neutrino oscillation (ν e ν µ ν τ ) mν 2 1 mν 2 2 = ev 2 mν 2 1 mν 2 3 = ev 2 Direct search ( 3 H 3 He + e + ν e ) m νe < 2.2eV 95%C.L. At least two massive neutrinos Tiny mass Superkamiokande Standard Model: neutrinos massless KATRIN (0.2eV)

17 SM + Right-handed neutrinos (ν R ) e,µ,τ Neutrino masses Majorana mass term L = L SM y ν R h l L M R ν R νr c See-saw mechanism m νl y 2 h 2 M R mev - ev

18 SM + Right-handed neutrinos (ν R ) e,µ,τ Neutrino masses Majorana mass term L = L SM y ν R h l L M R ν R ν c R See-saw mechanism m νl y 2 h 2 M R mev - ev Matter-Antimatter asymmetry B- via L-violation M R ν R ν c R 0νββ: (A, Z) (A, Z + 2) + 2e (Gerda, Nemo, Exo,... ) CP-violation in ν-mixing ν-oscillation (Double Chooz, Daya Bay,... ) Expanding universe H = ȧ/a

19 Leptogenesis Fukugita, Yanagida M νr,i l L,α h = y iα +... M νr,i l c L,α h = y iα +...

20 Leptogenesis Fukugita, Yanagida M νr,i l L,α h = y iα + y iβ y jβ y jα +... y jβ M νr,i l c L,α h = y iα + y iβ +... y jα Matter-antimatter (CP) asymmetry interference of tree and loop processes Γ(ν R,i l L,α h ) Γ(ν R,i l c L,α h) Im(y iαy iβ yjα y jβ ) Im

21 Leptogenesis B via L violation ν R,i lh ν R,i l c h CP violation ɛ i = Γ(ν R,i lh ) Γ(ν R,i l c h) Γ(ν R,i lh )+Γ(ν R,i l c h) ( Im + ) Deviation from equilibrium?

22 Leptogenesis thermal plasma l, h, q, W, Z, γ, gauge interactions fast g 4 T H T 2 /M pl right-handed neutrinos ν R,i N i slow Γ Ni = (y y) ii M Ni 8π g 4 T

23 Leptogenesis thermal plasma l, h, q, W, Z, γ, gauge interactions fast g 4 T H T 2 /M pl right-handed neutrinos ν R,i N i slow Γ Ni = (y y) ii M Ni 8π g 4 T... produced when T M Ni... equilibrate if Γ Ni e M N i /T > H... decay when T < M Ni and t > τ Ni

24 Leptogenesis thermal plasma l, h, q, W, Z, γ, gauge interactions fast g 4 T H T 2 /M pl right-handed neutrinos ν R,i N i slow Γ Ni = (y y) ii M Ni 8π g 4 T... produced when T M Ni... equilibrate if Γ Ni e M N /T i > H... decay when T < M Ni and t > τ Ni deviation from thermal equilibrium K (Γ Ni /H) T =MNi

25 Leptogenesis z eq eq N N K= eq N N K= N 5 N1 N N N 9 B L N B L z eq z=m 1 /T z=m 1 /T Effective rate equations Buchmüller, Di Bari, Plümacher,... dn Ni dt dn B L dt = (D i + S i )(N Ni N eq N i ) = i ɛ i D i (N Ni N eq N i ) } {{ } source term WN B L }{{} washout term

26 Leptogenesis final asymmetry η = N B L N γ = 3 4 ɛ 1κ f κ f K [N 1 -dominated, D+ID, unflavoured] Buchmüller, Di Bari, Plümacher

27 Leptogenesis M1 (GeV) m1 (ev) [N 1 -dominated, D+ID, unflavoured] Buchmüller, Di Bari, Plümacher lower bound on M 1 Davidson, Ibarra

28 Leptogenesis MEG M 1 (GeV) PRISM/PRIME m ~ 1 (ev) Probing supersymmetric leptogenesis with µ eγ Ibarra, Simonetto 09

29 Leptogenesis Baryogenesis via Leptogenesis CP violation in decay described by loop process deviation from thermal equilibrium Quantum nonequilibrium effects?

30 Kinetic theory: standard Boltzmann approach N L (t) = d 3 x g d 3 p (2π) 3 [f l (t, x, p) f l(t, x, p)] l

31 Kinetic theory: standard Boltzmann approach N L (t) = d 3 x g d 3 p (2π) 3 [f l (t, x, p) f l(t, x, p)] l p µ D µf l (t, x, p) = i dπ Ni dπ h (2π) 4 δ(p l + p h p Ni ) [ M 2 N i lh f N i (1 f l )(1 + f h ) +... ] M 2 lh N i f l f h (1 f Ni ) +... f ψ (t, x, p) : distribution function of on-shell particles M 2 : matrix elements computed in vacuum, off-shell effects

32 Corrections within Boltzmann framework Bose-enhancement, Pauli-Blocking; kinetic (non-)equilibrium quantum statistical factors 1 ± f k non-integrated Boltzmann equations Hannsestad, Basbøll 06; Garayoa, Pastor, Pinto, Rius, Vives 09; Hahn-Woernle, Plümacher, Wong 09 Thermal corrections via thermal QFT medium correction to CP-violating parameter ɛ = ɛ vac + δɛ th thermal masses, decay width Covi, Rius, Roulet, Vissani 98; Giudice, Notari, Raidal, Riotto, Stumia 04; Besak, Bödeker 10 Kiessig, Thoma, Plümacher 10;... Flavour effects Nardi, Nir, Roulet, Racker 06; Adaba, Davidson, Ibarra, Josse-Micheaux, Losada, Riotto 06; Blanchet, dibari 06;... Spectator processes, scatterings, N 2,...

33 Double Counting Problem Naive contribution from decay/inverse decay M 2 N i lh = M 0 2 (1 + ɛ i ) M 2 lh N i = M 0 2 (1 ɛ i ) M 2 N i l c h = M 0 2 (1 ɛ i ) M 2 l c h N i = M 0 2 (1 + ɛ i ) dn B L dt ( M 2 N i lh M 2 N i l c h)n Ni ( M 2 lh N i M 2 l c h N i )N eq N i

34 Double Counting Problem Naive contribution from decay/inverse decay M 2 N i lh = M 0 2 (1 + ɛ i ) M 2 lh N i = M 0 2 (1 ɛ i ) M 2 N i l c h = M 0 2 (1 ɛ i ) M 2 l c h N i = M 0 2 (1 + ɛ i ) dn B L dt ( M 2 N i lh M 2 N i l c h)n Ni ( M 2 lh N i M 2 l c h N i )N eq N i ɛ i (N Ni +N eq N i ) spurious generation of asymmetry even in equilibrium Origin: Double Counting Problem + need real intermediate state subtraction

35 Kinetic theory for leptogenesis Goal derivation of kinetic equations starting from first principles on-/off-shell treated in a unified way (avoid double-counting) thermal medium corrections,..., resonant leptogenesis, coherent flavor transitions

36 CTP/Kadanoff-Baym approach and leptogenesis Resolve double counting problems occuring in the Boltzmann approach associated to real intermediate states Buchmüller, Fredenhagen 00, De Simone, Riotto 05, MG, Kartavtsev, Hohenegger, Lindner 09,10, Beneke, Garbrecht, Herranen, Schwaller 10 Medium corrections to decay/inverse decay and scatterings MG, Kartavtsev, Hohenegger Lindner 09,10; Beneke, Garbrecht, Herranen, Schwaller 10; Garbrecht 10 see also Bödecker, Besak, Anisimov 10; Kiessig, Thoma, Plümacher 10; Salvio Lodone Strumia 11 Finite width of lepton, Higgs, and non-equilibrium Majorana neutrino evolution Anisimov, Buchmüller, Drewes, Mendizabal 08,10 Flavored leptogenesis: transition between flavored/unflavored regimes Beneke, Garbrecht, Fidler, Herranen 10 Systematic inclusion of higher-order effects (e.g. gradient corrections) MG, Kartavtsev, Hohenegger 10 Resonant leptogenesis self-consistent resummation scheme for mixing particles non-equilibrium propagators for unstable/off-shell particles inclusion of coherent N 1 N 2 flavor transitions (oscillations)

37 Kinetic theory for leptogenesis First Step: Bosonic toy model L = 1 2 µn i µ N i + µl µ l 1 2 M i N i N i y i N i ll y i N i l l λ 4 [l l] M Ni ll = M Ni l l = CP-violating parameter (vacuum, non-degenerate) x j = M 2 j /M 2 i ɛ vac i = Γ(N i ll) Γ(N i l l ) Γ(N i ll) + Γ(N i l l ) = j ( y j 2 yi y ) [ j 8πMj 2 Im yi x j ln y j ( 1 + xj x j ) ] 1 + 2(x j 1)

