Step 1. Analytic Properties of the Riemann zeta function [2 lectures]

Size: px
Start display at page:

Download "Step 1. Analytic Properties of the Riemann zeta function [2 lectures]"

Transcription

1 Step. Analytic Properties of the Riemann zeta function [2 lectures] The Riemann zeta function is the infinite sum of terms /, n. For each n, the / is a continuous function of s, i.e. lim s s 0 n = s n, s 0 for all s 0 C, an is ifferentiable, i.e. sn = s s e slogn = logn)e slogn = logn, for all s C. We know from secon year analysis that we can a a finite number of continuous ifferentiable) functions to get a continuous ifferentiable) function, but this is not necessarily true for an infinite sum. We nee more than the sum converges. Definition 4.3 A sequence {x n } n in C is a Cauchy Sequence if, an only if, ε > 0, N : n,m N, x n x m < ε. Depening on how you have constructe C you may efine that a series converges if, an only if, it is a Cauchy Sequence. Unfortunately this was not how convergence of a sequence was efine in MATH200 say. Theorem 4.4 A sequence {x n } n converges in C if, an only if, {x n } n is a Cauchy Sequence. Proof ) Assume that {x n } n converges to x say. Let ε > 0 be given. Then by the ε N efinition of convergence, N : x n x < ε/2. Let m,n N then x n x m = x n x+x x m x n x + x x m < ε, an we have verifie the efinition of a Cauchy Sequence. ) This follows as a efining property of C, basically that C is complete. 7

2 Definition 4.5 Let {F n z)} n be a sequence of functions efine on a set D C. The sequence {F n } n converges to F on D iff ε > 0, z D, N = N ε,z) : n N, F n z) F z) < ε. The sequence {F n } n converges uniformly to F on D iff ε > 0, N = N ε) : z D, n N, F n z) F z) < ε. Be careful to unerstan the ifference in these efinitions, for convergence the value of N epens on the point z, whereas for uniform convergence the N will work simultaneously for all z in the omain D. Equivalently the efinition of uniform convergence can be given in terms of a Cauchy sequence as ε > 0, N = N ε) : z D, n,m N, F n z) F m z) < ε. All efinitions for sequences translate into efinitions for series, as in Definition 4.6 A series j= f jz) converges uniformly on D if, an only if, the sequence of partial sums F n z) = n j= f jz) converges uniformly on D. That is, n ε > 0, N = N ε) : z D, n,m N, f j z) < ε. This leas to j=m+ Weierstrass s M-Test for Uniform Convergence of a Series: If there exists a sequence {M i } i of non-negative numbers for which f j z) < M j for all z D an all i an j= M j converges then j= f jz) converges uniformly on D. Verification In fact, assuming k > l, the partial sums satisfy F k z) F l z) = f k z)+f k z)+...+f l+ z) f k z) + f k z) f l+ z) < M k +M k +...+M l+. On account of the convergence of the series the last sum can be mae smaller than a given ε > 0. Hence the sequence of partial sums F m z) converges uniformly. 8

3 The Question then arises what properties of a uniformly converging sequence are inherite by its limit? We have Weierstrass s Theorem for Series see Backgroun Notes 0.7) that states Theorem 4.7 Weierstrass s Theorem for Series. Assume f z),f 2 z),f 3 z),... are holomorphic in an opeet D, an i= f iz) converge uniformly on every close an boune subset of D. Then i) The F z) = i= f iz) is holomorphic on D, ii) For all k, the series i= fk) i z) converges on D, an converge uniformly on every close an boune subset of D with limit F k) z). So the series can be ifferentiate term-by-term.) Our first example of use of this theorem is the Riemann zeta function. The Riemann zeta function is a particular example of a Dirichlet Series, n= a nn s. For a give C such a series may converge or not an if it converges it may converge absolutely or not. Results on how such regions are connecte for general Dirichlet Series are not give in this course. We will, though, make use of the fact that if a series n= a n converges absolutely then we have an infinite triangle inequality n= a n n= a n. For Res + δ the Riemann zeta function converges absolutely an to see this use the Comparison Test on n= /ns, for each term satisfies / /n +δ an n= /n+δ converges. To go further we nee to show that the series efining ζs) converges uniformly oome omain. Theorem 4.8 Assume δ > 0. For Res +δ the Riemann zeta function ζs) = converges uniformly, is holomorphic in Rs >, with erivative ζ logn s) = for Res >. 9 n= n=

4 Proof Wehavetoshowonlythattheseriesefiningζs)convergesuniformly Res +δ. We coul simply apply Weierstrass s M-test with M n = /n +δ or o it irectly as N ζs) = n= n=n+ n=n+ by infinite triangle inequality n=n+ N n +δ since Res +δ u u = +δ δn δ. Given any ε > 0, then /δn δ is less than ε when N is sufficiently large, inepenent of s, showing uniform convergence. We can apply Weierstrass s Theorem since any close an boune subset of Res > is containe in Res + δ for some δ > 0. Each term in the series is holomorphic on C with erivative s ) = s e slogn = logn. The state result then follows from Weierstrass s Theorem. In Theorem.8 we saw ζs) = p p s ), for Res >. This with Theorem 4.8 shows that the Euler prouct is continuous an ifferentiable. This was not obvious. For each prime p, the /p s ) is a continuous function of s, i.e. s lim ) = ), s s 0 p s p s 0 for all s 0 C, an is ifferentiable, i.e. ) = ) 2 p s p s = logp p s p s ) 2, 0 p ) = s s ) 2 p s s p s

