2.72 Elements of Mechanical Design

Size: px
Start display at page:

Download "2.72 Elements of Mechanical Design"

Transcription

1 MIT OpenCourseWare Elements of Mechanical Design Spring 2009 For information about citing these materials or our Terms of Use, visit:

2 2.72 Elements of Mechanical Design Lecture 02: Review

3 Intent High-level review of undergrad material as applied to engineering decision making NOT an ME redo or a how to recitation

4 Import Main goal of 2.72 is to teach you how to integrate past knowledge to engineer a system Given this, how do I engineer a mechanical system? modular simple complex system 2.001, , , , 2.008

5 Use of core ME principles that you know 2.001, , , , Martin Culpepper, All rights reserved 4

6 Impact Understand why & how we will use parts of ME core knowledge Problem set Engineering

7 Future help We can t use lecture time to redo the early curriculum BUT We are HAPPY to help outside of lecture IF you ve tried

8 Schedule and reading assignment Reading quiz Changing from sponge to active mode Lecture Mechanics Dynamics Heat transfer Matrix math Hands-on Mechanics Dynamics Heat transfer Matrix math Reading assignment Shigley/Mischke Sections : 08ish pages & Sections : 11ish pages Pay special attention to examples 4.1, 4.4, 5.3, and 5.4 Martin Culpepper, All rights reserved 7

9 Mechanics

10 Free body diagrams Useful for: v v ΣF = 0 = ma Equilibrium Stress, deflection, vibration, etc ΣM = 0 = v Iα Why do we ALWAYS use free body diagrams? Communication Thought process Documentation How will we use free body diagrams? We are dealing with complex systems We will break problem into modules We will model, simulate and analyze mechanical behavior Integrate individual contributions to ascertain system behavior Martin Culpepper, All rights reserved 9

11 Free body diagrams: Bearings/rails Martin Culpepper, All rights reserved 11

12 Free body diagrams: Bearings/rails Martin Culpepper, All rights reserved 12

13 Static: Head stock deformation Martin Culpepper, All rights reserved 13

14 Static: Rail deformation Martin Culpepper, All rights reserved 14

15 Example 1: 0 < x < a Cantilever Forces, moments, & torques y a F b l Why do we care?: Stress Shear & normal Static failure Fatigue failure Why do we care?: Stiffness Displacement Rotation Vibration ( k / m ) ½ But, ends aren t all that matters y a b F M(0) V(0) v Σ F = 0 = F + V ( 0) V ( 0) = V ( x) = F v Σ M = 0 = + F l + M 0 M 0 = F ( ) ( ) a a b x M(x) F V(x) v Σ F = 0 = F + V 0 V 0 = V x = v Σ M = 0 = + F ( ) ( ) ( ) F ( a x) + M ( x) M ( x) = F ( a x) Martin Culpepper, All rights reserved 15

16 Example 1: 0 < x < a But, ends aren t all that matters Relating V(x) & M(x) V ( x )= F M ( x )= F ( x a) v Σ F = 0 a x M(x) V(x) F = F +V ( 0) V (0) = V (x) = F v ΣM = 0 = + F (a x)+ M (x) M (x) = V (x) (a x) b V ( ) ( ) x = d M x dx Shear moment diagrams Solve statics equation Put point of import on plots Use V=dM/dx to generate M plot Master before spindle materials F V M -F a V (x) = F x x M (x) = V (x) (a x) = F (a x) Martin Culpepper, All rights reserved 16

17 Example 1: 0 < x < a Stress h 2 y M(x) σ max M(x+dx) h a b x M(x) F V(x) v Σ F = 0 = F + V 0 V 0 = V x = v Σ M = 0 = + V ( ) ( ) ( ) F ( x) ( a x) M ( x) M ( x) = V ( x) ( a x) I ( x ) = 1 b( ) ( ) 12 x [h x ] 3 σ ( y )= M y σ max = M c I x b I ( x ) ( ) h x = F (a x) ( ) 12 2 h x σ max b( x ) [ ( ) ] 3 F (a x) = 6 b x [ h x ] 2 σ max ( ) ( ) Martin Culpepper, All rights reserved M -F a 6F l bh 2 σ -6F l bh 2 M ( x) = V ( x) ( x a ) = F ( a x) F (a x) σ = 6 bh 2 F (a x) σ = 6 bh 2 17 x x

18 Group work: Generate strategy for this x x z z y y V x z V x z V y z V y z Martin Culpepper, All rights reserved 18

19 Dynamics

20 Vibration Vibration principles Exchange potential-kinetic energy 2nd order system model c x Blocks and squiggles m F(t) What do they really mean? Why are they important? k How will we apply this? Multi-degree-of-freedom system Mode shape Resonant frequency Gain ω = n k m Estimate ω n (watch units) for: A car suspension system ω ω n Martin Culpepper, All rights reserved 20

21 Images removed due to copyright restrictions. Please see: Martin Culpepper, All rights reserved 21

22 Vibration: MEMS device behavior Without input shaping With input shaping Martin Culpepper, All rights reserved 22

23 Vibrations: Meso-scale device behavior Underdamped response Noise Free vibration Golda, D. S., Design of High-Speed, Meso-Scale Nanopositioners Driven by Electromagnetic Actuators, Ph.D. Thesis, Massachusetts Institute of Technology, Martin Culpepper, All rights reserved 23

24 Vibrations: Reducing amplitude How to change m, k, and c? Martin Culpepper, All rights reserved 24

25 So where find in reality in lathe c x m F(t) k Martin Culpepper, All rights reserved 25

26 Vibration: Lathe structure 1 st mode Martin Culpepper, All rights reserved 26

27 Vibration: Lathe structure 2 nd mode Martin Culpepper, All rights reserved 27

28 Heat transfer

29 Thermal growth errors For uniform temperature ΔL = α L ΔT o STEEL :12L14 ΔL = m m o C L o ΔT ALUMINUM :6061 T 6 ΔL = m m o C L ΔT o POLYMER : Delrin ΔL = m m o C L o ΔT Martin Culpepper, All rights reserved 29

