Unit 5: Quadratic Equations & Functions

Size: px
Start display at page:

Download "Unit 5: Quadratic Equations & Functions"

Transcription

1 Date Perod Unt 5: Quadratc Equatons & Functons DAY TOPIC 1 Modelng Data wth Quadratc Functons Factorng Quadratc Epressons 3 Solvng Quadratc Equatons 4 Comple Numbers Smplfcaton, Addton/Subtracton & Multplcaton 5 Comple Numbers Dvson 6 Completng the Square 7 The Quadratc Formula Dscrmnant 8 QUIZ 9 Propertes of Parabolas 10 Translatng Parabolas 11 Graphs of Quadratc Inequaltes and Systems of Quadratc Inequaltes 1 Applcatons of Quadratcs (Applcatons WS) 13 REVIEW

2 Date Perod U5 D1: Modelng Date wth Quadratc Functons The study of quadratc equatons and ther graphs plays an mportant role n many applcatons. For nstance, physcsts can model the heght of an object over tme t wth quadratc equatons. Economsts can model revenue and proft functons wth quadratc equatons. Usng such models to determne mportant concepts such as mamum heght, mamum revenue, or mamum proft, depends on understandng the nature of a parabolc graph. f ( ) = a + b + c a - term b - term c - term Standard Form: f ( ) = a + b + c a postve a negatve Ma or Mn? Verte As of Symmetry y-ntercept Property Eample: y =

3 Sometmes we wll need to determne f a functon s quadratc. Remember, f there s no words, a = 0 ), then the functon wll most lkely be lnear. term (n other When a functon s a quadratc, the graph wll look lke a (sometmes upsde down. When?). We talked a lttle about an as of symmetry what does symmetry mean?! Use symmetry for the followng problems: Warmup: Quck revew of graphng calculator procedures Fnd a quadratc functon to model the values n the table below shown: Step 1: Plug all values nto Step : Solve the of 3 varables. (Favorte solvng method?) Step 3: Wrte the functon *Note: If a = 0

4 Sometmes, modelng the data s a lttle too comple to do by hand Graphng Calc! c. What s the mamum heght? d. When does t ht the ground? The graph of each functon contans the gven pont. Fnd the value of c. 1) y 5 c; (, 14) = + ) y = + c ; 3, Closure: Descrbe the dfference between a lnear and quadratc functon (both algebracally & graphcally). Lst 3 thngs that you learned today. 3

5 Date Perod U5 D: Factorng Quadratc Epresson GCF: Dfference of Squares: 49 ( + 1) Guess & Check: ( ) ( ) Brtsh Method:

6 Factor the followng. You may use the Brtsh method, guess and check method, or any other method necessary to factor completely p w + w 6. ( + 1) + 8( + 1) ( ) ( ) ( 3) 7( 3)

7 y ( ) ( ) ( ) ( 4 49) 7. ( )

8 Date Perod U5 D3: Solvng Quadratc Equatons Objectve: Be able to solve quadratc equatons usng any one of three methods. Factorng Takng Square Roots Graphng + 18 = 9 9 = = 0 Addtonal Notes: Partnered Unfar Game! 7

9 Date Perod U5 D4: Comple Numbers Intro & Operatons (not Dvson) 1. On your home screen, type 9. What answer does the calculator gve you?. Go to MODE and change your calculator from REAL to a + b form (3 rd row from the bottom) 3. On your home screen, type 9 agan. Ths tme what answer does t gve you? 4. Use the calculator to smplfy each of the followng: a. 5 b. 9 4 c. 100 Now look for the on your calculator (t s the nd. near 0), then calculate each of the followng: a. b. ( )( 5 3) + c. ( 4)( 1+ ) 5. From your nvestgaton, what does represent? What knd of number s? 6. What s the meanng of a + b? Imagnary numbers are not nvsble numbers, or made-up numbers. They are numbers that arse naturally from tryng to solve equatons such as + 1= 0 Imagnary numbers : the number whose square s -1. = = Smplfy the followng:

10 Comple number: magnary numbers and real numbers together. a and b are real numbers, ncludng 0. a + b REAL PART IMAGINARY PART Smplfy n the form a + b 5. Wrte the comple number n the form a + b You can use the comple number plane to represent a comple number geometrcally. Locate the real part of the number on the horzontal as and the magnary part on the vertcal as. You graph 3 4 the same way you would graph (3,-4) on the coordnate plane. 1 Imagnary as Real as (3-4) 6. On the graph above, plot the ponts and

11 Absolute value of a comple number s ts dstance from the orgn on the comple number plane. To fnd the absolute value, use the Pythagorean Theorem. Fnd the absolute value of the followng a + b = a + b Addtve Inverse of Comple Numbers Fnd the addtve nverse of the followng: a + b Addng/Subtractng Comple Numbers 14. ( 5+ 7) + ( + 6) 15. ( 8+ 3) ( + 4) 16. ( ) Multplyng Comple Numbers 17. Fnd ( 5)( 4) 18. ( + 3)( 3+ 6) 19. ( 1)( 7 ) 0. ( 6 5)( 4 3) 1. ( 4 9) ( 4 3) ( 3 ) Fndng Comple Solutons. Solve = = = = 0 Closure: What are two comple numbers that have a square of -1? 10

12 Date Perod Warmup: Fll n the table U5 D5: Comple Numbers & Comple Dvson Generalze ths cyclc concept to fnd the followng: 80 =, 133 =, 1044 = = 3 4 = = = Dvde the eponent by 4 and fnd the remander Match the remander the chart on the left. Use that value as your answer. The conjugate of a+b s a-b (note t s NOT the nverse), and the conjugate of a-b s a+b Eamples ; the conjugate s ; the conjugate s ; the conjugate s -5 snce the conjugate of 0+5 s ; the conjugate of 6 s 6 snce 6-0 s the conjugate of 6+0 Comple dvson To dvde comple numbers, multply the numerator and demonnator by the conjugate of the denomnator

13 Date Perod Worksheet U5 D

14 Date Perod U5 D6: Completng the Square Another solvng method for quadratcs s completng the square. The goal s to get the left sde of your equaton to be n the form of ( + #) so that you can take the of both sdes. Quck eample: = 36 Epressons lke because they factor nto ( ) # are called + # + #. + nstead of two dfferent bnomals ( )( ) Unfortunately, sometmes our epresson on the left s not a perfect square. Soluton: the square to make t perfect! Eamples: 1 1) The value that completes the square s always ) 7 + 3) + Now let s apply ths process to solvng an equaton. Eample #1: 5= 0 STEP 1: Get the equaton n the form (move the # s to the rght). STEP : Fnd the amount to be added by takng. STEP 3: Add that amount to both sdes. + = 5 + STEP 4: Factor the left sde and smplfy the rght STEP 5: Take the square root of both sdes. Eample #: = 0 13

