Towards a quantum treatment of leptogenesis

Size: px
Start display at page:

Download "Towards a quantum treatment of leptogenesis"

Transcription

1 SEWM Swansea, July based on work in collaboration with Tibor Frossard, Andreas Hohenegger, Alexander Kartavtsev, Manfred Lindner [mainly ]

2 Physics beyond the Standard Model Collider exp. Baryon asymmetry.. Neutrino exp. +? Dark matter

3 Outline Leptogenesis Boltzmann approach Kadanoff-Baym approach Resonant enhancement on the closed time path

4 Leptogenesis Standard Model (SM) extended by three heavy singlet neutrino fields N i = N c i, i = 1, 2, 3 with Majorana masses ˆM = diag(m i ) in the mass eigenbasis L = L SM Ni / N 1 2 N ˆMN l φhp R N NP L h φ l Light neutrino masses via seesaw mechanism m ν = v 2 EW h ˆM 1 h T TeV M i M GUT for m e/v EW < h ij < 1

5 Leptogenesis Standard Model (SM) extended by three heavy singlet neutrino fields N i = N c i, i = 1, 2, 3 with Majorana masses ˆM = diag(m i ) in the mass eigenbasis L = L SM Ni / N 1 2 N ˆMN l φhp R N NP L h φ l Light neutrino masses via seesaw mechanism m ν = v 2 EW h ˆM 1 h T TeV M i M GUT for m e/v EW < h ij < 1 Baryogenesis via leptogenesis Fukugita, Yanagida 86 B-violation via L-violating Majorana masses M i CP-violation via Yukawa couplings Im[(h h) ij ] 0 Out-of-equilibrium (inverse) decay N i lφ and N i l c φ (Γ i /H) T =Mi m i /mev O(1) where m i = v 2 EW (h h) ii /M i (Γ SM /H) T =Mi g 4 M pl /M i 1 for M i GeV

6 Leptogenesis Vanilla leptogenesis for hierarchical spectrum M 1 M 2,3 requires large values of the reheating temperature T R O(M 1) 10 9 GeV Hamaguchi, Murayama, Yanagida; Davidson, Ibarra M1 (GeV) Gravitino production ( Ω th 3/2h 2 TR GeV m1 (ev) ) ( 10 GeV m 3/2 Buchmüller, Di Bari, Plümacher ) ( ) 2 m g 1 TeV Moroi, Murayama, Yamaguchi, 93; Bolz, Brandenburg, Buchmüller, 01;Pradler, Steffen, 06; Rychkov, Strumia, 07

7 Leptogenesis L-violating decay of heavy right-handed neutrino N i M Ni l αh = y iα +... M Ni l c α h = y iα +...

8 Leptogenesis L-violating decay of heavy right-handed neutrino N i M Ni l αh = y iα + y iβ y jβ y jα +... y jβ M Ni l c α h = y iα + y iβ +... y jα Matter-antimatter (CP) asymmetry interference of tree and loop processes ( Γ(N i l αh ) Γ(N i l c αh) Im(y iα y iβ yjαy jβ) Im + ) Sakharov: asymmetry from out-of-equilibrium N i decay/inverse decay

9 Standard Boltzmann approach N L (t) = d 3 x g d 3 p (2π) 3 [f l (t, x, p) f l(t, x, p)] l

10 Standard Boltzmann approach N L (t) = d 3 x g d 3 p (2π) 3 [f l (t, x, p) f l(t, x, p)] l p µ D µf l (t, x, p) = i dπ Ni dπ h (2π) 4 δ(p l + p h p Ni ) [ M 2 N i lh f N i (1 f l )(1 + f h ) +... ] M 2 lh N i f l f h (1 f Ni ) +... f ψ (t, x, p) : distribution function of on-shell particles M 2 : matrix elements computed in vacuum, off-shell effects

11 Corrections within Boltzmann framework Bose-enhancement, Pauli-Blocking; kinetic (non-)equilibrium quantum statistical factors 1 ± f k non-integrated Boltzmann equations Hannsestad, Basbøll 06; Garayoa, Pastor, Pinto, Rius, Vives 09; Hahn-Woernle, Plümacher, Wong 09 Thermal corrections via thermal QFT medium correction to CP-violating parameter ɛ = ɛ vac + δɛ th thermal masses, dispersion relation production rate from a thermal plasma for T M 1, T M 1 Covi, Rius, Roulet, Vissani 98; Giudice, Notari, Raidal, Riotto, Strumia 04; Besak, Bödeker 10 Kiessig, Thoma, Plümacher 10; Salvio Lodone Strumia 11, Anisimov, Besak, Bödeker 11; Laine, Schroder 11; Besak, Bodeker Flavour effects Nardi, Nir, Roulet, Racker 06; Abada, Davidson, Ibarra, Josse-Micheaux, Losada, Riotto 06; de Simone, Riotto 06; Blanchet, dibari 06;... Spectator processes, scatterings, N 2,...

12 Double Counting Problem Naive contribution from decay/inverse decay M 2 N i lh = M 0 2 (1 + ɛ i ) M 2 lh N i = M 0 2 (1 ɛ i ) M 2 N i l c h = M 0 2 (1 ɛ i ) M 2 l c h N i = M 0 2 (1 + ɛ i ) dn B L dt ( M 2 N i lh M 2 N i l c h)n Ni ( M 2 lh N i M 2 l c h N i )N eq N i

13 Double Counting Problem Naive contribution from decay/inverse decay M 2 N i lh = M 0 2 (1 + ɛ i ) M 2 lh N i = M 0 2 (1 ɛ i ) M 2 N i l c h = M 0 2 (1 ɛ i ) M 2 l c h N i = M 0 2 (1 + ɛ i ) dn B L dt ( M 2 N i lh M 2 N i l c h)n Ni ( M 2 lh N i M 2 l c h N i )N eq N i ɛ i (N Ni +N eq N i ) spurious generation of asymmetry even in equilibrium Origin: Double Counting Problem + need real intermediate state subtraction... derivation from first principles / generalization?

14 Leptogenesis - resonant enhancement Efficiency of leptogenesis depends on CP-violating parameter, which is one-loop suppressed ɛ Ni = Γ(N i lφ ) Γ(N i l c φ) Γ(N i lφ ) + Γ(N i l c φ) Im + Self-energy (or wave ) contribution to CP-violating parameter features a resonant enhancement for a quasi-degenerate spectrum M 1 M 2 M 3 Flanz Paschos Sarkar 94/96; Covi Roulet Vissani 96; ɛ wave N i = Im[(h h) 2 12] 8π(h h) ii M1M2 M 2 2 M2 1

15 Leptogenesis - resonant enhancement Efficiency of leptogenesis depends on CP-violating parameter, which is one-loop suppressed ɛ Ni = Γ(N i lφ ) Γ(N i l c φ) Γ(N i lφ ) + Γ(N i l c φ) Im + Self-energy (or wave ) contribution to CP-violating parameter features a resonant enhancement for a quasi-degenerate spectrum M 1 M 2 M 3 Flanz Paschos Sarkar 94/96; Covi Roulet Vissani 96; ɛ wave N i = Im[(h h) 2 12] 8π(h h) ii M1M2 M 2 2 M2 1 On-shell initial N 1: p 2 = M 2 1 Internal N 2: i p 2 M2 2

16 Resonant leptogenesis Flanz Paschos Sarkar Weiss 96; effective Hamiltonian approach ɛ Ni = Im[(h h) 2 12 ] 16π(h h) ii M 1 (M 2 M 1 ) (M 2 M 1 ) 2 + M 2 1 (Re(h h) 12 /(16π)) 2 Covi Roulet 96; CP violating decay of mixing scalar fields described by effective mass matrix; formalism as in Liu Segre 93 Pilaftsis 97; Pilaftsis Underwood 03; Pole mass expansion of resummed propagators ɛ Ni = Im[(h h) 2 ij ] (h h) ii (h h) jj (M 2 i M 2 j )M i Γ j (M 2 i M 2 j )2 + M 2 i Γ2 j Buchmüller Plümacher 97; Diagonalization of resummed propagators ɛ Ni = Im[(h h) 2 12 ] M 1 M 2 (M2 2 M2 1 ) 8π(h h) ii (M2 2 M2 1 1 π Γ i M i ln M2 2 ) 2 + (M 1 Γ 1 M 2 Γ 2 ) 2 Rangarajan Mishra 99; comparison of different approaches Anisimov Broncano Plümacher 05; Reconciliation of diagonalization approach with the pole mass expansion approach Invariant quantity M 1 M 2 (M2 2 M2 1 )Im(h h) 2 12 related to CP violation appears in the enumerator M 2 1

17 Resonant leptogenesis The results can be summarized (neglecting log-corrections) as ɛ Ni = Im[(h h) 2 12] 8π(h h) ii R, R M1M2(M2 2 M 2 1 ) (M 2 2 M2 1 )2 + A 2 Different calculations correspond to different expressions for the regulator A 2 A 2 = ( ) 1 4 (M1 + Re(h 2 h)12 M2)4 Flanz Paschos Sarkar Weiss 96 16π M 2 i Γ 2 j Pilaftsis 97; Pilaftsis Underwood 03 (M 1Γ 1 M 2Γ 2) 2 Buchmüller Plümacher 97; Anisimov Broncano Plümacher 05; The regulator is relevant for determining the maximal possible resonant enhancement, which occurs for M 2 2 M 2 1 = ±A, and is given by R max = M1M2 2 A

18 Resonant leptogenesis The origin of the regulator is the finite width of N 1 and N 2 Off-shell initial N 1: p 2 = M im 1Γ 1 Internal N 2: i p 2 M 2 2 im 2Γ 2

19 Resonant leptogenesis The origin of the regulator is the finite width of N 1 and N 2 Off-shell initial N 1: p 2 = M im 1Γ 1 Internal N 2: i p 2 M 2 2 im 2Γ 2 In the maximal resonant case M 2 M 1 = O(Γ i ), the spectral functions overlap ρ(k 0 )/ρ max 1 m Γ Γ k 0 /m deviation from equilibrium is essential desirable to go beyond the quasi-particle approximation which underlies the conventional semi-classical Boltzmann approach.

