The Important State Coordinates of a Nonlinear System

Save this PDF as:

Size: px
Start display at page:

Download "The Important State Coordinates of a Nonlinear System"

Transcription

1 The Important State Coordinates of a Nonlinear System Arthur J. Krener 1 University of California, Davis, CA and Naval Postgraduate School, Monterey, CA Summary. We offer an alternative way of evalating the relative importance of the state coordinates of a nonlinear control system. Our approach is based on making changes of state coordinates to bring the controllability and observability functions into input normal form. These changes of coordinates are done degree by degree and the resulting normal form is unique through terms of degree seven. Key words: Nonlinear Control Systems, Model Reduction 1 The Problem The theory of model reduction for linear control systems was initiated by B. C. Moore [6]. His method is applicable to controllable, observable and exponentially stable linear systems. The reduction is accomplished by making a linear change of state coordinates to simultaneously diagonalize the controllability and observability gramians and make them equal. The diagonal entries of the gramians are the singular values of the Hankel map from past inputs to future outputs. The reduction is accomplished by Galerkin projection onto the states associated to large singular values. The method is intrinsic, the reduced order model depends only on the dimension of the reduced state space. Jonckheere and Silverman [4] extended Moore s methodology to controllable, observable but not necessarily stable linear system. Their method is based on simultaneously diagonalizing the positive definite solutions of the control and filtering Riccati equations and making them equal. The diagonal entries are called the characteristic values of the system and reduction is achieved by Galerkin projection ontothe states associated to large characteristic values. The method is sometimes called LQG balancing and reduction. Two nice features of their approach is that it is applicable to unstable systems and LQG controller of the reduced order model is the Galerkin projec-

2 2 Arthur J. Krener tion of the LQG controller of the high order model. This method is intrinsic. Mustafa and Glover [7] extended Jonckheere and Silverman using H rather than LQG methods. This method is intrinsic once the attenuation level, γ has been specified. Moore s method was extended to asymptotically stable nonlinear systems by Scherpen [8]. Scherpen and Van der Schaft [10] extended Jonckheere and Silverman to nonlinear systems and Scherpen [9] extended Mustafa and Glover. Unfortunately none of the nonlinear extensions are intrinsic, the reduced order model depends on choices made during the reduction process. We build on the fundamental method of Scherpen and offer an alternative way of computing the reduced order model. Because of space limitations we shall restrict our attention to Moore s method and Scherpen s nonlinear generalization, 2 Linear Balancing and Reduction 2.1 Minimal Realizations Consider an autonomous finite dimensional linear system ẋ = F x + Gu y = Hx (1) where x IR n, u IR m, y IR p. The linear system (1) initialized at x( ) = 0 defines a mapping from past inputs {u(s) : < s 0} to future outputs {y(t) : 0 t < } called the Hankel map. The map factors through the state x(0) at time t = 0. This map has infinite dimensional domain and infinite dimensional range but it factors through the finite dimensional state space x(0) IR n although n might be very large. The state space representation is a very succint way of describing an infinite dimensional mapping. One goal of model reduction is to reduce the state dimension as much as possible while keeping the essential features of the Hankel map. The first step in linear model reduction is to check whether the system (1) is a minimal realization of the Hankel mapping and if it is not minimal then to reduce it to a minimal realization. This procedure is classical and goes back to Kalman and others circa We check whether the system is controllable, i.e., the system can be excited to any state x(0) when started at x( ) = 0 by using an appropriate control trajectory {u(s) : < s 0}. This will be possible iff F, G is a controllable pair, i.e., the smallest F -invariant subspace V c containing the columns of G is the whole state space. If the system cannot be excited to every state then we should restrict the state space to V c. The restricted system is controllable and has the same Hankel map. Then we check whether this reduced system is observable in the sense that any changes in the initial condition x(0) can be detected by changes in the resulting output tajectory. The system is observable iff H, F is an observable

3 Important State Coordinates 3 pair, i.e., the largest F -invariant subspace V u contained in the kernel of H is zero. If the system is not observable then x(0) can be perturbed in the directions of V u without changing the output trajectory. To make the system observable we must project V u to zero. The projecteded system is observable and has the same Hankel map. In summary, a linear system (1) is a minimal realization (of smallest state dimension) of the Hankel map iff it is controllable and observable. Any realization can be made minimal by restricting to its controllable directions and projecting out its unobservable directions. 2.2 Linear Input-Output Balancing So far we have discussed linear systems that exactly realize the Hankel map. B. C. Moore [6] considered reduced order systems that approximately realize the Hankel map. His basic intuition was that we should ignore directions that are difficult to reach and that don t affect the output much. To quantify these ideas, he introduced the controllablity and observability functions of the system. The controllability function is π c (x 0 ) = inf 1 2 subject to the system dynamics (1) and 0 x( ) = 0, x(0) = x 0. u(s) 2 ds (2) If π c (x 0 ) is large then it takes a lot of input energy to excite the system in the direction x 0 and so this direction might be ignored in a reduced order model. The observability function is π o (x 0 ) = 1 2 subject to the system dynamics (1) and x(0) = x 0, u(t) = 0. 0 y(t) 2 dt (3) If π o (x 0 ) is small then changes in this direction lead to small changes in the output energy and so this direction might be ignored in a reduced order model. If F is Hurwitz, F, G is a controllable pair and H, F is an observable pair then it is not hard to see that π c (x) = 1 2 x P 1 c x, π o (x) = 1 2 x P o x for some positive definite matrices P c, P o that are the unique solutions of the linear Lyapunov equations,