15 Notce n the prevous eamples, a = 1. If t does not, we have to t! Eample #3: = Eample #4: = Eample #3: The equaton ht () = t + 3t+ 4models the heght, h n feet, of a ball thrown after t seconds. Complete the square to fnd how many second t wll take for the ball to ht the ground. Classwork Eamples: = 0. 4 = + 3. = The equaton ht () = t + t+ 3models the heght, h n feet, of a ball thrown after t seconds. Complete the square to fnd how many second t wll take for the ball to ht the ground = 0 6. =

16 Date Perod U5 D7: The Quadratc Formula & Dscrmnant When gven an quadratc equaton, we have learned several ways to solve Factor (f applcable), the square, takng square roots, and. Today we wll (re?)learn another method: Everyone s favorte, the formula!!!! If a b c + + = 0, then Dscrmnant Eample 1: 4+ 3= 0 ) = 0 3) 1= 5 Drectons: Just fnd the dscrmnate for each equaton 4) = 0 5) 4 5= 0 6) = 0 The determnant can tell us about the graph and the number of solutons, and even the solvng methods 15

17 On the frst day of the unt, we looked how the values of a quadratc functon effect the graph Look of Graph Dscrmnant Soluton Types Solvng Method WoRdIE: The functon ht ( ) 16t 1t = + models the heght of a bowlng ball thrown nto the ar. Use the quadratc formula to fnd the tme t wll take for the ball to ht the ground. Then, use your calculator to fnd the tme t wll take for the ball to ht the ground (check). Fnally, use your calculator to fnd the tme of the mamum heght, and what that ma heght s More classwork eamples on the net page 16

18 17

19 Date Perod U5 D9: Propertes of Parabolas Forms: ( ) y = 3 y = Quadratcs!!! General Equaton Verte As of Symmetry Intercepts Standard Form Verte Form Today we wll focus more on standard form, and tomorrow we wll cover verte form. Drectons: For each equaton, fnd (a) the verte, (b) the as of symmetry, and (c) the y-ntercept. 1. y = 6 +. y = y =

20 Now we are gong to graph the parabolas of the quadratc functons. 1. y = STEP 1: Fnd the verte. V: STEP : Fnd the as of symmetry AoS: STEP 3: Fnd the y-ntercept. & ts match STEP 4: Fnd one more pont by choosng a value for. Addtonal Informaton: Mn or Ma -ntercepts 19

21 Applcaton: Suppose you are tossng a baseball up to a frend on a thrd-story balcony. After t seconds the heght of the apple n feet s gven by the functon ht ( ) = 16t t Your frend catches the ball just as t reaches ts hghest pont. How long does the ball take to reach your frend, and at what heght does he catch t?! Convertng Forms: Verte Standard ( ) y = Standard Verte y = + 6 (You must complete the square!!!!!!!!!!!!!!!!) Closure: What are the general equatons for standard and verte form of a quadratc? Lst how you can fnd mportant nformaton from each (such as verte, as of symmetry, ntercepts, etc ) 0

22 Date Perod U5 D10: Translatng Parabolas 1. Revew the general equaton for verte form and standard form of a quadratc. Identfy the verte and the y-ntercept from the equatons below a) y = ( 4) + 3 b) y ( ) = + 5 c) y = We wll graph verte form n a smlar way that we dd standard from, ecept now the verte s easy! y = 1 ( ) + 1 STEP 1: Fnd the verte. V: STEP : Fnd the as of symmetry AoS: STEP 3: Fnd another pont. & ts match STEP 4: Repeat step 3 4. Graph each of the followng: a) y = ( + ) 3 b) y ( ) =

23 5. Sometmes we wll need to wrte the equaton of the parabola. Step 1: Locate the Verte Step : Locate another pont Step 3: Plug n to y = a( h) + k and solve for a. 3. verte s ( 3, 6 ) and y-ntercept s 4. verte s ( 3, 6) and pont s ( 1, ) Closure: the equaton of one of the parabolas n the graph at the rght s ( ) y = 4 +. Wrte the equaton of the other parabola. Then, f you have tme, wrte both equatons n standard form, and dentfy the y-ntercepts.

24 Date Perod U5 D11: Graphs of Quadratc Inequaltes & Systems Warm-up: For each nequalty, dentfy above/below and sold/dashed <, >,, Graph the followng: 1. y > 3. y y y > y <

25 Date Perod U5 D1: Applcatons of Quadratcs Worksheet 4

26 Date Perod U5 D13: Revew for Unt 5 Test Problems 1 7 should all be done by hand. The calculator can be used for Answers should be left n smplest radcal form. 1. Wrte the equaton of the parabola n standard form through the ponts (, 7), (-1, 10) and (0, 5).. Wrte the equaton of the parabola wth a verte of (3, 1), through the pont (-1, -15). 3. Wrte each of the followng equatons n verte form by completng the square (f not done already). Sketch the graph by determnng the verte, the lne of symmetry, the y-ntercept, and the -ntercept(s) f they est. a. y = b. y = 1 c. = y d. y = ( + ) Solve each quadratc equaton. Use a varety of methods. a. + 4 = 1 b. 5 5 = 0 c = 5 d. + = 10 e = 0 f. + = 5

27 5. Smplfy each epresson nto a+b form. Show all work. 4 3 a. (8+4)(1-3) b. ( 3 6 ) c. 111 (smplfy- hnt: fnd remander) d f. 5 e. 3 5( 1 + 8) 6. Evaluate the dscrmnant and determne the type and number of solutons. a = 0 b = 0 7. Wrte an equaton n whch the dscrmnant s equal to -9. What type of solutons does your equaton have? 8. Graph the system of quadratc nequaltes. Shade the regon and fnd the ntersecton ponts. y 8 y ( 4) 9. The equaton y = represents the parabolc flght of a certan cannonball shot at an angle of 6, where y s the heght of the cannonball and s the vertcal dstance traveled n meters. Try ths WINDOW [-5, 60, 5, -1, 10, 1], ths follows the order of mn, ma etc. a. What s the mamum heght of the cannonball? How do you know? Eplan your method. b. What s the total horzontal dstance traveled by the cannonball? How do you know? Eplan your method. 10. A rectangular backyard wll be fenced n on 3 sdes. If there s 00ft of fencng, a. Determne the dmensons of the fence for the mamum area. b. Determne the mamum area. 6