20 CTP/Kadanoff-Baym approach to leptogenesis Goal(s) (1) derivation of kinetic equations starting from first principles on-/off-shell treated in a unified way (avoid double-counting) medium corrections,...

21 CTP/Kadanoff-Baym approach to leptogenesis Goal(s) (1) derivation of kinetic equations starting from first principles on-/off-shell treated in a unified way (avoid double-counting) medium corrections,... (2) check resonant enhancement w/o resorting to kinetic description (KB) coherent flavor transitions,...

22 CTP/Kadanoff-Baym approach to leptogenesis Goal(s) (1) derivation of kinetic equations starting from first principles on-/off-shell treated in a unified way (avoid double-counting) medium corrections,... (2) check resonant enhancement w/o resorting to kinetic description (KB) coherent flavor transitions,... (... incomplete list) Buchmüller, Fredenhagen hep-ph/004145; De Simone, Riotto hep-ph/ , Anisimov, Buchmüller, Drewes, Mendizabal , MG, Kartavtsev, Hohenegger, Lindner , Beneke, Fidler, Garbrecht, Herranen, Schwaller , Garbrecht ; Gagnon, Shaposhnikov (Poster) MG, Kartavtsev, Hohenegger , , Drewes, Mendizabal, Weniger Garbrecht, Herranen (next talk); Garbrecht ;Garbrecht, Drewes see also Fidler, Herranen, Kainulainen, Rahkila ; Canetti, Drewes, Shaposhnikov (Poster) Frossard, MG, Kartavtsev, Hohenegger (Poster); Huetig, Mendizabal, Philipsen (Poster)

23 CTP/Kadanoff-Baym approach to leptogenesis Lepton current j µ L (x) = α l α(x)γ µ l α(x) [ ] = tr γ µ S αβ l (x, x)

24 CTP/Kadanoff-Baym approach to leptogenesis Lepton current j µ L (x) = α l α(x)γ µ l α(x) [ ] = tr γ µ S αβ l (x, x) Lepton asymmetry n L (t) = 1 V V d 3 x j 0 L(t, x)

25 CTP/Kadanoff-Baym approach to leptogenesis Lepton current j µ L (x) = α l α(x)γ µ l α(x) [ ] = tr γ µ S αβ l (x, x) Lepton asymmetry Equation of motion dn L dt = 1 V V n L (t) = 1 V d 3 x µj µ L (x) = 1 V V V d 3 x j 0 L(t, x) [ ] d 3 x tr γ µ( x µ + y µ )S αβ l (x, y) x=y

26 CTP/Kadanoff-Baym approach to leptogenesis Lepton current j µ L (x) = α l α(x)γ µ l α(x) [ ] = tr γ µ S αβ l (x, x) Lepton asymmetry Equation of motion dn L dt = 1 V V n L (t) = 1 V d 3 x µj µ L (x) = 1 V V V d 3 x j 0 L(t, x) Use KB equations for leptons on the right-hand side [ ] d 3 x tr γ µ( x µ + y µ )S αβ l (x, y) x=y dn L dt t [ = i dt d 3 p αγ tr Σ (2π) 3 l ρ p (t, t γβ )S l F p (t αγ, t) Σ l F p (t, t γβ )S l ρ p(t, t) 0 ] αγ S l ρ p (t, t γβ )Σ l F p (t αγ, t) + S l F p (t, t γβ )Σ l ρ p(t, t)

27 CTP/Kadanoff-Baym approach to leptogenesis N lφ N l c φ tree 2 tree vertex-corr. tree wave-corr. lφ l c φ s t s s, t t unified description of CP-violating decay, inverse decay, scattering

28 CTP/Kadanoff-Baym approach to leptogenesis N lφ N l c φ tree 2 tree vertex-corr. tree wave-corr. lφ l c φ s t s s, t t unified description of CP-violating decay, inverse decay, scattering dn L /dt vanishes in equilibrium due to KMS relations S eq F = 1 ( ) βk 0 2 tanh Sρ eq 2 Σ eq F = 1 ( ) βk 0 2 tanh Σ eq ρ 2 consistent equations free of double-counting problems MG, Kartavtsev, Hohenegger, Lindner 09; Beneke, Garbrecht, Herranen, Schwaller 10;

29 CTP/Kadanoff-Baym approach to leptogenesis Hierarchical case (η η vac )/η vac 10 2 η/ǫ vac η vac /ǫ vac 1 η η vac a b c d e f κ washout-parameter K = (Γ/H) T =M m 1/meV thermal initial abundance MG, Kartavtsev, Hohenegger, Lindner 10

30 Resonant enhancement Statistical propagator S F and spectral function S ρ are matrices in N 1, N 2, N 3 flavor space. We consider the sub-space N 1, N 2 of the quasi-degenerate states. ( ) S ij S 11 S (x, y) = T C N i (x) N 12 j (y) = S 21 S 22 coherent N 1 N 2 transitions out-of-equilibrium

31 Resonant enhancement Statistical propagator S F and spectral function S ρ are matrices in N 1, N 2, N 3 flavor space. We consider the sub-space N 1, N 2 of the quasi-degenerate states. ( ) S ij S 11 S (x, y) = T C N i (x) N 12 j (y) = S 21 S 22 coherent N 1 N 2 transitions out-of-equilibrium Self-energies for leptons and for Majorana neutrinos Γ 2 = φ N l N l l φ φ φ }{{}}{{} Σ αβ iγ l (x,y)= 2 S βα Σ ij N (x,y)= iγ 2 l (y,x) S ji (y,x) Solve KBEs treating lepton and Higgs as a thermal bath (no backreaction); include qualitative damping term for lepton/higgs (not essential, but practical; no consistent treatment of gauge-int. yet; see Poster by Janine Hütig) [ hierarchical case: Anisimov, Buchmüller, Drewes, Mendizabal 08,10 ] Important: lepton self-energy contains full Majorana propagator-matrix

32 Resonant enhancement Kadanoff-Baym Equations ((i / x M i )δ ik δσ N (x) ik )S kj F (x, y) = x 0 ((i / x M i )δ ik δσ N (x) ik )S kj ρ (x, y) = dz 0 0 y 0 0 x 0 y 0 dz 0 dz 0 d 3 ik z Σ N ρ (x, z)s kj F (z, y) d 3 z Σ N ik F (x, z)s kj ρ (z, y) d 3 z Σ N ik ρ (x, z)s kj ρ (z, y)

33 Decay of nearly-degenerate Majorana neutrinos Goal: obtain analytical result by taking essential features into account (width, coherent flavor-mixing, memory integrals) [later: compare with numerical treatment]

34 Decay of nearly-degenerate Majorana neutrinos Goal: obtain analytical result by taking essential features into account (width, coherent flavor-mixing, memory integrals) [later: compare with numerical treatment] First step: Non-equilibrium Majorana propagator in BW appr. S ij ij th F p (t, t ) = SF p (t t ) + S ij F p (t, t )

35 Decay of nearly-degenerate Majorana neutrinos Goal: obtain analytical result by taking essential features into account (width, coherent flavor-mixing, memory integrals) [later: compare with numerical treatment] First step: Non-equilibrium Majorana propagator in BW appr. S ij ij th F p (t, t ) = SF p (t t ) + S ij F p (t, t ) Second step: Lepton asymmetry t t n L (t) = i(h h) ji dt dt 0 0 d 3 p (2π) 3 ( ) tr [P R S ij F p (t, t ) S ji F p(t, t ) }{{} Deviation from equilibrium, CP-violation S ji F p(t, t ) = CP S ij F p (t, t ) T (CP) 1 lepton-higgs loop S lφ = S l φ ] P L S lφρ p (t t )

36 Majorana neutrino propagator Retarded and advanced propagators S R (x, y) = Θ(x 0 y 0 )S ρ(x, y) S A (x, y) = Θ(y 0 x 0 )S ρ(x, y) The Kadanoff-Baym equation for the statistical propagator can be written as 0 [( (i d 4 ) z / x M i δ ik δσ ik N (x)) ] ik δ(x z) Σ N R (x, z) = Special solution of the inhomogeneous equation S ij F (x, y) inhom = 0 d 4 us ik R (x, u) 0 0 S kj F (z, y) d 4 ik z Σ N F (x, z)s kj A (z, y) d 4 kl z Σ N F (u, z)s lj (z, y) General solution of the homogeneous equation S ij F (x, y) hom = d 3 u SR ik (x, (0, u)) d 3 v A kl (u, v)s lj A ((0, v), y) where A kl (u, v) is a free function A

37 Majorana neutrino propagator 10 0 pole mass difference and effective width pole pole pole M pole 2 M pole 1, Γ pole I [M1] Re(h h)12/(8π) M pole M pole 1 Γ pole 1 Γ pole (M 2 M 1 )/M 1 Effective masses M pole I ω pi p=0 and widths Γ pole I Γ pi p=0 of the sterile Majorana neutrinos extracted from complex poles of resummed ret/adv prop. for (h h) 11 = 0.03, (h h) 22 = 0.045, (h h) 12 = 0.03 e iπ/4 and T = 0.25M 1.