38 Kinetic theory for leptogenesis Schwinger-Keldysh propagator: x, y C D(x, y) = T C l(x)l (y) Schwinger-Dyson equation i( x + m 2 )D(x, y) = δ C (x y) + d 4 zσ(x, z)d(z, y) Integration over closed time path C d 4 z = d 4 z + d 4 z C t init z 0 max(x 0, y 0 ) Kadanoff-Baym equations x 0 ( x + m 2 )D (x, y) = i d 4 z (Σ > Σ <)(x, z)d (z, y) t init + i y 0 t init d 4 z Σ (x, z)(d > D <)(z, y)

39 Kinetic theory for leptogenesis B-L current j µ(x) = 2i [D µl(x)] l (x) l(x) D µl (x) = (n B L, j B L )

40 Kinetic theory for leptogenesis B-L current j µ(x) = 2i [D µl(x)] l (x) l(x) D µl (x) = (n B L, j B L ) dn B L dt = d 3 x g D µ j µ

41 Kinetic theory for leptogenesis B-L current j µ(x) = 2i [D µl(x)] l (x) l(x) D µl (x) = (n B L, j B L ) dn B L dt = d 3 x g D µ j µ = 2i d 3 x g [D µ D µl(x)] l (x) l(x) D µ D µl (x) = 2i d 3 x g x [D >(x, y) D >(y, x)] x=y

42 Kinetic theory for leptogenesis dn B L dt = d 3 x t g d 4 z [ g Σ <(x, z)d >(z, x) Σ >(x, z)d <(z, x) t init +Σ c < (x, z)dc > (z, x) Σc > (x, z)dc < (z, x) ] x 0 =t Σ (x, y) =

43 Kinetic theory for leptogenesis N ll N l l tree 2 tree vertex-corr. tree wave-corr. ll l l s t, s u, t u s s, t t, u u unified description of CP-violating decay, inverse decay, scattering

44 Kinetic theory for leptogenesis How to solve the equations? Solve two-time equations numerically Marcovian limit (zero-width limit, one-time) Buchmüller, Fredenhagen 00 MG, Kartavtsev, Hohenegger, Lindner 09,10 Beneke, Garbrecht, Herranen, Schwaller 10 Thermal bath limit (finite-width, two-time, neglect back-reaction) Anisimov, Buchmüller, Drewes, Mendizabal 08,10 MG, Kartavtsev, Hohenegger, 11

45 Kinetic theory for leptogenesis How to solve the equations? Solve two-time equations numerically Marcovian limit (zero-width limit, one-time) Buchmüller, Fredenhagen 00 MG, Kartavtsev, Hohenegger, Lindner 09,10 Beneke, Garbrecht, Herranen, Schwaller 10 Thermal bath limit (finite-width, two-time, neglect back-reaction) Anisimov, Buchmüller, Drewes, Mendizabal 08,10 MG, Kartavtsev, Hohenegger, 11

46 Marcovian limit Separation of fast/short and slow/large scales x interaction, λ de Broglie λ mfp, l horizon 1/M, 1/T 1/Γ, 1/y 2 T, 1/H

47 Marcovian limit Separation of fast/short and slow/large scales x interaction, λ de Broglie λ mfp, l horizon 1/M, 1/T 1/Γ, 1/y 2 T, 1/H Wigner transformation k s = x y, X = (x + y)/2 D(X, k) = d 4 s e iks D(X + s/2, X s/2) y X x s

48 Marcovian limit Separation of fast/short and slow/large scales x interaction, λ de Broglie λ mfp, l horizon 1/M, 1/T 1/Γ, 1/y 2 T, 1/H Wigner transformation k s = x y, X = (x + y)/2 D(X, k) = d 4 s e iks D(X + s/2, X s/2) y X x s Gradient expansion X k slow fast Γ,H,y 2 T M,T d 4 z Σ(x, z)d(z, y) Σ(X, k)d(x, k) + i 2 ( Σ D X Σ D k k X )

49 Marcovian limit Marcovian evolution equation for N B L dn B L dt = d 3 X g d 4 k [ (2π) 4 Σ <(X, k)d >(X, k) Σ >(X, k)d <(X, k) ] +Σ c <(X, k)d>(x c, k) Σ c >(X, k)d<(x c, k)

50 Marcovian limit Marcovian evolution equation for N B L dn B L dt = d 3 X g d 4 k [ (2π) 4 Σ <(X, k)d >(X, k) Σ >(X, k)d <(X, k) ] +Σ c <(X, k)d>(x c, k) Σ c >(X, k)d<(x c, k) In equilibrium: Kubo-Martin-Schwinger relations (β = 1/T ) D eq > = e βk0 D eq < Σ eq > = e βk0 Σ eq < vanishes automatically in equilibrium consistent equations free of double-counting problems

51 Quantum corrections dn B L dt D µ j µ 2 y 1 2 dπ pdπ k dπ q Θ(p 0 )(2π) 4 δ(k p q) ( ) D N 1 > (X, k)dl < (X, p)dh < (X, q) DN 1 < (X, k)dl > (X, p)dh > (X, q) ɛ 1 (X, k, p, q)

52 Quantum corrections dn B L dt D µ j µ 2 y 1 2 dπ pdπ k dπ q Θ(p 0 )(2π) 4 δ(k p q) ( ) D N 1 > (X, k)dl < (X, p)dh < (X, q) DN 1 < (X, k)dl > (X, p)dh > (X, q) ɛ 1 (X, k, p, q) ɛ vertex i (X, k, p, q) = j y j 2 Im ( yi yj ) yi dπ y dπ k1 k2 dπ k3 j (2π) 4 δ(p + k 1 + k 2 )(2π) 4 δ(k 2 k 3 + q) [D l ρ(x, k 1 )D h F (X, k 2)D N j h (X, k 3) + {k 1 k 2 } + D l h (X, k 1)D h F (X, k 2)D N j ρ (X, k 3 ) + {k 1 k 2 } + D l ρ (X, k 1)D h h (X, k 2)D N j F (X, k 3) {k 1 k 2 }]

53 Quantum corrections to the CP-violation parameter ɛ SM+3ν R MG, Kartavtsev, Hohenegger, Lindner ǫ1 /ǫ vac 1 ǫ th 1 /ǫ vac 1, N1 φl ǫth vac 1 /ǫ 1, N1 φl ǫth,conv vac 1 /ǫ 1, N1 φl ɛ(k, T ) ɛ vac UR M1/T NR Bose enhancement of the vertex/self-energy one-loop diagram larger than previously considered thermal QFT result (black dashed line)

54 Kinetic theory for leptogenesis How to solve the equations? Solve two-time equations numerically Marcovian limit (zero-width limit, one-time) Buchmüller, Fredenhagen 00 MG, Kartavtsev, Hohenegger, Lindner 09,10 Beneke, Garbrecht, Herranen, Schwaller 10 Thermal bath limit (finite-width, two-time, neglect back-reaction) Anisimov, Buchmüller, Drewes, Mendizabal 08,10 MG, Kartavtsev, Hohenegger, 11

55 Motivation: resonant enhancement Efficiency of leptogenesis depends on CP-violating parameter, which is one-loop suppressed ɛ Ni = Γ(N i lφ ) Γ(N i l c φ) Γ(N i lφ ) + Γ(N i l c φ) Im + Self-energy (or wave ) contribution to CP-violating parameter features a resonant enhancement for a quasi-degenerate spectrum M 1 M 2 M 3 Flanz Paschos Sarkar 94/96; Covi Roulet Vissani 96; ɛ wave N i = Im[(h h) 2 12] 8π(h h) ii M1M2 M 2 2 M2 1

56 Motivation: resonant enhancement Efficiency of leptogenesis depends on CP-violating parameter, which is one-loop suppressed ɛ Ni = Γ(N i lφ ) Γ(N i l c φ) Γ(N i lφ ) + Γ(N i l c φ) Im + Self-energy (or wave ) contribution to CP-violating parameter features a resonant enhancement for a quasi-degenerate spectrum M 1 M 2 M 3 Flanz Paschos Sarkar 94/96; Covi Roulet Vissani 96; ɛ wave N i = Im[(h h) 2 12] 8π(h h) ii M1M2 M 2 2 M2 1 On-shell initial N 1: p 2 = M 2 1 Internal N 2: i p 2 M2 2

57 Motivation: resonant enhancement The enhancement is limited by the finite width of N 1 and N 2 Off-shell initial N 1: p 2 = M im 1Γ 1 Internal N 2: i p 2 M 2 2 im 2Γ 2

58 Motivation: resonant enhancement The enhancement is limited by the finite width of N 1 and N 2 Off-shell initial N 1: p 2 = M im 1Γ 1 Internal N 2: In the maximal resonant case the spectral functions overlap i p 2 M 2 2 im 2Γ 2 ρ(k 0 )/ρ max 1 m Γ Γ k 0 /m Need to go beyond the quasi-particle approximation which underlies the conventional semi-classical Boltzmann approach.