8.6 The Complex Number System

8.6 The Complex Number System 8.6 The Complex Number System Earler n the chapter, we mentoned that we cannot have a negatve under a square root, snce the square of any postve or negatve number s always postve. In ths secton we want

More information

THE CHINESE REMAINDER THEOREM. We should thank the Chinese for their wonderful remainder theorem. Glenn Stevens

THE CHINESE REMAINDER THEOREM. We should thank the Chinese for their wonderful remainder theorem. Glenn Stevens THE CHINESE REMAINDER THEOREM KEITH CONRAD We should thank the Chnese for ther wonderful remander theorem. Glenn Stevens 1. Introducton The Chnese remander theorem says we can unquely solve any par of

More information

of Nebraska - Lincoln

of Nebraska - Lincoln Unversty of Nebraska - Lncoln DgtalCommons@Unversty of Nebraska - Lncoln MAT Exam Expostory Papers Math n the Mddle Insttute Partnershp 008 The Square Root of Tffany Lothrop Unversty of Nebraska-Lncoln

More information

CHAPTER 4. Vector Spaces

CHAPTER 4. Vector Spaces man 2007/2/16 page 234 CHAPTER 4 Vector Spaces To crtcze mathematcs for ts abstracton s to mss the pont entrel. Abstracton s what makes mathematcs work. Ian Stewart The man am of ths tet s to stud lnear

More information

12. The Hamilton-Jacobi Equation Michael Fowler

12. The Hamilton-Jacobi Equation Michael Fowler 1. The Hamlton-Jacob Equaton Mchael Fowler Back to Confguraton Space We ve establshed that the acton, regarded as a functon of ts coordnate endponts and tme, satsfes ( ) ( ) S q, t / t+ H qpt,, = 0, and

More information

Lecture 12: Discrete Laplacian

Lecture 12: Discrete Laplacian Lecture 12: Dscrete Laplacan Scrbe: Tanye Lu Our goal s to come up wth a dscrete verson of Laplacan operator for trangulated surfaces, so that we can use t n practce to solve related problems We are mostly

More information

e i is a random error

e i is a random error Chapter - The Smple Lnear Regresson Model The lnear regresson equaton s: where + β + β e for,..., and are observable varables e s a random error How can an estmaton rule be constructed for the unknown

More information

Lecture 10 Support Vector Machines II

Lecture 10 Support Vector Machines II Lecture 10 Support Vector Machnes II 22 February 2016 Taylor B. Arnold Yale Statstcs STAT 365/665 1/28 Notes: Problem 3 s posted and due ths upcomng Frday There was an early bug n the fake-test data; fxed

More information

Chapter 2 - The Simple Linear Regression Model S =0. e i is a random error. S β2 β. This is a minimization problem. Solution is a calculus exercise.

Chapter 2 - The Simple Linear Regression Model S =0. e i is a random error. S β2 β. This is a minimization problem. Solution is a calculus exercise. Chapter - The Smple Lnear Regresson Model The lnear regresson equaton s: where y + = β + β e for =,..., y and are observable varables e s a random error How can an estmaton rule be constructed for the

More information

Workshop: Approximating energies and wave functions Quantum aspects of physical chemistry

Workshop: Approximating energies and wave functions Quantum aspects of physical chemistry Workshop: Approxmatng energes and wave functons Quantum aspects of physcal chemstry http://quantum.bu.edu/pltl/6/6.pdf Last updated Thursday, November 7, 25 7:9:5-5: Copyrght 25 Dan Dll (dan@bu.edu) Department

More information

Analytical Chemistry Calibration Curve Handout

Analytical Chemistry Calibration Curve Handout I. Quck-and Drty Excel Tutoral Analytcal Chemstry Calbraton Curve Handout For those of you wth lttle experence wth Excel, I ve provded some key technques that should help you use the program both for problem

More information

The Geometry of Logit and Probit

The Geometry of Logit and Probit The Geometry of Logt and Probt Ths short note s meant as a supplement to Chapters and 3 of Spatal Models of Parlamentary Votng and the notaton and reference to fgures n the text below s to those two chapters.

More information

Algorithms for factoring

Algorithms for factoring CSA E0 235: Crytograhy Arl 9,2015 Instructor: Arta Patra Algorthms for factorng Submtted by: Jay Oza, Nranjan Sngh Introducton Factorsaton of large ntegers has been a wdely studed toc manly because of

More information

The Gaussian classifier. Nuno Vasconcelos ECE Department, UCSD

The Gaussian classifier. Nuno Vasconcelos ECE Department, UCSD he Gaussan classfer Nuno Vasconcelos ECE Department, UCSD Bayesan decson theory recall that we have state of the world X observatons g decson functon L[g,y] loss of predctng y wth g Bayes decson rule s

More information

E Tail Inequalities. E.1 Markov s Inequality. Non-Lecture E: Tail Inequalities

E Tail Inequalities. E.1 Markov s Inequality. Non-Lecture E: Tail Inequalities Algorthms Non-Lecture E: Tal Inequaltes If you hold a cat by the tal you learn thngs you cannot learn any other way. Mar Twan E Tal Inequaltes The smple recursve structure of sp lsts made t relatvely easy

More information

2 Finite difference basics

2 Finite difference basics Numersche Methoden 1, WS 11/12 B.J.P. Kaus 2 Fnte dfference bascs Consder the one- The bascs of the fnte dfference method are best understood wth an example. dmensonal transent heat conducton equaton T

More information

Comparative Studies of Law of Conservation of Energy. and Law Clusters of Conservation of Generalized Energy

Comparative Studies of Law of Conservation of Energy. and Law Clusters of Conservation of Generalized Energy Comparatve Studes of Law of Conservaton of Energy and Law Clusters of Conservaton of Generalzed Energy No.3 of Comparatve Physcs Seres Papers Fu Yuhua (CNOOC Research Insttute, E-mal:fuyh1945@sna.com)

More information

Polynomials. 1 More properties of polynomials

Polynomials. 1 More properties of polynomials Polynomals 1 More propertes of polynomals Recall that, for R a commutatve rng wth unty (as wth all rngs n ths course unless otherwse noted), we defne R[x] to be the set of expressons n =0 a x, where a

More information

Line Drawing and Clipping Week 1, Lecture 2

Line Drawing and Clipping Week 1, Lecture 2 CS 43 Computer Graphcs I Lne Drawng and Clppng Week, Lecture 2 Davd Breen, Wllam Regl and Maxm Peysakhov Geometrc and Intellgent Computng Laboratory Department of Computer Scence Drexel Unversty http://gcl.mcs.drexel.edu

More information

THE VIBRATIONS OF MOLECULES II THE CARBON DIOXIDE MOLECULE Student Instructions

THE VIBRATIONS OF MOLECULES II THE CARBON DIOXIDE MOLECULE Student Instructions THE VIBRATIONS OF MOLECULES II THE CARBON DIOXIDE MOLECULE Student Instructons by George Hardgrove Chemstry Department St. Olaf College Northfeld, MN 55057 hardgrov@lars.acc.stolaf.edu Copyrght George

More information

REDUCTION MODULO p. We will prove the reduction modulo p theorem in the general form as given by exercise 4.12, p. 143, of [1].