5 for all s C. We know from secon year analysis that we can multiply a finite number of continuousifferentiable) functions to get a continuousifferentiable) function, but this is not necessarily true for an infinite prouct. There is a Weierstrass s Theorem for Infinite Proucts but it is not given here. Earlier in the course we looke at replacing sums by integrals. In the same vein we can use Partial Summation to replace the Dirichlet Series efining the Riemann zeta-function by an integral. Theorem 4.9 For s we have n N n = + s s + N s s s N where is the fractional part of u so = u [u]). n N n N u u s+ 5) Proof By Partial Summation an this argument, for s =, has beeeen before in the previous Chapter) = N s N )) s Let N to get = N N s n N = N N s +s N N n n u = N N N +s u [u] s u s+ = N N s +s N s) u u s+ u u s+ u u N s u [u]) u us+ u s+ = N N + s N s ) N s s s u us+. 6)

6 Theorem 4.0 For Res >, ζs) = + s s u+su. 7) Further, the right han sie of 7) efines a function holomorphic in Res > 0, except for a simple pole, resiue at s =. This is an example of an analytic continuation of ζs). The right han sie of 7) efines a function holomorphic on a region containing Res >, where it agrees with the Dirichlet series efinition of ζs). It is in fact possible to continue analytically ζs) to all of C, though we o not o so in this course. For the remainer of the course when we talk of the Riemann zeta function we will be thinking of the function given by the right han sie of 7) for Res > 0. When Res > we will know that it has an alternative efinition as a Dirichlet Series. Note On Problem Sheet 3 you are aske to show that ) n = n= ) ζs), 2 s for Res >. It can be shown that the Dirichlet Series on the left is, in fact, holomorphic in Res > 0 an so this equality gives another analytic continuation of ζs) to Res > 0. It can be shown though that if a function has an analytic continuation, then that continuation is unique. Proof Remember that Res = σ >. Let N, then N s = N σ 0 while an so the integral in 6) converges. Hence u +s 8) u +σ ζs) = + s s u+su 9) as require. In fact, from 8), we see that the integral in 9) converges absolutely for Res > 0. There is a theory for uniform convergence of integrals; see Weierstrass s Theorem for Infinite Integrals in Backgroun Notes 0.7. But this is not irectly 2

7 applicable here since the integran u s is not a continuous function of u for fixe s. Instea, consier the infinite integral in 9) as an infinite sum of integrals over intervals of length : u +su = n+ u = f u +s n s). n= We cahow but will only o so for level 4) that for any δ > 0, n n= i) the series n= f ns) converges uniformly on Res > δ, ii) each f n s) is holomorphic on Res > δ, with erivative f n s) s = n+ n logu)u. u+s This is sufficient, by Weierstrass s Theorem for Series, part i of Theorem 4.7 above, to imply that the integral in 9) is holomorphic on Res > 0. Diffferentiate 5) w.r.t s, allowable since the sum an integral are finite. This is harer to justify is we ifferentiate 7). In this way we get Theorem 4. for integral N an s we have N n= Let N to erive Corollary 4.2 For Res > 0, logn = s ) 2 + s) s logn +N s s) 2 ζ s) = s ) 2 N N u +su+s logu u. u +s logu u s+u+s u. 0) u s+ As in the proof of Theorem 4.0 this only follows for Res >, when N s logn s 0 an N s s) 2 0 as N. But once erive, the right han sie of 0) efines a holomorphic function for Res > 0,s. 3

Outline. MS121: IT Mathematics. Differentiation Rules for Differentiation: Part 1. Outline. Dublin City University 4 The Quotient Rule

Outline. MS121: IT Mathematics. Differentiation Rules for Differentiation: Part 1. Outline. Dublin City University 4 The Quotient Rule MS2: IT Mathematics Differentiation Rules for Differentiation: Part John Carroll School of Mathematical Sciences Dublin City University Pattern Observe You may have notice the following pattern when we

More information

Math 342 Partial Differential Equations «Viktor Grigoryan

Math 342 Partial Differential Equations «Viktor Grigoryan Math 342 Partial Differential Equations «Viktor Grigoryan 6 Wave equation: solution In this lecture we will solve the wave equation on the entire real line x R. This correspons to a string of infinite

More information

II. First variation of functionals

II. First variation of functionals II. First variation of functionals The erivative of a function being zero is a necessary conition for the etremum of that function in orinary calculus. Let us now tackle the question of the equivalent

More information

ζ (s) = s 1 s {u} [u] ζ (s) = s 0 u 1+sdu, {u} Note how the integral runs from 0 and not 1.

ζ (s) = s 1 s {u} [u] ζ (s) = s 0 u 1+sdu, {u} Note how the integral runs from 0 and not 1. Problem Sheet 3. From Theorem 3. we have ζ (s) = + s s {u} u+sdu, (45) valid for Res > 0. i) Deduce that for Res >. [u] ζ (s) = s u +sdu ote the integral contains [u] in place of {u}. ii) Deduce that for

More information

Rules of Differentiation

Rules of Differentiation LECTURE 2 Rules of Differentiation At te en of Capter 2, we finally arrive at te following efinition of te erivative of a function f f x + f x x := x 0 oing so only after an extene iscussion as wat te

More information

IMPLICIT DIFFERENTIATION

IMPLICIT DIFFERENTIATION IMPLICIT DIFFERENTIATION CALCULUS 3 INU0115/515 (MATHS 2) Dr Arian Jannetta MIMA CMath FRAS Implicit Differentiation 1/ 11 Arian Jannetta Explicit an implicit functions Explicit functions An explicit function