59 Thermal bath limit Self-energies for leptons and for Majorana neutrinos N l l φ }{{} Σ αβ iγ 2 l (x, y) = S βα l (y, x) φ φ }{{} Σ N ij (x, y) = iγ2 S ji (y, x) Idea: treat the medium of Standard Model particles as a thermal bath to which the right-handed neutrinos are weakly coupled neglecting back-reaction linearized KBEs analytical solution

60 Thermal bath limit Analytical solution in the hierarchical case M 1 M 2 Anisimov, Buchmüller, Drewes, Mendizabal 08,10 Phys.Rev.Lett. 104 (2010) S N,A ( t) = ( iγ 0 cos(ω t) + M p γ ω ( S N,F (t, t) = iγ 0 cos(ω t) M p γ ω [ tanh( βω 2 ) e Γ t /2 } 2 {{} Equilibrium Damped w.r.t t ) sin(ω t) e Γ t /2 ) sin(ω t) δf N (ω)e Γt }{{} Non-equilibrium Undamped w.r.t t ] t = x 0 y 0, t = (x 0 + y 0 )/2 S A = i(s > S <)/2, S F = (S > + S <)/2

61 Thermal bath limit Cross-check with a full numerical solution of the two-time KBEs (for φ 4 -theory) Garbrecht, MG 2011 F ϕ (t, t, k) A ϕ (t, t, k) k = 2.96m th t = 17.5/m th relative time t [1/m th ] Statistical propagator F ϕ = ( > ϕ + < ϕ )/2 (red) and spectral function A ϕ = i 2 ( > ϕ < ϕ ) (blue) obtained from a numerical solution of the KBEs. Dependence on the relative time t for fixed central time t.

62 Thermal bath limit Garbrecht, MG 2011 F ϕ (t, t, k) A ϕ (t, t, k) k = 3.0m th t = 17.5/m th relative time t [1/m th ] Excited momentum mode k = 3.0m th. The statistical propagator F ϕ = ( > ϕ + < ϕ )/2 can be described by the sum of an exponentially damped equilibrium contribution and an undamped non-equilibrium contribution.

63 Thermal bath limit Evolution of damped and un-damped components with the central time t Garbrecht, MG a undamped a damped 1 δf(k) e Γkt /ω k (1 + 2f BE)/(2ω k ) a(t) [1/mth] central time t [1/m th ] F ϕ,fit (a damped (t)e Γ k t /2 + a undamped (t)) cos(ω k t)

64 Thermal bath limit Where does it come from? <,> ϕ (x 0, y 0 ) = dw 0 dz 0 R ϕ(x 0, w 0 )Π <,> ϕ (w 0, z 0 ) A ϕ(z 0, y 0 ) t 0 t 0 + R ϕ(x 0, t 0)[ x 0 y 0 <,> ϕ (t 0, t 0)] A ϕ(t 0, y 0 ) + R ϕ(x 0, t 0)[ y 0 <,> ϕ (t 0, t 0)] A ϕ(t 0, y 0 ) + R ϕ(x 0, t 0)[ x 0 <,> ϕ (t 0, t 0)] A ϕ(t 0, y 0 ) + R ϕ(x 0, t 0)[ <,> ϕ (t 0, t 0)] A ϕ(t 0, y 0 ) For a thermal bath and in Breit-Wigner approximation R,A (x 0, y 0 ) ±Θ(±(x 0 y 0 ))e Γϕ x0 y 0 /2 sin(ω ϕ(x 0 y 0 )) ω ϕ Then, one finds (finite t 0): i <,> ϕ (x 0, y 0 ) = i <,> ϕ,th (x 0 y 0 ) + 1 cos[ω ϕ(x 0 y 0 )]e Γϕ(x 0 +y 0 )/2 δf (k) ω ϕ

65 Thermal bath limit Formulated in Wigner space: i <,> ϕ Equilibrium contribution (k, t) =i st<,> (k) + δf ϕ(k)2πδ(k 2 mϕ 2 Π H ϕ)e Γϕ(k)t ϕ i st< ϕ (k) = f eq (k)i A ϕ (k) i st> ϕ (k) = (1 + f eq (k))i A ϕ (k) with finite width i A ϕ (k) = 2Π A ϕ (k 2 m 2 ϕ Π H ϕ) 2 + Π A ϕ 2 Non-equilibrium contribution with zero-width?

66 Thermal bath limit KB Equation in Wigner space [ k 2 1 ] 4 2 t + ik 0 t mϕ 2 <,> ϕ e i {Π H ϕ}{ <,> ϕ } e i {Π <,> ϕ }{ H ϕ} = 1 2 e i ( {Π > ϕ }{ < ϕ } {Π < ϕ }{ > ϕ } ) (1) {A}{B} = 1 2 ( xa) ( kb) 1 2 ( ka) ( xb), (2) Problem: k-derivatives hitting the on-shell delta function in <,> ϕ unsuppressed gradient expansion breaks down Idea: resummation of gradients are Result e i {Π > ϕ }{ < ϕ } = Π > ϕ < ϕ,eff i < ϕ,eff (k) = (f eq (k) + δf (k))i A ϕ (k) i > ϕ,eff (k) = (1 + f eq (k) + δf (k))i A ϕ (k) recover KB Ansatz effectively

67 Comparison KB Boltzmann in resonant leptogenesis n L (t, p)/n Boltzmann L (t =, p) Boltzmann KB M 2 = 1.5M 1 KB M 2 = 1.1M 1 KB M 2 = 1.025M 1 KB M 2 = 1.005M t [1/Γ 1 ] MG, Hohenegger, Kartavtsev; work in progress

68 Comparison KB Boltzmann in resonant leptogenesis 100 R max Boltzmann R Boltzmann R KB (t = ) R KB (t = 1/Γ 1) R KB (t = 0.25/Γ 1) R 10 R KB max 1 M1Γ1 M2Γ2 M1Γ1 + M2Γ (M 2 2 M 2 1 )/M 2 1 Γ 2 /Γ 1 = 1.5 R Boltzmann max = M 1M 2/(2 Γ 1M 1 Γ 2M 2 ), R KB max = M 1M 2/(2(Γ 1M 1 + Γ 2M 2))

69 Conclusions Neutrino oscillations m ν mev ev seesaw-mechanism SM + 3ν R Matter-antimatter asym. (n b n b)/n γ leptogenesis

70 Conclusions Neutrino oscillations m ν mev ev seesaw-mechanism SM + 3ν R Matter-antimatter asym. (n b n b)/n γ leptogenesis Baryogenesis via leptogenesis is a non-equilibrium, quantum process Closed-time-path approach can resolve double-counting issues of standard Boltzmann approach Resonant leptogenesis: finite width + non-equilibrium Kadanoff-Baym in thermal bath limit

71 Thermal initial correlations: 2PI Closed time path C with α n Feynman rules iλ C α 3 α 4 α 5 α 6... Example

72 Thermal initial correlations: 2PI Closed time path C with α n Thermal time path C + I Feynman rules Feynman rules iλ C α 3 α 4 α 5 α 6... Example iλ C Example iλ I

73 Thermal initial correlations: 2PI Closed time path C with α n Thermal time path C + I Feynman rules Feynman rules iλ C α 3 α 4 α 5 α 6... Example iλ C Example iλ I Challenge Encapsulate integrations over I into initial correlations α th n

74 Thermal initial correlations Thermal time path C + I Self-consistent Schwinger-Dyson equation G 1 1 th (x, y) = G0,th (x, y) Π th(x, y) ( x + m 2 )G th (x, y) = iδ C+I (x y) i d 4 zπ th (x, z)g th (z, y) C+I }{{} Closed time path C with initial correlations α Kadanoff-Baym equation for a Non-Gaussian initial state ( x + m 2 )G(x, y) = iδ C (x y) i d 4 z [Π Gauss (x, z) + Π non Gauss (x, z)] G(z, y) C

75 Thermal initial correlations: 2PI Thermal 2PI propagator connecting real and imaginary times G th ( iτ, t) = = Connection MG, Müller (2009) = + }{{} δ C (t 0 ± ) Important: Same 2PI truncation for Matsubara and real-time propagators