REDUCTION MODULO p. We will prove the reduction modulo p theorem in the general form as given by exercise 4.12, p. 143, of [1]. REDUCTION MODULO p. IAN KIMING We wll prove the reducton modulo p theorem n the general form as gven by exercse 4.12, p. 143, of [1]. We consder an ellptc curve E defned over Q and gven by a Weerstraß

More information

Case A. P k = Ni ( 2L i k 1 ) + (# big cells) 10d 2 P k.

Case A. P k = Ni ( 2L i k 1 ) + (# big cells) 10d 2 P k. THE CELLULAR METHOD In ths lecture, we ntroduce the cellular method as an approach to ncdence geometry theorems lke the Szemeréd-Trotter theorem. The method was ntroduced n the paper Combnatoral complexty

More information

DECOUPLING THEORY HW2

DECOUPLING THEORY HW2 8.8 DECOUPLIG THEORY HW2 DOGHAO WAG DATE:OCT. 3 207 Problem We shall start by reformulatng the problem. Denote by δ S n the delta functon that s evenly dstrbuted at the n ) dmensonal unt sphere. As a temporal

More information

Econ107 Applied Econometrics Topic 3: Classical Model (Studenmund, Chapter 4)

Econ107 Applied Econometrics Topic 3: Classical Model (Studenmund, Chapter 4) I. Classcal Assumptons Econ7 Appled Econometrcs Topc 3: Classcal Model (Studenmund, Chapter 4) We have defned OLS and studed some algebrac propertes of OLS. In ths topc we wll study statstcal propertes

More information

For example, if the drawing pin was tossed 200 times and it landed point up on 140 of these trials,

For example, if the drawing pin was tossed 200 times and it landed point up on 140 of these trials, Probablty In ths actvty you wll use some real data to estmate the probablty of an event happenng. You wll also use a varety of methods to work out theoretcal probabltes. heoretcal and expermental probabltes

More information

The Second Anti-Mathima on Game Theory

The Second Anti-Mathima on Game Theory The Second Ant-Mathma on Game Theory Ath. Kehagas December 1 2006 1 Introducton In ths note we wll examne the noton of game equlbrum for three types of games 1. 2-player 2-acton zero-sum games 2. 2-player

More information

PHYS 1443 Section 004 Lecture #12 Thursday, Oct. 2, 2014

PHYS 1443 Section 004 Lecture #12 Thursday, Oct. 2, 2014 PHYS 1443 Secton 004 Lecture #1 Thursday, Oct., 014 Work-Knetc Energy Theorem Work under rcton Potental Energy and the Conservatve Force Gravtatonal Potental Energy Elastc Potental Energy Conservaton o

More information

Negative Binomial Regression

Negative Binomial Regression STATGRAPHICS Rev. 9/16/2013 Negatve Bnomal Regresson Summary... 1 Data Input... 3 Statstcal Model... 3 Analyss Summary... 4 Analyss Optons... 7 Plot of Ftted Model... 8 Observed Versus Predcted... 10 Predctons...

More information

Four Bar Linkages in Two Dimensions. A link has fixed length and is joined to other links and also possibly to a fixed point.

Four Bar Linkages in Two Dimensions. A link has fixed length and is joined to other links and also possibly to a fixed point. Four bar lnkages 1 Four Bar Lnkages n Two Dmensons lnk has fed length and s oned to other lnks and also possbly to a fed pont. The relatve velocty of end B wth regard to s gven by V B = ω r y v B B = +y

More information

AS-Level Maths: Statistics 1 for Edexcel

AS-Level Maths: Statistics 1 for Edexcel 1 of 6 AS-Level Maths: Statstcs 1 for Edecel S1. Calculatng means and standard devatons Ths con ndcates the slde contans actvtes created n Flash. These actvtes are not edtable. For more detaled nstructons,

More information

Singular Value Decomposition: Theory and Applications

Singular Value Decomposition: Theory and Applications Sngular Value Decomposton: Theory and Applcatons Danel Khashab Sprng 2015 Last Update: March 2, 2015 1 Introducton A = UDV where columns of U and V are orthonormal and matrx D s dagonal wth postve real

More information

Which Separator? Spring 1

Which Separator? Spring 1 Whch Separator? 6.034 - Sprng 1 Whch Separator? Mamze the margn to closest ponts 6.034 - Sprng Whch Separator? Mamze the margn to closest ponts 6.034 - Sprng 3 Margn of a pont " # y (w $ + b) proportonal

More information

COS 521: Advanced Algorithms Game Theory and Linear Programming

COS 521: Advanced Algorithms Game Theory and Linear Programming COS 521: Advanced Algorthms Game Theory and Lnear Programmng Moses Charkar February 27, 2013 In these notes, we ntroduce some basc concepts n game theory and lnear programmng (LP). We show a connecton

More information

Open string operator quantization

Open string operator quantization Open strng operator quantzaton Requred readng: Zwebach -4 Suggested readng: Polchnsk 3 Green, Schwarz, & Wtten 3 upto eq 33 The lght-cone strng as a feld theory: Today we wll dscuss the quantzaton of an

More information

Lecture 5 Decoding Binary BCH Codes

Lecture 5 Decoding Binary BCH Codes Lecture 5 Decodng Bnary BCH Codes In ths class, we wll ntroduce dfferent methods for decodng BCH codes 51 Decodng the [15, 7, 5] 2 -BCH Code Consder the [15, 7, 5] 2 -code C we ntroduced n the last lecture

