Institute for Advanced Management Systems Research Department of Information Technologies Åbo Akademi University

Size: px
Start display at page:

Download "Institute for Advanced Management Systems Research Department of Information Technologies Åbo Akademi University"

Transcription

1 Institute for Advanced Management Systems Research Department of Information Technologies Åbo Akademi University The winner-take-all learning rule - Tutorial Directory Robert Fullér Table of Contents Begin Article c 2010 November 4, 2010 rfuller@abo.fi

2 Table of Contents 1. Kohonen s network 2. Semi-linear activation functions 3. Derivatives of sigmoidal activation functions

3 3 1. Kohonen s network Unsupervised classification learning is based on clustering of input data. No a priori knowledge is assumed to be available regarding an input s membership in a particular class. Rather, gradually detected characteristics and a history of training will be used to assist the network in defining classes and possible boundaries between them. Clustering is understood to be the grouping of similar objects and separating of dissimilar ones. We discuss Kohonen s network [Samuel Kaski, Teuvo Kohonen: Winner-take-all networks for physiological models of competitive learning, Neural Networks 7(1994), ] which classifies input vectors into one of the specified number of m

4 Section 1: Kohonen s network 4 categories, according to the clusters detected in the training set {x 1,..., x K }.!1 w1n wm1!m w11 wmn x1 x2 xn A winner-take-all learning network. Figure 1: A winner-take-all learning network. The learning algorithm treats treats the setthe of mset weight of mvectors weight as

5 Section 1: Kohonen s network 5 variable vectors that need to be learned. Prior to the learning, the normalization of all (randomly chosen) weight vectors is required. The weight adjustment criterion for this mode of training is the selection of w r such that, x w r = min x w i. i=1,...,m The index r denotes the winning neuron number corresponding to the vector w r, which is the closest approximation of the current input x. Using the equality

6 Section 1: Kohonen s network 6 x w i 2 =< x w i, x w i > =< x, x > 2 < w i, x > + < w i, w i > = x 2 2 < w, x > + w i 2 = x 2 2 < w i, x > +1, we can infer that searching for the minimum of m distances corresponds to finding the maximum among the m scalar products, Taking into consideration that < w r, x >= max i=1,...,m < w i, x >.

7 Section 1: Kohonen s network 7 x w2 w3 w1 The winner weight is w 2. Figure 2: The winner weight is w 2. Taking into consideration that w i = 1, i {1,..., m}, w i =1, i {1,...,m} the scalar product < w i, x > is nothing else but the projection Toc the scalar product <w i, x > is nothing Back else but Doc thedoc

8 Section 1: Kohonen s network 8 of x on the direction of w i. It is clear that the closer the vector w i to x the bigger the projection of x on w i. Note that < w r, x > is the activation value of the winning neuron which has the largest value net i, i = 1,..., m. When using the scalar product metric of similarity, the synaptic weight vectors should be modified accordingly so that they become more similar to the current input vector. With the similarity criterion being cos(w i, x), the weight vector lengths should be identical for this training approach. However, their directions should be modified. Intuitively, it is clear that a very long weight vector could lead

9 Section 1: Kohonen s network 9 to a very large output ofits neuron even if there were a large angle between the weight vector and the pattern. This explains the need for weight normalization. After the winning neuron has been identified and declared a winner, its weight must be adjusted so that the distance x w r is reduced in the current training step. Thus, x w r must be reduced, preferebly along the gradient direction in the weight space w r1,..., w rn.