76 Thermal initial correlations: 2PI Example: 2PI three-loop truncation ( Φ = 0) = +

77 Thermal initial correlations: 2PI Example: 2PI three-loop truncation ( Φ = 0) = + Iterative Solution: = +

78 Thermal initial correlations: 2PI Example: 2PI three-loop truncation ( Φ = 0) = + Iterative Solution: = + +

79 Thermal initial correlations: 2PI Example: 2PI three-loop truncation ( Φ = 0) = + Iterative Solution: =

80 Thermal initial correlations: 2PI Example: 2PI three-loop truncation ( Φ = 0) = + = } {{ } Π Gauss + } {{ } Π Non Gauss

81 Thermal initial correlations: 2PI Example: 2PI three-loop truncation ( Φ = 0) = + = } {{ } Π Gauss + } {{ } Π Non Gauss Non-Gaussian self-energy contains α th n (x 1,..., x n) for all n 4 Π non Gauss (x, z) = MG, Müller (09)

82 Thermal initial correlations: 2PI Thermal correlation energy (computed at initial time): Ecorr eq (t = 0) = i 4 C = = d 4 z [Π Gauss (x, z) + Π non Gauss (x, z)] G(z, x) x=0 + + x=0 x=0 }{{} x 0 dz x=0 = E eq 4 p. corr (t = 0) }{{} x 0 dz x=0...only the thermal 4-point correlation contributes truncate initial correlations with n > 4

83 Leading non-gaussian correction for λφ 4 2PI 3-loop Gaussian IC Non-Gaussian IC with α th 4 G(x, y) x 0,y 0 =0 = G th (x, y) x 0,y 0 =0 α 4 (x 1,..., x 4 ) = 0 α n(x 1,..., x n) = 0 for n > 4 G(x, y) x 0,y 0 =0 = G th (x, y) x 0,y 0 =0 α 4 (x 1,..., x 4 ) = α th 4 (x 1,..., x 4 ) α n(x 1,..., x n) = 0 for n > 4 Truncate thermal initial correlations nonequilibrium initial states The upper states are as thermal as possible Expectation: Non-Gaussian state closer to equilibrium

84 Leading non-gaussian correction for λφ 4 2PI 3-loop 0.8 k = G F (t,t,k) k = m R k = 2m R KB, Gauss (A) KB, Non-Gauss (B) ThQFT t m R t m R

85 Leading non-gaussian correction for λφ 4 2PI 3-loop G F (t,t,k)/g F (0,0,k) G F (t,t,k)/g F (0,0,k) G F (t,t,k)/g th G (k) F (t,t,k)/g F (0,0,k) G F (t,t,k)/g F (0,0,k) 1.05 t m R = 0.0 KB, Gauss t m R = 0.0 KB, Non-Gauss t m R = 0.5 t m R = t m R = 2.0 t m R = t m R = 10 t m R = t m R = 2000 t m R = k/m R k/m R all modes remain close to equilibrium

86 Leading non-gaussian correction for λφ 4 2PI 3-loop T/m R 2.3 KB, Gauss (A) KB, Non-Gauss (B) 2.2 Thermal Eq µ/m R t m R t m R } {{ } build-up } {{ } kinetic - } {{ } chemical equilibration correlated system T 0

87 Leading non-gaussian correction for λφ 4 2PI 3-loop 0.4 Correlation energy (Gaussian part) 0.2 Contribution from initial 4-point correlation Sum 0 E corr (t,k) k max =7m R t [m -1 R ] particles in initial state are well-dressed

88 Leading non-gaussian correction for λφ 4 2PI 3-loop E corr (t,k) 0.4 Correlation energy (Gaussian part) 0.2 Contribution from initial 4-point correlation Sum 0 k max =5m R -0.2 k max =7m R -0.4 k max =10m R t [m -1 R ] particles in initial state are well-dressed

89 Leading non-gaussian correction for λφ 4 2PI 3-loop G F (t,t,k)/g th (k) G F (t,t,k)/g th (k) G F (t,t,k)/g th (k) G F (t,t,k)/g th (k) G F (t,t,k)/g th (k) t m R = 0.0 t m R = 0.5 t m R = 2.0 t m R = 10 t m R = 2000 KB, Gauss t m R = 0.0 t m R = 0.5 t m R = 2.0 t m R = 10 t m R = 2000 KB, Non-Gauss k/m R k/m R UV modes are not excited suppresses unwanted back-reaction on IR modes

CTP Approach to Leptogenesis

CTP Approach to Leptogenesis CTP Approach to Leptogenesis Matti Herranen a in collaboration with Martin Beneke a Björn Garbrecht a Pedro Schwaller b Institut für Theoretische Teilchenphysik und Kosmologie, RWTH Aachen University a

More information

Towards a quantum treatment of leptogenesis

Towards a quantum treatment of leptogenesis SEWM Swansea, July 10 13 2012 based on work in collaboration with Tibor Frossard, Andreas Hohenegger, Alexander Kartavtsev, Manfred Lindner [mainly 1112.6428] Physics beyond the Standard Model Collider

More information

Relativistic KBEs for correlated initial states and baryogenesis

Relativistic KBEs for correlated initial states and baryogenesis Relativistic Kadanoff-Baym equations for correlated initial states and baryogenesis KBE21, CAU Kiel, 23 26.3.21 based on Phys.Rev.D8:8511,29 with Markus Michael Müller ongoing work with Urko Reinosa Outline

More information

Recent progress in leptogenesis

Recent progress in leptogenesis XLIII rd Rencontres de Moriond Electroweak Interactions and Unified Theories La Thuile, Italy, March 1-8, 2008 Recent progress in leptogenesis Steve Blanchet Max-Planck-Institut for Physics, Munich March

More information

Leptogenesis. Neutrino 08 Christchurch, New Zealand 30/5/2008

Leptogenesis. Neutrino 08 Christchurch, New Zealand 30/5/2008 Leptogenesis Neutrino 08 Christchurch, New Zealand 30/5/2008 Yossi Nir (Weizmann Institute of Science) Sacha Davidson, Enrico Nardi, YN Physics Reports, in press [arxiv:0802.2962] E. Roulet, G. Engelhard,

More information

Leptogenesis with Composite Neutrinos

Leptogenesis with Composite Neutrinos Leptogenesis with Composite Neutrinos Based on arxiv:0811.0871 In collaboration with Yuval Grossman Cornell University Friday Lunch Talk Yuhsin Tsai, Cornell University/CIHEP Leptogenesis with Composite

More information

On the double-counting problem in Boltzmann equations and real-intermediate state subtraction

On the double-counting problem in Boltzmann equations and real-intermediate state subtraction On the double-counting problem in Boltzmann equations and real-intermediate state subtraction Mcgill University, Nov. 2017 Outline 1 Introduction Baryogenesis 2 History S.Wolfram and E.Kolb (1980) Issues

More information

The first one second of the early universe and physics beyond the Standard Model

The first one second of the early universe and physics beyond the Standard Model The first one second of the early universe and physics beyond the Standard Model Koichi Hamaguchi (University of Tokyo) @ Colloquium at Yonsei University, November 9th, 2016. Credit: X-ray: NASA/CXC/CfA/M.Markevitch

More information

Effects of Reheating on Leptogenesis

Effects of Reheating on Leptogenesis Effects of Reheating on Leptogenesis Florian Hahn-Woernle Max-Planck-Institut für Physik München 2. Kosmologietag Florian Hahn-Woernle (MPI-München) Effects of Reheating on Leptogenesis Kosmologietag 2007

More information

Kadanoff-Baym Equations and Correlated Initial States

Kadanoff-Baym Equations and Correlated Initial States Kadanoff-Baym Equations and Correlated Initial States SEWM 200, Montreal, June 30 based on PRD80:0850(2009) with M. M. Müller; work with U. Reinosa Nonequilibrium dynamics at high energy Heavy Ion Collisions

More information

Leptogenesis via varying Weinberg operator

Leptogenesis via varying Weinberg operator Silvia Pascoli IPPP, Department of Physics, Durham University, Durham DH1 3LE, United Kingdom E-mail: silvia.pascoli@durham.ac.uk Jessica Turner Theoretical Physics Department, Fermi National Accelerator

More information

Astroparticle Physics and the LC

Astroparticle Physics and the LC Astroparticle Physics and the LC Manuel Drees Bonn University Astroparticle Physics p. 1/32 Contents 1) Introduction: A brief history of the universe Astroparticle Physics p. 2/32 Contents 1) Introduction:

More information

The Matter-Antimatter Asymmetry and New Interactions

The Matter-Antimatter Asymmetry and New Interactions The Matter-Antimatter Asymmetry and New Interactions The baryon (matter) asymmetry The Sakharov conditions Possible mechanisms A new very weak interaction Recent Reviews M. Trodden, Electroweak baryogenesis,

More information

The Origin of Matter

The Origin of Matter The Origin of Matter ---- Leptogenesis ---- Tsutomu T. Yanagida (IPMU, Tokyo) Shoichi Sakata Centennial Symposium Energy Content of the Universe いいい From Wikipedia F FF Galaxy and Cluster of galaxies No

More information

Neutrino masses. Universe

Neutrino masses. Universe Università di Padova,, 8 May, 2008 Neutrino masses and the matter-antimatter antimatter asymmetry of the Universe (new results in collaboration with Steve Blanchet to appear soon) Pasquale Di Bari (INFN,

More information

Gravitinos, Reheating and the Matter-Antimatter Asymmetry of the Universe

Gravitinos, Reheating and the Matter-Antimatter Asymmetry of the Universe Gravitinos, Reheating and the Matter-Antimatter Asymmetry of the Universe Raghavan Rangarajan Physical Research Laboratory Ahmedabad with N. Sahu, A. Sarkar, N. Mahajan OUTLINE THE MATTER-ANTIMATTER ASYMMETRY

More information

Baryogenesis. David Morrissey. SLAC Summer Institute, July 26, 2011

Baryogenesis. David Morrissey. SLAC Summer Institute, July 26, 2011 Baryogenesis David Morrissey SLAC Summer Institute, July 26, 2011 Why is There More Matter than Antimatter? About 5% of the energy density of the Universe consists of ordinary (i.e. non-dark) matter. By

More information

SOME COMMENTS ON CP-VIOLATION AND LEPTOGENESIS

SOME COMMENTS ON CP-VIOLATION AND LEPTOGENESIS Marco Drewes TU München 23. 8. 2016, NuFact, Quy Nhon, Vietnam 1 / 7 The Standard Model and General Relativity together explain almost all phenomena observed in nature, but... gravity is not quantised

More information

Baryo- and leptogenesis. Purpose : explain the current excess of matter/antimatter. Is there an excess of matter?

Baryo- and leptogenesis. Purpose : explain the current excess of matter/antimatter. Is there an excess of matter? Baryo- and leptogenesis Purpose : explain the current excess of matter/antimatter Is there an excess of matter? Baryons: excess directly observed; Antibaryons seen in cosmic rays are compatible with secondary

More information

Leptogenesis via the Relaxation of Higgs and other Scalar Fields

Leptogenesis via the Relaxation of Higgs and other Scalar Fields Leptogenesis via the Relaxation of Higgs and other Scalar Fields Louis Yang Department of Physics and Astronomy University of California, Los Angeles PACIFIC 2016 September 13th, 2016 Collaborators: Alex

More information

POST-INFLATIONARY HIGGS RELAXATION AND THE ORIGIN OF MATTER- ANTIMATTER ASYMMETRY

POST-INFLATIONARY HIGGS RELAXATION AND THE ORIGIN OF MATTER- ANTIMATTER ASYMMETRY POST-INFLATIONARY HIGGS RELAXATION AND THE ORIGIN OF MATTER- ANTIMATTER ASYMMETRY LOUIS YANG ( 楊智軒 ) UNIVERSITY OF CALIFORNIA, LOS ANGELES (UCLA) DEC 27, 2016 NATIONAL TSING HUA UNIVERSITY OUTLINE Big

More information

Leptogenesis. Alejandro Ibarra Technische Universität München. Warsaw February 2010

Leptogenesis. Alejandro Ibarra Technische Universität München. Warsaw February 2010 Leptogenesis Alejandro Ibarra Technische Universität München Warsaw February 2010 Outline Evidence for a baryon asymmetry Sakharov conditions GUT baryogenesis Sphalerons Neutrino masses and its origin

More information

Neutrino Masses SU(3) C U(1) EM, (1.2) φ(1, 2) +1/2. (1.3)

Neutrino Masses SU(3) C U(1) EM, (1.2) φ(1, 2) +1/2. (1.3) Neutrino Masses Contents I. The renormalizable Standard Model 1 II. The non-renormalizable Standard Model III. The See-Saw Mechanism 4 IV. Vacuum Oscillations 5 V. The MSW effect 7 VI. Experimental results

More information

Matter vs Anti-matter

Matter vs Anti-matter Baryogenesis Matter vs Anti-matter Earth, Solar system made of baryons B Our Galaxy Anti-matter in cosmic rays p/p O(10 4 ) secondary Our Galaxy is made of baryons p galaxy p + p p + p + p + p galaxy γ

More information

Astroparticle Physics at Colliders

Astroparticle Physics at Colliders Astroparticle Physics at Colliders Manuel Drees Bonn University Astroparticle Physics p. 1/29 Contents 1) Introduction: A brief history of the universe Astroparticle Physics p. 2/29 Contents 1) Introduction:

More information

A biased review of Leptogenesis. Lotfi Boubekeur ICTP

A biased review of Leptogenesis. Lotfi Boubekeur ICTP A biased review of Leptogenesis Lotfi Boubekeur ICTP Baryogenesis: Basics Observation Our Universe is baryon asymmetric. n B s n b n b s 10 11 BAU is measured in CMB and BBN. Perfect agreement with each

More information

arxiv: v1 [hep-ph] 2 Jun 2015

arxiv: v1 [hep-ph] 2 Jun 2015 TeV Scale Leptogenesis P. S. Bhupal Dev arxiv:1506.00837v1 [hep-ph] 2 Jun 2015 Abstract This is a mini-review on the mechanism of leptogenesis, with a special emphasis on low-scale leptogenesis models

More information

Neutrinos and Cosmos. Hitoshi Murayama (Berkeley) Texas Conference at Stanford Dec 17, 2004

Neutrinos and Cosmos. Hitoshi Murayama (Berkeley) Texas Conference at Stanford Dec 17, 2004 Neutrinos and Cosmos Hitoshi Murayama (Berkeley) Texas Conference at Stanford Dec 17, 2004 Outline A Little Historical Perspective Interpretation of Data & Seven Questions Matter Anti-Matter Asymmetry

More information

Leptogenesis in Higgs triplet model

Leptogenesis in Higgs triplet model Leptogenesis in Higgs triplet model S. Scopel Korea Institute of Advanced Study (KIAS) Seoul (Korea) Dark Side of the Universe, Madrid,, 20-24 24 June 2006 Introduction Non-zero neutrino masses and mixing

More information

Testing leptogenesis at the LHC

Testing leptogenesis at the LHC Santa Fe Summer Neutrino Workshop Implications of Neutrino Flavor Oscillations Santa Fe, New Mexico, July 6-10, 2009 Testing leptogenesis at the LHC ArXiv:0904.2174 ; with Z. Chacko, S. Granor and R. Mohapatra

More information

Neutrino Oscillation, Leptogenesis and Spontaneous CP Violation

Neutrino Oscillation, Leptogenesis and Spontaneous CP Violation Neutrino Oscillation, Leptogenesis and Spontaneous CP Violation Mu-Chun Chen Fermilab (Jan 1, 27: UC Irvine) M.-C. C & K.T. Mahanthappa, hep-ph/69288, to appear in Phys. Rev. D; Phys. Rev. D71, 351 (25)

More information

Testing the low scale seesaw and leptogenesis

Testing the low scale seesaw and leptogenesis based on 1606.6690 and 1609.09069 with Marco Drewes, Björn Garbrecht and Juraj Klarić Bielefeld, 18. May 2017 Remaining puzzles of the universe BAU baryon asymmetry of the universe WMAP, Planck and Big

More information

Leptogenesis with Majorana neutrinos

Leptogenesis with Majorana neutrinos Leptogenesis with Majorana neutrinos E.A. Paschos a a Institut für Physik, Universität Dortmund D-4422 Dortmund, Germany I review the origin of the lepton asymmetry which is converted to a baryon excess

More information

Neutrino masses, muon g-2, dark matter, lithium probelm, and leptogenesis at TeV-scale SI2009 AT FUJI-YOSHIDA

Neutrino masses, muon g-2, dark matter, lithium probelm, and leptogenesis at TeV-scale SI2009 AT FUJI-YOSHIDA Neutrino masses, muon g-2, dark matter, lithium probelm, and leptogenesis at TeV-scale SI2009 AT FUJI-YOSHIDA Chian-Shu Chen National Cheng Kung U./Academia Sinica with C-H Chou 08/20/2009 arxiv:0905.3477