38 Majorana neutrino propagator Regime (M 2 M 1)/M 1 Re(h h) 12/(8π) M pole i M i, Γ pole i Γ i (h h) ii 8π M i Regime (M 2 M 1)/M 1 Re(h h) 12/(8π) M pole i Γ pole i M i 16π ( ) e M i /T 1 M1 + M2 (M 2 M 1)((h h) 22 (h h) 11) ± 2 2 ((h h) 22 (h h) 11) 2 + 4(Re(h h), 12) 2 ( ) 2 ( 1 + (h h) e M i /T 11 + (h h) 22 1 ± ) ((h h) 22 (h h) 11) 2 + 4(Re(h h) 12) 2 The relation between the mass- and Yukawa coupling matrices at zero and finite temperature is M(T ) = (P L Z(T ) T + P R Z(T ) )M(T = 0)(P L Z(T ) + P R Z(T ) ), (h h)(t ) = Z(T ) T (h h)(t = 0)Z(T ), where Z ij (T ) V ik (T )(δ kj + (h h) kj T 2 /(6µ 2 )), V (T ) V (T ) = 1

39 Result for the lepton asymmetry n L (t) = d 3 p d 3 q d 3 k (2π) 9 2q 2k (2π)3 δ(p k q) I,J=1,2 ɛ n=±1 F ɛn JI Lɛn IJ (t)

40 Result for the lepton asymmetry n L (t) = d 3 p d 3 q d 3 k (2π) 9 2q 2k (2π)3 δ(p k q) I,J=1,2 ɛ n=±1 F ɛn JI Lɛn IJ (t) Coefficients F depend on Yukawa couplings, thermal distributions of lepton and Higgs, resummed ret/adv propagators and initial conditions F ɛn JI = ( ( (h h) 1 ji + f 2 φ(q) ) ( + ɛ 1 2ɛ 3 f 2 l(k) )) [ tr P L ( k γ 0 + ɛ 2kγ) ijkl=1,2 ( S ikɛ 4 RI γ 0 S kl F p(0, 0)γ 0S ljɛ 1 AJ S jkɛ 4 RI )] γ 0 S kl liɛ F p(0, 0)γ 0 S 1 AJ

41 Result for the lepton asymmetry n L (t) = d 3 p d 3 q d 3 k (2π) 9 2q 2k (2π)3 δ(p k q) I,J=1,2 ɛ n=±1 F ɛn JI Lɛn IJ (t) Coefficients F depend on Yukawa couplings, thermal distributions of lepton and Higgs, resummed ret/adv propagators and initial conditions F ɛn JI = ( ( (h h) 1 ji + f 2 φ(q) ) ( + ɛ 1 2ɛ 3 f 2 l(k) )) [ tr P L ( k γ 0 + ɛ 2kγ) ijkl=1,2 ( S ikɛ 4 RI γ 0 S kl F p(0, 0)γ 0S ljɛ 1 AJ S jkɛ 4 RI )] γ 0 S kl liɛ F p(0, 0)γ 0 S 1 AJ Time-dependence: flavor diagonal and off-diagonal contributions: ( ) L ± II (t) = 1 e Γ pi t Γ lφ Re Γ pi (ω pi k q + iγ pi /2) 2 + Γ 2 lφ /4 ( L ± 21(t) = 1 e i(ω p1 ω p2 )t e (Γ p1+γ p2 )t/2 Γ lφ Γ p1 + Γ p2 ± 2i(ω p1 ω p2) (ω p1 k q ± iγ p1/2) 2 + Γ 2 lφ /4 ) Γ lφ + (ω p2 k q iγ p2/2) 2 + Γ 2 lφ /4 = L ± 12(t)

42 Resonant enhancement Comparison KB Boltzmann: hierarchical limit n Boltzmann n L (t) = Im[(h h) 2 12] M 1 8π M 2 L (t) = Im[(h h) 2 12] 8π (2π) 3 δ(p k q) Re d 3 p d 3 q d 3 k 4k (2π) 9 p1 ω p1 2q 2k (1 + f φ (q) f l (k)) f FD (ω p1) 1 e Γ p1t M 1 M 2 Γ lφ (ω p1 k q + iγ p1/2) 2 + Γ 2 lφ /4 Γ p1 d 3 p d 3 q d 3 k 4k (2π) 9 p1 ω p1 2q 2k (2π) 3 δ(p k q) 2πδ(ω p1 k q) (1 + f φ (q) f l (k)) f FD (ω p1) 1 e Γ p1t Γ p1. The thermal width of lepton and Higgs Γ lφ = Γ l + Γ φ leads to a replacement of the on-shell delta function in the Boltzmann equations by a Breit-Wigner curve, in accordance with Anisimov, Buchmüller, Drewes, Mendizabal 10 The coherent contributions are suppressed with Γ p1/ω p2

43 Resonant enhancement Comparison KB Boltzmann: degenerate case n L (t) = Im[(h h) 2 12] 8π M 1M 2(M2 2 M1 2 ) (M2 2 M2 1 )2 + (M 1Γ 1 M 2Γ 2) 2 Γ lφ d 3 p d 3 q d 3 k (2π) 9 ω p 2q 2k 4k p (2π) 3 δ(p k q) (ω p k q) 2 + Γ 2 lφ /4 (1 + f φ f l )f FD (ω p) [ ( 1 e Γ pi t 1 e i(ω p1 ω p2 )t e (Γ p1+γ p2 ) ] )t/2 4 Re Γ p1 + Γ p2 + 2i(ω p1 ω p2) I =1,2 n Boltzmann L (t) = Im[(h h) 2 12] 8π Γ pi M 1M 2(M2 2 M1 2 ) (M2 2 M2 1 )2 + (M 1Γ 1 M 2Γ 2) 2 d 3 p d 3 q d 3 k (2π) 9 ω p 2q 2k 4k p (2π) 3 δ(p k q) 2πδ(ω p k q) (1 + f φ f l )f FD (ω p) [ ] 1 e Γ pi t I =1,2 Γ pi

44 Resonant enhancement Comparison KB Boltzmann: degenerate case n L (t) = Im[(h h) 2 12] 8π M 1M 2(M2 2 M1 2 ) (M2 2 M2 1 )2 + (M 1Γ 1 M 2Γ 2) 2 Γ lφ d 3 p d 3 q d 3 k (2π) 9 ω p 2q 2k 4k p (2π) 3 δ(p k q) (ω p k q) 2 + Γ 2 lφ /4 (1 + f φ f l )f FD (ω p) [ ( 1 e Γ pi t 1 e i(ω p1 ω p2 )t e (Γ p1+γ p2 ) ] )t/2 4 Re Γ p1 + Γ p2 + 2i(ω p1 ω p2) I =1,2 n Boltzmann L (t) = Im[(h h) 2 12] 8π Γ pi M 1M 2(M2 2 M1 2 ) (M2 2 M2 1 )2 + (M 1Γ 1 M 2Γ 2) 2 d 3 p d 3 q d 3 k (2π) 9 ω p 2q 2k 4k p (2π) 3 δ(p k q) 2πδ(ω p k q) (1 + f φ f l )f FD (ω p) [ ] 1 e Γ pi t I =1,2 Γ pi Regulator M 1Γ 1 M 2Γ 2 is confirmed

45 Resonant enhancement Comparison KB Boltzmann: degenerate case n L (t) = Im[(h h) 2 12] 8π M 1M 2(M2 2 M1 2 ) (M2 2 M2 1 )2 + (M 1Γ 1 M 2Γ 2) 2 Γ lφ d 3 p d 3 q d 3 k (2π) 9 ω p 2q 2k 4k p (2π) 3 δ(p k q) (ω p k q) 2 + Γ 2 lφ /4 (1 + f φ f l )f FD (ω p) [ ( 1 e Γ pi t 1 e i(ω p1 ω p2 )t e (Γ p1+γ p2 ) ] )t/2 4 Re Γ p1 + Γ p2 + 2i(ω p1 ω p2) I =1,2 n Boltzmann L (t) = Im[(h h) 2 12] 8π Γ pi M 1M 2(M2 2 M1 2 ) (M2 2 M2 1 )2 + (M 1Γ 1 M 2Γ 2) 2 d 3 p d 3 q d 3 k (2π) 9 ω p 2q 2k 4k p (2π) 3 δ(p k q) 2πδ(ω p k q) (1 + f φ f l )f FD (ω p) [ ] 1 e Γ pi t I =1,2 Γ pi Regulator M 1Γ 1 M 2Γ 2 is confirmed Additional oscillating contribution due to coherent N 1 N 2 transitions