10 Section 1: Kohonen s network 10 d x w 2 = = d < x w, x w > dw dw d(< x, x > 2 < w, x > + < w, w >) dw 2 d < w, x > dw = 0 2 d(w 1x w n x n ) = d < x, x > dw + d < w, w > dw ( dw = 2 [w 1 x w n x n ],..., w 1 ) T + d(w w 2 n) dw [w 1 x w n x n ] w n ( + [w w 2 w n],..., [w w 1 w n)] 2 n ) T

11 Section 1: Kohonen s network 11 = 2(x 1,..., x n ) T + 2(w 1,..., w n ) T = 2(x w). It seems reasonable to reward the weights of the winning neuron with an increment of weight in the negative gradient direction, thus in the direction x w r. We thus have w r := w r + η(x w r ) where η is a small lerning constant selected heuristically, usually between 0.1 and 0.7. The remaining weight vectors are left unaffected. Kohonen s learning algorithm can be summarized in the following three steps

12 Section 1: Kohonen s network 12 Step 1 w r := w r + η(x w r ), o r := 1, (r is the winner neuron) Step 2 (normalization) w r := w r w r Step 3 w i := w i, o i := 0, i r (losers are unaffected) It should be noted that from the identity w r := w r + η(x w r ) = (1 η)w r + ηx it follows that the updated weight vector is a convex linear combination of the old weight and the pattern vectors.

13 linear combination of the old weight and the pattern vectors. Section 1: Kohonen s network 13 w2: = (1-!)w2 +!x x w2 w3 w1 Updating the weight of the winner neuron. Figure 3: Updating the weight of the winner neuron. In the end of the training process the final weight vectors point to the centers of gravity of classes. 9

14 In the end of the training process the final weight vectors point to the centers of gravity of classes. Section 1: Kohonen s network 14 w2 w3 w1 Figure 4: The final weight vectors point to the center of gravity of the The final weight vectors point to the center of classes. gravity of the classes. The network will only be trainable if classes/clusters of patterns are linearly The network separable will onlyfrom be trainable other if classes/clusters by hyperplanes passing through of patterns origin. are linearly separable from other classes by hyperplanes passing through origin.

15 Section 1: Kohonen s network 15 To ensure separability of clusters with a priori unknown numbers of training clusters, the unsupervised training can be performed with an excessive number of neurons, which provides a certain separability safety margin. During the training, some neurons are likely not to develop their weights, and if their weights change chaotically, they will not be considered as indicative of clusters. Therefore such weights can be omitted during the recall phase, since their output does not provide any essential clustering information. The weights of remaining neurons should settle at values that are indicative of clusters.

16 16 2. Semi-linear activation functions In many practical cases instead of linear activation functions we use semi-linear ones. The next table shows the most-often used types of activation functions. Linear: f(< w, x >) = w T x Piecewise linear: 1 if < w, x > > 1 f(< w, x >) = < w, x > if < w, x > 1 1 if < w, x > < 1 Hard: f(< w, x >) = sign(w T x)

17 Unipolar sigmoidal: f(< w, x >) = 1/(1 + exp( w T x)) 17 Bipolar sigmoidal (1): Bipolar sigmoidal (2): f(< w, x >) = tanh(w T x) f(< w, x >) = exp(w T x) 1 3. Derivatives of sigmoidal activation functions The derivatives of sigmoidal activation functions are extensively used in learning algorithms.

18 Section 3: Derivatives of sigmoidal activation functions 18 If f is a bipolar sigmoidal activation function of the form f(t) = exp( t) 1. Then the following equality holds f (t) = 2 exp( t) (1 + exp( t)) 2 = 1 2 (1 f 2 (t)). If f is a unipolar sigmoidal activation function of the form 1 f(t) = 1 + exp( t). Then f satisfies the following equality f (t) = f(t)(1 f(t)).

19 f (t) = 2 exp( t) (1 + exp( t)) = (1 f 2 (t)). Section 3: Derivatives of sigmoidal activation functions 19 Bipolar activation function. Figure 5: Bipolar activation function. 13 Exercise 1. Let f be a bip olar sigmoidal activation function of the form 2 f(t) = 1 + exp( t) 1. Show that f satisfies the following differential equality

20 Section 3: Derivatives of sigmoidalf activation (t) =f(t)(1 functions f(t)). 20 Unipolar activation function. Figure 6: Unipolar activation function. Exercise 1. Let f be a bip olar sigmoidal activation function of the form 2 f(t) = f (t) = exp( t) 1. 2 (1 f 2 (t)). Solution Show 1. Bythat using f satisfies the chain the following rule for derivatives differential equal- of composed functions we get 14 f (t) = 2exp( t) [1 + exp( t)] 2.