More information

Some vector algebra and the generalized chain rule Ross Bannister Data Assimilation Research Centre, University of Reading, UK Last updated 10/06/10

Some vector algebra and the generalized chain rule Ross Bannister Data Assimilation Research Centre, University of Reading, UK Last updated 10/06/10 Some vector algebra an the generalize chain rule Ross Bannister Data Assimilation Research Centre University of Reaing UK Last upate 10/06/10 1. Introuction an notation As we shall see in these notes the

More information

The derivative of a function f(x) is another function, defined in terms of a limiting expression: f(x + δx) f(x)

The derivative of a function f(x) is another function, defined in terms of a limiting expression: f(x + δx) f(x) Y. D. Chong (2016) MH2801: Complex Methos for the Sciences 1. Derivatives The erivative of a function f(x) is another function, efine in terms of a limiting expression: f (x) f (x) lim x δx 0 f(x + δx)

More information

Section 7.1: Integration by Parts

Section 7.1: Integration by Parts Section 7.1: Integration by Parts 1. Introuction to Integration Techniques Unlike ifferentiation where there are a large number of rules which allow you (in principle) to ifferentiate any function, the

More information

Math 680 Fall A Quantitative Prime Number Theorem I: Zero-Free Regions

Math 680 Fall A Quantitative Prime Number Theorem I: Zero-Free Regions Math 68 Fall 4 A Quantitative Prime Number Theorem I: Zero-Free Regions Ultimately, our goal is to prove the following strengthening of the prime number theorem Theorem Improved Prime Number Theorem: There

More information

Math Notes on differentials, the Chain Rule, gradients, directional derivative, and normal vectors

Math Notes on differentials, the Chain Rule, gradients, directional derivative, and normal vectors Math 18.02 Notes on ifferentials, the Chain Rule, graients, irectional erivative, an normal vectors Tangent plane an linear approximation We efine the partial erivatives of f( xy, ) as follows: f f( x+

More information

Module FP2. Further Pure 2. Cambridge University Press Further Pure 2 and 3 Hugh Neill and Douglas Quadling Excerpt More information

Module FP2. Further Pure 2. Cambridge University Press Further Pure 2 and 3 Hugh Neill and Douglas Quadling Excerpt More information 5548993 - Further Pure an 3 Moule FP Further Pure 5548993 - Further Pure an 3 Differentiating inverse trigonometric functions Throughout the course you have graually been increasing the number of functions

More information

Euler equations for multiple integrals

Euler equations for multiple integrals Euler equations for multiple integrals January 22, 2013 Contents 1 Reminer of multivariable calculus 2 1.1 Vector ifferentiation......................... 2 1.2 Matrix ifferentiation........................

More information

Integration by Parts

Integration by Parts Integration by Parts 6-3-207 If u an v are functions of, the Prouct Rule says that (uv) = uv +vu Integrate both sies: (uv) = uv = uv + u v + uv = uv vu, vu v u, I ve written u an v as shorthan for u an

More information

Schrödinger s equation.

Schrödinger s equation. Physics 342 Lecture 5 Schröinger s Equation Lecture 5 Physics 342 Quantum Mechanics I Wenesay, February 3r, 2010 Toay we iscuss Schröinger s equation an show that it supports the basic interpretation of

More information

x = c of N if the limit of f (x) = L and the right-handed limit lim f ( x)

x = c of N if the limit of f (x) = L and the right-handed limit lim f ( x) Limit We say the limit of f () as approaches c equals L an write, lim L. One-Sie Limits (Left an Right-Hane Limits) Suppose a function f is efine near but not necessarily at We say that f has a left-hane

More information

Analysis IV, Assignment 4

Analysis IV, Assignment 4 Analysis IV, Assignment 4 Prof. John Toth Winter 23 Exercise Let f C () an perioic with f(x+2) f(x). Let a n f(t)e int t an (S N f)(x) N n N then f(x ) lim (S Nf)(x ). N a n e inx. If f is continuously

More information

Math 1271 Solutions for Fall 2005 Final Exam

Math 1271 Solutions for Fall 2005 Final Exam Math 7 Solutions for Fall 5 Final Eam ) Since the equation + y = e y cannot be rearrange algebraically in orer to write y as an eplicit function of, we must instea ifferentiate this relation implicitly

More information

CAUCHY INTEGRAL THEOREM

CAUCHY INTEGRAL THEOREM CAUCHY INTEGRAL THEOREM XI CHEN 1. Differential Forms, Integration an Stokes Theorem Let X be an open set in R n an C (X) be the set of complex value C functions on X. A ifferential 1-form is (1.1) ω =

More information

Mathematics 324 Riemann Zeta Function August 5, 2005

Mathematics 324 Riemann Zeta Function August 5, 2005 Mathematics 324 Riemann Zeta Function August 5, 25 In this note we give an introduction to the Riemann zeta function, which connects the ideas of real analysis with the arithmetic of the integers. Define

More information

Students need encouragement. So if a student gets an answer right, tell them it was a lucky guess. That way, they develop a good, lucky feeling.

Students need encouragement. So if a student gets an answer right, tell them it was a lucky guess. That way, they develop a good, lucky feeling. Chapter 8 Analytic Functions Stuents nee encouragement. So if a stuent gets an answer right, tell them it was a lucky guess. That way, they evelop a goo, lucky feeling. 1 8.1 Complex Derivatives -Jack

More information

Sturm-Liouville Theory

Sturm-Liouville Theory LECTURE 5 Sturm-Liouville Theory In the three preceing lectures I emonstrate the utility of Fourier series in solving PDE/BVPs. As we ll now see, Fourier series are just the tip of the iceberg of the theory

More information

Primes in arithmetic progressions

Primes in arithmetic progressions (September 26, 205) Primes in arithmetic progressions Paul Garrett garrett@math.umn.edu http://www.math.umn.edu/ garrett/ [This document is http://www.math.umn.edu/ garrett/m/mfms/notes 205-6/06 Dirichlet.pdf].