46 Resonant enhancement MG, Kartavtsev, Hohenegger n L (t, p)/n Boltzmann L (t =, p) Boltzmann KB M 2 = 1.5M 1 KB M 2 = 1.1M 1 KB M 2 = 1.025M 1 KB M 2 = 1.005M t [1/Γ 1 ] n L (t) = d 3 p (2π) 3 n L (t, p), Γ 1 = 0.01M 1, Γ 2 = 0.015M 1, Γ lφ 0

47 Resonant enhancement Resonant enhancement within the Boltzmann approach R Boltzmann M1M2(M2 2 M 2 1 ) (M 2 2 M2 1 )2 + A 2

48 Resonant enhancement Resonant enhancement within the Boltzmann approach R Boltzmann M1M2(M2 2 M 2 1 ) (M 2 2 M2 1 )2 + A 2 Resonant enhancement within the Kadanoff-Baym approach, including coherent contributions ( (h h) 12 (h h) ii ) R KB (t) = M 1M 2(M 2 2 M 2 1 ) (M 2 2 M2 1 )2 + (M 1Γ 1 M 2Γ 2) 2 (1 f coherent(t))

49 Resonant enhancement Resonant enhancement within the Boltzmann approach R Boltzmann M1M2(M2 2 M 2 1 ) (M 2 2 M2 1 )2 + A 2 Resonant enhancement within the Kadanoff-Baym approach, including coherent contributions ( (h h) 12 (h h) ii ) R KB (t) = M 1M 2(M 2 2 M 2 1 ) (M 2 2 M2 1 )2 + (M 1Γ 1 M 2Γ 2) 2 (1 f coherent(t)) Partial cancellation of Boltzmann- and coherent contribution cuts off the enhancement in the doubly degenerate limit M 1 M 2 and Γ 1 Γ 2 R KB (t) t 1/ΓpI M 1M 2(M 2 2 M 2 1 ) (M 2 2 M2 1 )2 + (M 1Γ 1 + M 2Γ 2) 2

50 Resonant enhancement MG, Kartavtsev, Hohenegger R max Boltzmann R Boltzmann R KB (t = ) R KB (t = 1/Γ 1) R KB (t = 0.25/Γ 1) R 10 R KB max 1 M1Γ1 M2Γ2 M1Γ1 + M2Γ (M 2 2 M 2 1 )/M 2 1 Γ 2 /Γ 1 = 1.5 R Boltzmann max = M 1M 2/(2 Γ 1M 1 Γ 2M 2 ), R KB max = M 1M 2/(2(Γ 1M 1 + Γ 2M 2))

51 Resonant enhancement MG, Kartavtsev, Hohenegger R max Boltzmann R Boltzmann R KB (t = ) R KB (t = 1/Γ 1) R KB (t = 0.25/Γ 1) R 10 R KB max R KB, h h12 h h11 = 0.5 R KB, h h12 h h11 = M1Γ1 M2Γ2 M1Γ1 + M2Γ (M 2 2 M 2 1 )/M 2 1 Γ 2 /Γ 1 = 1.5 R Boltzmann max = M 1M 2/(2 Γ 1M 1 Γ 2M 2 ), R KB max = M 1M 2/(2(Γ 1M 1 + Γ 2M 2))

52 Conclusions First-principles methods like Kadanoff-Baym equations are helpful to scrutinize classical approximations Resonant enhancement on the closed time path valid for M Γ, effective width/mass, flavor coherence smaller enhancement than Boltzmann Rmax Boltzmann = M 1 M 2 /(2 Γ 1 M 1 Γ 2 M 2 ) Rmax KB M 1 M 2 /(2(Γ 1 M 1 + Γ 2 M 2 )) numerical solution for h h 12 h h ii (check BW appr.) relevant e.g. for flavor symmetries ( M/M, Γ/Γ 1) effective density matrix approach in zero-width limit

53 Conclusions First-principles methods like Kadanoff-Baym equations are helpful to scrutinize classical approximations Resonant enhancement on the closed time path valid for M Γ, effective width/mass, flavor coherence smaller enhancement than Boltzmann Rmax Boltzmann = M 1 M 2 /(2 Γ 1 M 1 Γ 2 M 2 ) Rmax KB M 1 M 2 /(2(Γ 1 M 1 + Γ 2 M 2 )) numerical solution for h h 12 h h ii (check BW appr.) relevant e.g. for flavor symmetries ( M/M, Γ/Γ 1) effective density matrix approach in zero-width limit thank you!

54 Majorana neutrino propagator Treating lepton/higgs as a thermal bath, the Majorana neutrino propagator is given by S ij ij th F p (t, t ) = SF p (t t ) + SR ik p(t)γ 0 SF kl p(0, 0)γ 0S lj A p ( t ) }{{} S ij F p (t, t ) The resummed retarded and advanced functions can be obtained by solving a SD equation (we use MS at T = 0 and µ = (M 1 + M 2)/2) [ (/ ) ] p M i δ ik δσ ik ik N (p) Σ N R(A)(p) S kj R(A) (p) = δij Σ N ij R(A) (p) = 2 [ (h h) ij P L + (h h) ji P R ] S lφr(a) (p) vac S lφ R(A) (p) = 1 ( 1 32π 2 ɛ γ E + ln(4π) + 2 ln ( p 2 µ 2 ) ) ± iπθ(p 2 )sign(p 0) /p S lφ th R(A) (p) T 2 /p/(12p 2 ) ± 2i /p/(e p 0 /T 1)Θ(p 2 )sign(p 0)/(32π)

55 Majorana neutrino propagator Solve SD equation for S R(A) (p) in Breit-Wigner approximation: S ij R(A) (p) Z ij 1R(A) + Z ij 2R(A) p 2 x 1 p 2 x 2 with residua Z ij IR(A) and complex poles x I (basis independent) where x 1,2 = (V ± W )2 4Q 2 ( ω pi i Γ ) 2 pi p 2 2 V = (η 1M 1(1 + iγ 22) η 2M 2(1 + iγ 11)) 2 4η 1η 2M 1M 2(Reγ 12) 2 W = (η 1M 1(1 + iγ 22) + η 2M 2(1 + iγ 11)) 2 + 4η 1η 2M 1M 2(Imγ 12) 2 Q = det Ω LR = det Ω RL = (1 + iγ 11)(1 + iγ 22) + γ 12 2 γ ij (h h) ij Θ(p2 )sign(p 0) 16π ( ) e p 0 /T 1 + i 2 p ln µ 2 16π + T 2 2 6p T 2 2 6µ 2

CTP Approach to Leptogenesis

CTP Approach to Leptogenesis CTP Approach to Leptogenesis Matti Herranen a in collaboration with Martin Beneke a Björn Garbrecht a Pedro Schwaller b Institut für Theoretische Teilchenphysik und Kosmologie, RWTH Aachen University a

More information

Leptogenesis. Neutrino 08 Christchurch, New Zealand 30/5/2008

Leptogenesis. Neutrino 08 Christchurch, New Zealand 30/5/2008 Leptogenesis Neutrino 08 Christchurch, New Zealand 30/5/2008 Yossi Nir (Weizmann Institute of Science) Sacha Davidson, Enrico Nardi, YN Physics Reports, in press [arxiv:0802.2962] E. Roulet, G. Engelhard,

More information

Kadanoff-Baym Equations and Baryogenesis

Kadanoff-Baym Equations and Baryogenesis KBE, Kiel, 13.10.11 Nonequilibrium dynamics at high energy Heavy Ion Collisions LHC: ALICE RHIC Early universe Reheating after Inflation Dark matter freeze-out Baryogenesis... Outline Matter-Antimatter

More information

Recent progress in leptogenesis

Recent progress in leptogenesis XLIII rd Rencontres de Moriond Electroweak Interactions and Unified Theories La Thuile, Italy, March 1-8, 2008 Recent progress in leptogenesis Steve Blanchet Max-Planck-Institut for Physics, Munich March

More information

On the double-counting problem in Boltzmann equations and real-intermediate state subtraction

On the double-counting problem in Boltzmann equations and real-intermediate state subtraction On the double-counting problem in Boltzmann equations and real-intermediate state subtraction Mcgill University, Nov. 2017 Outline 1 Introduction Baryogenesis 2 History S.Wolfram and E.Kolb (1980) Issues

More information

arxiv: v1 [hep-ph] 2 Jun 2015

arxiv: v1 [hep-ph] 2 Jun 2015 TeV Scale Leptogenesis P. S. Bhupal Dev arxiv:1506.00837v1 [hep-ph] 2 Jun 2015 Abstract This is a mini-review on the mechanism of leptogenesis, with a special emphasis on low-scale leptogenesis models