21 Section 3: Derivatives of sigmoidal activation functions 21 From the identity we get [ ( ) 2 ] 1 exp( t) = 2exp( t) 1 + exp( t) [1 + exp( t)] 2 Which completes the proof. 2exp( t) [1 + exp( t)] 2 = 1 2 (1 f 2 (t)). Exercise 2. Let f be a unipolar sigmoidal activation function of the form 1 f(t) = 1 + exp( t).

22 Section 3: Derivatives of sigmoidal activation functions 22 Show that f satisfies the following differential equality f (t) = f(t)(1 f(t)). Solution 2. By using the chain rule for derivatives of composed functions we get f exp( t) (t) = [1 + exp( t)] 2 and the identity 1 [1 + exp( t)] = exp( t) ( 1 exp( t) ) exp( t) 1 + exp( t) verifies the statement of the exercise.

Neural networks III: The delta learning rule with semilinear activation function

Neural networks III: The delta learning rule with semilinear activation function Neural networks III: The delta learning rule with semilinear activation function The standard delta rule essentially implements gradient descent in sum-squared error for linear activation functions. We

More information

Neural Networks Lecture 7: Self Organizing Maps

Neural Networks Lecture 7: Self Organizing Maps Neural Networks Lecture 7: Self Organizing Maps H.A Talebi Farzaneh Abdollahi Department of Electrical Engineering Amirkabir University of Technology Winter 2011 H. A. Talebi, Farzaneh Abdollahi Neural

More information

Computational Intelligence Lecture 3: Simple Neural Networks for Pattern Classification

Computational Intelligence Lecture 3: Simple Neural Networks for Pattern Classification Computational Intelligence Lecture 3: Simple Neural Networks for Pattern Classification Farzaneh Abdollahi Department of Electrical Engineering Amirkabir University of Technology Fall 2011 arzaneh Abdollahi

More information

Neural Networks Lecture 2:Single Layer Classifiers

Neural Networks Lecture 2:Single Layer Classifiers Neural Networks Lecture 2:Single Layer Classifiers H.A Talebi Farzaneh Abdollahi Department of Electrical Engineering Amirkabir University of Technology Winter 2011. A. Talebi, Farzaneh Abdollahi Neural

More information

ARTIFICIAL NEURAL NETWORKS گروه مطالعاتي 17 بهار 92

ARTIFICIAL NEURAL NETWORKS گروه مطالعاتي 17 بهار 92 ARTIFICIAL NEURAL NETWORKS گروه مطالعاتي 17 بهار 92 BIOLOGICAL INSPIRATIONS Some numbers The human brain contains about 10 billion nerve cells (neurons) Each neuron is connected to the others through 10000

More information

Neural Networks Based on Competition

Neural Networks Based on Competition Neural Networks Based on Competition In some examples of pattern classification we encountered a situation in which the net was trained to classify the input signal into one of the output categories, while

More information

ADALINE for Pattern Classification

ADALINE for Pattern Classification POLYTECHNIC UNIVERSITY Department of Computer and Information Science ADALINE for Pattern Classification K. Ming Leung Abstract: A supervised learning algorithm known as the Widrow-Hoff rule, or the Delta

More information

Artificial Neural Networks. Edward Gatt

Artificial Neural Networks. Edward Gatt Artificial Neural Networks Edward Gatt What are Neural Networks? Models of the brain and nervous system Highly parallel Process information much more like the brain than a serial computer Learning Very

More information

Last updated: Oct 22, 2012 LINEAR CLASSIFIERS. J. Elder CSE 4404/5327 Introduction to Machine Learning and Pattern Recognition

