MIT Manufacturing Systems Analysis Lectures 15 16: Assembly/Disassembly Systems

Size: px
Start display at page:

Download "MIT Manufacturing Systems Analysis Lectures 15 16: Assembly/Disassembly Systems"

Transcription

1 2.852 Manufacturing Systems Analysis 1/41 Copyright 2010 c Stanley B. Gershwin. MIT Manufacturing Systems Analysis Lectures 15 16: Assembly/Disassembly Systems Stanley B. Gershwin Massachusetts Institute of Technology Spring, 2010

2 Assembly-Disassembly Systems Assembly System Manufacturing Systems Analysis 2/41 Copyright c 2010 Stanley B. Gershwin.

3 Assembly-Disassembly Systems Assembly-Disassembly System with a Loop Manufacturing Systems Analysis /41 Copyright c 2010 Stanley B. Gershwin.

4 Assembly-Disassembly Systems A-D System without Loops Manufacturing Systems Analysis 4/41 Copyright c 2010 Stanley B. Gershwin.

5 2.852 Manufacturing Systems Analysis 5/41 Copyright c 2010 Stanley B. Gershwin. Assembly-Disassembly Systems Disruption Propagation in an A-D System without Loops F E F E F F F E E F E F E F

6 2.852 Manufacturing Systems Analysis 6/41 Copyright c 2010 Stanley B. Gershwin. Assembly-Disassembly Systems Models and Analysis An assembly/disassembly system is a generalization of a transfer line: Each machine may have 0, 1, or more than one buffer upstream. Each machine may have 0, 1, or more than one buffer downstream. Each buffer has exactly one machine upstream and one machine downstream. Discrete material systems: when a machine does an operation, it removes one part from each upstream buffer and inserts one part into each downstream buffer. Continuous material systems: when machine M i operates during [t,t + δt], it removes µ i δt from each upstream buffer and inserts µ i δt into each downstream buffer. A machine is starved if any of its upstream buffers is empty. It is blocked if any of its downstream buffers is full.

7 2.852 Manufacturing Systems Analysis 7/41 Copyright c 2010 Stanley B. Gershwin. Assembly-Disassembly Systems Models and Analysis A/D systems can be modeled similarly to lines: discrete material, discrete time, deterministic processing time, geometric repair and failure times; discrete material, continuous time, exponential processing, repair, and failure times; continuous continuous time, deterministic processing rate, exponential repair and failure times; other models not yet discussed in class. A/D systems without loops can be analyzed similarly to lines by decomposition. A/D systems with loops can be analyzed by decomposition, but there are additional complexities.

8 2.852 Manufacturing Systems Analysis 8/41 Copyright c 2010 Stanley B. Gershwin. Assembly-Disassembly Systems Models and Analysis Systems with loops are not ergodic. That is, the steady-state distribution is a function of the initial conditions. Example: if the system below has K pallets at time 0, it will have K pallets for all t 0. Therefore, the probability distribution is a function of K. Raw Part Input Empty Pallet Buffer Finished Part Output This applies to more general systems with loops, such the example on Slide.

9 Assembly-Disassembly Systems Models and Analysis In general, p(s s(0)) = lim t prob { state of the system at time t = s state of the system at time 0 = s(0)}. Consequently, the performance measures depend on the initial state of the system: The production rate of Machine M i, in parts per time unit, is E i (s(0)) = prob The average level of Buffer b is [ α i = 1 and (n b > 0 b U(i)) and ] (n b < N b b D(i)) s(0). n b (s(0)) = n b prob (s s(0)) Manufacturing Systems Analysis 9/41 s Copyright c 2010 Stanley B. Gershwin.

10 2.852 Manufacturing Systems Analysis 10/41 Copyright c 2010 Stanley B. Gershwin. Assembly-Disassembly Systems Decomposition M j Mm B (j, i) B (i, m) B (n, i) M i B (i, q) Mn M q Part of Original Network

11 2.852 Manufacturing Systems Analysis 11/41 Copyright c 2010 Stanley B. Gershwin. Assembly-Disassembly Systems Decomposition M u (j, i) B (j, i) M d (j, i) M u (n, i) B (n, i) Md (n, i) M u (i, m) B (i, m) M d (i, m) M u (i, q) B (i, q) M d (i, q) Part of Decomposition

12 2.852 Manufacturing Systems Analysis 12/41 Copyright c 2010 Stanley B. Gershwin. Numerical examples Eight-Machine Systems Deterministic processing time model

13 2.852 Manufacturing Systems Analysis 1/41 Copyright c 2010 Stanley B. Gershwin. Numerical examples Eight-Machine Systems Case 1: r i =.1,p i =.1,i = 1,..., 8; N i = 10,i = 1,...,

14 2.852 Manufacturing Systems Analysis 14/41 Copyright c 2010 Stanley B. Gershwin. Numerical examples Eight-Machine Systems Case 2: Same as Case 1 except p 7 =

15 2.852 Manufacturing Systems Analysis 15/41 Copyright c 2010 Stanley B. Gershwin. Numerical examples Eight-Machine Systems Case : Same as Case 1 except p 1 =

16 2.852 Manufacturing Systems Analysis 16/41 Copyright c 2010 Stanley B. Gershwin. Numerical examples Eight-Machine Systems Case 4: Same as Case 1 except p =

17 2.852 Manufacturing Systems Analysis 17/41 Copyright 2010 c Stanley B. Gershwin. Numerical Examples Alternate Assembly Line Designs A product is made of three subassemblies (blue, yellow, and red). Each subassembly can be assembled independently of the others. We consider four possible production system structures. Machine 6 (the first machine of the yellow process) is the bottleneck the slowest operation of all.

18 Numerical Examples Alternate Assembly Line Designs Manufacturing Systems Analysis 18/41 Copyright 2010 c Stanley B. Gershwin.

19 2.852 Manufacturing Systems Analysis 19/41 Copyright c 2010 Stanley B. Gershwin. Numerical Examples Alternate Assembly Line Designs Now the bottleneck is Machine 5, the last operation of the blue process.

20 Numerical Examples Alternate Assembly Line Designs Manufacturing Systems Analysis 20/41 Copyright c 2010 Stanley B. Gershwin.