More information

POST-INFLATIONARY HIGGS RELAXATION AND THE ORIGIN OF MATTER- ANTIMATTER ASYMMETRY

POST-INFLATIONARY HIGGS RELAXATION AND THE ORIGIN OF MATTER- ANTIMATTER ASYMMETRY POST-INFLATIONARY HIGGS RELAXATION AND THE ORIGIN OF MATTER- ANTIMATTER ASYMMETRY LOUIS YANG ( 楊智軒 ) UNIVERSITY OF CALIFORNIA, LOS ANGELES (UCLA) DEC 30, 2016 4TH INTERNATIONAL WORKSHOP ON DARK MATTER,

More information

arxiv:hep-ph/ v1 26 Jul 2006

arxiv:hep-ph/ v1 26 Jul 2006 Neutrino mass and baryogenesis arxiv:hep-ph/0607287v1 26 Jul 2006 D. Falcone Dipartimento di Scienze Fisiche, Università di Napoli, Via Cintia, Napoli, Italy A brief overview of the phenomenology related

More information

arxiv: v1 [hep-ph] 25 Jan 2008

arxiv: v1 [hep-ph] 25 Jan 2008 Effects of reheating on leptogenesis arxiv:0801.3972v1 [hep-ph] 25 Jan 2008 F. Hahn-Woernle and M. Plümacher Max Planck Institute for Physics, Föhringer Ring 6, 80805 Munich, Germany Abstract We study

More information

Leptogenesis: Improving predictions for experimental searches

Leptogenesis: Improving predictions for experimental searches : Improving predictions for experimental searches Physik Department T70, Technische Universität München, James Franck Straße 1, D-85748 E-mail: marco.drewes@tum.de Björn Garbrecht Physik Department T70,

More information

Lepton Number Violation

Lepton Number Violation and the Baryon Asymmetry of the Universe - - tu dortmund MPI Seminar Max-Planck-Institut für Kernphysik Heidelberg December 14, 2015 Outline The Baryon Asymmetry of the Universe (LNV) Double Beta Decay

More information

The Standard Model of particle physics and beyond

The Standard Model of particle physics and beyond The Standard Model of particle physics and beyond - Lecture 3: Beyond the Standard Model Avelino Vicente IFIC CSIC / U. Valencia Physics and astrophysics of cosmic rays in space Milano September 2016 1

More information

Neutrino Basics. m 2 [ev 2 ] tan 2 θ. Reference: The Standard Model and Beyond, CRC Press. Paul Langacker (IAS) LSND 90/99% SuperK 90/99% MINOS K2K

Neutrino Basics. m 2 [ev 2 ] tan 2 θ. Reference: The Standard Model and Beyond, CRC Press. Paul Langacker (IAS) LSND 90/99% SuperK 90/99% MINOS K2K Neutrino Basics CDHSW m 2 [ev 2 ] 10 0 10 3 10 6 10 9 KARMEN2 Cl 95% NOMAD MiniBooNE Ga 95% Bugey CHOOZ ν X ν µ ν τ ν τ NOMAD all solar 95% SNO 95% CHORUS NOMAD CHORUS LSND 90/99% SuperK 90/99% MINOS K2K

More information

Minimal Extension of the Standard Model of Particle Physics. Dmitry Gorbunov

Minimal Extension of the Standard Model of Particle Physics. Dmitry Gorbunov Minimal Extension of the Standard Model of Particle Physics Dmitry Gorbunov Institute for Nuclear Research, Moscow, Russia 14th Lomonosov Conference on Elementary Paticle Physics, Moscow, MSU, 21.08.2009

More information

Neutrinos. Riazuddin National Centre for Physics Quaid-i-Azam University Campus. Islamabad.

Neutrinos. Riazuddin National Centre for Physics Quaid-i-Azam University Campus. Islamabad. Neutrinos Riazuddin National Centre for Physics Quaid-i-Azam University Campus Islamabad. Neutrino was the first particle postulated by a theoretician: W. Pauli in 1930 to save conservation of energy and

More information

A model of the basic interactions between elementary particles is defined by the following three ingredients:

A model of the basic interactions between elementary particles is defined by the following three ingredients: I. THE STANDARD MODEL A model of the basic interactions between elementary particles is defined by the following three ingredients:. The symmetries of the Lagrangian; 2. The representations of fermions

More information

Creating Matter-Antimatter Asymmetry from Dark Matter Annihilations in Scotogenic Scenarios

Creating Matter-Antimatter Asymmetry from Dark Matter Annihilations in Scotogenic Scenarios Creating Matter-Antimatter Asymmetry from Dark Matter Annihilations in Scotogenic Scenarios Based on arxiv:1806.04689 with A Dasgupta, S K Kang (SeoulTech) Debasish Borah Indian Institute of Technology

More information

Successful Leptogenesis in the Left-Right Symmetric Seesaw Mechanism

Successful Leptogenesis in the Left-Right Symmetric Seesaw Mechanism Successful Leptogenesis in the Left-Right Symmetric Seesaw Mechanism Pierre Hosteins Patras University 13th November 2007 Brussels P.H., S. Lavignac and C. Savoy, Nucl. Phys. B755, arxiv:hep-ph/0606078

More information

Status Report on Electroweak Baryogenesis

Status Report on Electroweak Baryogenesis Outline Status Report on Electroweak Baryogenesis Thomas Konstandin KTH Stockholm hep-ph/0410135, hep-ph/0505103, hep-ph/0606298 Outline Outline 1 Introduction Electroweak Baryogenesis Approaches to Transport

More information

Entropy, Baryon Asymmetry and Dark Matter from Heavy Neutrino Decays.

Entropy, Baryon Asymmetry and Dark Matter from Heavy Neutrino Decays. Entropy, Baryon Asymmetry and Dark Matter from Heavy Neutrino Decays. Kai Schmitz Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany Based on arxiv:1008.2355 [hep-ph] and arxiv:1104.2750 [hep-ph].

More information

Leptogenesis from GeV-Scale Sterile Neutrinos

Leptogenesis from GeV-Scale Sterile Neutrinos Leptogenesis from GeV-Scale Sterile Neutrinos Björn Garbrecht Physik-Department T70 Technische Universität München Lorentz Center Workshop Matter over Antimatter: The Sakharov conditions After 50 years

More information

Baryogenesis in Higher Dimension Operators. Koji Ishiwata

Baryogenesis in Higher Dimension Operators. Koji Ishiwata Baryogenesis in Higher Dimension Operators Koji Ishiwata Caltech In collaboration with Clifford Cheung (Caltech) Based on arxiv:1304.0468 BLV2013 Heidelberg, April 9, 2013 1. Introduction The origin of

More information

Introduction to Cosmology

Introduction to Cosmology Introduction to Cosmology Subir Sarkar CERN Summer training Programme, 22-28 July 2008 Seeing the edge of the Universe: From speculation to science Constructing the Universe: The history of the Universe:

More information

Supersymmetry in Cosmology

Supersymmetry in Cosmology Supersymmetry in Cosmology Raghavan Rangarajan Ahmedabad University raghavan@ahduni.edu.in OUTLINE THE GRAVITINO PROBLEM SUSY FLAT DIRECTIONS AND THEIR COSMOLOGIAL IMPLICATIONS SUSY DARK MATTER SUMMARY

More information

7 Relic particles from the early universe

7 Relic particles from the early universe 7 Relic particles from the early universe 7.1 Neutrino density today (14 December 2009) We have now collected the ingredients required to calculate the density of relic particles surviving from the early

More information

Leptogenesis via Higgs Condensate Relaxation

Leptogenesis via Higgs Condensate Relaxation The Motivation Quantum Fluctuations Higgs Relaxation Leptogenesis Summary Leptogenesis via Higgs Condensate Relaxation Louis Yang Department of Physics and Astronomy University of California, Los Angeles

More information

Neutrino Physics II. Neutrino Phenomenology. Arcadi Santamaria. TAE 2014, Benasque, September 19, IFIC/Univ. València

Neutrino Physics II. Neutrino Phenomenology. Arcadi Santamaria. TAE 2014, Benasque, September 19, IFIC/Univ. València Neutrino Physics II Neutrino Phenomenology Arcadi Santamaria IFIC/Univ. València TAE 2014, Benasque, September 19, 2014 Neutrino Physics II Outline 1 Neutrino oscillations phenomenology Solar neutrinos

More information

Neutrino Mass Seesaw, Baryogenesis and LHC

Neutrino Mass Seesaw, Baryogenesis and LHC Neutrino Mass Seesaw, Baryogenesis and LHC R. N. Mohapatra University of Maryland Interplay of Collider and Flavor Physics workshop, CERN Blanchet,Chacko, R. N. M., 2008 arxiv:0812:3837 Why? Seesaw Paradigm