30 Convection and conduction Convection: q& = h A surface (T T ) Why do we care? Heat removal from cutting zone Heat generation in bearings Thermal growth errors Conduction: dt q& = k A cross dx Why do we care? Heat removal from cutting zone Heat generation in bearings Thermal growth errors Common k values to remember Air W /(m o C) 12L W /(m o C) 6061 T6 167 W /(m o C) Martin Culpepper, All rights reserved 30

31 Thermal resistance Thermal resistance ΔT q& = RT Convection q& = (h ( T T ) ) 1 a R 1 T = h A A surface surface Conduction k A q& = dt cross a R T = dx dx k A cross Martin Culpepper, All rights reserved 31

32 Biot (Bi) number Ratio of convective to conductive heat transfer q& convection a (h AΔT ) convection q& conduction k A ΔT L conduction a Bi = hl c k Why do we care? Low Bi High Bi Martin Culpepper, All rights reserved 32

33 Example of thermal errors For: For: h = 0.1 W/(m 2o C) h = 50 W/(m 2o C) Bearing T = 150 o F Bearing T = 150 o F Chip T = 180 o F Chip T = 180 o F Martin Culpepper, All rights reserved 33

34 Example of thermal errors For: For: h = 0.1 W/(m 2o C) h = 5000 W/(m 2o C) Bearing T = 150 o F Bearing T = 150 o F Chip T = 180 o F Chip T = 180 o F Martin Culpepper, All rights reserved 34

35 Types of errors

36 Machine system perspective System-level approach C 1 C 2 C 3 Linking inputs and outputs 4 C5 C6 Measurement quality C 7 C 8 C 9 [ Outputs]= C [ Inputs] Power Material Temperature changes Torques Machine Desired outputs - Motion, location, rotation - Cutting forces - Speeds Perceived Error Measured outputs - Motion, location, rotation - Cutting forces Real - Speeds error Actual outputs - Motion, location, rotation - Cutting forces - Speeds Fabrication Forces Vibration Speeds errors Martin Culpepper, All rights reserved 36

37 Errors. Accuracy The ability to tell the truth Repeatability Both Ability to do the same thing over & over 1 st make repeatable, then make accurate Calibrate Determinism Machines obey physics! Model understand relationships C 1 C 2 C 3 [Outputs] = C4 C 5 C 6 [Inputs] Range C C C Understand sensitivity [ΔOutputs] = J [ΔInputs] Furthest extents of motion Resolution Smallest, reliable position change Martin Culpepper, All rights reserved 37

38 Categorizing error types Systematic errors Inherent to the system, repeatable and may be calibrated out. Non-systematic errors Errors that are perceived and/or modeled to have a statistical nature Machines are not random, there is no such thing as a random error Consider the error for each set below Link behavior with systematic and non-systematic errors. A B C D Martin Culpepper, All rights reserved 38

39 Exercise

40 Exercise Due Tuesday, start of class: Lathe components Rough sketch(es) of lathe Annotate main components 1 page bullet point summary of where need to use: 2.001, , , , Rules: You may not re-use examples from lecture! You are encouraged to ask any question! You may work in groups, but must submit your own work Martin Culpepper, All rights reserved 40

41 Group work: Generate strategy for this x x z z y y V x z V x z V y z V y z Martin Culpepper, All rights reserved 41

2.72 Elements of Mechanical Design

2.72 Elements of Mechanical Design MIT OpenCourseWare http://ocw.mit.edu 2.72 Elements of Mechanical Design Spring 2009 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 2.72 Elements of

More information

2.72 Elements of Mechanical Design

2.72 Elements of Mechanical Design MIT OpenCourseWare http://ocw.mit.edu 2.72 Elements of Mechanical Design Spring 2009 or information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 2.72 Elements of Mechanical

More information

6.003 Homework #6. Problems. Due at the beginning of recitation on October 19, 2011.

6.003 Homework #6. Problems. Due at the beginning of recitation on October 19, 2011. 6.003 Homework #6 Due at the beginning of recitation on October 19, 2011. Problems 1. Maximum gain For each of the following systems, find the frequency ω m for which the magnitude of the gain is greatest.

More information

EQUIVALENT SINGLE-DEGREE-OF-FREEDOM SYSTEM AND FREE VIBRATION

EQUIVALENT SINGLE-DEGREE-OF-FREEDOM SYSTEM AND FREE VIBRATION 1 EQUIVALENT SINGLE-DEGREE-OF-FREEDOM SYSTEM AND FREE VIBRATION The course on Mechanical Vibration is an important part of the Mechanical Engineering undergraduate curriculum. It is necessary for the development

More information

Sample Questions for the ME328 Machine Design Final Examination Closed notes, closed book, no calculator.

Sample Questions for the ME328 Machine Design Final Examination Closed notes, closed book, no calculator. Sample Questions for the ME328 Machine Design Final Examination Closed notes, closed book, no calculator. The following is from the first page of the examination. I recommend you read it before the exam.