4 4 Arthur J. Krener 0 = F P c + P c F + GG 0 = F P o + P o F + H H. P c, P o are called the controllablity and observability gramians of the system. Moore realized that large and small are relative terms and one needs scales to measure such things. This can be accomplished by using one gramian to scale the other and vice versa. Trivally there is a linear change of state coordinates so that, in the new coordinates also denoted by x, P c = P o = σ σ n where σ 1 σ 2... σ n > 0. These are called the Hankel singular values and they are the nonzero singular values of the Hankel map. A reduced model can be obtained by only keeping the states corresponding to large σ i. More pecisely suppose σ k >> σ k+1, let x 1 denote the first k coordinates of x and x 2 denote the remaining n k coordinates. We partition the system matrices accordingly [ ẋ1 ] = ẋ 2 [ ] [ ] F11 F 12 x1 + F 21 F 22 x 2 [ G1 ] u G 2 y = [ ] [ ] (4) x H 1 H 1 2 x 2 The reduced model is then obtained by Galerkin projection onto the x 1 subspace, ẋ 1 = F 11 x 1 + G 1 u (5) y = H 1 x 1. Notice several things. Viewed abstractly model reduction of a linear system involves injection and a surjection that is similar to minimal realiztion theory. The major difference is that in the former we need a sense of scale on IR n that is supplied to one gramian by the other. In minimal realization theory we did not need a scale because a direction is either controllable or not, a direction is either unobservable or not. The eigenvalues of F play an indirect role in the reduction process. By assumption they are all in the open left half plane. It is very hard to excite the system in a direction corresponding to a very stable eigenvalue and so π c tends to be very large in such a direction. Moreover, a state direction corresponding to a very stable eigenvalue tends to damp out quickly and so it has very little output energy as measured by π o. Hence the very stable directions of F tend to correspond to small Hankel singular values and they tend to drop out of the reduced model.

5 3 Nonlinear Balancing and Reduction Important State Coordinates 5 Scherpen [8] generalized Moore to affine nonlinear systems of form ẋ = f(x) + g(x)u y = h(x). (6) where the unforced dynamics u = 0 is asymptotically stable. She defined the controllability and observability functions (2, 3) as did Moore subject to the nonlinear system (6). She noted that if π c is smooth then it satisfies the Hamilton-Jacobi- Bellman equation 0 = πc x (x)f(x) + ( 1 πc 2 x (x)g(x)) ( π c x (x)g(x)) and if it π o smooth then it satisfies the Lyapunov equation (7) 0 = πo x (x)f(x) h(x) 2. (8) Suppose that the system has a Taylor series expansion ẋ = f(x) + g(x)u = F x + Gu + O(x, u) 2 y = h(x) = Hx + O(x) 2. (9) If F is Hurwitz, F, G is a controllable pair, and H, F is a observable pair then it is not hard to prove that there exists locally smooth, positive definite solutions to the above PDEs and π c (x) = 1 2 x P 1 c x + O(x) 3 π o (x) = 1 2 x P o x + O(x) 3 where P c, P o are the controllability and observability gramians defined above. So far nonlinear balancing looks very much like linear balancing but, in general, there is not a nonlinear change of state coordinates that simultaneously diagonalizes both π c (x) and π o (x). So Scherpen invoked the Morse lemma to show that after a nonlinear change of state coordinates π c (x) = 1 2 x 2, π o (x) = 1 2 x Q(x)x, Q(0) = P o. Then after a further nonlinear change of coordinates π c (x) is unchanged and

6 6 Arthur J. Krener π o (x) = 1 τ 1 (x) 0 2 x... 0 τ n (x) x where τ i (x) are called the singular value functions. It is not hard to see that τ i (0) = σi 2 where σ i are the Hankel singular values of the linear part of the system. The Hankel singular values σ i of the linear part of the system are intrinsic and hence so are their squares, τ i (0). But the singular value functions τ i (x) are not [3]. For example, choose any two distinct indices i j and any c IR. Define τ i (x) = τ i (x) + cx 2 j, τ j(x) = τ j (x) cx 2 i and τ k(x) = τ k (x) otherwise. Then π c (x) is unchanged and π o (x) = 1 τ 1 (x) 0 2 x... x 0 τ n (x) Scherpen s next step was to make an additional change of coordinates so that if x is in a coordinate direction x = (0,..., x i,..., 0) then π c (x) = 1 2 σ i(x i ) 1 x 2 i π o (x) = 1 2 σ i(x i )x 2 i where σ i (0) = σ i and σ i (x i ) 2 τ i (x). Scherpen obtain a reduced order model by neglecting states with small σ i (x). Suppose for all x X, a neighborhood of 0 IR n, σ 1 (x)... σ k (x) >> σ k+1 (x)... σ n (x) > 0 then as before we partition x = (x 1, x 2 ) and Galerkin project onto the states cooresponding to large σ i (0). Unfortuantely this approach to obtaining a reduced order model is not intrinsic. The resulting reduced order system is not independent of the particular coordinate changes that led to it. Also it depends on the choice of singular value functions τ i (x). One nice feature of this approach is that the controllability function of the reduced order model is the restriction of the controllability function of the full order model. However this is not true for the observability functions but they do agree to O(x) 3. 4 The New Approach

7 Important State Coordinates 7 Following Moore and Scherpen we consider the optimal control problem of steering from x = 0 at t = to an arbitrary x at t = 0 while minimizing the energy of the input for the system π c (x) = inf u 2 dt ẋ = f(x, u) = F x + Gu + f [2] (x, u) +... y = h(x) = Hx + h [2] (x) (10) where f [d] (x, u), h [2] (x) denotes homogeneous polynomials of degree d. Scherpen only considered systems affine in u but it is an easy generalization to the above. If F is Hurwitz and F, G is a controllable pair then there is an unique, locally smooth and positive definite optimal cost π c (x) and an unique, locally smooth optimal control u = κ(x) which solve the HJB equations 0 = π c x (x)f(x, κ(x)) 1 2 κ(x) 2 (11) ( ) πc κ(x) = x (x) f (x, κ(x)) (12) u Moreover, following Al brecht [1], the Taylor series of π c (x), κ(x) can be computed term by term from the Taylor series of f(x, u), π c (x) = 1 2 x Pc 1 x + π c [3] (x) π c [r] (x) + O(x) r+1 κ(x) = Kx + κ [2] (x) κ [r 1] (x) + O(x) r where P c > 0 and K = G Pc 1 are the controllability gramian and the optimal feedback of the linear part of the system. As before we also consider the output energy released by the system when it starts at an arbitrary x at t = 0 and decays to 0 as t, π o (x) = y 2 dt. If F is Hurwitz and H, F is an observable pair then there is a unique locally smooth and positive definite solution π o (x) to the corresponding Lyapunov equation 0 = π o x (x)f(x) h (x)h(x) (13) Again the Taylor series of π o (x) can be computed term by term from the Taylor series of f and h,