21 2.852 Manufacturing Systems Analysis 21/41 Copyright 2010 c Stanley B. Gershwin. Equivalence Simple models Consider a three-machine transfer line and a three-machine assembly system. Both are perfectly reliable (p i = 0) exponentially processing time systems. N = 2 1 N = 2 N = 1 2 µ µ µ 1 2 N = 2

22 2.852 Manufacturing Systems Analysis 22/41 Copyright 2010 c Stanley B. Gershwin. Equivalence Assembly System State Space N = µ 2 20 µ µ N = µ µ

23 2.852 Manufacturing Systems Analysis 2/41 Copyright 2010 c Stanley B. Gershwin. Equivalence Transfer Line State Space N = 2 N = µ µ µ µ µ µ µ µ

24 2.852 Manufacturing Systems Analysis 24/41 Copyright 2010 c Stanley B. Gershwin. Equivalence Unlabeled State Space The transition graphs of the two systems are the same except for the labels of the states. Therefore, the steady-state probability distributions of the two systems are the same, except for the labels of the states. The relationship between the labels of the µ states is: µ A (n 1,n A T T 2 ) (n 1,N 2 n 2 ) µ Therefore, in steady state, A prob(n 1,n A T T 2 ) = prob(n 1,N 2 n 2 )

25 2.852 Manufacturing Systems Analysis 25/41 Copyright 2010 c Stanley B. Gershwin. Equivalence Assembly System Production Rate Production rate = rate of flow of material into M 1 1 = p(n 1,n 2 ) N = 2 1 n 1 =0 n 2 = N = µ

26 2.852 Manufacturing Systems Analysis 26/41 Copyright 2010 c Stanley B. Gershwin. Equivalence Transfer Assembly Line System Production Rate Rate Production rate = rate of flow of material into M 1 1 = n 1 =0 n 2 =0 p(n 1,n 2 ) N = 2 1 N = 2 µ µ µ µ µ

27 2.852 Manufacturing Systems Analysis 27/41 Copyright 2010 c Stanley B. Gershwin. Equivalence Equal Assembly Produc System ion Production Rates Rat Therefore P A = P T

28 2.852 Manufacturing Systems Analysis 28/41 Copyright 2010 c Stanley B. Gershwin. Equivalence Assembly System n 1 [ ] 2 2 n 1 = n 1 p(n 1, n 2 ) = n 1 p(n 1, n 2 ) n 1=0 n 2=0 n 1=0 n 2=0 N = 2 1 µ µ µ N = 2 µ µ

29 2.852 Manufacturing Systems Analysis 29/41 Copyright 2010 c Stanley B. Gershwin. Equivalence Assembly Transfer Line System n 1 n 1 [ ] 2 2 n 1 = n 1 p(n 1, n 2 ) = n 1 p(n 1, n 2 ) n 1=0 n 2=0 n 1=0 n 2= N = 2 N = 1 2 µ 2 µ µ µ µ µ

30 2.852 Manufacturing Systems Analysis 0/41 Copyright 2010 c Stanley B. Gershwin. Equivalence Equal Assembly n 1 System Production Rate Therefore A T n 1 = n 1

31 2.852 Manufacturing Systems Analysis 1/41 Copyright 2010 c Stanley B. Gershwin. Equivalence Assembly System n 2 [ ] 2 2 n 2 = n 2 p(n 1, n 2 ) = n 2 p(n 1, n 2 ) µ µ n 1=0 n 2=0 n 2=0 n 1=0 N = µ µ µ N = µ µ

32 2.852 Manufacturing Systems Analysis 2/41 Copyright 2010 c Stanley B. Gershwin. Equivalence Assembly Transfer Line System n 2 n 2 [ ] 2 2 n 2 = n 2 p(n 1, n 2 ) = n 2 p(n 1, n 2 ) µ µ n 1=0 n 2=0 n 2=0 n 1= N = 2 N = 1 2 µ µ µ µ µ 1 2 µ µ µ

33 2.852 Manufacturing Systems Analysis /41 Copyright 2010 c Stanley B. Gershwin. Equivalence Complementary Assembly System n 1 Production Rate Therefore A T n 2 = N 2 n 2

34 2.852 Manufacturing Systems Analysis 4/41 Copyright 2010 c Stanley B. Gershwin. Equivalence Theorem Notation: Let j be a buffer. Then the machine upstream of the buffer is u(j) and the machine downstream of the buffer is d(j). Theorem: Assume Z and Z are two exponential A/D networks with the same number of machines and buffers. Corresponding machines and buffers have the same parameters; that is, µ i = µ i, i = 1,..., k M and N b = N b, b = 1,..., k B. There is a subset of buffers Ω such that for j Ω, u (j) = u(j) and d (j) = d(j); and for j Ω, u (j) = d(j) and d (j) = u(j). That is, there is a set of buffers such that the direction of flow is reversed in the two networks. Then, the transition equations for network Z are the same as those of Z, except that the buffer levels in Ω are replaced by the amounts of space in those buffers.

35 2.852 Manufacturing Systems Analysis 5/41 Copyright 2010 c Stanley B. Gershwin. Equivalence Theorem That is, the transition (or balance) equations of Z can be written by transforming those of Z. In the Z equations, replace n j by N j n j for all j Ω.

36 2.852 Manufacturing Systems Analysis 6/41 Copyright 2010 c Stanley B. Gershwin. Equivalence Theorem Corollary: Assume: The initial states s(0) and s (0) are related as follows: n j (0) = n j (0) for j Ω, and n j (0) = N j n j (0) for j Ω. Then P (n (0)) = P(n(0)) n b (n (0)) = n b(n(0)), for j Ω n b (n (0)) = N b n b(n(0)), for j Ω

37 2.852 Manufacturing Systems Analysis 7/41 Copyright 2010 c Stanley B. Gershwin. Equivalence Theorem Corollary: That is, the production rates of the two systems are the same, the average levels of all the buffers in the systems whose direction of flow has not been changed are the same, the average levels of all the buffers in the systems whose direction of flow has been changed are complementary; the average number of parts in one is equal to the average amount of space in the other.