More information

Sterile Neutrino Dark Matter & Low Scale Leptogenesis from a Charged Scalar

Sterile Neutrino Dark Matter & Low Scale Leptogenesis from a Charged Scalar Sterile Neutrino Dark Matter & Low Scale Leptogenesis from a Charged Scalar Michele Frigerio Laboratoire Charles Coulomb, CNRS & UM2, Montpellier MF & Carlos E. Yaguna, arxiv:1409.0659 [hep-ph] GDR neutrino

More information

Zhong-Zhi Xianyu (CMSA Harvard) Tsinghua June 30, 2016

Zhong-Zhi Xianyu (CMSA Harvard) Tsinghua June 30, 2016 Zhong-Zhi Xianyu (CMSA Harvard) Tsinghua June 30, 2016 We are directly observing the history of the universe as we look deeply into the sky. JUN 30, 2016 ZZXianyu (CMSA) 2 At ~10 4 yrs the universe becomes

More information

Big Bang Nucleosynthesis

Big Bang Nucleosynthesis Big Bang Nucleosynthesis George Gamow (1904-1968) 5 t dec ~10 yr T dec 0.26 ev Neutrons-protons inter-converting processes At the equilibrium: Equilibrium holds until 0 t ~14 Gyr Freeze-out temperature

More information

Overview of mass hierarchy, CP violation and leptogenesis.

Overview of mass hierarchy, CP violation and leptogenesis. Overview of mass hierarchy, CP violation and leptogenesis. (Theory and Phenomenology) Walter Winter DESY International Workshop on Next Generation Nucleon Decay and Neutrino Detectors (NNN 2016) 3-5 November

More information

arxiv: v1 [astro-ph] 11 Jul 2007

arxiv: v1 [astro-ph] 11 Jul 2007 KIAS P07031, MCTP 07 18 Quintessential Kination and Leptogenesis Eung Jin Chun 1, and Stefano Scopel 1 arxiv:0707.1544v1 [astro-ph] 11 Jul 007 1 Korea Institute for Advanced Study 07-43 Cheongryangri-dong

More information

arxiv: v2 [hep-ph] 25 Aug 2009

arxiv: v2 [hep-ph] 25 Aug 2009 Preprint typeset in JHEP style - PAPER VERSIO CER-PH-TH/2009-07 MPP-2009-85 PITHA 09/5 arxiv:0907.0205v2 hep-ph] 25 Aug 2009 Full Boltzmann equations for leptogenesis including scattering F. Hahn-Woernle,

More information

Electroweak Baryogenesis A Status Report

Electroweak Baryogenesis A Status Report Electroweak Baryogenesis A Status Report Thomas Konstandin Odense, August 19, 2013 review: arxiv:1302.6713 Outline Introduction SUSY Composite Higgs Standard Cosmology time temperature Standard Cosmology

More information

Baryogenesis and Particle Antiparticle Oscillations

Baryogenesis and Particle Antiparticle Oscillations Baryogenesis and Particle Antiparticle Oscillations Seyda Ipek UC Irvine SI, John March-Russell, arxiv:1604.00009 Sneak peek There is more matter than antimatter - baryogenesis SM cannot explain this There

More information

Phase transitions in cosmology

Phase transitions in cosmology Phase transitions in cosmology Thomas Konstandin FujiYoshida, August 31, 2017 Electroweak phase transition gravitational waves baryogenesis Outline Introduction MSSM Composite Higgs Baryogenesis [Sakharov

More information

Electromagnetic Leptogenesis at TeV scale. Sudhanwa Patra

Electromagnetic Leptogenesis at TeV scale. Sudhanwa Patra Electromagnetic Leptogenesis at TeV scale Sudhanwa Patra Physical Research Laboratory, INDIA Collaboration with Debjyoti Choudhury, Namit Mahajan, Utpal Sarkar 25th Feb, 2011 Sudhanwa Patra, NuHorizon-IV,

More information

Natural Nightmares for the LHC

Natural Nightmares for the LHC Dirac Neutrinos and a vanishing Higgs at the LHC Athanasios Dedes with T. Underwood and D. Cerdeño, JHEP 09(2006)067, hep-ph/0607157 and in progress with F. Krauss, T. Figy and T. Underwood. Clarification

More information

Is the Neutrino its Own Antiparticle?

Is the Neutrino its Own Antiparticle? Is the Neutrino its Own Antiparticle? CENPA REU Summer Seminar Series University of Washington, Seattle, WA July 22, 2013 Outline What s a neutrino? The case for Majorana neutrinos Probing the nature of

More information

Heavy Sterile Neutrinos at CEPC

Heavy Sterile Neutrinos at CEPC Wei Liao East China University of Science and Technology Based on arxiv:17.09266, in collaboration with X.H. Wu INPAC SJTU, Nov. 17 2017 Outline Review of neutrino mass low energy seesaw model constraint

More information

Thermal Quantum Field Theory in Real and Imaginary Time. Daniele Teresi

Thermal Quantum Field Theory in Real and Imaginary Time. Daniele Teresi Thermal Quantum Field Theory in Real and Imaginary Time daniele.teresi@hep.manchester.ac.uk University of Manchester 42nd BUSSTEPP - Durham University WHAT IS THERMAL QFT? ORDINARY VACUUM QFT few in and

More information

Is the Neutrino its Own Antiparticle?

Is the Neutrino its Own Antiparticle? Is the Neutrino its Own Antiparticle? PHYS 294A Jan 24, 2013 Outline What s a neutrino? The case for Majorana neutrinos Probing the nature of the neutrino with neutrinoless double-beta decay 2 What s a

More information

Hot Big Bang model: early Universe and history of matter

Hot Big Bang model: early Universe and history of matter Hot Big Bang model: early Universe and history of matter nitial soup with elementary particles and radiation in thermal equilibrium. adiation dominated era (recall energy density grows faster than matter

More information

Antiproton Limits on Decaying Gravitino Dark Matter

Antiproton Limits on Decaying Gravitino Dark Matter Antiproton Limits on Decaying Gravitino Dark Matter Michael Grefe Departamento de Física Teórica Instituto de Física Teórica UAM/CSIC Universidad Autónoma de Madrid Particle Theory Journal Club Rudolf

More information

arxiv:hep-ph/ v2 8 Mar 2006

arxiv:hep-ph/ v2 8 Mar 2006 DESY 05-031 February 2005 LEPTOGENESIS AS THE ORIGIN OF MATTER arxiv:hep-ph/0502169v2 8 Mar 2006 W. Buchmüller a, R. D. Peccei b, T. Yanagida c a Deutsches Elektronen-Synchrotron DESY, 22603 Hamburg, Germany

More information

November 24, Scalar Dark Matter from Grand Unified Theories. T. Daniel Brennan. Standard Model. Dark Matter. GUTs. Babu- Mohapatra Model

November 24, Scalar Dark Matter from Grand Unified Theories. T. Daniel Brennan. Standard Model. Dark Matter. GUTs. Babu- Mohapatra Model Scalar from November 24, 2014 1 2 3 4 5 What is the? Gauge theory that explains strong weak, and electromagnetic forces SU(3) C SU(2) W U(1) Y Each generation (3) has 2 quark flavors (each comes in one

More information

Puzzles of Neutrinos and Anti-Matter: Hidden Symmetries and Symmetry Breaking. Hong-Jian He

Puzzles of Neutrinos and Anti-Matter: Hidden Symmetries and Symmetry Breaking. Hong-Jian He Puzzles of Neutrinos and Anti-Matter: Hidden Symmetries and Symmetry Breaking Tsinghua University 2009-1-13 Collaborators: Shao-Feng Ge & Fu-Rong Yin Based on arxiv:1001.0940 (and works in preparation)

More information

Neutrinos and Astrophysics

Neutrinos and Astrophysics Neutrinos and Astrophysics Astrophysical neutrinos Solar and stellar neutrinos Supernovae High energy neutrinos Cosmology Leptogenesis Big bang nucleosynthesis Large-scale structure and CMB Relic neutrinos

More information

We can check experimentally that physical constants such as α have been sensibly constant for the past ~12 billion years

We can check experimentally that physical constants such as α have been sensibly constant for the past ~12 billion years ² ² ² The universe observed ² Relativistic world models ² Reconstructing the thermal history ² Big bang nucleosynthesis ² Dark matter: astrophysical observations ² Dark matter: relic particles ² Dark matter:

More information

Neutrino theory of everything? dark matter, baryogenesis and neutrino masses

Neutrino theory of everything? dark matter, baryogenesis and neutrino masses Neutrino theory of everything? dark matter, baryogenesis and neutrino masses 25 th International Workshop on Weak Interactions and Neutrinos (WIN2015) June 8-13, 2015, MPIK Heidelberg, Germany @Heidelberg

More information

Lecture 18 - Beyond the Standard Model

Lecture 18 - Beyond the Standard Model Lecture 18 - Beyond the Standard Model Why is the Standard Model incomplete? Grand Unification Baryon and Lepton Number Violation More Higgs Bosons? Supersymmetry (SUSY) Experimental signatures for SUSY

More information

Quantum transport and electroweak baryogenesis

Quantum transport and electroweak baryogenesis Quantum transport and electroweak baryogenesis Thomas Konstandin Mainz, August 7, 2014 review: arxiv:1302.6713 Outline Introduction MSSM Composite Higgs Baryogenesis [Sakharov '69] Baryogenesis aims at

More information

The role of ElectroWeak corrections in indirect Dark Matter searches Firenze, 18/12/ / 26

The role of ElectroWeak corrections in indirect Dark Matter searches Firenze, 18/12/ / 26 The role of ElectroWeak corrections in indirect Dark Matter searches Paolo Ciafaloni INFN, sezione di Lecce Firenze, 18/12/2013 The role of ElectroWeak corrections in indirect Dark Matter searches Firenze,

More information

Introduction: Cosmic Neutrinos Dark Radiation and the QGP Era Darkness Production: Universe Laboratory

Introduction: Cosmic Neutrinos Dark Radiation and the QGP Era Darkness Production: Universe Laboratory Outline of the talk 1. Introduction: CMB fluctuation analysis observes N ν, number of invisible Cosmic Neutrinos pushing the Universe apart Anything else out there adding to the pressure? 2. Impact of

More information

Leptogenesis and the Flavour Structure of the Seesaw

Leptogenesis and the Flavour Structure of the Seesaw Leptogenesis and the Flavour Structure of the Seesaw based on: hep-ph/0609038 (JCAP 0611 (2006) 011) with S.F. King, A. Riotto hep-ph/0611232 (JCAP 0702 (2007) 024) with A.M. Teixeira arxiv:0704.1591 (Phys.

More information

Nonequilibrium dynamics and transport near the chiral phase transition of a quark-meson model

Nonequilibrium dynamics and transport near the chiral phase transition of a quark-meson model FAIRNESS 2013, 15-21 September 1 Nonequilibrium dynamics and transport near the chiral phase transition of a quark-meson model A Meistrenko 1, C Wesp 1, H van Hees 1,2 and C Greiner 1 1 Institut für Theoretische

More information

TTK Coherent quantum Boltzmann equations from cqpa Matti Herranen a, Kimmo Kainulainen b;c and Pyry Matti Rahkila b;c a Institut f ur Theoretisc

TTK Coherent quantum Boltzmann equations from cqpa Matti Herranen a, Kimmo Kainulainen b;c and Pyry Matti Rahkila b;c a Institut f ur Theoretisc TTK-10-34 Coherent quantum Boltzmann equations from cqpa Matti Herranen a, Kimmo Kainulainen b;c and Pyry Matti Rahkila b;c a Institut f ur Theoretische Teilchenphysik und Kosmologie, RWTH Aachen University,

More information

arxiv:hep-ph/ v1 20 Mar 2002

arxiv:hep-ph/ v1 20 Mar 2002 Resurrection of Grand Unified Theory Baryogenesis M. Fukugita 1 and T. Yanagida 2 1 Institute for Cosmic Ray Research, University of Tokyo, Kashiwa 2778582, Japan arxiv:hep-ph/0203194v1 20 Mar 2002 Abstract

More information

Neutrinos and Fundamental Symmetries: L, CP, and CP T

Neutrinos and Fundamental Symmetries: L, CP, and CP T Neutrinos and Fundamental Symmetries: L, CP, and CP T Outstanding issues Lepton number (L) CP violation CP T violation Outstanding issues in neutrino intrinsic properties Scale of underlying physics? (string,

More information

Gravitino Dark Matter with Broken R-Parity

Gravitino Dark Matter with Broken R-Parity Gravitino Dark Matter with Broken R-Parity Michael Grefe Departamento de Física Teórica Instituto de Física Teórica UAM/CSIC Universidad Autónoma de Madrid 7th MultiDark Consolider Workshop Institut de

More information

What We Know, and What We Would Like To Find Out. Boris Kayser Minnesota October 23,

What We Know, and What We Would Like To Find Out. Boris Kayser Minnesota October 23, What We Know, and What We Would Like To Find Out Boris Kayser Minnesota October 23, 2008 1 In the last decade, observations of neutrino oscillation have established that Neutrinos have nonzero masses and

More information

March 30, 01 Lecture 5 of 6 @ ORICL Philosophical Society Yuri Kamyshkov/ University of Tennessee email: kamyshkov@utk.edu 1. Concept/misconception of mass in Special Relativity (March,9). and n Oscillations:

More information

Puzzles of Neutrino Mixing and Anti-Matter: Hidden Symmetries and Symmetry Breaking. Shao-Feng Ge

Puzzles of Neutrino Mixing and Anti-Matter: Hidden Symmetries and Symmetry Breaking. Shao-Feng Ge Puzzles of Neutrino Mixing and Anti-Matter: Hidden Symmetries and Symmetry Breaking Shao-Feng Ge (gesf02@mails.thu.edu.cn) Center for High Energy Physics, Tsinghua Univeristy 200-4-8 Collaborators: Hong-Jian

More information

14 Lecture 14: Early Universe

14 Lecture 14: Early Universe PHYS 652: Astrophysics 70 14 Lecture 14: Early Universe True science teaches us to doubt and, in ignorance, to refrain. Claude Bernard The Big Picture: Today we introduce the Boltzmann equation for annihilation

More information

Leptogenesis from a First-Order Lepton- Number Breaking Phase Transition

Leptogenesis from a First-Order Lepton- Number Breaking Phase Transition Leptogenesis from a First-Order Lepton- umber Breaking Phase Transition Andrew Long TeVPA 2017 at Ohio State University Aug 10, 2017 based on work with Andrea Tesi & Lian-Tao Wang (1703.04902 & JHEP) Bubbles!

More information

kev sterile Neutrino Dark Matter in Extensions of the Standard Model

kev sterile Neutrino Dark Matter in Extensions of the Standard Model kev sterile Neutrino Dark Matter in Extensions of the Standard Model Manfred Lindner Max-Planck-Institut für Kernphysik, Heidelberg F. Bezrukov, H. Hettmannsperger, ML, arxiv:0912.4415, PRD81,085032 The

More information

Higgs field as the main character in the early Universe. Dmitry Gorbunov

Higgs field as the main character in the early Universe. Dmitry Gorbunov Higgs field as the main character in the early Universe Dmitry Gorbunov Institute for Nuclear Research, Moscow, Russia Dual year Russia-Spain, Particle Physics, Nuclear Physics and Astroparticle Physics

More information

Leptogenesis: A Pedagogical Introduction. Abstract

Leptogenesis: A Pedagogical Introduction. Abstract Leptogenesis: A Pedagogical Introduction Yosef Nir 1, 1 Department of Particle Physics and Astrophysics Weizmann Institute of Science, Rehovot 76100, Israel Abstract This is a preliminary written version

More information

Equilibration in ϕ 4 theory in 3+1 dimensions

Equilibration in ϕ 4 theory in 3+1 dimensions Equilibration in ϕ 4 theory in 3+1 dimensions Alejandro Arrizabalaga Work in collaboration with Anders Tranberg (Sussex) and Jan Smit (Amsterdam) Physical Review D 72 020514 (2005) NIKHEF (Amsterdam) Summer

More information

Project Paper May 13, A Selection of Dark Matter Candidates

Project Paper May 13, A Selection of Dark Matter Candidates A688R Holly Sheets Project Paper May 13, 2008 A Selection of Dark Matter Candidates Dark matter was first introduced as a solution to the unexpected shape of our galactic rotation curve; instead of showing

More information

Flavor Models with Sterile Neutrinos. NuFact 11 Geneva, Aug, He Zhang

Flavor Models with Sterile Neutrinos. NuFact 11 Geneva, Aug, He Zhang Flavor Models with Sterile Neutrinos NuFact 11 Geneva, Aug, 2011 Contents: Sterile neutrinos in ν-osc. and 0νββ decays Mechanisms for light sterile neutrino masses Flavor symmetry with sterile neutrinos

More information