8 8 Arthur J. Krener π o (x) = 1 2 x P o x + π o [3] (x) π o [r] (x) + O(x) r+1 where P o > 0 is the observability gramianof the linear part of the system. From [6], [8] we know that we can choose a linear change of coordinates so that in the new coordinates also denoted by x π c (x) = 1 2 x 2 + π c [3] (x) + O(x) 4 π o (x) = 1 τ x... x + π o [3] (x) + O(x) 4 0 τ n where the so called singular values τ 1 τ 2... τ n > 0 are the ordered eigenvalues of P o P c. If this holds then we say that the system is in input normal form of degree one. Because of space limitations we shall restrict our attention to the generic case where the singular values τ 1 > τ 2 >... > τ n > 0 are distinct. A system with distinct singular values is in input normal form of degree d if π c (x) = 1 n x 2 i + O(x) d+2 2 i=1 (14) π o (x) = 1 2 n i=1 η [0:d 1] i (x i )x 2 i + O(x) d+2 where η [0:d 1] i (x i ) = τ i +... is a polynomial in x i with terms of degrees 0 through d 1. They are called the squared singular value polynomials of degree d 1. There is also an output normal form of degree d where the forms of π c (x) and π o (x) are reversed. The proof of the following is omitted because of page limitations. The full details can be found in [5]. Theorem Suppose the system (10) is C r, r 2 with controllable, observable and exponentially stable linear part. If the τ i are distinct and if d < r 1 then there is a change of state coordinates that takes the system into input normal form of degree d (14). The change of coordinates that achieves the input normal form of degree d is not necessarily unique but the input normal form of degree d 6 is unique. If f, h are odd functions the input normal form of degree d 12 is unique. The differences between input normal form of degree d and Scherpen s normal form are threefold. First the former is only approximate through terms of degree d + 1 while the latter is exact. The second difference is that in

9 Important State Coordinates 9 the former the parameters η [0:d 1] i (x i ) only depend on x i while in the latter the parameters τ i (x) can depend on all the components of of x. Thirdly the parameters η [0:d 1] i (x i ) of the former are unique if d 6 while the parameters τ i (x) of the latter are not unique except at x = 0 [3]. Recently Fujimoto and Scherpen [2] have shown the existence of a normal form where π c is one half the sum of squares of the state coordinates and π o x i (x) = 0 iff x i = 0. (15) It is closer to our input normal form of degree d (14) which has similar properties. The controllability function π c is one half the sum of squares of the state coordinates through terms of degree d + 1 and π o x i (x) = O(x) d+1 if x i = 0. But the normal form of Fujimoto and Scherpen is not unique while the input normal form of degree d 6 is unique. Notice that if a system with distinct singular values τ i = τ i (0) is in input normal form of degree d then its controllability and observability functions are diagonalized through terms of degree d + 1. They contain no cross terms where one coordinate multiplies a different coordinate. This is reminiscent of the balancing of linear systems by B. C. Moore [6]. For linear systems the singular value τ i is a measure of the importance of the coordinate x i. The input energy needed to reach the state x is π c (x) and the output energy released by system from the state x is π o (x). The states that are most important are those with the most output energy for fixed input energy. Therefore in constructing the reduced order model, Moore kept the states with largest τ i for they have the most output energy per unit input energy. In Scherpen s generalization [8] of Moore, the singular value functions τ i (x) measure the importance of the state x i. To obtain a reduced order model, she assumed τ i (x) > τ j (x) whenever 1 i k < j n and x is in a neighborhood of the origin. Then she kept the states x 1,..., x k in the reduced order model. But the τ i (x) are not unique. For nonlinear systems in input normal form of degree d, the polynomial (x i ) is a measure of the importance of the coordinate x i for moderate sized x. If the τ i are distinct and d 6 then η [0:d 1] i (x i ) is unique. The leading coefficient of this polynomial is the singular value τ i so in constructing a reduced order model we will want to keep the states with the largest τ i. But τ i can be small yet η [0:d 1] i (x i ) can be large for moderate sized x i. If we are interested in capturing the behavior of the system for moderate sized inputs, we may also want to keep such states in the reduced order model. To obtain a reduced order model we proceed as follows. We start by making a linear change of coordinates to take the system into input normal form η [0:d 1] i

10 10 Arthur J. Krener of degree 1. If the singular values are distinct this change of coordinates is uniquely determined up to the signs of the coordinates. In other words replacing x i by x i does not change the input normal form of degree 1. Next one computes the Taylor series expansions to degree d + 1 of the controllability and observability functions, π c (x), π o (x). Then degree by degree one makes changes of state coordinates to bring the system into input normal form of degree d. The input normal form of degree d are intrinsic but the changes of state coordinates that achieve are not. We defer for a later paper [5] the discussion of which changes should be used. Suppose that the input energies that we shall use are all less than c2 2 for some constant c > 0. Then we expect the system to operate in x < c where x are the input normal coordinates of degree d. We compare the sizes of η [0:d 1] i (x i ) for x i < c and split them into two categories, large and small. The reduced order model is obtained by Galerkin projection onto the coordinates corresponding to the large η [0:d 1] i (x i ). 5 Conclusion We have developed a way of finding state coordinates that lend themselves to measuring there relative importance. The measure of importance is unique up to degree 6 (degree 12 for odd systems). Unfortunately the coordinates are not unique beyond degree one. Since a reduced order model is obtained by Galerkin projection in these coordinates, it is not unique. Further research is needed to clarify these issues. Research supported in part by NSF DMS References 1. E. G. Al brecht (1961) On the optimal stabilization of nonlinear systems PMM- J. Appl. Math. Mech., 25: K. Fujimoto and J. M. A. Scherpen (2005) Nonlinear Input-Normal Realizations Based on the Differential Eigenstructure of Hankel Operators IEEE Trans. Auto. Con., 50: W. S. Grey and J. M. A. Scherpen (2001) On the Nonuniqueness of Singular Value Functions and Balanced Nonlinear Realizations Systems and Control Letters, 44: E. A. Jonckheere and L. M. Silverman (1983) A New Set of Invariants for Linear Systems-Application to Reduced Order Compensator Design IEEE Trans. Auto. Con., 28: A. J. Krener Normal Forms for Reduced Order Modeling of Nonlinear Control Systems In preparation 6. B. C. Moore (1981) Principle Component Analysis in Linear Systems: Controllability, Observability and Model Reduction IEEE Trans. Auto. Con., 26:17 32