Last updated: Oct 22, 2012 LINEAR CLASSIFIERS. J. Elder CSE 4404/5327 Introduction to Machine Learning and Pattern Recognition Last updated: Oct 22, 2012 LINEAR CLASSIFIERS Problems 2 Please do Problem 8.3 in the textbook. We will discuss this in class. Classification: Problem Statement 3 In regression, we are modeling the relationship

More information

Training Multi-Layer Neural Networks. - the Back-Propagation Method. (c) Marcin Sydow

Training Multi-Layer Neural Networks. - the Back-Propagation Method. (c) Marcin Sydow Plan training single neuron with continuous activation function training 1-layer of continuous neurons training multi-layer network - back-propagation method single neuron with continuous activation function

More information

CSC321 Lecture 4: Learning a Classifier

CSC321 Lecture 4: Learning a Classifier CSC321 Lecture 4: Learning a Classifier Roger Grosse Roger Grosse CSC321 Lecture 4: Learning a Classifier 1 / 31 Overview Last time: binary classification, perceptron algorithm Limitations of the perceptron

More information

Artificial Neural Networks Examination, June 2005

Artificial Neural Networks Examination, June 2005 Artificial Neural Networks Examination, June 2005 Instructions There are SIXTY questions. (The pass mark is 30 out of 60). For each question, please select a maximum of ONE of the given answers (either

More information

CSC321 Lecture 4: Learning a Classifier

CSC321 Lecture 4: Learning a Classifier CSC321 Lecture 4: Learning a Classifier Roger Grosse Roger Grosse CSC321 Lecture 4: Learning a Classifier 1 / 28 Overview Last time: binary classification, perceptron algorithm Limitations of the perceptron

More information

Artificial Neural Networks Examination, March 2004

Artificial Neural Networks Examination, March 2004 Artificial Neural Networks Examination, March 2004 Instructions There are SIXTY questions (worth up to 60 marks). The exam mark (maximum 60) will be added to the mark obtained in the laborations (maximum

More information

Single layer NN. Neuron Model

Single layer NN. Neuron Model Single layer NN We consider the simple architecture consisting of just one neuron. Generalization to a single layer with more neurons as illustrated below is easy because: M M The output units are independent

More information

NN V: The generalized delta learning rule

NN V: The generalized delta learning rule NN V: The generalized delta learning rule We now focus on generalizing the delta learning rule for feedforward layered neural networks. The architecture of the two-layer network considered below is shown

More information

Radial-Basis Function Networks

Radial-Basis Function Networks Radial-Basis Function etworks A function is radial basis () if its output depends on (is a non-increasing function of) the distance of the input from a given stored vector. s represent local receptors,

More information

Serious limitations of (single-layer) perceptrons: Cannot learn non-linearly separable tasks. Cannot approximate (learn) non-linear functions

Serious limitations of (single-layer) perceptrons: Cannot learn non-linearly separable tasks. Cannot approximate (learn) non-linear functions BACK-PROPAGATION NETWORKS Serious limitations of (single-layer) perceptrons: Cannot learn non-linearly separable tasks Cannot approximate (learn) non-linear functions Difficult (if not impossible) to design

More information

9 Classification. 9.1 Linear Classifiers

9 Classification. 9.1 Linear Classifiers 9 Classification This topic returns to prediction. Unlike linear regression where we were predicting a numeric value, in this case we are predicting a class: winner or loser, yes or no, rich or poor, positive

More information

Simple Neural Nets For Pattern Classification

Simple Neural Nets For Pattern Classification CHAPTER 2 Simple Neural Nets For Pattern Classification Neural Networks General Discussion One of the simplest tasks that neural nets can be trained to perform is pattern classification. In pattern classification

More information

Artificial Neural Networks Examination, June 2004

Artificial Neural Networks Examination, June 2004 Artificial Neural Networks Examination, June 2004 Instructions There are SIXTY questions (worth up to 60 marks). The exam mark (maximum 60) will be added to the mark obtained in the laborations (maximum

More information

Neural Networks. CSE 6363 Machine Learning Vassilis Athitsos Computer Science and Engineering Department University of Texas at Arlington