More information

Effects of Reheating on Leptogenesis

Effects of Reheating on Leptogenesis Effects of Reheating on Leptogenesis Florian Hahn-Woernle Max-Planck-Institut für Physik München 2. Kosmologietag Florian Hahn-Woernle (MPI-München) Effects of Reheating on Leptogenesis Kosmologietag 2007

More information

Leptogenesis: Improving predictions for experimental searches

Leptogenesis: Improving predictions for experimental searches : Improving predictions for experimental searches Physik Department T70, Technische Universität München, James Franck Straße 1, D-85748 E-mail: marco.drewes@tum.de Björn Garbrecht Physik Department T70,

More information

Neutrino Oscillation, Leptogenesis and Spontaneous CP Violation

Neutrino Oscillation, Leptogenesis and Spontaneous CP Violation Neutrino Oscillation, Leptogenesis and Spontaneous CP Violation Mu-Chun Chen Fermilab (Jan 1, 27: UC Irvine) M.-C. C & K.T. Mahanthappa, hep-ph/69288, to appear in Phys. Rev. D; Phys. Rev. D71, 351 (25)

More information

Leptogenesis via varying Weinberg operator

Leptogenesis via varying Weinberg operator Silvia Pascoli IPPP, Department of Physics, Durham University, Durham DH1 3LE, United Kingdom E-mail: silvia.pascoli@durham.ac.uk Jessica Turner Theoretical Physics Department, Fermi National Accelerator

More information

A biased review of Leptogenesis. Lotfi Boubekeur ICTP

A biased review of Leptogenesis. Lotfi Boubekeur ICTP A biased review of Leptogenesis Lotfi Boubekeur ICTP Baryogenesis: Basics Observation Our Universe is baryon asymmetric. n B s n b n b s 10 11 BAU is measured in CMB and BBN. Perfect agreement with each

More information

Entropy, Baryon Asymmetry and Dark Matter from Heavy Neutrino Decays.

Entropy, Baryon Asymmetry and Dark Matter from Heavy Neutrino Decays. Entropy, Baryon Asymmetry and Dark Matter from Heavy Neutrino Decays. Kai Schmitz Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany Based on arxiv:1008.2355 [hep-ph] and arxiv:1104.2750 [hep-ph].

More information

Successful Leptogenesis in the Left-Right Symmetric Seesaw Mechanism

Successful Leptogenesis in the Left-Right Symmetric Seesaw Mechanism Successful Leptogenesis in the Left-Right Symmetric Seesaw Mechanism Pierre Hosteins Patras University 13th November 2007 Brussels P.H., S. Lavignac and C. Savoy, Nucl. Phys. B755, arxiv:hep-ph/0606078

More information

Testing leptogenesis at the LHC

Testing leptogenesis at the LHC Santa Fe Summer Neutrino Workshop Implications of Neutrino Flavor Oscillations Santa Fe, New Mexico, July 6-10, 2009 Testing leptogenesis at the LHC ArXiv:0904.2174 ; with Z. Chacko, S. Granor and R. Mohapatra

More information

arxiv: v1 [hep-ph] 25 Jan 2008

arxiv: v1 [hep-ph] 25 Jan 2008 Effects of reheating on leptogenesis arxiv:0801.3972v1 [hep-ph] 25 Jan 2008 F. Hahn-Woernle and M. Plümacher Max Planck Institute for Physics, Föhringer Ring 6, 80805 Munich, Germany Abstract We study

More information

SOME COMMENTS ON CP-VIOLATION AND LEPTOGENESIS

SOME COMMENTS ON CP-VIOLATION AND LEPTOGENESIS Marco Drewes TU München 23. 8. 2016, NuFact, Quy Nhon, Vietnam 1 / 7 The Standard Model and General Relativity together explain almost all phenomena observed in nature, but... gravity is not quantised

More information

Baryogenesis. David Morrissey. SLAC Summer Institute, July 26, 2011

Baryogenesis. David Morrissey. SLAC Summer Institute, July 26, 2011 Baryogenesis David Morrissey SLAC Summer Institute, July 26, 2011 Why is There More Matter than Antimatter? About 5% of the energy density of the Universe consists of ordinary (i.e. non-dark) matter. By

More information

Neutrino masses. Universe

Neutrino masses. Universe Università di Padova,, 8 May, 2008 Neutrino masses and the matter-antimatter antimatter asymmetry of the Universe (new results in collaboration with Steve Blanchet to appear soon) Pasquale Di Bari (INFN,

More information

Leptogenesis with Composite Neutrinos

Leptogenesis with Composite Neutrinos Leptogenesis with Composite Neutrinos Based on arxiv:0811.0871 In collaboration with Yuval Grossman Cornell University Friday Lunch Talk Yuhsin Tsai, Cornell University/CIHEP Leptogenesis with Composite

More information

Relativistic KBEs for correlated initial states and baryogenesis

Relativistic KBEs for correlated initial states and baryogenesis Relativistic Kadanoff-Baym equations for correlated initial states and baryogenesis KBE21, CAU Kiel, 23 26.3.21 based on Phys.Rev.D8:8511,29 with Markus Michael Müller ongoing work with Urko Reinosa Outline

More information

Sterile Neutrino Dark Matter & Low Scale Leptogenesis from a Charged Scalar

Sterile Neutrino Dark Matter & Low Scale Leptogenesis from a Charged Scalar Sterile Neutrino Dark Matter & Low Scale Leptogenesis from a Charged Scalar Michele Frigerio Laboratoire Charles Coulomb, CNRS & UM2, Montpellier MF & Carlos E. Yaguna, arxiv:1409.0659 [hep-ph] GDR neutrino

More information

Neutrino theory of everything? dark matter, baryogenesis and neutrino masses

Neutrino theory of everything? dark matter, baryogenesis and neutrino masses Neutrino theory of everything? dark matter, baryogenesis and neutrino masses 25 th International Workshop on Weak Interactions and Neutrinos (WIN2015) June 8-13, 2015, MPIK Heidelberg, Germany @Heidelberg

More information

Astroparticle Physics and the LC

Astroparticle Physics and the LC Astroparticle Physics and the LC Manuel Drees Bonn University Astroparticle Physics p. 1/32 Contents 1) Introduction: A brief history of the universe Astroparticle Physics p. 2/32 Contents 1) Introduction:

More information

Leptogenesis from GeV-Scale Sterile Neutrinos

Leptogenesis from GeV-Scale Sterile Neutrinos Leptogenesis from GeV-Scale Sterile Neutrinos Björn Garbrecht Physik-Department T70 Technische Universität München Lorentz Center Workshop Matter over Antimatter: The Sakharov conditions After 50 years

More information

Natural Nightmares for the LHC

Natural Nightmares for the LHC Dirac Neutrinos and a vanishing Higgs at the LHC Athanasios Dedes with T. Underwood and D. Cerdeño, JHEP 09(2006)067, hep-ph/0607157 and in progress with F. Krauss, T. Figy and T. Underwood. Clarification

More information

Leptogenesis in Higgs triplet model

Leptogenesis in Higgs triplet model Leptogenesis in Higgs triplet model S. Scopel Korea Institute of Advanced Study (KIAS) Seoul (Korea) Dark Side of the Universe, Madrid,, 20-24 24 June 2006 Introduction Non-zero neutrino masses and mixing

More information

Matter vs Anti-matter

Matter vs Anti-matter Baryogenesis Matter vs Anti-matter Earth, Solar system made of baryons B Our Galaxy Anti-matter in cosmic rays p/p O(10 4 ) secondary Our Galaxy is made of baryons p galaxy p + p p + p + p + p galaxy γ

More information

Overview of mass hierarchy, CP violation and leptogenesis.

Overview of mass hierarchy, CP violation and leptogenesis. Overview of mass hierarchy, CP violation and leptogenesis. (Theory and Phenomenology) Walter Winter DESY International Workshop on Next Generation Nucleon Decay and Neutrino Detectors (NNN 2016) 3-5 November

More information

arxiv:hep-ph/ v2 16 Jun 2003

arxiv:hep-ph/ v2 16 Jun 2003 IFT-03/14 hep-ph/0306059 February 1, 2008 Limits on T reh for thermal leptogenesis with hierarchical neutrino masses arxiv:hep-ph/0306059v2 16 Jun 2003 Piotr H. Chankowski and Krzysztof Turzyński Institute

More information

Leptogenesis with Majorana neutrinos

Leptogenesis with Majorana neutrinos Leptogenesis with Majorana neutrinos E.A. Paschos a a Institut für Physik, Universität Dortmund D-4422 Dortmund, Germany I review the origin of the lepton asymmetry which is converted to a baryon excess

More information

Neutrino Masses SU(3) C U(1) EM, (1.2) φ(1, 2) +1/2. (1.3)

Neutrino Masses SU(3) C U(1) EM, (1.2) φ(1, 2) +1/2. (1.3) Neutrino Masses Contents I. The renormalizable Standard Model 1 II. The non-renormalizable Standard Model III. The See-Saw Mechanism 4 IV. Vacuum Oscillations 5 V. The MSW effect 7 VI. Experimental results

More information

Leptogenesis and the Flavour Structure of the Seesaw

Leptogenesis and the Flavour Structure of the Seesaw Leptogenesis and the Flavour Structure of the Seesaw based on: hep-ph/0609038 (JCAP 0611 (2006) 011) with S.F. King, A. Riotto hep-ph/0611232 (JCAP 0702 (2007) 024) with A.M. Teixeira arxiv:0704.1591 (Phys.