38 2.852 Manufacturing Systems Analysis 8/41 Copyright 2010 c Stanley B. Gershwin. Equivalence Equivalence class of three-machine systems N N 1 2 N 1 B 2 B 1 N 1 µ 1 N 2 N 2 B 1 B 2 N 1 µ 2 N 2 µ µ µ µ 2 1

39 2.852 Manufacturing Systems Analysis 9/41 Copyright 2010 c Stanley B. Gershwin. Equivalence Equivalence classes of four-machine systems Representative members

40 2.852 Manufacturing Systems Analysis 40/41 Copyright 2010 c Stanley B. Gershwin. Equivalence Example of equivalent loops Ω= (, 4) (a) A Fork/ Join Network (b) A Closed Network

41 2.852 Manufacturing Systems Analysis 41/41 Copyright 2010 c Stanley B. Gershwin. Equivalence To come Loops and invariants Two-machine loops Instability of A/D systems with infinite buffers

42 MIT OpenCourseWare Manufacturing Systems Analysis Spring 2010 For information about citing these materials or our Terms of Use,visit:

MIT Manufacturing Systems Analysis Lecture 10 12

MIT Manufacturing Systems Analysis Lecture 10 12 2.852 Manufacturing Systems Analysis 1/91 Copyright 2010 c Stanley B. Gershwin. MIT 2.852 Manufacturing Systems Analysis Lecture 10 12 Transfer Lines Long Lines Stanley B. Gershwin http://web.mit.edu/manuf-sys

More information

Single-part-type, multiple stage systems. Lecturer: Stanley B. Gershwin

Single-part-type, multiple stage systems. Lecturer: Stanley B. Gershwin Single-part-type, multiple stage systems Lecturer: Stanley B. Gershwin Flow Line... also known as a Production or Transfer Line. M 1 B 1 M 2 B 2 M 3 B 3 M 4 B 4 M 5 B 5 M 6 Machine Buffer Machines are

More information

MIT Manufacturing Systems Analysis Lectures 18 19

MIT Manufacturing Systems Analysis Lectures 18 19 MIT 2.852 Manufacturing Systems Analysis Lectures 18 19 Loops Stanley B. Gershwin Spring, 2007 Copyright c 2007 Stanley B. Gershwin. Problem Statement B 1 M 2 B 2 M 3 B 3 M 1 M 4 B 6 M 6 B 5 M 5 B 4 Finite

More information

MIT Manufacturing Systems Analysis Lectures 6 9: Flow Lines

MIT Manufacturing Systems Analysis Lectures 6 9: Flow Lines 2.852 Manufacturing Systems Analysis 1/165 Copyright 2010 c Stanley B. Gershwin. MIT 2.852 Manufacturing Systems Analysis Lectures 6 9: Flow Lines Models That Can Be Analyzed Exactly Stanley B. Gershwin

More information

Markov Processes and Queues

Markov Processes and Queues MIT 2.853/2.854 Introduction to Manufacturing Systems Markov Processes and Queues Stanley B. Gershwin Laboratory for Manufacturing and Productivity Massachusetts Institute of Technology Markov Processes

More information

Type 1. Type 1 Type 2 Type 2 M 4 M 1 B 41 B 71 B 31 B 51 B 32 B 11 B 12 B 22 B 61 M 3 M 2 B 21

Type 1. Type 1 Type 2 Type 2 M 4 M 1 B 41 B 71 B 31 B 51 B 32 B 11 B 12 B 22 B 61 M 3 M 2 B 21 Design and Operation of Manufacturing Systems The Control-Point Policy by Stanley B. Gershwin Institute Massachusetts Technology of Cambridge, 02139 USA Massachusetts I I E Annual Conference Orlando, Florida,

More information

MIT Manufacturing Systems Analysis Lecture 14-16

MIT Manufacturing Systems Analysis Lecture 14-16 MIT 2.852 Manufacturing Systems Analysis Lecture 14-16 Line Optimization Stanley B. Gershwin Spring, 2007 Copyright c 2007 Stanley B. Gershwin. Line Design Given a process, find the best set of machines

More information

Representation and Analysis of Transfer Lines. with Machines That Have Different Processing Rates

Representation and Analysis of Transfer Lines. with Machines That Have Different Processing Rates March, 1985 Revised November, 1985 LIDS-P-1446 Representation and Analysis of Transfer Lines with Machines That Have Different Processing Rates by Stanley B. Gershwin 35-433 Massachusetts Institute of

More information

PRODUCTVIVITY IMPROVEMENT MODEL OF AN UNRELIABLE THREE STATIONS AND A SINGLE BUFFER WITH CONTINUOUS MATERIAL FLOW

PRODUCTVIVITY IMPROVEMENT MODEL OF AN UNRELIABLE THREE STATIONS AND A SINGLE BUFFER WITH CONTINUOUS MATERIAL FLOW Vol. 3, No. 1, Fall, 2016, pp. 23-40 ISSN 2158-835X (print), 2158-8368 (online), All Rights Reserved PRODUCTVIVITY IMPROVEMENT MODEL OF AN UNRELIABLE THREE STATIONS AND A SINGLE BUFFER WITH CONTINUOUS

More information

0utline. 1. Tools from Operations Research. 2. Applications

0utline. 1. Tools from Operations Research. 2. Applications 0utline 1. Tools from Operations Research Little s Law (average values) Unreliable Machine(s) (operation dependent) Buffers (zero buffers & infinite buffers) M/M/1 Queue (effects of variation) 2. Applications

More information

Single-part-type, multiple stage systems

Single-part-type, multiple stage systems MIT 2.853/2.854 Introduction to Manufacturing Systems Single-part-type, multiple stage systems Stanley B. Gershwin Laboratory for Manufacturing and Productivity Massachusetts Institute of Technology Single-stage,

More information

PERFORMANCE ANALYSIS OF PRODUCTION SYSTEMS WITH REWORK LOOPS

PERFORMANCE ANALYSIS OF PRODUCTION SYSTEMS WITH REWORK LOOPS PERFORMANCE ANALYSIS OF PRODUCTION SYSTEMS WITH REWORK LOOPS Jingshan Li Enterprise Systems Laboratory General Motors Research & Development Center Mail Code 480-106-359 30500 Mound Road Warren, MI 48090-9055

More information

MIT Manufacturing Systems Analysis Lectures 19 21

MIT Manufacturing Systems Analysis Lectures 19 21 MIT 2.852 Manufacturing Systems Analysis Lectures 19 21 Scheduling: Real-Time Control of Manufacturing Systems Stanley B. Gershwin Spring, 2007 Copyright c 2007 Stanley B. Gershwin. Definitions Events

More information

Mostafa H. Ammar* Stanley B. Gershwin

Mostafa H. Ammar* Stanley B. Gershwin Ip January 1981 LIDS-P-1027 (Revised) OSP No. 87049 EQUIVALENCE RELATIONS IN QUEUING MODELS OF MANUFACTURING NETWORKS by Mostafa H. Ammar* Stanley B. Gershwin This research was carried out in the M.I.T.