Neural Networks. CSE 6363 Machine Learning Vassilis Athitsos Computer Science and Engineering Department University of Texas at Arlington Neural Networks CSE 6363 Machine Learning Vassilis Athitsos Computer Science and Engineering Department University of Texas at Arlington 1 Perceptrons x 0 = 1 x 1 x 2 z = h w T x Output: z x D A perceptron

More information

Radial-Basis Function Networks

Radial-Basis Function Networks Radial-Basis Function etworks A function is radial () if its output depends on (is a nonincreasing function of) the distance of the input from a given stored vector. s represent local receptors, as illustrated

More information

EEE 241: Linear Systems

EEE 241: Linear Systems EEE 4: Linear Systems Summary # 3: Introduction to artificial neural networks DISTRIBUTED REPRESENTATION An ANN consists of simple processing units communicating with each other. The basic elements of

More information

Neural networks and support vector machines

Neural networks and support vector machines Neural netorks and support vector machines Perceptron Input x 1 Weights 1 x 2 x 3... x D 2 3 D Output: sgn( x + b) Can incorporate bias as component of the eight vector by alays including a feature ith

More information

Artificial Neural Networks Examination, March 2002

Artificial Neural Networks Examination, March 2002 Artificial Neural Networks Examination, March 2002 Instructions There are SIXTY questions (worth up to 60 marks). The exam mark (maximum 60) will be added to the mark obtained in the laborations (maximum

More information

Artificial Neural Network : Training

Artificial Neural Network : Training Artificial Neural Networ : Training Debasis Samanta IIT Kharagpur debasis.samanta.iitgp@gmail.com 06.04.2018 Debasis Samanta (IIT Kharagpur) Soft Computing Applications 06.04.2018 1 / 49 Learning of neural

More information

CS 4700: Foundations of Artificial Intelligence

CS 4700: Foundations of Artificial Intelligence CS 4700: Foundations of Artificial Intelligence Prof. Bart Selman selman@cs.cornell.edu Machine Learning: Neural Networks R&N 18.7 Intro & perceptron learning 1 2 Neuron: How the brain works # neurons

More information

Linear discriminant functions

Linear discriminant functions Andrea Passerini passerini@disi.unitn.it Machine Learning Discriminative learning Discriminative vs generative Generative learning assumes knowledge of the distribution governing the data Discriminative

More information

Revision: Neural Network

Revision: Neural Network Revision: Neural Network Exercise 1 Tell whether each of the following statements is true or false by checking the appropriate box. Statement True False a) A perceptron is guaranteed to perfectly learn

More information

Vorlesung Neuronale Netze - Radiale-Basisfunktionen (RBF)-Netze -

Vorlesung Neuronale Netze - Radiale-Basisfunktionen (RBF)-Netze - Vorlesung Neuronale Netze - Radiale-Basisfunktionen (RBF)-Netze - SS 004 Holger Fröhlich (abg. Vorl. von S. Kaushik¹) Lehrstuhl Rechnerarchitektur, Prof. Dr. A. Zell ¹www.cse.iitd.ernet.in/~saroj Radial

More information

Multilayer Feedforward Networks. Berlin Chen, 2002

Multilayer Feedforward Networks. Berlin Chen, 2002 Multilayer Feedforard Netors Berlin Chen, 00 Introduction The single-layer perceptron classifiers discussed previously can only deal ith linearly separable sets of patterns The multilayer netors to be

More information

Neural Networks (Part 1) Goals for the lecture

Neural Networks (Part 1) Goals for the lecture Neural Networks (Part ) Mark Craven and David Page Computer Sciences 760 Spring 208 www.biostat.wisc.edu/~craven/cs760/ Some of the slides in these lectures have been adapted/borrowed from materials developed

More information

Introduction to Neural Networks

Introduction to Neural Networks Introduction to Neural Networks What are (Artificial) Neural Networks? Models of the brain and nervous system Highly parallel Process information much more like the brain than a serial computer Learning