More information

Creating Matter-Antimatter Asymmetry from Dark Matter Annihilations in Scotogenic Scenarios

Creating Matter-Antimatter Asymmetry from Dark Matter Annihilations in Scotogenic Scenarios Creating Matter-Antimatter Asymmetry from Dark Matter Annihilations in Scotogenic Scenarios Based on arxiv:1806.04689 with A Dasgupta, S K Kang (SeoulTech) Debasish Borah Indian Institute of Technology

More information

Neutrinos and Cosmos. Hitoshi Murayama (Berkeley) Texas Conference at Stanford Dec 17, 2004

Neutrinos and Cosmos. Hitoshi Murayama (Berkeley) Texas Conference at Stanford Dec 17, 2004 Neutrinos and Cosmos Hitoshi Murayama (Berkeley) Texas Conference at Stanford Dec 17, 2004 Outline A Little Historical Perspective Interpretation of Data & Seven Questions Matter Anti-Matter Asymmetry

More information

Leptogenesis. Alejandro Ibarra Technische Universität München. Warsaw February 2010

Leptogenesis. Alejandro Ibarra Technische Universität München. Warsaw February 2010 Leptogenesis Alejandro Ibarra Technische Universität München Warsaw February 2010 Outline Evidence for a baryon asymmetry Sakharov conditions GUT baryogenesis Sphalerons Neutrino masses and its origin

More information

Thermal Leptogenesis. Michael Plümacher. Max Planck Institute for Physics Munich

Thermal Leptogenesis. Michael Plümacher. Max Planck Institute for Physics Munich Max Panck Institute for Physics Munich Introduction Introduction Probem #1: the universe is made of matter. Baryon asymmetry (from nuceosynthesis and CMB): η B n b n b n γ 6 10 10 must have been generated

More information

Duality in left-right symmetric seesaw

Duality in left-right symmetric seesaw Duality in left-right symmetric seesaw Evgeny Akhmedov KTH, Stockholm & Kurchatov Institute, Moscow In collaboration with Michele Frigerio Evgeny Akhmedov SNOW 2006 Stockholm May 4, 2006 p. 1 Why are neutrinos

More information

Electromagnetic Leptogenesis at TeV scale. Sudhanwa Patra

Electromagnetic Leptogenesis at TeV scale. Sudhanwa Patra Electromagnetic Leptogenesis at TeV scale Sudhanwa Patra Physical Research Laboratory, INDIA Collaboration with Debjyoti Choudhury, Namit Mahajan, Utpal Sarkar 25th Feb, 2011 Sudhanwa Patra, NuHorizon-IV,

More information

A model of the basic interactions between elementary particles is defined by the following three ingredients:

A model of the basic interactions between elementary particles is defined by the following three ingredients: I. THE STANDARD MODEL A model of the basic interactions between elementary particles is defined by the following three ingredients:. The symmetries of the Lagrangian; 2. The representations of fermions

More information

Inflaton decay in supergravity and the new gravitino problem

Inflaton decay in supergravity and the new gravitino problem Inflaton decay in supergravity and the new gravitino problem 10. December 2007 @ICRR, University of Tokyo Fuminobu Takahashi (Institute for the Physics and Mathematics of the Universe) Collaborators: Endo,

More information

Lepton number symmetry as a way to testable leptogenesis

Lepton number symmetry as a way to testable leptogenesis Lepton number symmetry as a way to testable leptogenesis ichele Lucente 5st Rencontres de oriond (arch th 6) ased on:. bada, G. rcadi, V. Domcke and.l., JP 5 (5), 4 [arxiv:57.65 [hep-ph]] Leptogenesis

More information

Thermal Quantum Field Theory in Real and Imaginary Time. Daniele Teresi

Thermal Quantum Field Theory in Real and Imaginary Time. Daniele Teresi Thermal Quantum Field Theory in Real and Imaginary Time daniele.teresi@hep.manchester.ac.uk University of Manchester 42nd BUSSTEPP - Durham University WHAT IS THERMAL QFT? ORDINARY VACUUM QFT few in and

More information

Baryogenesis and Particle Antiparticle Oscillations

Baryogenesis and Particle Antiparticle Oscillations Baryogenesis and Particle Antiparticle Oscillations Seyda Ipek UC Irvine SI, John March-Russell, arxiv:1604.00009 Sneak peek There is more matter than antimatter - baryogenesis SM cannot explain this There

More information

Leptogenesis and neutrino masses

Leptogenesis and neutrino masses XIV International Workshop on Neutrino Telescopes Venice, 15-18 18 March 2011 Leptogenesis and neutrino masses Pasquale Di Bari The double side of Leptogenesis Cosmology (early Universe) Cosmological Puzzles

More information

Astroparticle Physics at Colliders

Astroparticle Physics at Colliders Astroparticle Physics at Colliders Manuel Drees Bonn University Astroparticle Physics p. 1/29 Contents 1) Introduction: A brief history of the universe Astroparticle Physics p. 2/29 Contents 1) Introduction:

More information

THE SEESAW MECHANISM AND RENORMALIZATION GROUP EFFECTS

THE SEESAW MECHANISM AND RENORMALIZATION GROUP EFFECTS THE SEESAW MECHANISM AND RENORMALIZATION GROUP EFFECTS M. LINDNER Physik Department, Technische Universität München James-Franck-Str., D-85748 Garching/München, Germany E-mail: lindner@ph.tum.de Neutrino

More information

arxiv:hep-ph/ v1 26 Jul 2006

arxiv:hep-ph/ v1 26 Jul 2006 Neutrino mass and baryogenesis arxiv:hep-ph/0607287v1 26 Jul 2006 D. Falcone Dipartimento di Scienze Fisiche, Università di Napoli, Via Cintia, Napoli, Italy A brief overview of the phenomenology related

More information

Status Report on Electroweak Baryogenesis

Status Report on Electroweak Baryogenesis Outline Status Report on Electroweak Baryogenesis Thomas Konstandin KTH Stockholm hep-ph/0410135, hep-ph/0505103, hep-ph/0606298 Outline Outline 1 Introduction Electroweak Baryogenesis Approaches to Transport

More information

Thermal production of gravitinos

Thermal production of gravitinos Thermal production of gravitinos Slava Rychkov Scuola Normale Superiore & INFN, Pisa Università di Padova April 5 2007 hep-ph/0701104 with Alessandro Strumia (to appear in PhysRevD) Outline Gravitino in

More information

Leptogenesis via Higgs Condensate Relaxation

Leptogenesis via Higgs Condensate Relaxation The Motivation Quantum Fluctuations Higgs Relaxation Leptogenesis Summary Leptogenesis via Higgs Condensate Relaxation Louis Yang Department of Physics and Astronomy University of California, Los Angeles

More information

Neutrino Mass Seesaw, Baryogenesis and LHC

Neutrino Mass Seesaw, Baryogenesis and LHC Neutrino Mass Seesaw, Baryogenesis and LHC R. N. Mohapatra University of Maryland Interplay of Collider and Flavor Physics workshop, CERN Blanchet,Chacko, R. N. M., 2008 arxiv:0812:3837 Why? Seesaw Paradigm

More information

Gravitinos, Reheating and the Matter-Antimatter Asymmetry of the Universe

Gravitinos, Reheating and the Matter-Antimatter Asymmetry of the Universe Gravitinos, Reheating and the Matter-Antimatter Asymmetry of the Universe Raghavan Rangarajan Physical Research Laboratory Ahmedabad with N. Sahu, A. Sarkar, N. Mahajan OUTLINE THE MATTER-ANTIMATTER ASYMMETRY

More information

Testing the low scale seesaw and leptogenesis

Testing the low scale seesaw and leptogenesis based on 1606.6690 and 1609.09069 with Marco Drewes, Björn Garbrecht and Juraj Klarić Bielefeld, 18. May 2017 Remaining puzzles of the universe BAU baryon asymmetry of the universe WMAP, Planck and Big

More information

Neutrino masses, muon g-2, dark matter, lithium probelm, and leptogenesis at TeV-scale SI2009 AT FUJI-YOSHIDA

Neutrino masses, muon g-2, dark matter, lithium probelm, and leptogenesis at TeV-scale SI2009 AT FUJI-YOSHIDA Neutrino masses, muon g-2, dark matter, lithium probelm, and leptogenesis at TeV-scale SI2009 AT FUJI-YOSHIDA Chian-Shu Chen National Cheng Kung U./Academia Sinica with C-H Chou 08/20/2009 arxiv:0905.3477