More information

MEASUREMENT OF MOMENT OF INERTIA

MEASUREMENT OF MOMENT OF INERTIA 1. measurement MESUREMENT OF MOMENT OF INERTI The am of ths measurement s to determne the moment of nerta of the rotor of an electrc motor. 1. General relatons Rotatng moton and moment of nerta Let us

More information

Yong Joon Ryang. 1. Introduction Consider the multicommodity transportation problem with convex quadratic cost function. 1 2 (x x0 ) T Q(x x 0 )

Yong Joon Ryang. 1. Introduction Consider the multicommodity transportation problem with convex quadratic cost function. 1 2 (x x0 ) T Q(x x 0 ) Kangweon-Kyungk Math. Jour. 4 1996), No. 1, pp. 7 16 AN ITERATIVE ROW-ACTION METHOD FOR MULTICOMMODITY TRANSPORTATION PROBLEMS Yong Joon Ryang Abstract. The optmzaton problems wth quadratc constrants often

More information

DEMO #8 - GAUSSIAN ELIMINATION USING MATHEMATICA. 1. Matrices in Mathematica

DEMO #8 - GAUSSIAN ELIMINATION USING MATHEMATICA. 1. Matrices in Mathematica demo8.nb 1 DEMO #8 - GAUSSIAN ELIMINATION USING MATHEMATICA Obectves: - defne matrces n Mathematca - format the output of matrces - appl lnear algebra to solve a real problem - Use Mathematca to perform

More information

Psychology 282 Lecture #24 Outline Regression Diagnostics: Outliers

Psychology 282 Lecture #24 Outline Regression Diagnostics: Outliers Psychology 282 Lecture #24 Outlne Regresson Dagnostcs: Outlers In an earler lecture we studed the statstcal assumptons underlyng the regresson model, ncludng the followng ponts: Formal statement of assumptons.

More information

Physics 201, Lecture 4. Vectors and Scalars. Chapters Covered q Chapter 1: Physics and Measurement.

Physics 201, Lecture 4. Vectors and Scalars. Chapters Covered q Chapter 1: Physics and Measurement. Phscs 01, Lecture 4 Toda s Topcs n Vectors chap 3) n Scalars and Vectors n Vector ddton ule n Vector n a Coordnator Sstem n Decomposton of a Vector n Epected from prevew: n Scalars and Vectors, Vector

More information

x yi In chapter 14, we want to perform inference (i.e. calculate confidence intervals and perform tests of significance) in this setting.

x yi In chapter 14, we want to perform inference (i.e. calculate confidence intervals and perform tests of significance) in this setting. The Practce of Statstcs, nd ed. Chapter 14 Inference for Regresson Introducton In chapter 3 we used a least-squares regresson lne (LSRL) to represent a lnear relatonshp etween two quanttatve explanator

More information

18. SIMPLE LINEAR REGRESSION III

18. SIMPLE LINEAR REGRESSION III 8. SIMPLE LINEAR REGRESSION III US Domestc Beers: Calores vs. % Alcohol Ftted Values and Resduals To each observed x, there corresponds a y-value on the ftted lne, y ˆ ˆ = α + x. The are called ftted values.

More information

Module 2. Random Processes. Version 2 ECE IIT, Kharagpur

Module 2. Random Processes. Version 2 ECE IIT, Kharagpur Module Random Processes Lesson 6 Functons of Random Varables After readng ths lesson, ou wll learn about cdf of functon of a random varable. Formula for determnng the pdf of a random varable. Let, X be

More information

Spectral graph theory: Applications of Courant-Fischer

Spectral graph theory: Applications of Courant-Fischer Spectral graph theory: Applcatons of Courant-Fscher Steve Butler September 2006 Abstract In ths second talk we wll ntroduce the Raylegh quotent and the Courant- Fscher Theorem and gve some applcatons for

More information

DISCRIMINANTS AND RAMIFIED PRIMES. 1. Introduction A prime number p is said to be ramified in a number field K if the prime ideal factorization

DISCRIMINANTS AND RAMIFIED PRIMES. 1. Introduction A prime number p is said to be ramified in a number field K if the prime ideal factorization DISCRIMINANTS AND RAMIFIED PRIMES KEITH CONRAD 1. Introducton A prme number p s sad to be ramfed n a number feld K f the prme deal factorzaton (1.1) (p) = po K = p e 1 1 peg g has some e greater than 1.

More information

NUMERICAL DIFFERENTIATION

NUMERICAL DIFFERENTIATION NUMERICAL DIFFERENTIATION 1 Introducton Dfferentaton s a method to compute the rate at whch a dependent output y changes wth respect to the change n the ndependent nput x. Ths rate of change s called the

More information

Graphical Analysis of a BJT Amplifier

Graphical Analysis of a BJT Amplifier 4/6/2011 A Graphcal Analyss of a BJT Amplfer lecture 1/18 Graphcal Analyss of a BJT Amplfer onsder agan ths smple BJT amplfer: ( t) = + ( t) O O o B + We note that for ths amplfer, the output oltage s

More information

THE CURRENT BALANCE Physics 258/259

THE CURRENT BALANCE Physics 258/259 DSH 1988, 005 THE CURRENT BALANCE Physcs 58/59 The tme average force between two parallel conductors carryng an alternatng current s measured by balancng ths force aganst the gravtatonal force on a set

More information

Statistics for Managers Using Microsoft Excel/SPSS Chapter 13 The Simple Linear Regression Model and Correlation

Statistics for Managers Using Microsoft Excel/SPSS Chapter 13 The Simple Linear Regression Model and Correlation Statstcs for Managers Usng Mcrosoft Excel/SPSS Chapter 13 The Smple Lnear Regresson Model and Correlaton 1999 Prentce-Hall, Inc. Chap. 13-1 Chapter Topcs Types of Regresson Models Determnng the Smple Lnear

More information

Publication 2006/01. Transport Equations in Incompressible. Lars Davidson

Publication 2006/01. Transport Equations in Incompressible. Lars Davidson Publcaton 2006/01 Transport Equatons n Incompressble URANS and LES Lars Davdson Dvson of Flud Dynamcs Department of Appled Mechancs Chalmers Unversty of Technology Göteborg, Sweden, May 2006 Transport

More information

One Dimensional Axial Deformations

One Dimensional Axial Deformations One Dmensonal al Deformatons In ths secton, a specfc smple geometr s consdered, that of a long and thn straght component loaded n such a wa that t deforms n the aal drecton onl. The -as s taken as the