11 Important State Coordinates D. Mustafa and K. Glover (1991) Controller Reduction by H Balanced Truncation IEEE Trans. Auto. Con.,36: J. M. A. Scherpen(1993) Balancing for Nonlinear Systems Systems and Control Letters 21: J. M. A. Scherpen (1996) H Balancing for Nonlinear Systems Int. J. of Robust and Nonlinear Control 6: J. M. A. Scherpen and A. J. van der Schaft (1994) Normalized Coprime Factorizations and Balancing for Unstable Nonlinear Systems Int. J. of Control 60:

Weighted balanced realization and model reduction for nonlinear systems

Weighted balanced realization and model reduction for nonlinear systems Daisuke Tsubakino and Kenji Fujimoto Abstract In this paper a weighted balanced realization and model reduction for nonlinear systems

Model reduction for linear systems by balancing

Model reduction for linear systems by balancing Bart Besselink Jan C. Willems Center for Systems and Control Johann Bernoulli Institute for Mathematics and Computer Science University of Groningen, Groningen,

Balancing of Lossless and Passive Systems

Balancing of Lossless and Passive Systems Arjan van der Schaft Abstract Different balancing techniques are applied to lossless nonlinear systems, with open-loop balancing applied to their scattering representation.

Balanced realization and model order reduction for nonlinear systems based on singular value analysis

Balanced realization and model order reduction for nonlinear systems based on singular value analysis Kenji Fujimoto a, and Jacquelien M. A. Scherpen b a Department of Mechanical Science and Engineering

3 Gramians and Balanced Realizations

3 Gramians and Balanced Realizations In this lecture, we use an optimization approach to find suitable realizations for truncation and singular perturbation of G. It turns out that the recommended realizations

Model Predictive Regulation

Preprints of the 19th World Congress The International Federation of Automatic Control Model Predictive Regulation Cesar O. Aguilar Arthur J. Krener California State University, Bakersfield, CA, 93311,

ME 234, Lyapunov and Riccati Problems. 1. This problem is to recall some facts and formulae you already know. e Aτ BB e A τ dτ

ME 234, Lyapunov and Riccati Problems. This problem is to recall some facts and formulae you already know. (a) Let A and B be matrices of appropriate dimension. Show that (A, B) is controllable if and

Balanced Truncation 1

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.242, Fall 2004: MODEL REDUCTION Balanced Truncation This lecture introduces balanced truncation for LTI

Computational Issues in Nonlinear Control and Estimation. Arthur J Krener Naval Postgraduate School Monterey, CA 93943

Computational Issues in Nonlinear Control and Estimation Arthur J Krener Naval Postgraduate School Monterey, CA 93943 Modern Control Theory Modern Control Theory dates back to first International Federation

Computational Issues in Nonlinear Dynamics and Control

Computational Issues in Nonlinear Dynamics and Control Arthur J. Krener ajkrener@ucdavis.edu Supported by AFOSR and NSF Typical Problems Numerical Computation of Invariant Manifolds Typical Problems Numerical

Control Systems. Internal Stability - LTI systems. L. Lanari

Control Systems Internal Stability - LTI systems L. Lanari outline LTI systems: definitions conditions South stability criterion equilibrium points Nonlinear systems: equilibrium points examples stable

1 Continuous-time Systems

Observability Completely controllable systems can be restructured by means of state feedback to have many desirable properties. But what if the state is not available for feedback? What if only the output

Order Reduction of a Distributed Parameter PEM Fuel Cell Model

Order Reduction of a Distributed Parameter PEM Fuel Cell Model María Sarmiento Carnevali 1 Carles Batlle Arnau 2 Maria Serra Prat 2,3 Immaculada Massana Hugas 2 (1) Intelligent Energy Limited, (2) Universitat

10. Smooth Varieties. 82 Andreas Gathmann

82 Andreas Gathmann 10. Smooth Varieties Let a be a point on a variety X. In the last chapter we have introduced the tangent cone C a X as a way to study X locally around a (see Construction 9.20). It

Nonlinear Control Systems

Nonlinear Control Systems António Pedro Aguiar pedro@isr.ist.utl.pt 5. Input-Output Stability DEEC PhD Course http://users.isr.ist.utl.pt/%7epedro/ncs2012/ 2012 1 Input-Output Stability y = Hu H denotes

On the convergence of normal forms for analytic control systems

Chapter 1 On the convergence of normal forms for analytic control systems Wei Kang Department of Mathematics, Naval Postgraduate School Monterey, CA 93943 wkang@nps.navy.mil Arthur J. Krener Department

Reduced-order Model Based on H -Balancing for Infinite-Dimensional Systems

Applied Mathematical Sciences, Vol. 7, 2013, no. 9, 405-418 Reduced-order Model Based on H -Balancing for Infinite-Dimensional Systems Fatmawati Department of Mathematics Faculty of Science and Technology,

Nonlinear Observers. Jaime A. Moreno. Eléctrica y Computación Instituto de Ingeniería Universidad Nacional Autónoma de México

Nonlinear Observers Jaime A. Moreno JMorenoP@ii.unam.mx Eléctrica y Computación Instituto de Ingeniería Universidad Nacional Autónoma de México XVI Congreso Latinoamericano de Control Automático October