More information

Right-Handed Neutrinos as the Origin of the Electroweak Scale

Right-Handed Neutrinos as the Origin of the Electroweak Scale Right-Handed Neutrinos as the Origin of the Electroweak Scale Hooman Davoudiasl HET Group, Brookhaven National Laboratory Based on: H. D., I. Lewis, arxiv:1404.6260 [hep-ph] Origin of Mass 2014, CP 3 Origins,

More information

arxiv: v1 [astro-ph] 11 Jul 2007

arxiv: v1 [astro-ph] 11 Jul 2007 KIAS P07031, MCTP 07 18 Quintessential Kination and Leptogenesis Eung Jin Chun 1, and Stefano Scopel 1 arxiv:0707.1544v1 [astro-ph] 11 Jul 007 1 Korea Institute for Advanced Study 07-43 Cheongryangri-dong

More information

Cosmological Family Asymmetry and CP violation

Cosmological Family Asymmetry and CP violation Cosmological Family Asymmetry and CP violation Satoru Kaneko (Ochanomizu Univ.) 2005. 9. 21 at Tohoku Univ. T. Endoh, S. K., S.K. Kang, T. Morozumi, M. Tanimoto, PRL ( 02) T. Endoh, T. Morozumi, Z. Xiong,

More information

The Matter-Antimatter Asymmetry and New Interactions

The Matter-Antimatter Asymmetry and New Interactions The Matter-Antimatter Asymmetry and New Interactions The baryon (matter) asymmetry The Sakharov conditions Possible mechanisms A new very weak interaction Recent Reviews M. Trodden, Electroweak baryogenesis,

More information

Leptogenesis from a First-Order Lepton- Number Breaking Phase Transition

Leptogenesis from a First-Order Lepton- Number Breaking Phase Transition Leptogenesis from a First-Order Lepton- umber Breaking Phase Transition Andrew Long TeVPA 2017 at Ohio State University Aug 10, 2017 based on work with Andrea Tesi & Lian-Tao Wang (1703.04902 & JHEP) Bubbles!

More information

Leptogenesis with type II see-saw in SO(10)

Leptogenesis with type II see-saw in SO(10) Leptogenesis wit type II see-saw in SO(10) Andrea Romanino SISSA/ISAS Frigerio Hosteins Lavignac R, arxiv:0804.0801 Te baryon asymmetry η B n B n B n γ = n B n γ Generated dynamically if = (6.15 ± 0.5)

More information

GeV neutrino mass models: Experimental reach vs. theoretical predictions RWR, Walter Winter Arxiv PRD 94, (2016)

GeV neutrino mass models: Experimental reach vs. theoretical predictions RWR, Walter Winter Arxiv PRD 94, (2016) GeV neutrino mass models: Experimental reach vs. theoretical predictions RWR, Walter Winter Arxiv 1607.07880 PRD 94, 073004 (016) Rasmus W. Rasmussen Matter and the Universe 1-1-16 Theory of elementary

More information

Neutrinos. Riazuddin National Centre for Physics Quaid-i-Azam University Campus. Islamabad.

Neutrinos. Riazuddin National Centre for Physics Quaid-i-Azam University Campus. Islamabad. Neutrinos Riazuddin National Centre for Physics Quaid-i-Azam University Campus Islamabad. Neutrino was the first particle postulated by a theoretician: W. Pauli in 1930 to save conservation of energy and

More information

Neutrinos and Fundamental Symmetries: L, CP, and CP T

Neutrinos and Fundamental Symmetries: L, CP, and CP T Neutrinos and Fundamental Symmetries: L, CP, and CP T Outstanding issues Lepton number (L) CP violation CP T violation Outstanding issues in neutrino intrinsic properties Scale of underlying physics? (string,

More information

Heavy Sterile Neutrinos at CEPC

Heavy Sterile Neutrinos at CEPC Wei Liao East China University of Science and Technology Based on arxiv:17.09266, in collaboration with X.H. Wu INPAC SJTU, Nov. 17 2017 Outline Review of neutrino mass low energy seesaw model constraint

More information

Baryogenesis in Higher Dimension Operators. Koji Ishiwata

Baryogenesis in Higher Dimension Operators. Koji Ishiwata Baryogenesis in Higher Dimension Operators Koji Ishiwata Caltech In collaboration with Clifford Cheung (Caltech) Based on arxiv:1304.0468 BLV2013 Heidelberg, April 9, 2013 1. Introduction The origin of

More information

Electroweak baryogenesis in the MSSM and nmssm

Electroweak baryogenesis in the MSSM and nmssm Electroweak baryogenesis in the MSSM and nmssm Thomas Konstandin, IFAE Barcelona in collaboration with S. Huber, T. Prokopec, M.G. Schmidt and M. Seco Outline 1 Introduction The Basic Picture 2 Semiclassical

More information

The Standard Model of particle physics and beyond

The Standard Model of particle physics and beyond The Standard Model of particle physics and beyond - Lecture 3: Beyond the Standard Model Avelino Vicente IFIC CSIC / U. Valencia Physics and astrophysics of cosmic rays in space Milano September 2016 1

More information

Left-Right Symmetric Models with Peccei-Quinn Symmetry

Left-Right Symmetric Models with Peccei-Quinn Symmetry Left-Right Symmetric Models with Peccei-Quinn Symmetry Pei-Hong Gu Max-Planck-Institut für Kernphysik, Heidelberg PHG, 0.2380; PHG, Manfred Lindner, 0.4905. Institute of Theoretical Physics, Chinese Academy

More information

Leptogenesis via the Relaxation of Higgs and other Scalar Fields

Leptogenesis via the Relaxation of Higgs and other Scalar Fields Leptogenesis via the Relaxation of Higgs and other Scalar Fields Louis Yang Department of Physics and Astronomy University of California, Los Angeles PACIFIC 2016 September 13th, 2016 Collaborators: Alex

More information

Neutrino Basics. m 2 [ev 2 ] tan 2 θ. Reference: The Standard Model and Beyond, CRC Press. Paul Langacker (IAS) LSND 90/99% SuperK 90/99% MINOS K2K

Neutrino Basics. m 2 [ev 2 ] tan 2 θ. Reference: The Standard Model and Beyond, CRC Press. Paul Langacker (IAS) LSND 90/99% SuperK 90/99% MINOS K2K Neutrino Basics CDHSW m 2 [ev 2 ] 10 0 10 3 10 6 10 9 KARMEN2 Cl 95% NOMAD MiniBooNE Ga 95% Bugey CHOOZ ν X ν µ ν τ ν τ NOMAD all solar 95% SNO 95% CHORUS NOMAD CHORUS LSND 90/99% SuperK 90/99% MINOS K2K

More information

Non-zero Ue3 and TeV-leptogenesis through A4 symmetry breaking

Non-zero Ue3 and TeV-leptogenesis through A4 symmetry breaking Non-zero Ue3 and TeV-leptogenesis through A4 symmetry breaking National Tsing-Hua Unv. Chian-Shu Chen (NCKU/AS) with Y.H. Ahn & S.K. Kang 11/1/009 ouline Introduction A 4 symmetry The model Neutrino mass

More information

Quantum transport and electroweak baryogenesis

Quantum transport and electroweak baryogenesis Quantum transport and electroweak baryogenesis Thomas Konstandin Mainz, August 7, 2014 review: arxiv:1302.6713 Outline Introduction MSSM Composite Higgs Baryogenesis [Sakharov '69] Baryogenesis aims at

More information

A natural solution to the gravitino overabundance problem

A natural solution to the gravitino overabundance problem A natural solution to the gravitino overabundance problem Based on the work : R symmetry and gravitino abundance, I. Dalianis, Phys. Rev. D 85 061130(R) (2012) Ioannis Dalianis National Technical University

More information

TTK Coherent quantum Boltzmann equations from cqpa Matti Herranen a, Kimmo Kainulainen b;c and Pyry Matti Rahkila b;c a Institut f ur Theoretisc

TTK Coherent quantum Boltzmann equations from cqpa Matti Herranen a, Kimmo Kainulainen b;c and Pyry Matti Rahkila b;c a Institut f ur Theoretisc TTK-10-34 Coherent quantum Boltzmann equations from cqpa Matti Herranen a, Kimmo Kainulainen b;c and Pyry Matti Rahkila b;c a Institut f ur Theoretische Teilchenphysik und Kosmologie, RWTH Aachen University,

More information

21th. December 2007 Seminar Univ. of Toyama. D6 Family Sym. and CDM at LHC J. Kubo, Y. Kajiyama (Phys. Rev. D )

21th. December 2007 Seminar Univ. of Toyama. D6 Family Sym. and CDM at LHC J. Kubo, Y. Kajiyama (Phys. Rev. D ) 21th. December 2007 Seminar Univ. of Toyama D6 Family Sym. and CDM at LHC J. Kubo, Y. Kajiyama (Phys. Rev. D75.033001) Plan to talk 1; 2; 2-1); canonical seesaw 2-2); radiative seesaw(ma model) 3; Textures

More information

Phase transitions in cosmology

Phase transitions in cosmology Phase transitions in cosmology Thomas Konstandin FujiYoshida, August 31, 2017 Electroweak phase transition gravitational waves baryogenesis Outline Introduction MSSM Composite Higgs Baryogenesis [Sakharov