More information

Least Squares Fitting of Data

Least Squares Fitting of Data Least Squares Fttng of Data Davd Eberly Geoetrc Tools, LLC http://www.geoetrctools.co/ Copyrght c 1998-2014. All Rghts Reserved. Created: July 15, 1999 Last Modfed: February 9, 2008 Contents 1 Lnear Fttng

More information

Numerical Transient Heat Conduction Experiment

Numerical Transient Heat Conduction Experiment Numercal ransent Heat Conducton Experment OBJECIVE 1. o demonstrate the basc prncples of conducton heat transfer.. o show how the thermal conductvty of a sold can be measured. 3. o demonstrate the use

More information

Differentiating Gaussian Processes

Differentiating Gaussian Processes Dfferentatng Gaussan Processes Andrew McHutchon Aprl 17, 013 1 Frst Order Dervatve of the Posteror Mean The posteror mean of a GP s gven by, f = x, X KX, X 1 y x, X α 1 Only the x, X term depends on the

More information

Ph 219a/CS 219a. Exercises Due: Wednesday 23 October 2013

Ph 219a/CS 219a. Exercises Due: Wednesday 23 October 2013 1 Ph 219a/CS 219a Exercses Due: Wednesday 23 October 2013 1.1 How far apart are two quantum states? Consder two quantum states descrbed by densty operators ρ and ρ n an N-dmensonal Hlbert space, and consder

More information

THEOREMS OF QUANTUM MECHANICS

THEOREMS OF QUANTUM MECHANICS THEOREMS OF QUANTUM MECHANICS In order to develop methods to treat many-electron systems (atoms & molecules), many of the theorems of quantum mechancs are useful. Useful Notaton The matrx element A mn

More information

Step-by-Step Business Math and Statistics

Step-by-Step Business Math and Statistics Step-by-Step Busness Math and Statstcs By Jn W. Cho Included n ths prevew: Copyrght Page Table of Contents Excerpt of Chapter For addtonal nformaton on adoptng ths book for your class, please contact us

More information

7.1 One Dimensional Axial Deformations

7.1 One Dimensional Axial Deformations Secton 7. 7. One Dmensonal al Deformatons In ths secton, a specfc smple geometr s consdered, that of a long and thn straght component loaded n such a wa that t deforms n the aal drecton onl. The -as s

More information

Activity #13: Simple Linear Regression. actgpa.sav; beer.sav;

Activity #13: Simple Linear Regression. actgpa.sav; beer.sav; ctvty #3: Smple Lnear Regresson Resources: actgpa.sav; beer.sav; http://mathworld.wolfram.com/leastfttng.html In the last actvty, we learned how to quantfy the strength of the lnear relatonshp between

More information

Econ Statistical Properties of the OLS estimator. Sanjaya DeSilva

Econ Statistical Properties of the OLS estimator. Sanjaya DeSilva Econ 39 - Statstcal Propertes of the OLS estmator Sanjaya DeSlva September, 008 1 Overvew Recall that the true regresson model s Y = β 0 + β 1 X + u (1) Applyng the OLS method to a sample of data, we estmate

More information

SIMPLE REACTION TIME AS A FUNCTION OF TIME UNCERTAINTY 1

SIMPLE REACTION TIME AS A FUNCTION OF TIME UNCERTAINTY 1 Journal of Expermental Vol. 5, No. 3, 1957 Psychology SIMPLE REACTION TIME AS A FUNCTION OF TIME UNCERTAINTY 1 EDMUND T. KLEMMER Operatonal Applcatons Laboratory, Ar Force Cambrdge Research Center An earler

More information

Chapter 4 The Wave Equation

Chapter 4 The Wave Equation Chapter 4 The Wave Equaton Another classcal example of a hyperbolc PDE s a wave equaton. The wave equaton s a second-order lnear hyperbolc PDE that descrbes the propagaton of a varety of waves, such as

More information

CHAPTER 4d. ROOTS OF EQUATIONS

CHAPTER 4d. ROOTS OF EQUATIONS CHAPTER 4d. ROOTS OF EQUATIONS A. J. Clark School o Engneerng Department o Cvl and Envronmental Engneerng by Dr. Ibrahm A. Assakka Sprng 00 ENCE 03 - Computaton Methods n Cvl Engneerng II Department o

More information

Q1: Calculate the mean, median, sample variance, and standard deviation of 25, 40, 05, 70, 05, 40, 70.

Q1: Calculate the mean, median, sample variance, and standard deviation of 25, 40, 05, 70, 05, 40, 70. Q1: Calculate the mean, medan, sample varance, and standard devaton of 5, 40, 05, 70, 05, 40, 70. Q: The frequenc dstrbuton for a data set s gven below. Measurements 0 1 3 4 Frequenc 3 5 8 3 1 a) What

More information

A proof of the dimension conjecture and of Jacobi's bound. François Ollivier (CNRS) LIX UMR CNRS École polytechnique

A proof of the dimension conjecture and of Jacobi's bound. François Ollivier (CNRS) LIX UMR CNRS École polytechnique A proof of the dmenson conjecture and of Jacob's bound Franços Ollver (CNRS) LIX UMR CNRS École polytechnque Jacob s bound Proposton. Let P 1,..., P n , a,j = ord xj P and = max σ S n Σ

More information

Lecture 12: Classification

Lecture 12: Classification Lecture : Classfcaton g Dscrmnant functons g The optmal Bayes classfer g Quadratc classfers g Eucldean and Mahalanobs metrcs g K Nearest Neghbor Classfers Intellgent Sensor Systems Rcardo Guterrez-Osuna

More information

Week 2. This week, we covered operations on sets and cardinality.

Week 2. This week, we covered operations on sets and cardinality. Week 2 Ths week, we covered operatons on sets and cardnalty. Defnton 0.1 (Correspondence). A correspondence between two sets A and B s a set S contaned n A B = {(a, b) a A, b B}. A correspondence from

More information

The Ramanujan-Nagell Theorem: Understanding the Proof By Spencer De Chenne

The Ramanujan-Nagell Theorem: Understanding the Proof By Spencer De Chenne The Ramanujan-Nagell Theorem: Understandng the Proof By Spencer De Chenne 1 Introducton The Ramanujan-Nagell Theorem, frst proposed as a conjecture by Srnvasa Ramanujan n 1943 and later proven by Trygve

More information

16x y 8x. 16x 81. U n i t 3 P t 1 H o n o r s P a g e 1. Math 3 Unit 3 Day 1 - Factoring Review. I. Greatest Common Factor GCF.