More information

2.003 Engineering Dynamics Problem Set 10 with answer to the concept questions

2.003 Engineering Dynamics Problem Set 10 with answer to the concept questions .003 Engineering Dynamics Problem Set 10 with answer to the concept questions Problem 1 Figure 1. Cart with a slender rod A slender rod of length l (m) and mass m (0.5kg)is attached by a frictionless pivot

More information

Energy Considerations

Energy Considerations Physics 42200 Waves & Oscillations Lecture 4 French, Chapter 3 Spring 2016 Semester Matthew Jones Energy Considerations The force in Hooke s law is = Potential energy can be used to describe conservative

More information

Chapter 1 General Introduction Instructor: Dr. Mürüde Çelikağ Office : CE Building Room CE230 and GE241

Chapter 1 General Introduction Instructor: Dr. Mürüde Çelikağ Office : CE Building Room CE230 and GE241 CIVL222 STRENGTH OF MATERIALS Chapter 1 General Introduction Instructor: Dr. Mürüde Çelikağ Office : CE Building Room CE230 and GE241 E-mail : murude.celikag@emu.edu.tr 1. INTRODUCTION There are three

More information

1.050: Beam Elasticity (HW#9)

1.050: Beam Elasticity (HW#9) 1050: Beam Elasticity (HW#9) MIT 1050 (Engineering Mechanics I) Fall 2007 Instructor: Markus J BUEHER Due: November 14, 2007 Team Building and Team Work: We strongly encourage you to form Homework teams

More information

EE C245 ME C218 Introduction to MEMS Design Fall 2007

EE C245 ME C218 Introduction to MEMS Design Fall 2007 EE C245 ME C218 Introduction to MEMS Design Fall 2007 Prof. Clark T.-C. Nguyen Dept. of Electrical Engineering & Computer Sciences University of California at Berkeley Berkeley, CA 94720 Lecture 17: Energy

More information

Contents. Contents. Contents

Contents. Contents. Contents Physics 121 for Majors Class 18 Linear Harmonic Last Class We saw how motion in a circle is mathematically similar to motion in a straight line. We learned that there is a centripetal acceleration (and

More information

Chapter 23: Principles of Passive Vibration Control: Design of absorber

Chapter 23: Principles of Passive Vibration Control: Design of absorber Chapter 23: Principles of Passive Vibration Control: Design of absorber INTRODUCTION The term 'vibration absorber' is used for passive devices attached to the vibrating structure. Such devices are made

More information

2.004 Dynamics and Control II Spring 2008

2.004 Dynamics and Control II Spring 2008 MIT OpenCourseWare http://ocw.mit.edu 2.004 Dynamics and Control II Spring 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. Massachusetts Institute

More information

ES120 Spring 2018 Section 7 Notes

ES120 Spring 2018 Section 7 Notes ES120 Spring 2018 Section 7 Notes Matheus Fernandes March 29, 2018 Problem 1: For the beam and loading shown, (a) determine the equations of the shear and bending-moment curves, (b) draw the shear and

More information

Finite Element Analysis Prof. Dr. B. N. Rao Department of Civil Engineering Indian Institute of Technology, Madras. Module - 01 Lecture - 11

Finite Element Analysis Prof. Dr. B. N. Rao Department of Civil Engineering Indian Institute of Technology, Madras. Module - 01 Lecture - 11 Finite Element Analysis Prof. Dr. B. N. Rao Department of Civil Engineering Indian Institute of Technology, Madras Module - 01 Lecture - 11 Last class, what we did is, we looked at a method called superposition

More information

Name (Print) ME Mechanics of Materials Exam # 2 Date: March 29, 2017 Time: 8:00 10:00 PM - Location: WTHR 200

Name (Print) ME Mechanics of Materials Exam # 2 Date: March 29, 2017 Time: 8:00 10:00 PM - Location: WTHR 200 Name (Print) (Last) (First) Instructions: ME 323 - Mechanics of Materials Exam # 2 Date: Time: 8:00 10:00 PM - Location: WTHR 200 Circle your lecturer s name and your class meeting time. Koslowski Zhao

More information

BSc/MSci MidTerm Test

BSc/MSci MidTerm Test BSc/MSci MidTerm Test PHY-217 Vibrations and Waves Time Allowed: 40 minutes Date: 18 th Nov, 2011 Time: 9:10-9:50 Instructions: Answer ALL questions in section A. Answer ONLY ONE questions from section

More information

Linear Second-Order Differential Equations LINEAR SECOND-ORDER DIFFERENTIAL EQUATIONS

Linear Second-Order Differential Equations LINEAR SECOND-ORDER DIFFERENTIAL EQUATIONS 11.11 LINEAR SECOND-ORDER DIFFERENTIAL EQUATIONS A Spring with Friction: Damped Oscillations The differential equation, which we used to describe the motion of a spring, disregards friction. But there

More information

Lecture 23 March 12, 2018 Chap 7.3

Lecture 23 March 12, 2018 Chap 7.3 Statics - TAM 210 & TAM 211 Lecture 23 March 12, 2018 Chap 7.3 Announcements Upcoming deadlines: Monday (3/12) Mastering Engineering Tutorial 9 Tuesday (3/13) PL HW 8 Quiz 5 (3/14-16) Sign up at CBTF Up

More information

Spectroscopy in frequency and time domains

Spectroscopy in frequency and time domains 5.35 Module 1 Lecture Summary Fall 1 Spectroscopy in frequency and time domains Last time we introduced spectroscopy and spectroscopic measurement. I. Emphasized that both quantum and classical views of

More information

2.004 Dynamics and Control II Spring 2008

2.004 Dynamics and Control II Spring 2008 MIT OpenCourseWare http://ocw.mit.edu 2.004 Dynamics and Control II Spring 2008 or information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 2 I C + 4 * Massachusetts

More information

M.S Comprehensive Examination Analysis

M.S Comprehensive Examination Analysis UNIVERSITY OF CALIFORNIA, BERKELEY Spring Semester 2014 Dept. of Civil and Environmental Engineering Structural Engineering, Mechanics and Materials Name:......................................... M.S Comprehensive

More information

UNIT-I (FORCE ANALYSIS)

UNIT-I (FORCE ANALYSIS) DHANALAKSHMI SRINIVASAN INSTITUTE OF RESEACH AND TECHNOLOGY DEPARTMENT OF MECHANICAL ENGINEERING QUESTION BANK ME2302 DYNAMICS OF MACHINERY III YEAR/ V SEMESTER UNIT-I (FORCE ANALYSIS) PART-A (2 marks)