More information

Dirichlet s Theorem. Martin Orr. August 21, The aim of this article is to prove Dirichlet s theorem on primes in arithmetic progressions:

Dirichlet s Theorem. Martin Orr. August 21, The aim of this article is to prove Dirichlet s theorem on primes in arithmetic progressions: Dirichlet s Theorem Martin Orr August 1, 009 1 Introduction The aim of this article is to prove Dirichlet s theorem on primes in arithmetic progressions: Theorem 1.1. If m, a N are coprime, then there

More information

f(x + h) f(x) f (x) = lim

f(x + h) f(x) f (x) = lim Introuction 4.3 Some Very Basic Differentiation Formulas If a ifferentiable function f is quite simple, ten it is possible to fin f by using te efinition of erivative irectly: f () 0 f( + ) f() However,

More information

Vectors in two dimensions

Vectors in two dimensions Vectors in two imensions Until now, we have been working in one imension only The main reason for this is to become familiar with the main physical ieas like Newton s secon law, without the aitional complication

More information

Implicit Differentiation

Implicit Differentiation Implicit Differentiation Implicit Differentiation Using the Chain Rule In the previous section we focuse on the erivatives of composites an saw that THEOREM 20 (Chain Rule) Suppose that u = g(x) is ifferentiable

More information

Calculus in the AP Physics C Course The Derivative

Calculus in the AP Physics C Course The Derivative Limits an Derivatives Calculus in the AP Physics C Course The Derivative In physics, the ieas of the rate change of a quantity (along with the slope of a tangent line) an the area uner a curve are essential.

More information

1 Lecture 18: The chain rule

1 Lecture 18: The chain rule 1 Lecture 18: The chain rule 1.1 Outline Comparing the graphs of sin(x) an sin(2x). The chain rule. The erivative of a x. Some examples. 1.2 Comparing the graphs of sin(x) an sin(2x) We graph f(x) = sin(x)

More information

Lectures - Week 10 Introduction to Ordinary Differential Equations (ODES) First Order Linear ODEs

Lectures - Week 10 Introduction to Ordinary Differential Equations (ODES) First Order Linear ODEs Lectures - Week 10 Introuction to Orinary Differential Equations (ODES) First Orer Linear ODEs When stuying ODEs we are consiering functions of one inepenent variable, e.g., f(x), where x is the inepenent

More information

Chapter Primer on Differentiation

Chapter Primer on Differentiation Capter 0.01 Primer on Differentiation After reaing tis capter, you soul be able to: 1. unerstan te basics of ifferentiation,. relate te slopes of te secant line an tangent line to te erivative of a function,.

More information

Solutions to Problem Sheet 4

Solutions to Problem Sheet 4 Solutions to Problem Sheet 4 ) From Theorem 4.0 we have valid for Res > 0. i) Deduce that for Res >. ζ(s) = + s s [u] ζ(s) = s u +sdu ote the integral contains [u] in place of. ii) Deduce that for 0

More information

Calculus BC Section II PART A A GRAPHING CALCULATOR IS REQUIRED FOR SOME PROBLEMS OR PARTS OF PROBLEMS

Calculus BC Section II PART A A GRAPHING CALCULATOR IS REQUIRED FOR SOME PROBLEMS OR PARTS OF PROBLEMS Calculus BC Section II PART A A GRAPHING CALCULATOR IS REQUIRED FOR SOME PROBLEMS OR PARTS OF PROBLEMS. An isosceles triangle, whose base is the interval from (0, 0) to (c, 0), has its verte on the graph

More information

Math 300 Winter 2011 Advanced Boundary Value Problems I. Bessel s Equation and Bessel Functions

Math 300 Winter 2011 Advanced Boundary Value Problems I. Bessel s Equation and Bessel Functions Math 3 Winter 2 Avance Bounary Value Problems I Bessel s Equation an Bessel Functions Department of Mathematical an Statistical Sciences University of Alberta Bessel s Equation an Bessel Functions We use

More information

3.2 Differentiability

3.2 Differentiability Section 3 Differentiability 09 3 Differentiability What you will learn about How f (a) Might Fail to Eist Differentiability Implies Local Linearity Numerical Derivatives on a Calculator Differentiability

More information

Problem set 2: Solutions Math 207B, Winter 2016

Problem set 2: Solutions Math 207B, Winter 2016 Problem set : Solutions Math 07B, Winter 016 1. A particle of mass m with position x(t) at time t has potential energy V ( x) an kinetic energy T = 1 m x t. The action of the particle over times t t 1

More information

IMPLICIT DIFFERENTIATION

IMPLICIT DIFFERENTIATION Mathematics Revision Guies Implicit Differentiation Page 1 of Author: Mark Kulowski MK HOME TUITION Mathematics Revision Guies Level: AS / A Level AQA : C4 Eecel: C4 OCR: C4 OCR MEI: C3 IMPLICIT DIFFERENTIATION

More information

0.1 The Chain Rule. db dt = db

0.1 The Chain Rule. db dt = db 0. The Chain Rule A basic illustration of the chain rules comes in thinking about runners in a race. Suppose two brothers, Mark an Brian, hol an annual race to see who is the fastest. Last year Mark won