More information

3.4 Linear Least-Squares Filter

3.4 Linear Least-Squares Filter X(n) = [x(1), x(2),..., x(n)] T 1 3.4 Linear Least-Squares Filter Two characteristics of linear least-squares filter: 1. The filter is built around a single linear neuron. 2. The cost function is the sum

More information

Neural networks (not in book)

Neural networks (not in book) (not in book) Another approach to classification is neural networks. were developed in the 1980s as a way to model how learning occurs in the brain. There was therefore wide interest in neural networks

More information

Unit III. A Survey of Neural Network Model

Unit III. A Survey of Neural Network Model Unit III A Survey of Neural Network Model 1 Single Layer Perceptron Perceptron the first adaptive network architecture was invented by Frank Rosenblatt in 1957. It can be used for the classification of

More information

Classic K -means clustering. Classic K -means example (K = 2) Finding the optimal w k. Finding the optimal s n J =

Classic K -means clustering. Classic K -means example (K = 2) Finding the optimal w k. Finding the optimal s n J = Review of classic (GOF K -means clustering x 2 Fall 2015 x 1 Lecture 8, February 24, 2015 K-means is traditionally a clustering algorithm. Learning: Fit K prototypes w k (the rows of some matrix, W to

More information

Multilayer Perceptron

Multilayer Perceptron Outline Hong Chang Institute of Computing Technology, Chinese Academy of Sciences Machine Learning Methods (Fall 2012) Outline Outline I 1 Introduction 2 Single Perceptron 3 Boolean Function Learning 4

More information

Part 8: Neural Networks

Part 8: Neural Networks METU Informatics Institute Min720 Pattern Classification ith Bio-Medical Applications Part 8: Neural Netors - INTRODUCTION: BIOLOGICAL VS. ARTIFICIAL Biological Neural Netors A Neuron: - A nerve cell as

More information

Neural Networks, Computation Graphs. CMSC 470 Marine Carpuat

Neural Networks, Computation Graphs. CMSC 470 Marine Carpuat Neural Networks, Computation Graphs CMSC 470 Marine Carpuat Binary Classification with a Multi-layer Perceptron φ A = 1 φ site = 1 φ located = 1 φ Maizuru = 1 φ, = 2 φ in = 1 φ Kyoto = 1 φ priest = 0 φ

More information

18.6 Regression and Classification with Linear Models

18.6 Regression and Classification with Linear Models 18.6 Regression and Classification with Linear Models 352 The hypothesis space of linear functions of continuous-valued inputs has been used for hundreds of years A univariate linear function (a straight

More information

ARTIFICIAL NEURAL NETWORK PART I HANIEH BORHANAZAD

ARTIFICIAL NEURAL NETWORK PART I HANIEH BORHANAZAD ARTIFICIAL NEURAL NETWORK PART I HANIEH BORHANAZAD WHAT IS A NEURAL NETWORK? The simplest definition of a neural network, more properly referred to as an 'artificial' neural network (ANN), is provided

More information

Νεςπο-Ασαυήρ Υπολογιστική Neuro-Fuzzy Computing

Νεςπο-Ασαυήρ Υπολογιστική Neuro-Fuzzy Computing Νεςπο-Ασαυήρ Υπολογιστική Neuro-Fuzzy Computing ΗΥ418 Διδάσκων Δημήτριος Κατσαρός @ Τμ. ΗΜΜΥ Πανεπιστήμιο Θεσσαλίαρ Διάλεξη 4η 1 Perceptron s convergence 2 Proof of convergence Suppose that we have n training

More information

epochs epochs

epochs epochs Neural Network Experiments To illustrate practical techniques, I chose to use the glass dataset. This dataset has 214 examples and 6 classes. Here are 4 examples from the original dataset. The last values

More information

y(x n, w) t n 2. (1)

y(x n, w) t n 2. (1) Network training: Training a neural network involves determining the weight parameter vector w that minimizes a cost function. Given a training set comprising a set of input vector {x n }, n = 1,...N,

More information

Support Vector Machine. Industrial AI Lab.