More information

Analysis and Design of Manufacturing Systems with Multiple-Loop Structures. Zhenyu Zhang

Analysis and Design of Manufacturing Systems with Multiple-Loop Structures. Zhenyu Zhang Analysis and Design of Manufacturing Systems with Multiple-Loop Structures by Zhenyu Zhang B.S., Shanghai Jiao Tong University, China (2000) M.S., Shanghai Jiao Tong University, China (2002) Submitted

More information

Exercises Solutions. Automation IEA, LTH. Chapter 2 Manufacturing and process systems. Chapter 5 Discrete manufacturing problems

Exercises Solutions. Automation IEA, LTH. Chapter 2 Manufacturing and process systems. Chapter 5 Discrete manufacturing problems Exercises Solutions Note, that we have not formulated the answers for all the review questions. You will find the answers for many questions by reading and reflecting about the text in the book. Chapter

More information

A Bernoulli Model of Selective Assembly Systems

A Bernoulli Model of Selective Assembly Systems Preprints of the 19th World Congress The International Federation of Automatic Control A Bernoulli Model of Selective Assembly Systems Feng Ju and Jingshan Li Department of Industrial and Systems Engineering,

More information

18.440: Lecture 33 Markov Chains

18.440: Lecture 33 Markov Chains 18.440: Lecture 33 Markov Chains Scott Sheffield MIT 1 Outline Markov chains Examples Ergodicity and stationarity 2 Outline Markov chains Examples Ergodicity and stationarity 3 Markov chains Consider a

More information

State Machines. step by step processes (may step in response to input not today) State machines. Die Hard. State machines

State Machines. step by step processes (may step in response to input not today) State machines. Die Hard. State machines Mathematics for Computer Science MIT 6.042J/18.062J State Machines State machines step by step processes (may step in response to input not today) statemachine.1 statemachine.2 State machines The state

More information

Performance Evaluation of Queuing Systems

Performance Evaluation of Queuing Systems Performance Evaluation of Queuing Systems Introduction to Queuing Systems System Performance Measures & Little s Law Equilibrium Solution of Birth-Death Processes Analysis of Single-Station Queuing Systems

More information

Performance evaluation of production lines with unreliable batch machines and random processing time

Performance evaluation of production lines with unreliable batch machines and random processing time Politecnico di Milano Scuola di Ingegneria di Sistemi Polo territoriale di Como Master Graduation Thesis Performance evaluation of production lines with unreliable batch machines and random processing

More information

MODELING AND ANALYSIS OF SPLIT AND MERGE PRODUCTION SYSTEMS

MODELING AND ANALYSIS OF SPLIT AND MERGE PRODUCTION SYSTEMS University of Kentucky UKnowledge University of Kentucky Master's Theses Graduate School 008 MODELING AND ANALYSIS OF SPLIT AND MERGE PRODUCTION SYSTEMS Yang Liu University of Kentucky, yang.liu@uky.edu

More information

Production variability in manufacturing systems: Bernoulli reliability case

Production variability in manufacturing systems: Bernoulli reliability case Annals of Operations Research 93 (2000) 299 324 299 Production variability in manufacturing systems: Bernoulli reliability case Jingshan Li and Semyon M. Meerkov Department of Electrical Engineering and

More information

Markov Chains CK eqns Classes Hitting times Rec./trans. Strong Markov Stat. distr. Reversibility * Markov Chains

Markov Chains CK eqns Classes Hitting times Rec./trans. Strong Markov Stat. distr. Reversibility * Markov Chains Markov Chains A random process X is a family {X t : t T } of random variables indexed by some set T. When T = {0, 1, 2,... } one speaks about a discrete-time process, for T = R or T = [0, ) one has a continuous-time

More information

Department 2 Power cut of A1 and A2

Department 2 Power cut of A1 and A2 3.12. PROBLEMS 115 3.12 Problems Problem 3.1 A production system manufactures products A and B. Each product consists of two parts: A1 and A2 for product A and B1 and B2 for product B. The processing of

More information

An Aggregation Method for Performance Evaluation of a Tandem Homogenous Production Line with Machines Having Multiple Failure Modes

An Aggregation Method for Performance Evaluation of a Tandem Homogenous Production Line with Machines Having Multiple Failure Modes An Aggregation Method for Performance Evaluation of a Tandem Homogenous Production Line with Machines Having Multiple Failure Modes Ahmed-Tidjani Belmansour Mustapha Nourelfath November 2008 CIRRELT-2008-53

More information

KKT Examples. Stanley B. Gershwin Massachusetts Institute of Technology

KKT Examples. Stanley B. Gershwin Massachusetts Institute of Technology Stanley B. Gershwin Massachusetts Institute of Technology The purpose of this note is to supplement the slides that describe the Karush-Kuhn-Tucker conditions. Neither these notes nor the slides are a

More information

Topic one: Production line profit maximization subject to a production rate constraint. c 2010 Chuan Shi Topic one: Line optimization : 22/79

Topic one: Production line profit maximization subject to a production rate constraint. c 2010 Chuan Shi Topic one: Line optimization : 22/79 Topic one: Production line profit maximization subject to a production rate constraint c 21 Chuan Shi Topic one: Line optimization : 22/79 Production line profit maximization The profit maximization problem

More information

2.004 Dynamics and Control II Spring 2008

2.004 Dynamics and Control II Spring 2008 MT OpenCourseWare http://ocw.mit.edu 2.004 Dynamics and Control Spring 2008 or information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. Reading: ise: Chapter 8 Massachusetts

More information

A REACHABLE THROUGHPUT UPPER BOUND FOR LIVE AND SAFE FREE CHOICE NETS VIA T-INVARIANTS

A REACHABLE THROUGHPUT UPPER BOUND FOR LIVE AND SAFE FREE CHOICE NETS VIA T-INVARIANTS A REACHABLE THROUGHPUT UPPER BOUND FOR LIVE AND SAFE FREE CHOICE NETS VIA T-INVARIANTS Francesco Basile, Ciro Carbone, Pasquale Chiacchio Dipartimento di Ingegneria Elettrica e dell Informazione, Università