More information

12.11 Laplace s Equation in Cylindrical and

12.11 Laplace s Equation in Cylindrical and SEC. 2. Laplace s Equation in Cylinrical an Spherical Coorinates. Potential 593 2. Laplace s Equation in Cylinrical an Spherical Coorinates. Potential One of the most important PDEs in physics an engineering

More information

cosh x sinh x So writing t = tan(x/2) we have 6.4 Integration using tan(x/2) 2t 1 + t 2 cos x = 1 t2 sin x =

cosh x sinh x So writing t = tan(x/2) we have 6.4 Integration using tan(x/2) 2t 1 + t 2 cos x = 1 t2 sin x = 6.4 Integration using tan/ We will revisit the ouble angle ientities: sin = sin/ cos/ = tan/ sec / = tan/ + tan / cos = cos / sin / tan = = tan / sec / tan/ tan /. = tan / + tan / So writing t = tan/ we

More information

(a 1 m. a n m = < a 1/N n

(a 1 m. a n m = < a 1/N n Notes on a an log a Mat 9 Fall 2004 Here is an approac to te eponential an logaritmic functions wic avois any use of integral calculus We use witout proof te eistence of certain limits an assume tat certain

More information

PDE Notes, Lecture #11

PDE Notes, Lecture #11 PDE Notes, Lecture # from Professor Jalal Shatah s Lectures Febuary 9th, 2009 Sobolev Spaces Recall that for u L loc we can efine the weak erivative Du by Du, φ := udφ φ C0 If v L loc such that Du, φ =

More information

Two formulas for the Euler ϕ-function

Two formulas for the Euler ϕ-function Two formulas for the Euler ϕ-function Robert Frieman A multiplication formula for ϕ(n) The first formula we want to prove is the following: Theorem 1. If n 1 an n 2 are relatively prime positive integers,

More information

Math Chapter 2 Essentials of Calculus by James Stewart Prepared by Jason Gaddis

Math Chapter 2 Essentials of Calculus by James Stewart Prepared by Jason Gaddis Math 231 - Chapter 2 Essentials of Calculus by James Stewart Prepare by Jason Gais Chapter 2 - Derivatives 21 - Derivatives an Rates of Change Definition A tangent to a curve is a line that intersects

More information

ALGEBRAIC AND ANALYTIC PROPERTIES OF ARITHMETIC FUNCTIONS

ALGEBRAIC AND ANALYTIC PROPERTIES OF ARITHMETIC FUNCTIONS ALGEBRAIC AND ANALYTIC PROPERTIES OF ARITHMETIC FUNCTIONS MARK SCHACHNER Abstract. When consiere as an algebraic space, the set of arithmetic functions equippe with the operations of pointwise aition an

More information

Connecting Algebra to Calculus Indefinite Integrals

Connecting Algebra to Calculus Indefinite Integrals Connecting Algebra to Calculus Inefinite Integrals Objective: Fin Antierivatives an use basic integral formulas to fin Inefinite Integrals an make connections to Algebra an Algebra. Stanars: Algebra.0,

More information

Lecture 2 Lagrangian formulation of classical mechanics Mechanics

Lecture 2 Lagrangian formulation of classical mechanics Mechanics Lecture Lagrangian formulation of classical mechanics 70.00 Mechanics Principle of stationary action MATH-GA To specify a motion uniquely in classical mechanics, it suffices to give, at some time t 0,

More information

1 Heisenberg Representation

1 Heisenberg Representation 1 Heisenberg Representation What we have been ealing with so far is calle the Schröinger representation. In this representation, operators are constants an all the time epenence is carrie by the states.

More information

Calculus of Variations

Calculus of Variations Calculus of Variations Lagrangian formalism is the main tool of theoretical classical mechanics. Calculus of Variations is a part of Mathematics which Lagrangian formalism is base on. In this section,

More information

Differentiation ( , 9.5)

Differentiation ( , 9.5) Chapter 2 Differentiation (8.1 8.3, 9.5) 2.1 Rate of Change (8.2.1 5) Recall that the equation of a straight line can be written as y = mx + c, where m is the slope or graient of the line, an c is the

More information

Dirichlet s Theorem. Calvin Lin Zhiwei. August 18, 2007

Dirichlet s Theorem. Calvin Lin Zhiwei. August 18, 2007 Dirichlet s Theorem Calvin Lin Zhiwei August 8, 2007 Abstract This paper provides a proof of Dirichlet s theorem, which states that when (m, a) =, there are infinitely many primes uch that p a (mod m).

More information

Implicit Differentiation

Implicit Differentiation Implicit Differentiation Thus far, the functions we have been concerne with have been efine explicitly. A function is efine explicitly if the output is given irectly in terms of the input. For instance,

More information

x f(x) x f(x) approaching 1 approaching 0.5 approaching 1 approaching 0.

x f(x) x f(x) approaching 1 approaching 0.5 approaching 1 approaching 0. Engineering Mathematics 2 26 February 2014 Limits of functions Consier the function 1 f() = 1. The omain of this function is R + \ {1}. The function is not efine at 1. What happens when is close to 1?