16x y 8x. 16x 81. U n i t 3 P t 1 H o n o r s P a g e 1. Math 3 Unit 3 Day 1 - Factoring Review. I. Greatest Common Factor GCF. P a g e 1 Math 3 Unit 3 Day 1 - Factoring Review I. Greatest Common Factor GCF Eamples: A. 3 6 B. 4 8 4 C. 16 y 8 II. Difference of Two Squares Draw ( - ) ( + ) Square Root 1 st and Last Term Eamples:

More information

Fundamental loop-current method using virtual voltage sources technique for special cases

Fundamental loop-current method using virtual voltage sources technique for special cases Fundamental loop-current method usng vrtual voltage sources technque for specal cases George E. Chatzaraks, 1 Marna D. Tortorel 1 and Anastasos D. Tzolas 1 Electrcal and Electroncs Engneerng Departments,

More information

I have not received unauthorized aid in the completion of this exam.

I have not received unauthorized aid in the completion of this exam. ME 270 Sprng 2013 Fnal Examnaton Please read and respond to the followng statement, I have not receved unauthorzed ad n the completon of ths exam. Agree Dsagree Sgnature INSTRUCTIONS Begn each problem

More information

General Tips on How to Do Well in Physics Exams. 1. Establish a good habit in keeping track of your steps. For example, when you use the equation

General Tips on How to Do Well in Physics Exams. 1. Establish a good habit in keeping track of your steps. For example, when you use the equation General Tps on How to Do Well n Physcs Exams 1. Establsh a good habt n keepng track o your steps. For example when you use the equaton 1 1 1 + = d d to solve or d o you should rst rewrte t as 1 1 1 = d

More information

3.1 ML and Empirical Distribution

3.1 ML and Empirical Distribution 67577 Intro. to Machne Learnng Fall semester, 2008/9 Lecture 3: Maxmum Lkelhood/ Maxmum Entropy Dualty Lecturer: Amnon Shashua Scrbe: Amnon Shashua 1 In the prevous lecture we defned the prncple of Maxmum

More information

Adiabatic Sorption of Ammonia-Water System and Depicting in p-t-x Diagram

Adiabatic Sorption of Ammonia-Water System and Depicting in p-t-x Diagram Adabatc Sorpton of Ammona-Water System and Depctng n p-t-x Dagram J. POSPISIL, Z. SKALA Faculty of Mechancal Engneerng Brno Unversty of Technology Techncka 2, Brno 61669 CZECH REPUBLIC Abstract: - Absorpton

More information

Support Vector Machines. Vibhav Gogate The University of Texas at dallas

Support Vector Machines. Vibhav Gogate The University of Texas at dallas Support Vector Machnes Vbhav Gogate he Unversty of exas at dallas What We have Learned So Far? 1. Decson rees. Naïve Bayes 3. Lnear Regresson 4. Logstc Regresson 5. Perceptron 6. Neural networks 7. K-Nearest

More information

What would be a reasonable choice of the quantization step Δ?

What would be a reasonable choice of the quantization step Δ? CE 108 HOMEWORK 4 EXERCISE 1. Suppose you are samplng the output of a sensor at 10 KHz and quantze t wth a unform quantzer at 10 ts per sample. Assume that the margnal pdf of the sgnal s Gaussan wth mean

More information

RELIABILITY ASSESSMENT

RELIABILITY ASSESSMENT CHAPTER Rsk Analyss n Engneerng and Economcs RELIABILITY ASSESSMENT A. J. Clark School of Engneerng Department of Cvl and Envronmental Engneerng 4a CHAPMAN HALL/CRC Rsk Analyss for Engneerng Department

More information

A PROCEDURE FOR SIMULATING THE NONLINEAR CONDUCTION HEAT TRANSFER IN A BODY WITH TEMPERATURE DEPENDENT THERMAL CONDUCTIVITY.

A PROCEDURE FOR SIMULATING THE NONLINEAR CONDUCTION HEAT TRANSFER IN A BODY WITH TEMPERATURE DEPENDENT THERMAL CONDUCTIVITY. Proceedngs of the th Brazlan Congress of Thermal Scences and Engneerng -- ENCIT 006 Braz. Soc. of Mechancal Scences and Engneerng -- ABCM, Curtba, Brazl,- Dec. 5-8, 006 A PROCEDURE FOR SIMULATING THE NONLINEAR

More information

1 Gradient descent for convex functions: univariate case

1 Gradient descent for convex functions: univariate case prnceton unv. F 13 cos 51: Advanced Algorthm Desgn Lecture 19: Gong wth the slope: offlne, onlne, and randomly Lecturer: Sanjeev Arora Scrbe: hs lecture s about gradent descent, a popular method for contnuous

More information

Lorentz Group. Ling Fong Li. 1 Lorentz group Generators Simple representations... 3

Lorentz Group. Ling Fong Li. 1 Lorentz group Generators Simple representations... 3 Lorentz Group Lng Fong L ontents Lorentz group. Generators............................................. Smple representatons..................................... 3 Lorentz group In the dervaton of Drac

More information

The Problem: Mapping programs to architectures

The Problem: Mapping programs to architectures Complng for Parallelsm & Localty!Last tme! SSA and ts uses!today! Parallelsm and localty! Data dependences and loops CS553 Lecture Complng for Parallelsm & Localty 1 The Problem: Mappng programs to archtectures

More information

Semilattices of Rectangular Bands and Groups of Order Two.

Semilattices of Rectangular Bands and Groups of Order Two. 1 Semlattces of Rectangular Bs Groups of Order Two R A R Monzo Abstract We prove that a semgroup S s a semlattce of rectangular bs groups of order two f only f t satsfes the dentty y y, y y, y S 1 Introducton

More information

Programming Project 1: Molecular Geometry and Rotational Constants

Programming Project 1: Molecular Geometry and Rotational Constants Programmng Project 1: Molecular Geometry and Rotatonal Constants Center for Computatonal Chemstry Unversty of Georga Athens, Georga 30602 Summer 2012 1 Introducton Ths programmng project s desgned to provde

More information

An influence line shows how the force in a particular member changes as a concentrated load is moved along the structure.

An influence line shows how the force in a particular member changes as a concentrated load is moved along the structure. CE 331, Fall 2010 Influence Les for Trusses 1 / 7 An fluence le shows how the force a partcular member changes as a concentrated load s moved along the structure. For eample, say we are desgng the seven

More information

Homework Chapter 21 Solutions!!