Robust Control 2 Controllability, Observability & Transfer Functions

Robust Control 2 Controllability, Observability & Transfer Functions Harry G. Kwatny Department of Mechanical Engineering & Mechanics Drexel University /26/24 Outline Reachable Controllability Distinguishable

CONTROL SYSTEMS, ROBOTICS AND AUTOMATION - Vol. XIII - Nonlinear Observers - A. J. Krener

NONLINEAR OBSERVERS A. J. Krener University of California, Davis, CA, USA Keywords: nonlinear observer, state estimation, nonlinear filtering, observability, high gain observers, minimum energy estimation,

1 Lyapunov theory of stability

M.Kawski, APM 581 Diff Equns Intro to Lyapunov theory. November 15, 29 1 1 Lyapunov theory of stability Introduction. Lyapunov s second (or direct) method provides tools for studying (asymptotic) stability

Gramians based model reduction for hybrid switched systems

Gramians based model reduction for hybrid switched systems Y. Chahlaoui Younes.Chahlaoui@manchester.ac.uk Centre for Interdisciplinary Computational and Dynamical Analysis (CICADA) School of Mathematics

Intro. Computer Control Systems: F8

Intro. Computer Control Systems: F8 Properties of state-space descriptions and feedback Dave Zachariah Dept. Information Technology, Div. Systems and Control 1 / 22 dave.zachariah@it.uu.se F7: Quiz! 2

Convergence Rate of Nonlinear Switched Systems

Convergence Rate of Nonlinear Switched Systems Philippe JOUAN and Saïd NACIRI arxiv:1511.01737v1 [math.oc] 5 Nov 2015 January 23, 2018 Abstract This paper is concerned with the convergence rate of the

Stabilization and Passivity-Based Control

DISC Systems and Control Theory of Nonlinear Systems, 2010 1 Stabilization and Passivity-Based Control Lecture 8 Nonlinear Dynamical Control Systems, Chapter 10, plus handout from R. Sepulchre, Constructive

Input to state Stability

Input to state Stability Mini course, Universität Stuttgart, November 2004 Lars Grüne, Mathematisches Institut, Universität Bayreuth Part IV: Applications ISS Consider with solutions ϕ(t, x, w) ẋ(t) =

CDS Solutions to Final Exam

CDS 22 - Solutions to Final Exam Instructor: Danielle C Tarraf Fall 27 Problem (a) We will compute the H 2 norm of G using state-space methods (see Section 26 in DFT) We begin by finding a minimal state-space

Published in: Proceedings of the 2nd IFAC Workshop on Lagrangian and Hamiltonian Methods for Nonlinear Control

University of Groningen Energy-Storage Balanced Reduction of Port-Hamiltonian Systems Lopezlena, Ricardo; Scherpen, Jacquelien M.A.; Fujimoto, Kenji Published in: Proceedings of the nd IFAC Workshop on

1. The Transition Matrix (Hint: Recall that the solution to the linear equation ẋ = Ax + Bu is

ECE 55, Fall 2007 Problem Set #4 Solution The Transition Matrix (Hint: Recall that the solution to the linear equation ẋ Ax + Bu is x(t) e A(t ) x( ) + e A(t τ) Bu(τ)dτ () This formula is extremely important

Robotics. Control Theory. Marc Toussaint U Stuttgart

Robotics Control Theory Topics in control theory, optimal control, HJB equation, infinite horizon case, Linear-Quadratic optimal control, Riccati equations (differential, algebraic, discrete-time), controllability,

AUTOMATIC CONTROL. Andrea M. Zanchettin, PhD Spring Semester, Introduction to Automatic Control & Linear systems (time domain)

1 AUTOMATIC CONTROL Andrea M. Zanchettin, PhD Spring Semester, 2018 Introduction to Automatic Control & Linear systems (time domain) 2 What is automatic control? From Wikipedia Control theory is an interdisciplinary

L 2 -induced Gains of Switched Systems and Classes of Switching Signals

L 2 -induced Gains of Switched Systems and Classes of Switching Signals Kenji Hirata and João P. Hespanha Abstract This paper addresses the L 2-induced gain analysis for switched linear systems. We exploit

Control, Stabilization and Numerics for Partial Differential Equations

Paris-Sud, Orsay, December 06 Control, Stabilization and Numerics for Partial Differential Equations Enrique Zuazua Universidad Autónoma 28049 Madrid, Spain enrique.zuazua@uam.es http://www.uam.es/enrique.zuazua

Contents. 1 State-Space Linear Systems 5. 2 Linearization Causality, Time Invariance, and Linearity 31

Contents Preamble xiii Linear Systems I Basic Concepts 1 I System Representation 3 1 State-Space Linear Systems 5 1.1 State-Space Linear Systems 5 1.2 Block Diagrams 7 1.3 Exercises 11 2 Linearization

Topic # /31 Feedback Control Systems. Analysis of Nonlinear Systems Lyapunov Stability Analysis

Topic # 16.30/31 Feedback Control Systems Analysis of Nonlinear Systems Lyapunov Stability Analysis Fall 010 16.30/31 Lyapunov Stability Analysis Very general method to prove (or disprove) stability of

MEM 355 Performance Enhancement of Dynamical Systems MIMO Introduction

MEM 355 Performance Enhancement of Dynamical Systems MIMO Introduction Harry G. Kwatny Department of Mechanical Engineering & Mechanics Drexel University 11/2/214 Outline Solving State Equations Variation

Lyapunov-based control of quantum systems

Lyapunov-based control of quantum systems Symeon Grivopoulos Bassam Bamieh Department of Mechanical and Environmental Engineering University of California, Santa Barbara, CA 936-57 symeon,bamieh@engineering.ucsb.edu

Stability of Feedback Solutions for Infinite Horizon Noncooperative Differential Games

Stability of Feedback Solutions for Infinite Horizon Noncooperative Differential Games Alberto Bressan ) and Khai T. Nguyen ) *) Department of Mathematics, Penn State University **) Department of Mathematics,