More information

The Uncertainty Threshold Principle: Some Fundamental Limitations of Optimal Decision Making under Dynamic Uncertainty

The Uncertainty Threshold Principle: Some Fundamental Limitations of Optimal Decision Making under Dynamic Uncertainty The Uncertainty Threshold Principle: Some Fundamental Limitations of Optimal Decision Making under Dynamic Uncertainty Michael Athans, Richard Ku, Stanley Gershwin (Nicholas Ballard 538477) Introduction

More information

2.004 Dynamics and Control II Spring 2008

2.004 Dynamics and Control II Spring 2008 MIT OpenCourseWare http://ocw.mit.edu 2.004 Dynamics and Control II Spring 2008 or information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 2 I C + 4 * Massachusetts

More information

5.3 Linear Programming in Two Dimensions: A Geometric Approach

5.3 Linear Programming in Two Dimensions: A Geometric Approach : A Geometric Approach A Linear Programming Problem Definition (Linear Programming Problem) A linear programming problem is one that is concerned with finding a set of values of decision variables x 1,

More information

1 Computational Problems

1 Computational Problems Stanford University CS254: Computational Complexity Handout 2 Luca Trevisan March 31, 2010 Last revised 4/29/2010 In this lecture we define NP, we state the P versus NP problem, we prove that its formulation

More information

The two-machine one-buffer continuous time model with restart policy

The two-machine one-buffer continuous time model with restart policy Noname manuscript No. (will be inserted by the editor) The two-machine one-buffer continuous time model with restart policy Elisa Gebennini Andrea Grassi Cesare Fantuzzi Received: date / Accepted: date

More information

A Heterogeneous Two-Server Queueing System with Balking and Server Breakdowns

A Heterogeneous Two-Server Queueing System with Balking and Server Breakdowns The Eighth International Symposium on Operations Research and Its Applications (ISORA 09) Zhangjiajie, China, September 20 22, 2009 Copyright 2009 ORSC & APORC, pp. 230 244 A Heterogeneous Two-Server Queueing

More information

6.241 Dynamic Systems and Control

6.241 Dynamic Systems and Control 6.241 Dynamic Systems and Control Lecture 2: Least Square Estimation Readings: DDV, Chapter 2 Emilio Frazzoli Aeronautics and Astronautics Massachusetts Institute of Technology February 7, 2011 E. Frazzoli

More information

Forced Response - Particular Solution x p (t)

Forced Response - Particular Solution x p (t) Governing Equation 1.003J/1.053J Dynamics and Control I, Spring 007 Proessor Peacoc 5/7/007 Lecture 1 Vibrations: Second Order Systems - Forced Response Governing Equation Figure 1: Cart attached to spring

More information

Notes for Lecture Notes 2

Notes for Lecture Notes 2 Stanford University CS254: Computational Complexity Notes 2 Luca Trevisan January 11, 2012 Notes for Lecture Notes 2 In this lecture we define NP, we state the P versus NP problem, we prove that its formulation

More information

Markov chains. Randomness and Computation. Markov chains. Markov processes

Markov chains. Randomness and Computation. Markov chains. Markov processes Markov chains Randomness and Computation or, Randomized Algorithms Mary Cryan School of Informatics University of Edinburgh Definition (Definition 7) A discrete-time stochastic process on the state space

More information

Paradox and Infinity Problem Set 6: Ordinal Arithmetic

Paradox and Infinity Problem Set 6: Ordinal Arithmetic 24.118 Paradox and Infinity Problem Set 6: Ordinal Arithmetic You will be graded both on the basis of whether your answers are correct and on the basis of whether they are properly justified. There is

More information

Recap. Probability, stochastic processes, Markov chains. ELEC-C7210 Modeling and analysis of communication networks

Recap. Probability, stochastic processes, Markov chains. ELEC-C7210 Modeling and analysis of communication networks Recap Probability, stochastic processes, Markov chains ELEC-C7210 Modeling and analysis of communication networks 1 Recap: Probability theory important distributions Discrete distributions Geometric distribution

More information

Introduction to Arithmetic Geometry Fall 2013 Lecture #5 09/19/2013

Introduction to Arithmetic Geometry Fall 2013 Lecture #5 09/19/2013 18.782 Introduction to Arithmetic Geometry Fall 2013 Lecture #5 09/19/2013 5.1 The field of p-adic numbers Definition 5.1. The field of p-adic numbers Q p is the fraction field of Z p. As a fraction field,

More information

An Application of Graph Theory in Markov Chains Reliability Analysis

An Application of Graph Theory in Markov Chains Reliability Analysis An Application of Graph Theory in Markov Chains Reliability Analysis Pavel SKALNY Department of Applied Mathematics, Faculty of Electrical Engineering and Computer Science, VSB Technical University of

More information

ANALYSIS OF AUTOMATED FLOW LINE & LINE BALANCING

ANALYSIS OF AUTOMATED FLOW LINE & LINE BALANCING UNIT 3: ANALYSIS OF AUTOMATED FLOW LINE & LINE BALANCING General Terminology & Analysis: There are two problem areas in analysis of automated flow lines which must be addressed: 1. Process Technology 2.

More information

FORMAL LANGUAGES, AUTOMATA AND COMPUTATION

FORMAL LANGUAGES, AUTOMATA AND COMPUTATION FORMAL LANGUAGES, AUTOMATA AND COMPUTATION IDENTIFYING NONREGULAR LANGUAGES PUMPING LEMMA Carnegie Mellon University in Qatar (CARNEGIE MELLON UNIVERSITY IN QATAR) SLIDES FOR 15-453 LECTURE 5 SPRING 2011

More information

Figure 1: Left: Image from A new era: Nanotube displays (Nature Photonics), Right: Our approximation of a single subpixel

Figure 1: Left: Image from A new era: Nanotube displays (Nature Photonics), Right: Our approximation of a single subpixel MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science 6.007 Electromagnetic Energy: From Motors to Lasers Spring 2011 Problem Set 2: Energy and Static Fields Due