Homework Chapter 21 Solutions!! Homework Chapter 1 Solutons 1.7 1.13 1.17 1.19 1.6 1.33 1.45 1.51 1.71 page 1 Problem 1.7 A mole sample of oxygen gas s confned to a 5 lter vessel at a pressure of 8 atm. Fnd the average translatonal knetc

More information

Population element: 1 2 N. 1.1 Sampling with Replacement: Hansen-Hurwitz Estimator(HH)

Population element: 1 2 N. 1.1 Sampling with Replacement: Hansen-Hurwitz Estimator(HH) Chapter 1 Samplng wth Unequal Probabltes Notaton: Populaton element: 1 2 N varable of nterest Y : y1 y2 y N Let s be a sample of elements drawn by a gven samplng method. In other words, s s a subset of

More information

Copyright 2017 by Taylor Enterprises, Inc., All Rights Reserved. Adjusted Control Limits for P Charts. Dr. Wayne A. Taylor

Copyright 2017 by Taylor Enterprises, Inc., All Rights Reserved. Adjusted Control Limits for P Charts. Dr. Wayne A. Taylor Taylor Enterprses, Inc. Control Lmts for P Charts Copyrght 2017 by Taylor Enterprses, Inc., All Rghts Reserved. Control Lmts for P Charts Dr. Wayne A. Taylor Abstract: P charts are used for count data

More information

Newton s Laws of Motion

Newton s Laws of Motion Chapter 4 Newton s Laws of Moton 4.1 Forces and Interactons Fundamental forces. There are four types of fundamental forces: electromagnetc, weak, strong and gravtatonal. The frst two had been successfully

More information

Chapter 4: Regression With One Regressor

Chapter 4: Regression With One Regressor Chapter 4: Regresson Wth One Regressor Copyrght 2011 Pearson Addson-Wesley. All rghts reserved. 1-1 Outlne 1. Fttng a lne to data 2. The ordnary least squares (OLS) lne/regresson 3. Measures of ft 4. Populaton

More information

Weighted Voting Systems

Weighted Voting Systems Weghted Votng Systems Elssa Brown Chrssy Donovan Charles Noneman June 5, 2009 Votng systems can be deceptve. For nstance, a votng system mght consst of four people, n whch three of the people have 2 votes,

More information

Markov Chain Monte Carlo Lecture 6

Markov Chain Monte Carlo Lecture 6 where (x 1,..., x N ) X N, N s called the populaton sze, f(x) f (x) for at least one {1, 2,..., N}, and those dfferent from f(x) are called the tral dstrbutons n terms of mportance samplng. Dfferent ways

More information

8 : Learning in Fully Observed Markov Networks. 1 Why We Need to Learn Undirected Graphical Models. 2 Structural Learning for Completely Observed MRF

8 : Learning in Fully Observed Markov Networks. 1 Why We Need to Learn Undirected Graphical Models. 2 Structural Learning for Completely Observed MRF 10-708: Probablstc Graphcal Models 10-708, Sprng 2014 8 : Learnng n Fully Observed Markov Networks Lecturer: Erc P. Xng Scrbes: Meng Song, L Zhou 1 Why We Need to Learn Undrected Graphcal Models In the

More information

1 The Mistake Bound Model

1 The Mistake Bound Model 5-850: Advanced Algorthms CMU, Sprng 07 Lecture #: Onlne Learnng and Multplcatve Weghts February 7, 07 Lecturer: Anupam Gupta Scrbe: Bryan Lee,Albert Gu, Eugene Cho he Mstake Bound Model Suppose there

More information

FE REVIEW OPERATIONAL AMPLIFIERS (OP-AMPS)

FE REVIEW OPERATIONAL AMPLIFIERS (OP-AMPS) FE EIEW OPEATIONAL AMPLIFIES (OPAMPS) 1 The Opamp An opamp has two nputs and one output. Note the opamp below. The termnal labeled wth the () sgn s the nvertng nput and the nput labeled wth the () sgn

More information

P exp(tx) = 1 + t 2k M 2k. k N

P exp(tx) = 1 + t 2k M 2k. k N 1. Subgaussan tals Defnton. Say that a random varable X has a subgaussan dstrbuton wth scale factor σ< f P exp(tx) exp(σ 2 t 2 /2) for all real t. For example, f X s dstrbuted N(,σ 2 ) then t s subgaussan.

More information

Lab 4: Two-level Random Intercept Model

Lab 4: Two-level Random Intercept Model BIO 656 Lab4 009 Lab 4: Two-level Random Intercept Model Data: Peak expratory flow rate (pefr) measured twce, usng two dfferent nstruments, for 17 subjects. (from Chapter 1 of Multlevel and Longtudnal

More information

10-701/ Machine Learning, Fall 2005 Homework 3

10-701/ Machine Learning, Fall 2005 Homework 3 10-701/15-781 Machne Learnng, Fall 2005 Homework 3 Out: 10/20/05 Due: begnnng of the class 11/01/05 Instructons Contact questons-10701@autonlaborg for queston Problem 1 Regresson and Cross-valdaton [40

More information

Why Bayesian? 3. Bayes and Normal Models. State of nature: class. Decision rule. Rev. Thomas Bayes ( ) Bayes Theorem (yes, the famous one)

Why Bayesian? 3. Bayes and Normal Models. State of nature: class. Decision rule. Rev. Thomas Bayes ( ) Bayes Theorem (yes, the famous one) Why Bayesan? 3. Bayes and Normal Models Alex M. Martnez alex@ece.osu.edu Handouts Handoutsfor forece ECE874 874Sp Sp007 If all our research (n PR was to dsappear and you could only save one theory, whch

More information

3.2 Terminal Characteristics of Junction Diodes (pp )

3.2 Terminal Characteristics of Junction Diodes (pp ) /9/008 secton3_termnal_characterstcs_of_juncton_odes.doc /6 3. Termnal Characterstcs of Juncton odes (pp.47-53) A Juncton ode I.E., A real dode! Smlar to an deal dode, ts crcut symbol s: HO: The Juncton

More information

FUZZY GOAL PROGRAMMING VS ORDINARY FUZZY PROGRAMMING APPROACH FOR MULTI OBJECTIVE PROGRAMMING PROBLEM

FUZZY GOAL PROGRAMMING VS ORDINARY FUZZY PROGRAMMING APPROACH FOR MULTI OBJECTIVE PROGRAMMING PROBLEM Internatonal Conference on Ceramcs, Bkaner, Inda Internatonal Journal of Modern Physcs: Conference Seres Vol. 22 (2013) 757 761 World Scentfc Publshng Company DOI: 10.1142/S2010194513010982 FUZZY GOAL

More information