Support Vector Machine. Industrial AI Lab. Support Vector Machine Industrial AI Lab. Classification (Linear) Autonomously figure out which category (or class) an unknown item should be categorized into Number of categories / classes Binary: 2 different

More information

Linear & nonlinear classifiers

Linear & nonlinear classifiers Linear & nonlinear classifiers Machine Learning Hamid Beigy Sharif University of Technology Fall 1394 Hamid Beigy (Sharif University of Technology) Linear & nonlinear classifiers Fall 1394 1 / 34 Table

More information

Input layer. Weight matrix [ ] Output layer

Input layer. Weight matrix [ ] Output layer MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science 6.034 Artificial Intelligence, Fall 2003 Recitation 10, November 4 th & 5 th 2003 Learning by perceptrons

More information

Machine Learning and Adaptive Systems. Lectures 3 & 4

Machine Learning and Adaptive Systems. Lectures 3 & 4 ECE656- Lectures 3 & 4, Professor Department of Electrical and Computer Engineering Colorado State University Fall 2015 What is Learning? General Definition of Learning: Any change in the behavior or performance

More information

Instruction Sheet for SOFT COMPUTING LABORATORY (EE 753/1)

Instruction Sheet for SOFT COMPUTING LABORATORY (EE 753/1) Instruction Sheet for SOFT COMPUTING LABORATORY (EE 753/1) Develop the following programs in the MATLAB environment: 1. Write a program in MATLAB for Feed Forward Neural Network with Back propagation training

More information

Multilayer Perceptrons and Backpropagation

Multilayer Perceptrons and Backpropagation Multilayer Perceptrons and Backpropagation Informatics 1 CG: Lecture 7 Chris Lucas School of Informatics University of Edinburgh January 31, 2017 (Slides adapted from Mirella Lapata s.) 1 / 33 Reading:

More information

Analysis of Interest Rate Curves Clustering Using Self-Organising Maps

Analysis of Interest Rate Curves Clustering Using Self-Organising Maps Analysis of Interest Rate Curves Clustering Using Self-Organising Maps M. Kanevski (1), V. Timonin (1), A. Pozdnoukhov(1), M. Maignan (1,2) (1) Institute of Geomatics and Analysis of Risk (IGAR), University

More information

Fixed Weight Competitive Nets: Hamming Net

Fixed Weight Competitive Nets: Hamming Net POLYTECHNIC UNIVERSITY Department of Computer and Information Science Fixed Weight Competitive Nets: Hamming Net K. Ming Leung Abstract: A fixed weight competitive net known as the Hamming net is discussed.

More information

The perceptron learning algorithm is one of the first procedures proposed for learning in neural network models and is mostly credited to Rosenblatt.

The perceptron learning algorithm is one of the first procedures proposed for learning in neural network models and is mostly credited to Rosenblatt. 1 The perceptron learning algorithm is one of the first procedures proposed for learning in neural network models and is mostly credited to Rosenblatt. The algorithm applies only to single layer models

More information

Support Vector Machine & Its Applications

Support Vector Machine & Its Applications Support Vector Machine & Its Applications A portion (1/3) of the slides are taken from Prof. Andrew Moore s SVM tutorial at http://www.cs.cmu.edu/~awm/tutorials Mingyue Tan The University of British Columbia

More information

Neural Networks and Deep Learning

Neural Networks and Deep Learning Neural Networks and Deep Learning Professor Ameet Talwalkar November 12, 2015 Professor Ameet Talwalkar Neural Networks and Deep Learning November 12, 2015 1 / 16 Outline 1 Review of last lecture AdaBoost

More information

Learning Vector Quantization

Learning Vector Quantization Learning Vector Quantization Neural Computation : Lecture 18 John A. Bullinaria, 2015 1. SOM Architecture and Algorithm 2. Vector Quantization 3. The Encoder-Decoder Model 4. Generalized Lloyd Algorithms