More information

2.004 Dynamics and Control II Spring 2008

2.004 Dynamics and Control II Spring 2008 MIT OpenCourseWare http://ocwmitedu 00 Dynamics and Control II Spring 00 For information about citing these materials or our Terms of Use, visit: http://ocwmitedu/terms Massachusetts Institute of Technology

More information

UNIVERSITY OF CALGARY. A Method for Stationary Analysis and Control during Transience in Multi-State Stochastic. Manufacturing Systems

UNIVERSITY OF CALGARY. A Method for Stationary Analysis and Control during Transience in Multi-State Stochastic. Manufacturing Systems UNIVERSITY OF CALGARY A Method for Stationary Analysis and Control during Transience in Multi-State Stochastic Manufacturing Systems by Alireza Fazlirad A THESIS SUBMITTED TO THE FACULTY OF GRADUATE STUDIES

More information

Transient Performance Evaluation, Bottleneck Analysis and Control of Production Systems

Transient Performance Evaluation, Bottleneck Analysis and Control of Production Systems University of Connecticut DigitalCommons@UConn Doctoral Dissertations University of Connecticut Graduate School 4-19-2017 Transient Performance Evaluation, Bottleneck Analysis and Control of Production

More information

Theory of Computation

Theory of Computation Thomas Zeugmann Hokkaido University Laboratory for Algorithmics http://www-alg.ist.hokudai.ac.jp/ thomas/toc/ Lecture 3: Finite State Automata Motivation In the previous lecture we learned how to formalize

More information

A = A U. U [n] P(A U ). n 1. 2 k(n k). k. k=1

A = A U. U [n] P(A U ). n 1. 2 k(n k). k. k=1 Lecture I jacques@ucsd.edu Notation: Throughout, P denotes probability and E denotes expectation. Denote (X) (r) = X(X 1)... (X r + 1) and let G n,p denote the Erdős-Rényi model of random graphs. 10 Random

More information

ECEN 605 LINEAR SYSTEMS. Lecture 20 Characteristics of Feedback Control Systems II Feedback and Stability 1/27

ECEN 605 LINEAR SYSTEMS. Lecture 20 Characteristics of Feedback Control Systems II Feedback and Stability 1/27 1/27 ECEN 605 LINEAR SYSTEMS Lecture 20 Characteristics of Feedback Control Systems II Feedback and Stability Feedback System Consider the feedback system u + G ol (s) y Figure 1: A unity feedback system

More information

Adam Caromicoli. Alan S. Willsky 1. Stanley B. Gershwin 2. Abstract

Adam Caromicoli. Alan S. Willsky 1. Stanley B. Gershwin 2. Abstract December 1987 LIDS-P-1727 MULTIPLE TIME SCALE ANALYSIS OF MANUFACTURING SYSTEMS Adam Caromicoli Alan S. Willsky 1 Stanley B. Gershwin 2 Abstract In this paper we use results on the aggregation of singularly

More information

A PARAMETRIC DECOMPOSITION BASED APPROACH FOR MULTI-CLASS CLOSED QUEUING NETWORKS WITH SYNCHRONIZATION STATIONS

A PARAMETRIC DECOMPOSITION BASED APPROACH FOR MULTI-CLASS CLOSED QUEUING NETWORKS WITH SYNCHRONIZATION STATIONS A PARAMETRIC DECOMPOSITION BASED APPROACH FOR MULTI-CLASS CLOSED QUEUING NETWORKS WITH SYNCHRONIZATION STATIONS Kumar Satyam and Ananth Krishnamurthy Department of Decision Sciences and Engineering Systems,

More information

Towards a Theory of Information Flow in the Finitary Process Soup

Towards a Theory of Information Flow in the Finitary Process Soup Towards a Theory of in the Finitary Process Department of Computer Science and Complexity Sciences Center University of California at Davis June 1, 2010 Goals Analyze model of evolutionary self-organization

More information

CHAPTER 3 ANALYSIS OF RELIABILITY AND PROBABILITY MEASURES

CHAPTER 3 ANALYSIS OF RELIABILITY AND PROBABILITY MEASURES 27 CHAPTER 3 ANALYSIS OF RELIABILITY AND PROBABILITY MEASURES 3.1 INTRODUCTION The express purpose of this research is to assimilate reliability and its associated probabilistic variables into the Unit

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Mechanical Engineering 2.04A Systems and Controls Spring 2013

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Mechanical Engineering 2.04A Systems and Controls Spring 2013 MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Mechanical Engineering 2.04A Systems and Controls Spring 2013 Problem Set #4 Posted: Thursday, Mar. 7, 13 Due: Thursday, Mar. 14, 13 1. Sketch the Root

More information

2.161 Signal Processing: Continuous and Discrete Fall 2008

2.161 Signal Processing: Continuous and Discrete Fall 2008 MIT OpenCourseWare http://ocw.mit.edu 2.6 Signal Processing: Continuous and Discrete Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. Massachusetts

More information

p. 10, Def. 1.6B: read: Any such C...

p. 10, Def. 1.6B: read: Any such C... Corrections and Changes to the First Printing Revised July 29, 24 The first printing has 9 8 7 6 5 4 3 2 on the first left-hand page. Bullets mark the more significant changes or corrections. p., Def..6B:

More information

2.161 Signal Processing: Continuous and Discrete Fall 2008

2.161 Signal Processing: Continuous and Discrete Fall 2008 MIT OpenCourseWare http://ocw.mit.edu 2.161 Signal rocessing: Continuous and Discrete Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. Massachusetts

More information

Stochastic Models in Computer Science A Tutorial

Stochastic Models in Computer Science A Tutorial Stochastic Models in Computer Science A Tutorial Dr. Snehanshu Saha Department of Computer Science PESIT BSC, Bengaluru WCI 2015 - August 10 to August 13 1 Introduction 2 Random Variable 3 Introduction

More information

Glossary availability cellular manufacturing closed queueing network coefficient of variation (CV) conditional probability CONWIP

Glossary availability cellular manufacturing closed queueing network coefficient of variation (CV) conditional probability CONWIP Glossary availability The long-run average fraction of time that the processor is available for processing jobs, denoted by a (p. 113). cellular manufacturing The concept of organizing the factory into

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 3 9/10/2008 CONDITIONING AND INDEPENDENCE