More information

Modal Analysis: What it is and is not Gerrit Visser

Modal Analysis: What it is and is not Gerrit Visser Modal Analysis: What it is and is not Gerrit Visser What is a Modal Analysis? What answers do we get out of it? How is it useful? What does it not tell us? In this article, we ll discuss where a modal

More information

Recitation 2: Equilibrium Electron and Hole Concentration from Doping

Recitation 2: Equilibrium Electron and Hole Concentration from Doping Recitation : Equilibrium Electron and Hole Concentration from Doping Here is a list of new things we learned yesterday: 1. Electrons and Holes. Generation and Recombination 3. Thermal Equilibrium 4. Law

More information

Natural vibration frequency of classic MEMS structures

Natural vibration frequency of classic MEMS structures Natural vibration frequency of classic MEMS structures Zacarias E. Fabrim PGCIMAT, UFRGS, Porto Alegre, RS, Brazil Wang Chong, Manoel Martín Pérez Reimbold DeTec, UNIJUI, Ijuí, RS, Brazil Abstract This

More information

WORCESTER POLYTECHNIC INSTITUTE

WORCESTER POLYTECHNIC INSTITUTE WORCESTER POLYTECHNIC INSTITUTE MECHANICAL ENGINEERING DEPARTMENT DESIGN OF MACHINE ELEMENTS ME-3320, B 2018 Lecture 04 October 2018 Office hours: Announcements (also in the website of our course) Prof.

More information

MITOCW R11. Double Pendulum System

MITOCW R11. Double Pendulum System MITOCW R11. Double Pendulum System The following content is provided under a Creative Commons license. Your support will help MIT OpenCourseWare continue to offer high quality educational resources for

More information

Experimental Modal Analysis of a Flat Plate Subjected To Vibration

Experimental Modal Analysis of a Flat Plate Subjected To Vibration American Journal of Engineering Research (AJER) 2016 American Journal of Engineering Research (AJER) e-issn: 2320-0847 p-issn : 2320-0936 Volume-5, Issue-6, pp-30-37 www.ajer.org Research Paper Open Access

More information

Module 25: Outline Resonance & Resonance Driven & LRC Circuits Circuits 2

Module 25: Outline Resonance & Resonance Driven & LRC Circuits Circuits 2 Module 25: Driven RLC Circuits 1 Module 25: Outline Resonance & Driven LRC Circuits 2 Driven Oscillations: Resonance 3 Mass on a Spring: Simple Harmonic Motion A Second Look 4 Mass on a Spring (1) (2)

More information

Dynamics of structures

Dynamics of structures Dynamics of structures 2.Vibrations: single degree of freedom system Arnaud Deraemaeker (aderaema@ulb.ac.be) 1 Outline of the chapter *One degree of freedom systems in real life Hypothesis Examples *Response

More information

Chapter 14. Oscillations. Oscillations Introductory Terminology Simple Harmonic Motion:

Chapter 14. Oscillations. Oscillations Introductory Terminology Simple Harmonic Motion: Chapter 14 Oscillations Oscillations Introductory Terminology Simple Harmonic Motion: Kinematics Energy Examples of Simple Harmonic Oscillators Damped and Forced Oscillations. Resonance. Periodic Motion

More information

How Do You Teach Vibrations to Technology Students?

How Do You Teach Vibrations to Technology Students? Paper ID #9337 How Do You Teach Vibrations to Technology Students? Dr. M. Austin Creasy, Purdue University (Statewide Technology) Assistant Professor Mechanical Engineering Technology Purdue University

More information

The basic dynamic load rating C is a statistical number and it is based on 90% of the bearings surviving 50 km of travel carrying the full load.

The basic dynamic load rating C is a statistical number and it is based on 90% of the bearings surviving 50 km of travel carrying the full load. Technical data Load Rating & Life Under normal conditions, the linear rail system can be damaged by metal fatigue as the result of repeated stress. The repeated stress causes flaking of the raceways and

More information

Honors Differential Equations

Honors Differential Equations MIT OpenCourseWare http://ocw.mit.edu 18.034 Honors Differential Equations Spring 009 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. LECTURE 7. MECHANICAL

More information

Note: Please use the actual date you accessed this material in your citation.

Note: Please use the actual date you accessed this material in your citation. MIT OpenCourseWare http://ocw.mit.edu 6.641 Electromagnetic Fields, Forces, and Motion, Spring 005 Please use the following citation format: Markus Zahn, 6.641 Electromagnetic Fields, Forces, and Motion,

More information

Attempt ALL QUESTIONS IN SECTION A, ONE QUESTION FROM SECTION B and ONE QUESTION FROM SECTION C Linear graph paper will be provided.

Attempt ALL QUESTIONS IN SECTION A, ONE QUESTION FROM SECTION B and ONE QUESTION FROM SECTION C Linear graph paper will be provided. UNIVERSITY OF EAST ANGLIA School of Mathematics Main Series UG Examination 2015-2016 ENERGY ENGINEERING PRINCIPLES ENG-5001Y Time allowed: 3 Hours Attempt ALL QUESTIONS IN SECTION A, ONE QUESTION FROM

More information

five Mechanics of Materials 1 ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS SUMMER 2017 lecture

five Mechanics of Materials 1 ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS SUMMER 2017 lecture ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS SUMMER 2017 lecture five mechanics www.carttalk.com of materials Mechanics of Materials 1 Mechanics of Materials MECHANICS MATERIALS

More information

Mechanical Principles

Mechanical Principles Unit 8: Unit code Mechanical Principles F/615/1482 Unit level 4 Credit value 15 Introduction Mechanical principles have been crucial for engineers to convert the energy produced by burning oil and gas