More information

Solutions to Math 41 Second Exam November 4, 2010

Solutions to Math 41 Second Exam November 4, 2010 Solutions to Math 41 Secon Exam November 4, 2010 1. (13 points) Differentiate, using the metho of your choice. (a) p(t) = ln(sec t + tan t) + log 2 (2 + t) (4 points) Using the rule for the erivative of

More information

MATH 120 Theorem List

MATH 120 Theorem List December 11, 2016 Disclaimer: Many of the theorems covere in class were not name, so most of the names on this sheet are not efinitive (they are escriptive names rather than given names). Lecture Theorems

More information

REAL ANALYSIS I HOMEWORK 5

REAL ANALYSIS I HOMEWORK 5 REAL ANALYSIS I HOMEWORK 5 CİHAN BAHRAN The questions are from Stein an Shakarchi s text, Chapter 3. 1. Suppose ϕ is an integrable function on R with R ϕ(x)x = 1. Let K δ(x) = δ ϕ(x/δ), δ > 0. (a) Prove

More information

The Ehrenfest Theorems

The Ehrenfest Theorems The Ehrenfest Theorems Robert Gilmore Classical Preliminaries A classical system with n egrees of freeom is escribe by n secon orer orinary ifferential equations on the configuration space (n inepenent

More information

QF101: Quantitative Finance September 5, Week 3: Derivatives. Facilitator: Christopher Ting AY 2017/2018. f ( x + ) f(x) f(x) = lim

QF101: Quantitative Finance September 5, Week 3: Derivatives. Facilitator: Christopher Ting AY 2017/2018. f ( x + ) f(x) f(x) = lim QF101: Quantitative Finance September 5, 2017 Week 3: Derivatives Facilitator: Christopher Ting AY 2017/2018 I recoil with ismay an horror at this lamentable plague of functions which o not have erivatives.

More information

TEST 2 (PHY 250) Figure Figure P26.21

TEST 2 (PHY 250) Figure Figure P26.21 TEST 2 (PHY 250) 1. a) Write the efinition (in a full sentence) of electric potential. b) What is a capacitor? c) Relate the electric torque, exerte on a molecule in a uniform electric fiel, with the ipole

More information

Integration Review. May 11, 2013

Integration Review. May 11, 2013 Integration Review May 11, 2013 Goals: Review the funamental theorem of calculus. Review u-substitution. Review integration by parts. Do lots of integration eamples. 1 Funamental Theorem of Calculus In

More information

Table of Common Derivatives By David Abraham

Table of Common Derivatives By David Abraham Prouct an Quotient Rules: Table of Common Derivatives By Davi Abraham [ f ( g( ] = [ f ( ] g( + f ( [ g( ] f ( = g( [ f ( ] g( g( f ( [ g( ] Trigonometric Functions: sin( = cos( cos( = sin( tan( = sec

More information

Tutorial 1 Differentiation

Tutorial 1 Differentiation Tutorial 1 Differentiation What is Calculus? Calculus 微積分 Differential calculus Differentiation 微分 y lim 0 f f The relation of very small changes of ifferent quantities f f y y Integral calculus Integration

More information

A Sketch of Menshikov s Theorem

A Sketch of Menshikov s Theorem A Sketch of Menshikov s Theorem Thomas Bao March 14, 2010 Abstract Let Λ be an infinite, locally finite oriente multi-graph with C Λ finite an strongly connecte, an let p

More information

Thus f is continuous at x 0. Matthew Straughn Math 402 Homework 6

Thus f is continuous at x 0. Matthew Straughn Math 402 Homework 6 Matthew Straughn Math 402 Homework 6 Homework 6 (p. 452) 14.3.3, 14.3.4, 14.3.5, 14.3.8 (p. 455) 14.4.3* (p. 458) 14.5.3 (p. 460) 14.6.1 (p. 472) 14.7.2* Lemma 1. If (f (n) ) converges uniformly to some

More information

MA 2232 Lecture 08 - Review of Log and Exponential Functions and Exponential Growth

MA 2232 Lecture 08 - Review of Log and Exponential Functions and Exponential Growth MA 2232 Lecture 08 - Review of Log an Exponential Functions an Exponential Growth Friay, February 2, 2018. Objectives: Review log an exponential functions, their erivative an integration formulas. Exponential

More information

DIFFERENTIAL GEOMETRY OF CURVES AND SURFACES 7. Geodesics and the Theorem of Gauss-Bonnet

DIFFERENTIAL GEOMETRY OF CURVES AND SURFACES 7. Geodesics and the Theorem of Gauss-Bonnet A P Q O B DIFFERENTIAL GEOMETRY OF CURVES AND SURFACES 7. Geoesics an the Theorem of Gauss-Bonnet 7.. Geoesics on a Surface. The goal of this section is to give an answer to the following question. Question.

More information

1 Lecture 13: The derivative as a function.

1 Lecture 13: The derivative as a function. 1 Lecture 13: Te erivative as a function. 1.1 Outline Definition of te erivative as a function. efinitions of ifferentiability. Power rule, erivative te exponential function Derivative of a sum an a multiple

More information

FURTHER BOUNDS FOR THE ESTIMATION ERROR VARIANCE OF A CONTINUOUS STREAM WITH STATIONARY VARIOGRAM

FURTHER BOUNDS FOR THE ESTIMATION ERROR VARIANCE OF A CONTINUOUS STREAM WITH STATIONARY VARIOGRAM FURTHER BOUNDS FOR THE ESTIMATION ERROR VARIANCE OF A CONTINUOUS STREAM WITH STATIONARY VARIOGRAM N. S. BARNETT, S. S. DRAGOMIR, AND I. S. GOMM Abstract. In this paper we establish an upper boun for the

More information

February 21 Math 1190 sec. 63 Spring 2017

February 21 Math 1190 sec. 63 Spring 2017 February 21 Math 1190 sec. 63 Spring 2017 Chapter 2: Derivatives Let s recall the efinitions an erivative rules we have so far: Let s assume that y = f (x) is a function with c in it s omain. The erivative