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 3 9/10/2008 CONDITIONING AND INDEPENDENCE MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 3 9/10/2008 CONDITIONING AND INDEPENDENCE Most of the material in this lecture is covered in [Bertsekas & Tsitsiklis] Sections 1.3-1.5

More information

7.32/7.81J/8.591J: Systems Biology. Fall Exam #1

7.32/7.81J/8.591J: Systems Biology. Fall Exam #1 7.32/7.81J/8.591J: Systems Biology Fall 2013 Exam #1 Instructions 1) Please do not open exam until instructed to do so. 2) This exam is closed- book and closed- notes. 3) Please do all problems. 4) Use

More information

8.01x Classical Mechanics, Fall 2016 Massachusetts Institute of Technology. Problem Set 8

8.01x Classical Mechanics, Fall 2016 Massachusetts Institute of Technology. Problem Set 8 8.01x Classical Mechanics, Fall 2016 Massachusetts Institute of Technology 1. Spring-Loop-the-Loop Problem Set 8 A small block of mass m is pushed against a spring with spring constant k and held in place

More information

Time Response of Systems

Time Response of Systems Chapter 0 Time Response of Systems 0. Some Standard Time Responses Let us try to get some impulse time responses just by inspection: Poles F (s) f(t) s-plane Time response p =0 s p =0,p 2 =0 s 2 t p =

More information

A Semiconductor Wafer

A Semiconductor Wafer M O T I V A T I O N Semi Conductor Wafer Fabs A Semiconductor Wafer Clean Oxidation PhotoLithography Photoresist Strip Ion Implantation or metal deosition Fabrication of a single oxide layer Etching MS&E324,

More information

Systems of Linear Equations

Systems of Linear Equations 4 Systems of Linear Equations Copyright 2014, 2010, 2006 Pearson Education, Inc. Section 4.1, Slide 1 1-1 4.1 Systems of Linear Equations in Two Variables R.1 Fractions Objectives 1. Decide whether an

More information

EEC 118 Lecture #16: Manufacturability. Rajeevan Amirtharajah University of California, Davis

EEC 118 Lecture #16: Manufacturability. Rajeevan Amirtharajah University of California, Davis EEC 118 Lecture #16: Manufacturability Rajeevan Amirtharajah University of California, Davis Outline Finish interconnect discussion Manufacturability: Rabaey G, H (Kang & Leblebici, 14) Amirtharajah, EEC

More information

Asymptotic Analysis. Slides by Carl Kingsford. Jan. 27, AD Chapter 2

Asymptotic Analysis. Slides by Carl Kingsford. Jan. 27, AD Chapter 2 Asymptotic Analysis Slides by Carl Kingsford Jan. 27, 2014 AD Chapter 2 Independent Set Definition (Independent Set). Given a graph G = (V, E) an independent set is a set S V if no two nodes in S are joined

More information

FORMAL LANGUAGES, AUTOMATA AND COMPUTATION

FORMAL LANGUAGES, AUTOMATA AND COMPUTATION FORMAL LANGUAGES, AUTOMATA AND COMPUTATION DECIDABILITY ( LECTURE 15) SLIDES FOR 15-453 SPRING 2011 1 / 34 TURING MACHINES-SYNOPSIS The most general model of computation Computations of a TM are described

More information

2.004 Dynamics and Control II Spring 2008

2.004 Dynamics and Control II Spring 2008 MIT OpenCourseWare http://ocw.mit.edu 2.004 Dynamics and Control II Spring 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 8 I * * Massachusetts

More information

REAL-TIME MAINTENANCE POLICIES IN MANUFACTURING SYSTEMS

REAL-TIME MAINTENANCE POLICIES IN MANUFACTURING SYSTEMS REAL-TIME MAINTENANCE POLICIES IN MANUFACTURING SYSTEMS by Xi Gu A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Mechanical Engineering) in The

More information

ACHIEVING OPTIMAL DESIGN OF THE PRODUCTION LINE WITH OBTAINABLE RESOURCE CAPACITY. Miao-Sheng CHEN. Chun-Hsiung LAN

ACHIEVING OPTIMAL DESIGN OF THE PRODUCTION LINE WITH OBTAINABLE RESOURCE CAPACITY. Miao-Sheng CHEN. Chun-Hsiung LAN Yugoslav Journal of Operations Research 12 (2002), Number 2, 203-214 ACHIEVING OPTIMAL DESIGN OF THE PRODUCTION LINE WITH OBTAINABLE RESOURCE CAPACITY Miao-Sheng CHEN Graduate Institute of Management Nanhua

More information

Pengju

Pengju Introduction to AI Chapter04 Beyond Classical Search Pengju Ren@IAIR Outline Steepest Descent (Hill-climbing) Simulated Annealing Evolutionary Computation Non-deterministic Actions And-OR search Partial

More information

18.175: Lecture 2 Extension theorems, random variables, distributions

18.175: Lecture 2 Extension theorems, random variables, distributions 18.175: Lecture 2 Extension theorems, random variables, distributions Scott Sheffield MIT Outline Extension theorems Characterizing measures on R d Random variables Outline Extension theorems Characterizing

More information

6.241 Dynamic Systems and Control

6.241 Dynamic Systems and Control 6.241 Dynamic Systems and Control Lecture 17: Robust Stability Readings: DDV, Chapters 19, 20 Emilio Frazzoli Aeronautics and Astronautics Massachusetts Institute of Technology April 6, 2011 E. Frazzoli

More information

2.161 Signal Processing: Continuous and Discrete Fall 2008

2.161 Signal Processing: Continuous and Discrete Fall 2008 MIT OpenCourseWare http://ocw.mit.edu 2.161 Signal Processing: Continuous and Discrete Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. Massachusetts

More information

Northwestern University Department of Electrical Engineering and Computer Science

Northwestern University Department of Electrical Engineering and Computer Science Northwestern University Department of Electrical Engineering and Computer Science EECS 454: Modeling and Analysis of Communication Networks Spring 2008 Probability Review As discussed in Lecture 1, probability

More information

Solutions to Homework Discrete Stochastic Processes MIT, Spring 2011

Solutions to Homework Discrete Stochastic Processes MIT, Spring 2011 Exercise 1 Solutions to Homework 6 6.262 Discrete Stochastic Processes MIT, Spring 2011 Let {Y n ; n 1} be a sequence of rv s and assume that lim n E[ Y n ] = 0. Show that {Y n ; n 1} converges to 0 in