More information

Physics 121, April 3, Equilibrium and Simple Harmonic Motion. Physics 121. April 3, Physics 121. April 3, Course Information

Physics 121, April 3, Equilibrium and Simple Harmonic Motion. Physics 121. April 3, Physics 121. April 3, Course Information Physics 121, April 3, 2008. Equilibrium and Simple Harmonic Motion. Physics 121. April 3, 2008. Course Information Topics to be discussed today: Requirements for Equilibrium (a brief review) Stress and

More information

Torsion/Axial Illustration: 1 (3/30/00)

Torsion/Axial Illustration: 1 (3/30/00) Torsion/Axial Illustration: 1 (3/30/00) Table of Contents Intro / General Strategy Axial: Different Materia The Displacement Method 1 2 Calculate the Stresses General Strategy The same structure is loaded

More information

two structural analysis (statics & mechanics) APPLIED ACHITECTURAL STRUCTURES: DR. ANNE NICHOLS SPRING 2017 lecture STRUCTURAL ANALYSIS AND SYSTEMS

two structural analysis (statics & mechanics) APPLIED ACHITECTURAL STRUCTURES: DR. ANNE NICHOLS SPRING 2017 lecture STRUCTURAL ANALYSIS AND SYSTEMS APPLIED ACHITECTURAL STRUCTURES: STRUCTURAL ANALYSIS AND SYSTEMS DR. ANNE NICHOLS SPRING 2017 lecture two structural analysis (statics & mechanics) Analysis 1 Structural Requirements strength serviceability

More information

WORCESTER POLYTECHNIC INSTITUTE

WORCESTER POLYTECHNIC INSTITUTE WORCESTER POLYTECHNIC INSTITUTE MECHANICAL ENGINEERING DEPARTMENT STRESS ANALYSIS ES-2502, C 2012 Lecture 03: Stress 17 January 2012 General information Instructor: Cosme Furlong HL-151 (508) 831-5126

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science 6.262 Discrete Stochastic Processes Midterm Quiz April 6, 2010 There are 5 questions, each with several parts.

More information

DEPARTMENT OF MECHANICAL ENIGINEERING, UNIVERSITY OF ENGINEERING & TECHNOLOGY LAHORE (KSK CAMPUS).

DEPARTMENT OF MECHANICAL ENIGINEERING, UNIVERSITY OF ENGINEERING & TECHNOLOGY LAHORE (KSK CAMPUS). DEPARTMENT OF MECHANICAL ENIGINEERING, UNIVERSITY OF ENGINEERING & TECHNOLOGY LAHORE (KSK CAMPUS). Lab Director: Coordinating Staff: Mr. Muhammad Farooq (Lecturer) Mr. Liaquat Qureshi (Lab Supervisor)

More information

VIBRATION ANALYSIS OF E-GLASS FIBRE RESIN MONO LEAF SPRING USED IN LMV

VIBRATION ANALYSIS OF E-GLASS FIBRE RESIN MONO LEAF SPRING USED IN LMV VIBRATION ANALYSIS OF E-GLASS FIBRE RESIN MONO LEAF SPRING USED IN LMV Mohansing R. Pardeshi 1, Dr. (Prof.) P. K. Sharma 2, Prof. Amit Singh 1 M.tech Research Scholar, 2 Guide & Head, 3 Co-guide & Assistant

More information

Chapter 2: Rigid Bar Supported by Two Buckled Struts under Axial, Harmonic, Displacement Excitation..14

Chapter 2: Rigid Bar Supported by Two Buckled Struts under Axial, Harmonic, Displacement Excitation..14 Table of Contents Chapter 1: Research Objectives and Literature Review..1 1.1 Introduction...1 1.2 Literature Review......3 1.2.1 Describing Vibration......3 1.2.2 Vibration Isolation.....6 1.2.2.1 Overview.

More information

GAME PHYSICS (INFOMGP) FINAL EXAM

GAME PHYSICS (INFOMGP) FINAL EXAM GAME PHYSICS (INFOMGP) FINAL EXAM 15/JUN/ 016 LECTURER: AMIR VAXMAN Student name: Student number: This exam is 3 hours long and consists of 5 exercises. The points add up to 100. Answer only in English.

More information

a) Find the equation of motion of the system and write it in matrix form.

a) Find the equation of motion of the system and write it in matrix form. .003 Engineering Dynamics Problem Set Problem : Torsional Oscillator Two disks of radius r and r and mass m and m are mounted in series with steel shafts. The shaft between the base and m has length L

More information

2.830J / 6.780J / ESD.63J Control of Manufacturing Processes (SMA 6303)

2.830J / 6.780J / ESD.63J Control of Manufacturing Processes (SMA 6303) MIT OpenCourseWare http://ocw.mit.edu 2.830J / 6.780J / ESD.63J Control of Manufacturing Processes (SMA 6303) Spring 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

More information

In this lecture you will learn the following

In this lecture you will learn the following Module 9 : Forced Vibration with Harmonic Excitation; Undamped Systems and resonance; Viscously Damped Systems; Frequency Response Characteristics and Phase Lag; Systems with Base Excitation; Transmissibility

More information

Time Varying Circuit Analysis

Time Varying Circuit Analysis MAS.836 Sensor Systems for Interactive Environments th Distributed: Tuesday February 16, 2010 Due: Tuesday February 23, 2010 Problem Set # 2 Time Varying Circuit Analysis The purpose of this problem set

More information

Simple Harmonic Motion and Damping

Simple Harmonic Motion and Damping Simple Harmonic Motion and Damping Marie Johnson Cabrices Chamblee Charter High School Background: Atomic Force Microscopy, or AFM, is used to characterize materials. It is used to measure local properties,