More information

Linear and quadratic approximation

Linear and quadratic approximation Linear an quaratic approximation November 11, 2013 Definition: Suppose f is a function that is ifferentiable on an interval I containing the point a. The linear approximation to f at a is the linear function

More information

JUST THE MATHS UNIT NUMBER DIFFERENTIATION 2 (Rates of change) A.J.Hobson

JUST THE MATHS UNIT NUMBER DIFFERENTIATION 2 (Rates of change) A.J.Hobson JUST THE MATHS UNIT NUMBER 10.2 DIFFERENTIATION 2 (Rates of change) by A.J.Hobson 10.2.1 Introuction 10.2.2 Average rates of change 10.2.3 Instantaneous rates of change 10.2.4 Derivatives 10.2.5 Exercises

More information

cosh x sinh x So writing t = tan(x/2) we have 6.4 Integration using tan(x/2) = 2 2t 1 + t 2 cos x = 1 t2 We will revisit the double angle identities:

cosh x sinh x So writing t = tan(x/2) we have 6.4 Integration using tan(x/2) = 2 2t 1 + t 2 cos x = 1 t2 We will revisit the double angle identities: 6.4 Integration using tanx/) We will revisit the ouble angle ientities: sin x = sinx/) cosx/) = tanx/) sec x/) = tanx/) + tan x/) cos x = cos x/) sin x/) tan x = = tan x/) sec x/) tanx/) tan x/). = tan

More information

6 General properties of an autonomous system of two first order ODE

6 General properties of an autonomous system of two first order ODE 6 General properties of an autonomous system of two first orer ODE Here we embark on stuying the autonomous system of two first orer ifferential equations of the form ẋ 1 = f 1 (, x 2 ), ẋ 2 = f 2 (, x

More information

Final Exam Study Guide and Practice Problems Solutions

Final Exam Study Guide and Practice Problems Solutions Final Exam Stuy Guie an Practice Problems Solutions Note: These problems are just some of the types of problems that might appear on the exam. However, to fully prepare for the exam, in aition to making

More information

A Course in Machine Learning

A Course in Machine Learning A Course in Machine Learning Hal Daumé III 12 EFFICIENT LEARNING So far, our focus has been on moels of learning an basic algorithms for those moels. We have not place much emphasis on how to learn quickly.

More information

Math 115 Section 018 Course Note

Math 115 Section 018 Course Note Course Note 1 General Functions Definition 1.1. A function is a rule that takes certain numbers as inputs an assigns to each a efinite output number. The set of all input numbers is calle the omain of

More information

3.7 Implicit Differentiation -- A Brief Introduction -- Student Notes

3.7 Implicit Differentiation -- A Brief Introduction -- Student Notes Fin these erivatives of these functions: y.7 Implicit Differentiation -- A Brief Introuction -- Stuent Notes tan y sin tan = sin y e = e = Write the inverses of these functions: y tan y sin How woul we

More information

Divergent Series: why = 1/12. Bryden Cais

Divergent Series: why = 1/12. Bryden Cais Divergent Series: why + + 3 + = /. Bryden Cais Divergent series are the invention of the devil, and it is shameful to base on them any demonstration whatsoever.. H. Abel. Introduction The notion of convergence

More information

A note on asymptotic formulae for one-dimensional network flow problems Carlos F. Daganzo and Karen R. Smilowitz

A note on asymptotic formulae for one-dimensional network flow problems Carlos F. Daganzo and Karen R. Smilowitz A note on asymptotic formulae for one-imensional network flow problems Carlos F. Daganzo an Karen R. Smilowitz (to appear in Annals of Operations Research) Abstract This note evelops asymptotic formulae

More information

The Chain Rule. d dx x(t) dx. dt (t)

The Chain Rule. d dx x(t) dx. dt (t) The Chain Rule The Problem You alreay routinely use the one imensional chain rule t f xt = f x xt x t t in oing computations like t sint2 = cost 2 2t In this example, fx = sinx an xt = t 2. We now generalize

More information

Lecture 6: Calculus. In Song Kim. September 7, 2011

Lecture 6: Calculus. In Song Kim. September 7, 2011 Lecture 6: Calculus In Song Kim September 7, 20 Introuction to Differential Calculus In our previous lecture we came up with several ways to analyze functions. We saw previously that the slope of a linear

More information

THE GAMMA FUNCTION AND THE ZETA FUNCTION

THE GAMMA FUNCTION AND THE ZETA FUNCTION THE GAMMA FUNCTION AND THE ZETA FUNCTION PAUL DUNCAN Abstract. The Gamma Function and the Riemann Zeta Function are two special functions that are critical to the study of many different fields of mathematics.

More information

NOTES ON EULER-BOOLE SUMMATION (1) f (l 1) (n) f (l 1) (m) + ( 1)k 1 k! B k (y) f (k) (y) dy,

NOTES ON EULER-BOOLE SUMMATION (1) f (l 1) (n) f (l 1) (m) + ( 1)k 1 k! B k (y) f (k) (y) dy, NOTES ON EULER-BOOLE SUMMATION JONATHAN M BORWEIN, NEIL J CALKIN, AND DANTE MANNA Abstract We stuy a connection between Euler-MacLaurin Summation an Boole Summation suggeste in an AMM note from 196, which

More information

CHAPTER 1 : DIFFERENTIABLE MANIFOLDS. 1.1 The definition of a differentiable manifold

CHAPTER 1 : DIFFERENTIABLE MANIFOLDS. 1.1 The definition of a differentiable manifold CHAPTER 1 : DIFFERENTIABLE MANIFOLDS 1.1 The efinition of a ifferentiable manifol Let M be a topological space. This means that we have a family Ω of open sets efine on M. These satisfy (1), M Ω (2) the