More information

Electroweak Baryogenesis A Status Report

Electroweak Baryogenesis A Status Report Electroweak Baryogenesis A Status Report Thomas Konstandin Odense, August 19, 2013 review: arxiv:1302.6713 Outline Introduction SUSY Composite Higgs Standard Cosmology time temperature Standard Cosmology

More information

University College London. Frank Deppisch. University College London

University College London. Frank Deppisch. University College London Frank Deppisch f.deppisch@ucl.ac.uk University College London 17 th Lomonosov Conference Moscow 20-26/08/2015 Two possibilities to define fermion mass ν R ν L ν L = ν L ν R ν R = ν R ν L Dirac mass analogous

More information

Electroweak baryogenesis in light of the Higgs discovery

Electroweak baryogenesis in light of the Higgs discovery Electroweak baryogenesis in light of the Higgs discovery Thomas Konstandin Grenoble, March 25, 2013 review: arxiv:1302.6713 Outline Introduction SUSY Composite Higgs Baryogenesis [Sakharov '69] Baryogenesis

More information

Grand Unification. Strong, weak, electromagnetic unified at Q M X M Z Simple group SU(3) SU(2) U(1) Gravity not included

Grand Unification. Strong, weak, electromagnetic unified at Q M X M Z Simple group SU(3) SU(2) U(1) Gravity not included Pati-Salam, 73; Georgi-Glashow, 74 Grand Unification Strong, weak, electromagnetic unified at Q M X M Z Simple group G M X SU(3) SU() U(1) Gravity not included (perhaps not ambitious enough) α(q ) α 3

More information

Light Stop Bound State Production at the LHC. Yeo Woong Yoon (KIAS) In collaboration with P. Ko, Chul Kim at Yonsei U.

Light Stop Bound State Production at the LHC. Yeo Woong Yoon (KIAS) In collaboration with P. Ko, Chul Kim at Yonsei U. Light Stop Bound State Production at the LHC Yeo Woong Yoon (KIAS) In collaboration with P. Ko, Chul Kim 0. 6. 8 at Yonsei U. Outline About stop Motivation for light stop Phenomenology Formalism Summary

More information

Minimal Extension of the Standard Model of Particle Physics. Dmitry Gorbunov

Minimal Extension of the Standard Model of Particle Physics. Dmitry Gorbunov Minimal Extension of the Standard Model of Particle Physics Dmitry Gorbunov Institute for Nuclear Research, Moscow, Russia 14th Lomonosov Conference on Elementary Paticle Physics, Moscow, MSU, 21.08.2009

More information

What We Know, and What We Would Like To Find Out. Boris Kayser Minnesota October 23,

What We Know, and What We Would Like To Find Out. Boris Kayser Minnesota October 23, What We Know, and What We Would Like To Find Out Boris Kayser Minnesota October 23, 2008 1 In the last decade, observations of neutrino oscillation have established that Neutrinos have nonzero masses and

More information

Neutrino masses respecting string constraints

Neutrino masses respecting string constraints Neutrino masses respecting string constraints Introduction Neutrino preliminaries The GUT seesaw Neutrinos in string constructions The triplet model (Work in progress, in collaboration with J. Giedt, G.

More information

The Origin of Matter

The Origin of Matter The Origin of Matter ---- Leptogenesis ---- Tsutomu T. Yanagida (IPMU, Tokyo) Shoichi Sakata Centennial Symposium Energy Content of the Universe いいい From Wikipedia F FF Galaxy and Cluster of galaxies No

More information

Dark Matter from Freeze-In via the Neutrino Portal

Dark Matter from Freeze-In via the Neutrino Portal DO-TH 18/13 Dark Matter from Freeze-In via the Neutrino Portal Mathias Becker 1 arxiv:1806.08579v1 [hep-ph] Jun 018 Fakultät für Physik, Technische Universität Dortmund, 441 Dortmund, Germany Abstract

More information

Radiative Generation of the Higgs Potential

Radiative Generation of the Higgs Potential Radiative Generation of the Higgs Potential 1 EUNG JIN CHUN Based on 1304.5815 with H.M.Lee and S. Jung Disclaimer LHC finds Nature is unnatural. 2 May entertain with Naturally unnatural ideas. EW scale

More information

Electroweak Scale Resonant Leptogenesis

Electroweak Scale Resonant Leptogenesis hep-ph/0506107 June 2005 Electroweak Scale Resonant Leptogenesis arxiv:hep-ph/0506107v2 11 Nov 2005 Apostolos Pilaftsis and Thomas E. J. Underwood School of Physics and Astronomy, University of Manchester,

More information

Beyond Standard Model Effects in Flavour Physics: p.1

Beyond Standard Model Effects in Flavour Physics: p.1 Beyond Standard Model Effects in Flavour Physics: Alakabha Datta University of Mississippi Feb 13, 2006 Beyond Standard Model Effects in Flavour Physics: p.1 OUTLINE Standard Model (SM) and its Problems.

More information

Puzzles of Neutrinos and Anti-Matter: Hidden Symmetries and Symmetry Breaking. Hong-Jian He

Puzzles of Neutrinos and Anti-Matter: Hidden Symmetries and Symmetry Breaking. Hong-Jian He Puzzles of Neutrinos and Anti-Matter: Hidden Symmetries and Symmetry Breaking Tsinghua University 2009-1-13 Collaborators: Shao-Feng Ge & Fu-Rong Yin Based on arxiv:1001.0940 (and works in preparation)

More information

Implications of massive neutrinos

Implications of massive neutrinos Laboratoire de Physique Théorique-Orsay, Université Paris-Sud Implications of massive neutrinos Observations: what have we learned? Neutrino mass discovery new physics How to generate small neutrino masses?

More information

Neutrino Mixing and Cosmological Constant above GUT Scale

Neutrino Mixing and Cosmological Constant above GUT Scale EJTP 6, No. 22 (2009) 197 202 Electronic Journal of Theoretical Physics Neutrino Mixing and Cosmological Constant above GUT Scale Bipin Singh Koranga Department of Physics, Kirori Mal college (University

More information

The first one second of the early universe and physics beyond the Standard Model

The first one second of the early universe and physics beyond the Standard Model The first one second of the early universe and physics beyond the Standard Model Koichi Hamaguchi (University of Tokyo) @ Colloquium at Yonsei University, November 9th, 2016. Credit: X-ray: NASA/CXC/CfA/M.Markevitch

More information

EFFECTS OF NEW LEPTONS IN ELECTROWEAK PRECISION DATA

EFFECTS OF NEW LEPTONS IN ELECTROWEAK PRECISION DATA EFFECTS OF NEW LEPTONS IN ELECTROWEAK PRECISION DATA In collaboration with F. del Águila and M. Pérez-Victoria Phys. Rev. D78: 013010, 2008 Depto. de Física Teórica y del Cosmos Universidad de Granada

More information

Flaxion. a minimal extension to solve puzzles in the standard EW 2018, Mar. 13, 2018

Flaxion. a minimal extension to solve puzzles in the standard EW 2018, Mar. 13, 2018 Flaxion a minimal extension to solve puzzles in the standard model Koichi Hamaguchi (University of Tokyo) @Moriond EW 2018, Mar. 13, 2018 Based on Y. Ema, KH, T. Moroi, K. Nakayama, arxiv:1612.05492 [JHEP

More information

Neutrino Signals from Dark Matter Decay

Neutrino Signals from Dark Matter Decay Neutrino Signals from Dark Matter Decay Michael Grefe Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany COSMO/CosPA 2010 The University of Tokyo 27 September 2010 Based on work in collaboration with

More information

University College London. Frank Deppisch. University College London

University College London. Frank Deppisch. University College London Frank Deppisch f.deppisch@ucl.ac.uk University College London Nuclear Particle Astrophysics Seminar Yale 03/06/2014 Neutrinos Oscillations Absolute Mass Neutrinoless Double Beta Decay Neutrinos in Cosmology

More information

Baryogenesis and Neutrino Mass

Baryogenesis and Neutrino Mass Baryogenesis and Neutrino Mass A Common Link and Experimental Signatures Bhupal Dev Washington University in St. Louis XIth International Conference of Interconnections between Particle Physics and Cosmology

More information

Flavor Models with Sterile Neutrinos. NuFact 11 Geneva, Aug, He Zhang

Flavor Models with Sterile Neutrinos. NuFact 11 Geneva, Aug, He Zhang Flavor Models with Sterile Neutrinos NuFact 11 Geneva, Aug, 2011 Contents: Sterile neutrinos in ν-osc. and 0νββ decays Mechanisms for light sterile neutrino masses Flavor symmetry with sterile neutrinos

More information

arxiv:hep-ph/ v1 20 Mar 2002

arxiv:hep-ph/ v1 20 Mar 2002 Resurrection of Grand Unified Theory Baryogenesis M. Fukugita 1 and T. Yanagida 2 1 Institute for Cosmic Ray Research, University of Tokyo, Kashiwa 2778582, Japan arxiv:hep-ph/0203194v1 20 Mar 2002 Abstract

More information