More information

MECE 3321: Mechanics of Solids Chapter 6

MECE 3321: Mechanics of Solids Chapter 6 MECE 3321: Mechanics of Solids Chapter 6 Samantha Ramirez Beams Beams are long straight members that carry loads perpendicular to their longitudinal axis Beams are classified by the way they are supported

More information

Unit M1.5 Statically Indeterminate Systems

Unit M1.5 Statically Indeterminate Systems Unit M1.5 Statically Indeterminate Systems Readings: CDL 2.1, 2.3, 2.4, 2.7 16.001/002 -- Unified Engineering Department of Aeronautics and Astronautics Massachusetts Institute of Technology LEARNING OBJECTIVES

More information

Mass on a Horizontal Spring

Mass on a Horizontal Spring Course- B.Sc. Applied Physical Science (Computer Science) Year- IInd, Sem- IVth Subject Physics Paper- XIVth, Electromagnetic Theory Lecture No. 22, Simple Harmonic Motion Introduction Hello friends in

More information

If the symmetry axes of a uniform symmetric body coincide with the coordinate axes, the products of inertia (Ixy etc.

If the symmetry axes of a uniform symmetric body coincide with the coordinate axes, the products of inertia (Ixy etc. Prof. O. B. Wright, Autumn 007 Mechanics Lecture 9 More on rigid bodies, coupled vibrations Principal axes of the inertia tensor If the symmetry axes of a uniform symmetric body coincide with the coordinate

More information

(Refer Slide Time: 1: 19)

(Refer Slide Time: 1: 19) Mechanical Measurements and Metrology Prof. S. P. Venkateshan Department of Mechanical Engineering Indian Institute of Technology, Madras Module - 4 Lecture - 46 Force Measurement So this will be lecture

More information

Transduction Based on Changes in the Energy Stored in an Electrical Field

Transduction Based on Changes in the Energy Stored in an Electrical Field Lecture 6- Transduction Based on Changes in the Energy Stored in an Electrical Field Actuator Examples Microgrippers Normal force driving In-plane force driving» Comb-drive device F = εav d 1 ε oε F rwv

More information

A new seismic testing method E. Kausel Professor of Civil and Environmental Engineering, Massachusetts 7-277, OamWd^e, ^ 027 JP,

A new seismic testing method E. Kausel Professor of Civil and Environmental Engineering, Massachusetts 7-277, OamWd^e, ^ 027 JP, A new seismic testing method E. Kausel Professor of Civil and Environmental Engineering, Massachusetts 7-277, OamWd^e, ^ 027 JP, Introduction The bulleted enumeration that follows shows five experimental

More information

Bending Load & Calibration Module

Bending Load & Calibration Module Bending Load & Calibration Module Objectives After completing this module, students shall be able to: 1) Conduct laboratory work to validate beam bending stress equations. 2) Develop an understanding of

More information

Chapter Objectives. Copyright 2011 Pearson Education South Asia Pte Ltd

Chapter Objectives. Copyright 2011 Pearson Education South Asia Pte Ltd Chapter Objectives To determine the torsional deformation of a perfectly elastic circular shaft. To determine the support reactions when these reactions cannot be determined solely from the moment equilibrium

More information

Review: Angular Momentum. Physics 201, Lecture 20

Review: Angular Momentum. Physics 201, Lecture 20 q Physics 01, Lecture 0 Today s Topics More on Angular Momentum and Conservation of Angular Momentum Demos and Exercises q Elasticity (Section 1.4. ) Deformation Elastic Modulus (Young s, Shear, Bulk)

More information

Matrix Method of Structural Analysis Prof. Amit Shaw Department of Civil Engineering Indian Institute of Technology, Kharagpur

Matrix Method of Structural Analysis Prof. Amit Shaw Department of Civil Engineering Indian Institute of Technology, Kharagpur Matrix Method of Structural Analysis Prof. Amit Shaw Department of Civil Engineering Indian Institute of Technology, Kharagpur Lecture 01 Introduction Hello everyone, welcome to the online course on Matrix

More information

Physics 132 3/31/17. March 31, 2017 Physics 132 Prof. E. F. Redish Theme Music: Benny Goodman. Swing, Swing, Swing. Cartoon: Bill Watterson

Physics 132 3/31/17. March 31, 2017 Physics 132 Prof. E. F. Redish Theme Music: Benny Goodman. Swing, Swing, Swing. Cartoon: Bill Watterson March 31, 2017 Physics 132 Prof. E. F. Redish Theme Music: Benny Goodman Swing, Swing, Swing Cartoon: Bill Watterson Calvin & Hobbes 1 Outline The makeup exam Recap: the math of the harmonic oscillator

More information

The student will experimentally determine the parameters to represent the behavior of a damped oscillatory system of one degree of freedom.

The student will experimentally determine the parameters to represent the behavior of a damped oscillatory system of one degree of freedom. Practice 3 NAME STUDENT ID LAB GROUP PROFESSOR INSTRUCTOR Vibrations of systems of one degree of freedom with damping QUIZ 10% PARTICIPATION & PRESENTATION 5% INVESTIGATION 10% DESIGN PROBLEM 15% CALCULATIONS

More information

AP PHYSICS 1. Energy 2016 EDITION

AP PHYSICS 1. Energy 2016 EDITION AP PHYSICS 1 Energy 2016 EDITION Copyright 2016 National Math + Initiative, Dallas, Texas. All rights reserved. Visit us online at www.nms.org. 1 Pre-Assessment Questions Consider a system which could

More information

5.62 Physical Chemistry II Spring 2008

5.62 Physical Chemistry II Spring 2008 MIT OpenCourseWare http://ocw.mit.edu 5.62 Physical Chemistry II Spring 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 5.62 Spring 2008 Lecture

More information

Physics Assessment Unit A2 3

Physics Assessment Unit A2 3 New Specification Centre Number 71 Candidate Number ADVANCED General Certificate of Education 2010 Physics Assessment Unit A2 3 Practical Techniques (Internal Assessment) Session 1 [AY231] AY231 WEDNESDAY