More information

Linear First-Order Equations

Linear First-Order Equations 5 Linear First-Orer Equations Linear first-orer ifferential equations make up another important class of ifferential equations that commonly arise in applications an are relatively easy to solve (in theory)

More information

MATH 566, Final Project Alexandra Tcheng,

MATH 566, Final Project Alexandra Tcheng, MATH 566, Final Project Alexanra Tcheng, 60665 The unrestricte partition function pn counts the number of ways a positive integer n can be resse as a sum of positive integers n. For example: p 5, since

More information

Quantum Mechanics in Three Dimensions

Quantum Mechanics in Three Dimensions Physics 342 Lecture 20 Quantum Mechanics in Three Dimensions Lecture 20 Physics 342 Quantum Mechanics I Monay, March 24th, 2008 We begin our spherical solutions with the simplest possible case zero potential.

More information

18.785: Analytic Number Theory, MIT, spring 2006 (K.S. Kedlaya) Dirichlet series and arithmetic functions

18.785: Analytic Number Theory, MIT, spring 2006 (K.S. Kedlaya) Dirichlet series and arithmetic functions 18.785: Analytic Number Theory, MIT, spring 2006 (K.S. Kedlaya) Dirichlet series and arithmetic functions 1 Dirichlet series The Riemann zeta function ζ is a special example of a type of series we will

More information

A. Incorrect! The letter t does not appear in the expression of the given integral

A. Incorrect! The letter t does not appear in the expression of the given integral AP Physics C - Problem Drill 1: The Funamental Theorem of Calculus Question No. 1 of 1 Instruction: (1) Rea the problem statement an answer choices carefully () Work the problems on paper as neee (3) Question

More information

The Sokhotski-Plemelj Formula

The Sokhotski-Plemelj Formula hysics 24 Winter 207 The Sokhotski-lemelj Formula. The Sokhotski-lemelj formula The Sokhotski-lemelj formula is a relation between the following generalize functions (also calle istributions), ±iǫ = iπ(),

More information

Derivatives and the Product Rule

Derivatives and the Product Rule Derivatives an the Prouct Rule James K. Peterson Department of Biological Sciences an Department of Mathematical Sciences Clemson University January 28, 2014 Outline Differentiability Simple Derivatives

More information

MATH 205 Practice Final Exam Name:

MATH 205 Practice Final Exam Name: MATH 205 Practice Final Eam Name:. (2 points) Consier the function g() = e. (a) (5 points) Ientify the zeroes, vertical asymptotes, an long-term behavior on both sies of this function. Clearly label which

More information

Robust Forward Algorithms via PAC-Bayes and Laplace Distributions. ω Q. Pr (y(ω x) < 0) = Pr A k

Robust Forward Algorithms via PAC-Bayes and Laplace Distributions. ω Q. Pr (y(ω x) < 0) = Pr A k A Proof of Lemma 2 B Proof of Lemma 3 Proof: Since the support of LL istributions is R, two such istributions are equivalent absolutely continuous with respect to each other an the ivergence is well-efine

More information

DIFFERENTIAL GEOMETRY, LECTURE 15, JULY 10

DIFFERENTIAL GEOMETRY, LECTURE 15, JULY 10 DIFFERENTIAL GEOMETRY, LECTURE 15, JULY 10 5. Levi-Civita connection From now on we are intereste in connections on the tangent bunle T X of a Riemanninam manifol (X, g). Out main result will be a construction

More information

The Explicit Form of a Function

The Explicit Form of a Function Section 3 5 Implicit Differentiation The Eplicit Form of a Function Function Notation requires that we state a function with f () on one sie of an equation an an epression in terms of on the other sie

More information

WEIGHTED SELBERG ORTHOGONALITY AND UNIQUENESS OF FACTORIZATION OF AUTOMORPHIC L-FUNCTIONS

WEIGHTED SELBERG ORTHOGONALITY AND UNIQUENESS OF FACTORIZATION OF AUTOMORPHIC L-FUNCTIONS WEIGHTED SELBERG ORTHOGONALITY AND UNIQUENESS OF FACTORIZATION OF AUTOMORPHIC L-FUNCTIONS JIANYA LIU AND YANGBO YE 3 Abstract. We prove a weighte version of Selberg s orthogonality conjecture for automorphic

More information

PRACTICE 4. CHARGING AND DISCHARGING A CAPACITOR

PRACTICE 4. CHARGING AND DISCHARGING A CAPACITOR PRACTICE 4. CHARGING AND DISCHARGING A CAPACITOR. THE PARALLEL-PLATE CAPACITOR. The Parallel plate capacitor is a evice mae up by two conuctor parallel plates with total influence between them (the surface

More information

Chapter 1 Overview: Review of Derivatives

Chapter 1 Overview: Review of Derivatives Chapter Overview: Review of Derivatives The purpose of this chapter is to review the how of ifferentiation. We will review all the erivative rules learne last year in PreCalculus. In the net several chapters,

More information

UNDERSTANDING INTEGRATION

UNDERSTANDING INTEGRATION UNDERSTANDING INTEGRATION Dear Reaer The concept of Integration, mathematically speaking, is the "Inverse" of the concept of result, the integration of, woul give us back the function f(). This, in a way,

More information

Further Differentiation and Applications

Further Differentiation and Applications Avance Higher Notes (Unit ) Prerequisites: Inverse function property; prouct, quotient an chain rules; inflexion points. Maths Applications: Concavity; ifferentiability. Real-Worl Applications: Particle

More information