Zeros and zero dynamics

CHAPTER 4 Zeros and zero dynamics 41 Zero dynamics for SISO systems Consider a linear system defined by a strictly proper scalar transfer function that does not have any common zero and pole: g(s) =α p(s)

Nonlinear Control Systems

Nonlinear Control Systems António Pedro Aguiar pedro@isr.ist.utl.pt 7. Feedback Linearization IST-DEEC PhD Course http://users.isr.ist.utl.pt/%7epedro/ncs1/ 1 1 Feedback Linearization Given a nonlinear

Control design using Jordan controllable canonical form

Control design using Jordan controllable canonical form Krishna K Busawon School of Engineering, Ellison Building, University of Northumbria at Newcastle, Newcastle upon Tyne NE1 8ST, UK email: krishnabusawon@unnacuk

1 The Observability Canonical Form

NONLINEAR OBSERVERS AND SEPARATION PRINCIPLE 1 The Observability Canonical Form In this Chapter we discuss the design of observers for nonlinear systems modelled by equations of the form ẋ = f(x, u) (1)

Observer-based quantized output feedback control of nonlinear systems

Proceedings of the 17th World Congress The International Federation of Automatic Control Observer-based quantized output feedback control of nonlinear systems Daniel Liberzon Coordinated Science Laboratory,

CDS Solutions to the Midterm Exam

CDS 22 - Solutions to the Midterm Exam Instructor: Danielle C. Tarraf November 6, 27 Problem (a) Recall that the H norm of a transfer function is time-delay invariant. Hence: ( ) Ĝ(s) = s + a = sup /2

Dissipativity. Outline. Motivation. Dissipative Systems. M. Sami Fadali EBME Dept., UNR

Dissipativity M. Sami Fadali EBME Dept., UNR 1 Outline Differential storage functions. QSR Dissipativity. Algebraic conditions for dissipativity. Stability of dissipative systems. Feedback Interconnections

EEE582 Homework Problems

EEE582 Homework Problems HW. Write a state-space realization of the linearized model for the cruise control system around speeds v = 4 (Section.3, http://tsakalis.faculty.asu.edu/notes/models.pdf). Use

Lyapunov Stability Theory

Lyapunov Stability Theory Peter Al Hokayem and Eduardo Gallestey March 16, 2015 1 Introduction In this lecture we consider the stability of equilibrium points of autonomous nonlinear systems, both in continuous

LMI Methods in Optimal and Robust Control

LMI Methods in Optimal and Robust Control Matthew M. Peet Arizona State University Lecture 15: Nonlinear Systems and Lyapunov Functions Overview Our next goal is to extend LMI s and optimization to nonlinear

Minimum-Phase Property of Nonlinear Systems in Terms of a Dissipation Inequality

Minimum-Phase Property of Nonlinear Systems in Terms of a Dissipation Inequality Christian Ebenbauer Institute for Systems Theory in Engineering, University of Stuttgart, 70550 Stuttgart, Germany ce@ist.uni-stuttgart.de

Global stabilization of feedforward systems with exponentially unstable Jacobian linearization

Global stabilization of feedforward systems with exponentially unstable Jacobian linearization F Grognard, R Sepulchre, G Bastin Center for Systems Engineering and Applied Mechanics Université catholique

MCE693/793: Analysis and Control of Nonlinear Systems

MCE693/793: Analysis and Control of Nonlinear Systems Systems of Differential Equations Phase Plane Analysis Hanz Richter Mechanical Engineering Department Cleveland State University Systems of Nonlinear

(Refer Slide Time: 00:32)

Nonlinear Dynamical Systems Prof. Madhu. N. Belur and Prof. Harish. K. Pillai Department of Electrical Engineering Indian Institute of Technology, Bombay Lecture - 12 Scilab simulation of Lotka Volterra

Prof. Krstic Nonlinear Systems MAE281A Homework set 1 Linearization & phase portrait

Prof. Krstic Nonlinear Systems MAE28A Homework set Linearization & phase portrait. For each of the following systems, find all equilibrium points and determine the type of each isolated equilibrium. Use

Control Systems I. Lecture 4: Diagonalization, Modal Analysis, Intro to Feedback. Readings: Emilio Frazzoli

Control Systems I Lecture 4: Diagonalization, Modal Analysis, Intro to Feedback Readings: Emilio Frazzoli Institute for Dynamic Systems and Control D-MAVT ETH Zürich October 13, 2017 E. Frazzoli (ETH)

Passivity Preserving Model Order Reduction For the SMIB

Proceedings of the 47th IEEE Conference on Decision and Control Cancun, Mexico, Dec. 9-11, 28 Passivity Preserving Model Order Reduction For the SMIB Tudor C. Ionescu Industrial Technology and Management

Analysis of Discrete-Time Systems

TU Berlin Discrete-Time Control Systems 1 Analysis of Discrete-Time Systems Overview Stability Sensitivity and Robustness Controllability, Reachability, Observability, and Detectabiliy TU Berlin Discrete-Time

CANONICAL LOSSLESS STATE-SPACE SYSTEMS: STAIRCASE FORMS AND THE SCHUR ALGORITHM

CANONICAL LOSSLESS STATE-SPACE SYSTEMS: STAIRCASE FORMS AND THE SCHUR ALGORITHM Ralf L.M. Peeters Bernard Hanzon Martine Olivi Dept. Mathematics, Universiteit Maastricht, P.O. Box 616, 6200 MD Maastricht,

Module 6 : Solving Ordinary Differential Equations - Initial Value Problems (ODE-IVPs) Section 3 : Analytical Solutions of Linear ODE-IVPs

Module 6 : Solving Ordinary Differential Equations - Initial Value Problems (ODE-IVPs) Section 3 : Analytical Solutions of Linear ODE-IVPs 3 Analytical Solutions of Linear ODE-IVPs Before developing numerical

Nonlinear Discrete-Time Observer Design with Linearizable Error Dynamics

622 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 48, NO. 4, APRIL 2003 Nonlinear Discrete-Time Observer Design with Linearizable Error Dynamics MingQing Xiao, Nikolaos Kazantzis, Costas Kravaris, Arthur

OPTIMAL CONTROL. Sadegh Bolouki. Lecture slides for ECE 515. University of Illinois, Urbana-Champaign. Fall S. Bolouki (UIUC) 1 / 28

OPTIMAL CONTROL Sadegh Bolouki Lecture slides for ECE 515 University of Illinois, Urbana-Champaign Fall 2016 S. Bolouki (UIUC) 1 / 28 (Example from Optimal Control Theory, Kirk) Objective: To get from

Linear State Feedback Controller Design

Assignment For EE5101 - Linear Systems Sem I AY2010/2011 Linear State Feedback Controller Design Phang Swee King A0033585A Email: king@nus.edu.sg NGS/ECE Dept. Faculty of Engineering National University

Theorem 1. ẋ = Ax is globally exponentially stable (GES) iff A is Hurwitz (i.e., max(re(σ(a))) < 0).