More information

Foundation Engineering Dr. Priti Maheshwari Department Of Civil Engineering Indian Institute Of Technology, Roorkee

Foundation Engineering Dr. Priti Maheshwari Department Of Civil Engineering Indian Institute Of Technology, Roorkee Foundation Engineering Dr. Priti Maheshwari Department Of Civil Engineering Indian Institute Of Technology, Roorkee Module - 02 Lecture - 15 Machine Foundations - 3 Hello viewers, In the last class we

More information

Damped & forced oscillators

Damped & forced oscillators SEISMOLOGY I Laurea Magistralis in Physics of the Earth and of the Environment Damped & forced oscillators Fabio ROMANELLI Dept. Earth Sciences Università degli studi di Trieste romanel@dst.units.it Damped

More information

Engineering Science OUTCOME 2 - TUTORIAL 3 FREE VIBRATIONS

Engineering Science OUTCOME 2 - TUTORIAL 3 FREE VIBRATIONS Unit 2: Unit code: QCF Level: 4 Credit value: 5 Engineering Science L/60/404 OUTCOME 2 - TUTORIAL 3 FREE VIBRATIONS UNIT CONTENT OUTCOME 2 Be able to determine the behavioural characteristics of elements

More information

Lagrangian Dynamics: Derivations of Lagrange s Equations

Lagrangian Dynamics: Derivations of Lagrange s Equations Constraints and Degrees of Freedom 1.003J/1.053J Dynamics and Control I, Spring 007 Professor Thomas Peacock 4/9/007 Lecture 15 Lagrangian Dynamics: Derivations of Lagrange s Equations Constraints and

More information

Lecture 21 Reminder/Introduction to Wave Optics

Lecture 21 Reminder/Introduction to Wave Optics Lecture 1 Reminder/Introduction to Wave Optics Program: 1. Maxwell s Equations.. Magnetic induction and electric displacement. 3. Origins of the electric permittivity and magnetic permeability. 4. Wave

More information

Measurement Techniques for Engineers. Motion and Vibration Measurement

Measurement Techniques for Engineers. Motion and Vibration Measurement Measurement Techniques for Engineers Motion and Vibration Measurement Introduction Quantities that may need to be measured are velocity, acceleration and vibration amplitude Quantities useful in predicting

More information

1.105 Solid Mechanics Laboratory

1.105 Solid Mechanics Laboratory 1.105 Solid Mechanics Laboratory General Information Fall 2003 Prof. Louis Bucciarelli Rm 5-213 x3-4061 llbjr@mit.edu TA: Attasit Korchaiyapruk, Pong Rm 5-330B x 3-5170 attasit@mit.edu Athena Locker: /mit/1.105/

More information

Physics 141, Lecture 7. Outline. Course Information. Course information: Homework set # 3 Exam # 1. Quiz. Continuation of the discussion of Chapter 4.

Physics 141, Lecture 7. Outline. Course Information. Course information: Homework set # 3 Exam # 1. Quiz. Continuation of the discussion of Chapter 4. Physics 141, Lecture 7. Frank L. H. Wolfs Department of Physics and Astronomy, University of Rochester, Lecture 07, Page 1 Outline. Course information: Homework set # 3 Exam # 1 Quiz. Continuation of the

More information

Physics 8 Monday, November 20, 2017

Physics 8 Monday, November 20, 2017 Physics 8 Monday, November 20, 2017 Pick up HW11 handout, due Dec 1 (Friday next week). This week, you re skimming/reading O/K ch8, which goes into more detail on beams. Since many people will be traveling

More information

Physics 218 Lecture 14

Physics 218 Lecture 14 Physics 218 Lecture 14 Dr. David Toback Physics 218, Lecture XIV 1 Checklist for Today Things due awhile ago: Read Chapters 7, 8 & 9 Things that were due Yesterday: Problems from Chap 7 on WebCT Things

More information

General elastic beam with an elastic foundation

General elastic beam with an elastic foundation General elastic beam with an elastic foundation Figure 1 shows a beam-column on an elastic foundation. The beam is connected to a continuous series of foundation springs. The other end of the foundation

More information

UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics

UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics Physics 117.3 MIDTERM TEST Alternative Siting February 2014 Time: 90 minutes NAME: (Last) Please Print (Given) STUDENT NO.: LECTURE

More information

1 Force Sensing. Lecture Notes. 1.1 Load Cell. 1.2 Stress and Strain

1 Force Sensing. Lecture Notes. 1.1 Load Cell. 1.2 Stress and Strain Lecture Notes 1 Force Sensing 1.1 Load Cell A Load Cell is a structure which supports the load and deflects a known amount in response to applied forces and torques. The deflections are measured to characterize

More information

Oscillatory Motion SHM

Oscillatory Motion SHM Chapter 15 Oscillatory Motion SHM Dr. Armen Kocharian Periodic Motion Periodic motion is motion of an object that regularly repeats The object returns to a given position after a fixed time interval A

More information

Second order Unit Impulse Response. 1. Effect of a Unit Impulse on a Second order System

Second order Unit Impulse Response. 1. Effect of a Unit Impulse on a Second order System Effect of a Unit Impulse on a Second order System We consider a second order system mx + bx + kx = f (t) () Our first task is to derive the following If the input f (t) is an impulse cδ(t a), then the

More information

Physics 8 Wednesday, November 29, 2017

Physics 8 Wednesday, November 29, 2017 Physics 8 Wednesday, November 29, 2017 HW11 due this Friday, Dec 1. After another day or two on beams, our last topic of the semester will be oscillations (a.k.a. vibration, periodic motion). Toward that