More information

Massachusetts Institute of Technology

Massachusetts Institute of Technology Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.11: Introduction to Communication, Control and Signal Processing QUIZ 1, March 16, 21 QUESTION BOOKLET

More information

2.72 Elements of Mechanical Design

2.72 Elements of Mechanical Design MIT OpenCourseWare http://ocw.mit.edu 2.72 Elements of Mechanical Design Spring 2009 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 2.72 Elements of

More information

Lecture 20 FUNDAMENTAL Theorem of Finitely Generated Abelian Groups (FTFGAG)

Lecture 20 FUNDAMENTAL Theorem of Finitely Generated Abelian Groups (FTFGAG) Lecture 20 FUNDAMENTAL Theorem of Finitely Generated Abelian Groups (FTFGAG) Warm up: 1. Let n 1500. Find all sequences n 1 n 2... n s 2 satisfying n i 1 and n 1 n s n (where s can vary from sequence to

More information

Relations. Definition 1 Let A and B be sets. A binary relation R from A to B is any subset of A B.

Relations. Definition 1 Let A and B be sets. A binary relation R from A to B is any subset of A B. Chapter 5 Relations Definition 1 Let A and B be sets. A binary relation R from A to B is any subset of A B. If A = B then a relation from A to B is called is called a relation on A. Examples A relation

More information

Grades will be determined by the correctness of your answers (explanations are not required).

Grades will be determined by the correctness of your answers (explanations are not required). 6.00 (Fall 2011) Final Examination December 19, 2011 Name: Kerberos Username: Please circle your section number: Section Time 2 11 am 1 pm 4 2 pm Grades will be determined by the correctness of your answers

More information

Lecture Notes March 11, 2015

Lecture Notes March 11, 2015 18.156 Lecture Notes March 11, 2015 trans. Jane Wang Recall that last class we considered two different PDEs. The first was u ± u 2 = 0. For this one, we have good global regularity and can solve the Dirichlet

More information

2.161 Signal Processing: Continuous and Discrete Fall 2008

2.161 Signal Processing: Continuous and Discrete Fall 2008 MIT OpenCourseWare http://ocw.mit.edu 2.161 Signal Processing: Continuous and Discrete Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. Massachusetts

More information

6.241 Dynamic Systems and Control

6.241 Dynamic Systems and Control 6.241 Dynamic Systems and Control Lecture 7: State-space Models Readings: DDV, Chapters 7,8 Emilio Frazzoli Aeronautics and Astronautics Massachusetts Institute of Technology February 25, 2011 E. Frazzoli

More information

Solutions to Homework Discrete Stochastic Processes MIT, Spring 2011

Solutions to Homework Discrete Stochastic Processes MIT, Spring 2011 Exercise 6.5: Solutions to Homework 0 6.262 Discrete Stochastic Processes MIT, Spring 20 Consider the Markov process illustrated below. The transitions are labelled by the rate q ij at which those transitions

More information

Language Stability and Stabilizability of Discrete Event Dynamical Systems 1

Language Stability and Stabilizability of Discrete Event Dynamical Systems 1 Language Stability and Stabilizability of Discrete Event Dynamical Systems 1 Ratnesh Kumar Department of Electrical Engineering University of Kentucky Lexington, KY 40506-0046 Vijay Garg Department of

More information

Discrete Mathematics. Spring 2017

Discrete Mathematics. Spring 2017 Discrete Mathematics Spring 2017 Previous Lecture Principle of Mathematical Induction Mathematical Induction: rule of inference Mathematical Induction: Conjecturing and Proving Climbing an Infinite Ladder

More information

A Method for Sweet Point Operation of Re-entrant Lines

A Method for Sweet Point Operation of Re-entrant Lines A Method for Sweet Point Operation of Re-entrant Lines Semyon M. Meerkov, Chao-Bo Yan, Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI 4819-2122, USA (e-mail:

More information

2.004 Dynamics and Control II Spring 2008

2.004 Dynamics and Control II Spring 2008 MT OpenCourseWare http://ocw.mit.edu.004 Dynamics and Control Spring 008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. Massachusetts nstitute of Technology

More information

Control of Manufacturing Processes

Control of Manufacturing Processes Control of Manufacturing Processes Subject 2.830 Spring 2004 Lecture #19 Position Control and Root Locus Analysis" April 22, 2004 The Position Servo Problem, reference position NC Control Robots Injection

More information

Module 16: Momentum. p = m v. (16.2.1)

Module 16: Momentum. p = m v. (16.2.1) Module 16: Momentum Law II: The change of motion is proportional to the motive force impressed, and is made in the direction of the right line in which that force is impressed. If any force generates a

More information

Analytical Approximations to Predict Performance Measures of Manufacturing Systems with Job Failures and Parallel Processing

Analytical Approximations to Predict Performance Measures of Manufacturing Systems with Job Failures and Parallel Processing Florida International University FIU Digital Commons FIU Electronic Theses and Dissertations University Graduate School 3-12-2010 Analytical Approximations to Predict Performance Measures of Manufacturing

More information

Lecture Notes for Math 251: ODE and PDE. Lecture 22: 6.5 Dirac Delta and Laplace Transforms

Lecture Notes for Math 251: ODE and PDE. Lecture 22: 6.5 Dirac Delta and Laplace Transforms Lecture Notes for Math : ODE and PDE. Lecture : 6. Dirac Delta and Laplace Transforms Shawn D. Ryan Spring 0 Dirac Delta and the Laplace Transform Last Time: We studied differential equations with discontinuous

More information

Math 308 Exam II Practice Problems

Math 308 Exam II Practice Problems Math 38 Exam II Practice Problems This review should not be used as your sole source for preparation for the exam. You should also re-work all examples given in lecture and all suggested homework problems..

More information

18.01 EXERCISES. Unit 3. Integration. 3A. Differentials, indefinite integration. 3A-1 Compute the differentials df(x) of the following functions.

18.01 EXERCISES. Unit 3. Integration. 3A. Differentials, indefinite integration. 3A-1 Compute the differentials df(x) of the following functions. 8. EXERCISES Unit 3. Integration 3A. Differentials, indefinite integration 3A- Compute the differentials df(x) of the following functions. a) d(x 7 + sin ) b) d x c) d(x 8x + 6) d) d(e 3x sin x) e) Express

More information