Linear Systems Notes Lecture Proposition. A M n (R) is positive definite iff all nested minors are greater than or equal to zero. n Proof. ( ): Positive definite iff λ i >. Let det(a) = λj and H = {x D

Modeling and Analysis of Dynamic Systems

Modeling and Analysis of Dynamic Systems Dr. Guillaume Ducard Fall 2017 Institute for Dynamic Systems and Control ETH Zurich, Switzerland G. Ducard c 1 / 57 Outline 1 Lecture 13: Linear System - Stability

Stability lectures. Stability of Linear Systems. Stability of Linear Systems. Stability of Continuous Systems. EECE 571M/491M, Spring 2008 Lecture 5

EECE 571M/491M, Spring 2008 Lecture 5 Stability of Continuous Systems http://courses.ece.ubc.ca/491m moishi@ece.ubc.ca Dr. Meeko Oishi Electrical and Computer Engineering University of British Columbia,

Analytical approximation methods for the stabilizing solution of the Hamilton-Jacobi equation

Analytical approximation methods for the stabilizing solution of the Hamilton-Jacobi equation 1 Noboru Sakamoto and Arjan J. van der Schaft Abstract In this paper, two methods for approximating the stabilizing

STABILITY ANALYSIS OF DYNAMIC SYSTEMS

C. Melchiorri (DEI) Automatic Control & System Theory 1 AUTOMATIC CONTROL AND SYSTEM THEORY STABILITY ANALYSIS OF DYNAMIC SYSTEMS Claudio Melchiorri Dipartimento di Ingegneria dell Energia Elettrica e

Linear System Theory

Linear System Theory Wonhee Kim Chapter 6: Controllability & Observability Chapter 7: Minimal Realizations May 2, 217 1 / 31 Recap State space equation Linear Algebra Solutions of LTI and LTV system Stability

10 Transfer Matrix Models

MIT EECS 6.241 (FALL 26) LECTURE NOTES BY A. MEGRETSKI 1 Transfer Matrix Models So far, transfer matrices were introduced for finite order state space LTI models, in which case they serve as an important

Model Reduction for Unstable Systems

Model Reduction for Unstable Systems Klajdi Sinani Virginia Tech klajdi@vt.edu Advisor: Serkan Gugercin October 22, 2015 (VT) SIAM October 22, 2015 1 / 26 Overview 1 Introduction 2 Interpolatory Model

Observability. Dynamic Systems. Lecture 2 Observability. Observability, continuous time: Observability, discrete time: = h (2) (x, u, u)

Observability Dynamic Systems Lecture 2 Observability Continuous time model: Discrete time model: ẋ(t) = f (x(t), u(t)), y(t) = h(x(t), u(t)) x(t + 1) = f (x(t), u(t)), y(t) = h(x(t)) Reglerteknik, ISY,

Systems of Algebraic Equations and Systems of Differential Equations

Systems of Algebraic Equations and Systems of Differential Equations Topics: 2 by 2 systems of linear equations Matrix expression; Ax = b Solving 2 by 2 homogeneous systems Functions defined on matrices

Analysis II: The Implicit and Inverse Function Theorems

Analysis II: The Implicit and Inverse Function Theorems Jesse Ratzkin November 17, 2009 Let f : R n R m be C 1. When is the zero set Z = {x R n : f(x) = 0} the graph of another function? When is Z nicely

Trajectory Tracking Control of Bimodal Piecewise Affine Systems

25 American Control Conference June 8-1, 25. Portland, OR, USA ThB17.4 Trajectory Tracking Control of Bimodal Piecewise Affine Systems Kazunori Sakurama, Toshiharu Sugie and Kazushi Nakano Abstract This

Linear Algebra Massoud Malek

CSUEB Linear Algebra Massoud Malek Inner Product and Normed Space In all that follows, the n n identity matrix is denoted by I n, the n n zero matrix by Z n, and the zero vector by θ n An inner product

ESC794: Special Topics: Model Predictive Control

ESC794: Special Topics: Model Predictive Control Discrete-Time Systems Hanz Richter, Professor Mechanical Engineering Department Cleveland State University Discrete-Time vs. Sampled-Data Systems A continuous-time

LIE TRANSFORM CONSTRUCTION OF EXPONENTIAL NORMAL FORM OBSERVERS. Suba Thomas Harry G. Kwatny Bor-Chin Chang

LIE TRANSFORM CONSTRUCTION OF EXPONENTIAL NORMAL FORM OBSERVERS Suba Thomas Harry G Kwatny Bor-Chin Chang Department of Mechanical Engineering and Mechanics, Drexel University, Philadelphia, PA 1914, USA

Mathematics for Control Theory

Mathematics for Control Theory Outline of Dissipativity and Passivity Hanz Richter Mechanical Engineering Department Cleveland State University Reading materials Only as a reference: Charles A. Desoer

Analysis of Discrete-Time Systems

TU Berlin Discrete-Time Control Systems TU Berlin Discrete-Time Control Systems 2 Stability Definitions We define stability first with respect to changes in the initial conditions Analysis of Discrete-Time

Chapter 6 Balanced Realization 6. Introduction One popular approach for obtaining a minimal realization is known as Balanced Realization. In this appr

Lectures on ynamic Systems and Control Mohammed ahleh Munther A. ahleh George Verghese epartment of Electrical Engineering and Computer Science Massachuasetts Institute of Technology c Chapter 6 Balanced

Optimal Control. Lecture 18. Hamilton-Jacobi-Bellman Equation, Cont. John T. Wen. March 29, Ref: Bryson & Ho Chapter 4.