More information

EE C245 ME C218 Introduction to MEMS Design Fall 2010

EE C245 ME C218 Introduction to MEMS Design Fall 2010 EE C245 ME C218 Introduction to MEMS Design Fall 2010 Prof. Clark T.-C. Nguyen Dept. of Electrical Engineering & Computer Sciences University of California at Berkeley Berkeley, CA 94720 Lecture EE C245:

More information

(Refer Slide Time: 00:01:30 min)

(Refer Slide Time: 00:01:30 min) Control Engineering Prof. M. Gopal Department of Electrical Engineering Indian Institute of Technology, Delhi Lecture - 3 Introduction to Control Problem (Contd.) Well friends, I have been giving you various

More information

EE C245 ME C218 Introduction to MEMS Design

EE C245 ME C218 Introduction to MEMS Design EE C245 ME C218 Introduction to MEMS Design Fall 2007 Prof. Clark T.-C. Nguyen Dept. of Electrical Engineering & Computer Sciences University of California at Berkeley Berkeley, CA 94720 Lecture 16: Energy

More information

Mechatronics II Laboratory EXPERIMENT #1: FORCE AND TORQUE SENSORS DC Motor Characteristics Dynamometer, Part I

Mechatronics II Laboratory EXPERIMENT #1: FORCE AND TORQUE SENSORS DC Motor Characteristics Dynamometer, Part I Mechatronics II Laboratory EXPEIMENT #1: FOCE AND TOQUE SENSOS DC Motor Characteristics Dynamometer, Part I Force Sensors Force and torque are not measured directly. Typically, the deformation or strain

More information

Temperatures and Thermal Expansion

Temperatures and Thermal Expansion Temperatures and Thermal Expansion Note: Only covering sections 10.0-3 in Chapter 10 because other material often covered in chemistry Movie assignments: I will have your draft grades posted soon (probably

More information

Piezo Theory: Chapter 1 - Physics & Design

Piezo Theory: Chapter 1 - Physics & Design Piezoelectric effect inverse piezoelectric effect The result of external forces to a piezoelectric material is positive and negative electrical charges at the surface of the material. If electrodes are

More information

Design and Simulation of Micro-cantilever

Design and Simulation of Micro-cantilever Design and Simulation of Micro-cantilever Suresh Rijal 1, C.K.Thadani 2, C.K.Kurve 3,Shrikant Chamlate 4 1 Electronics Engg.Dept.,KITS,Ramtek, 2 Electronics and Comn.Engg.Dept.,KITS,Ramtek, 3 Electronics

More information

Ph.D. Preliminary Examination Analysis

Ph.D. Preliminary Examination Analysis UNIVERSITY OF CALIFORNIA, BERKELEY Spring Semester 2014 Dept. of Civil and Environmental Engineering Structural Engineering, Mechanics and Materials Name:......................................... Ph.D.

More information

6.003 Homework #6 Solutions

6.003 Homework #6 Solutions 6.3 Homework #6 Solutions Problems. Maximum gain For each of the following systems, find the frequency ω m for which the magnitude of the gain is greatest. a. + s + s ω m = w This system has poles at s

More information

Due Date 1 (for confirmation of final grade): Monday May 10 at 11:59pm Due Date 2 (absolute latest possible submission): Friday May 14 at 5pm

Due Date 1 (for  confirmation of final grade): Monday May 10 at 11:59pm Due Date 2 (absolute latest possible submission): Friday May 14 at 5pm ! ME345 Modeling and Simulation, Spring 2010 Case Study 3 Assigned: Friday April 16! Due Date 1 (for email confirmation of final grade): Monday May 10 at 11:59pm Due Date 2 (absolute latest possible submission):

More information

R-Plus System Frontespizio_R_PlusSystem.indd 1 11/06/ :32:02

R-Plus System Frontespizio_R_PlusSystem.indd 1 11/06/ :32:02 R-Plus System R-Plus System R-Plus system R-Plus system description Fig. R-Plus system R-Plus System is Rollon s series of rack & pinion driven actuators. Rollon R-Plus System series linear units are designed

More information

For an imposed stress history consisting of a rapidly applied step-function jump in

For an imposed stress history consisting of a rapidly applied step-function jump in Problem 2 (20 points) MASSACHUSETTS INSTITUTE OF TECHNOLOGY DEPARTMENT OF MECHANICAL ENGINEERING CAMBRIDGE, MASSACHUSETTS 0239 2.002 MECHANICS AND MATERIALS II SOLUTION for QUIZ NO. October 5, 2003 For

More information

MATHEMATICAL PROBLEM SOLVING, MECHANICS AND MODELLING MTHA4004Y

MATHEMATICAL PROBLEM SOLVING, MECHANICS AND MODELLING MTHA4004Y UNIVERSITY OF EAST ANGLIA School of Mathematics Main Series UG Examination 2014 2015 MATHEMATICAL PROBLEM SOLVING, MECHANICS AND MODELLING MTHA4004Y Time allowed: 2 Hours Attempt QUESTIONS 1 AND 2 and

More information

Physics 218 Lecture 12

Physics 218 Lecture 12 Physics 218 Lecture 12 Dr. David Toback Physics 218, Lecture XII 1 This week This week we will finish up Chapters 6 & 7 Last set of topics for Exam 2 Exam 2: Thurs, October 26 th Covers chapters 1-7 Physics

More information

[7] Torsion. [7.1] Torsion. [7.2] Statically Indeterminate Torsion. [7] Torsion Page 1 of 21

[7] Torsion. [7.1] Torsion. [7.2] Statically Indeterminate Torsion. [7] Torsion Page 1 of 21 [7] Torsion Page 1 of 21 [7] Torsion [7.1] Torsion [7.2] Statically Indeterminate Torsion [7] Torsion Page 2 of 21 [7.1] Torsion SHEAR STRAIN DUE TO TORSION 1) A shaft with a circular cross section is

More information