Optimal Control Lecture 18 Hamilton-Jacobi-Bellman Equation, Cont. John T. Wen Ref: Bryson & Ho Chapter 4. March 29, 2004 Outline Hamilton-Jacobi-Bellman (HJB) Equation Iterative solution of HJB Equation

Empirical Gramians and Balanced Truncation for Model Reduction of Nonlinear Systems

Empirical Gramians and Balanced Truncation for Model Reduction of Nonlinear Systems Antoni Ras Departament de Matemàtica Aplicada 4 Universitat Politècnica de Catalunya Lecture goals To review the basic

Infinite-Dimensional Triangularization

Infinite-Dimensional Triangularization Zachary Mesyan March 11, 2018 Abstract The goal of this paper is to generalize the theory of triangularizing matrices to linear transformations of an arbitrary vector

A connection between number theory and linear algebra

A connection between number theory and linear algebra Mark Steinberger Contents 1. Some basics 1 2. Rational canonical form 2 3. Prime factorization in F[x] 4 4. Units and order 5 5. Finite fields 7 6.

UCLA Chemical Engineering. Process & Control Systems Engineering Laboratory

Constrained Innite-Time Nonlinear Quadratic Optimal Control V. Manousiouthakis D. Chmielewski Chemical Engineering Department UCLA 1998 AIChE Annual Meeting Outline Unconstrained Innite-Time Nonlinear

Linear Quadratic Zero-Sum Two-Person Differential Games Pierre Bernhard June 15, 2013

Linear Quadratic Zero-Sum Two-Person Differential Games Pierre Bernhard June 15, 2013 Abstract As in optimal control theory, linear quadratic (LQ) differential games (DG) can be solved, even in high dimension,

Module 07 Controllability and Controller Design of Dynamical LTI Systems

Module 07 Controllability and Controller Design of Dynamical LTI Systems Ahmad F. Taha EE 5143: Linear Systems and Control Email: ahmad.taha@utsa.edu Webpage: http://engineering.utsa.edu/ataha October

Chapter 6 Balanced Realization 6. Introduction One popular approach for obtaining a minimal realization is known as Balanced Realization. In this appr

Lectures on ynamic Systems and Control Mohammed ahleh Munther A. ahleh George Verghese epartment of Electrical Engineering and Computer Science Massachuasetts Institute of Technology c Chapter 6 Balanced

Chap. 3. Controlled Systems, Controllability

Chap. 3. Controlled Systems, Controllability 1. Controllability of Linear Systems 1.1. Kalman s Criterion Consider the linear system ẋ = Ax + Bu where x R n : state vector and u R m : input vector. A :

EE363 homework 8 solutions

EE363 Prof. S. Boyd EE363 homework 8 solutions 1. Lyapunov condition for passivity. The system described by ẋ = f(x, u), y = g(x), x() =, with u(t), y(t) R m, is said to be passive if t u(τ) T y(τ) dτ

Chapter III. Stability of Linear Systems

1 Chapter III Stability of Linear Systems 1. Stability and state transition matrix 2. Time-varying (non-autonomous) systems 3. Time-invariant systems 1 STABILITY AND STATE TRANSITION MATRIX 2 In this chapter,

ẋ n = f n (x 1,...,x n,u 1,...,u m ) (5) y 1 = g 1 (x 1,...,x n,u 1,...,u m ) (6) y p = g p (x 1,...,x n,u 1,...,u m ) (7)

EEE582 Topical Outline A.A. Rodriguez Fall 2007 GWC 352, 965-3712 The following represents a detailed topical outline of the course. It attempts to highlight most of the key concepts to be covered and

LOCALLY POSITIVE NONLINEAR SYSTEMS

Int. J. Appl. Math. Comput. Sci. 3 Vol. 3 No. 4 55 59 LOCALLY POSITIVE NONLINEAR SYSTEMS TADEUSZ KACZOREK Institute of Control Industrial Electronics Warsaw University of Technology ul. Koszykowa 75 66

arxiv: v1 [math.oc] 29 Apr 2017

BALANCED TRUNCATION MODEL ORDER REDUCTION FOR QUADRATIC-BILINEAR CONTROL SYSTEMS PETER BENNER AND PAWAN GOYAL arxiv:175.16v1 [math.oc] 29 Apr 217 Abstract. We discuss balanced truncation model order reduction

Nonlinear Control. Nonlinear Control Lecture # 6 Passivity and Input-Output Stability

Nonlinear Control Lecture # 6 Passivity and Input-Output Stability Passivity: Memoryless Functions y y y u u u (a) (b) (c) Passive Passive Not passive y = h(t,u), h [0, ] Vector case: y = h(t,u), h T =

Linear Matrix Inequality (LMI)

Linear Matrix Inequality (LMI) A linear matrix inequality is an expression of the form where F (x) F 0 + x 1 F 1 + + x m F m > 0 (1) x = (x 1,, x m ) R m, F 0,, F m are real symmetric matrices, and the

Lecture 8. Chapter 5: Input-Output Stability Chapter 6: Passivity Chapter 14: Passivity-Based Control. Eugenio Schuster.

Lecture 8 Chapter 5: Input-Output Stability Chapter 6: Passivity Chapter 14: Passivity-Based Control Eugenio Schuster schuster@lehigh.edu Mechanical Engineering and Mechanics Lehigh University Lecture

CENTER MANIFOLD AND NORMAL FORM THEORIES

3 rd Sperlonga Summer School on Mechanics and Engineering Sciences 3-7 September 013 SPERLONGA CENTER MANIFOLD AND NORMAL FORM THEORIES ANGELO LUONGO 1 THE CENTER MANIFOLD METHOD Existence of an invariant