More information

From Binary to Multiclass Classification. CS 6961: Structured Prediction Spring 2018

From Binary to Multiclass Classification. CS 6961: Structured Prediction Spring 2018 From Binary to Multiclass Classification CS 6961: Structured Prediction Spring 2018 1 So far: Binary Classification We have seen linear models Learning algorithms Perceptron SVM Logistic Regression Prediction

More information

Machine Learning Lecture 5

Machine Learning Lecture 5 Machine Learning Lecture 5 Linear Discriminant Functions 26.10.2017 Bastian Leibe RWTH Aachen http://www.vision.rwth-aachen.de leibe@vision.rwth-aachen.de Course Outline Fundamentals Bayes Decision Theory

More information

4. Multilayer Perceptrons

4. Multilayer Perceptrons 4. Multilayer Perceptrons This is a supervised error-correction learning algorithm. 1 4.1 Introduction A multilayer feedforward network consists of an input layer, one or more hidden layers, and an output

More information

Financial Informatics XVII:

Financial Informatics XVII: Financial Informatics XVII: Unsupervised Learning Khurshid Ahmad, Professor of Computer Science, Department of Computer Science Trinity College, Dublin-, IRELAND November 9 th, 8. https://www.cs.tcd.ie/khurshid.ahmad/teaching.html

More information

CSC321 Lecture 5 Learning in a Single Neuron

CSC321 Lecture 5 Learning in a Single Neuron CSC321 Lecture 5 Learning in a Single Neuron Roger Grosse and Nitish Srivastava January 21, 2015 Roger Grosse and Nitish Srivastava CSC321 Lecture 5 Learning in a Single Neuron January 21, 2015 1 / 14

More information

Machine Learning. Lecture 6: Support Vector Machine. Feng Li.

Machine Learning. Lecture 6: Support Vector Machine. Feng Li. Machine Learning Lecture 6: Support Vector Machine Feng Li fli@sdu.edu.cn https://funglee.github.io School of Computer Science and Technology Shandong University Fall 2018 Warm Up 2 / 80 Warm Up (Contd.)

More information

Lecture 3: Multiclass Classification

Lecture 3: Multiclass Classification Lecture 3: Multiclass Classification Kai-Wei Chang CS @ University of Virginia kw@kwchang.net Some slides are adapted from Vivek Skirmar and Dan Roth CS6501 Lecture 3 1 Announcement v Please enroll in

More information

SPSS, University of Texas at Arlington. Topics in Machine Learning-EE 5359 Neural Networks

SPSS, University of Texas at Arlington. Topics in Machine Learning-EE 5359 Neural Networks Topics in Machine Learning-EE 5359 Neural Networks 1 The Perceptron Output: A perceptron is a function that maps D-dimensional vectors to real numbers. For notational convenience, we add a zero-th dimension

More information

Linear vs Non-linear classifier. CS789: Machine Learning and Neural Network. Introduction

Linear vs Non-linear classifier. CS789: Machine Learning and Neural Network. Introduction Linear vs Non-linear classifier CS789: Machine Learning and Neural Network Support Vector Machine Jakramate Bootkrajang Department of Computer Science Chiang Mai University Linear classifier is in the

More information

Lecture 9: Large Margin Classifiers. Linear Support Vector Machines

Lecture 9: Large Margin Classifiers. Linear Support Vector Machines Lecture 9: Large Margin Classifiers. Linear Support Vector Machines Perceptrons Definition Perceptron learning rule Convergence Margin & max margin classifiers (Linear) support vector machines Formulation

More information

Neural Networks DWML, /25

Neural Networks DWML, /25 DWML, 2007 /25 Neural networks: Biological and artificial Consider humans: Neuron switching time 0.00 second Number of neurons 0 0 Connections per neuron 0 4-0 5 Scene recognition time 0. sec 00 inference

More information

Engineering Part IIB: Module 4F10 Statistical Pattern Processing Lecture 5: Single Layer Perceptrons & Estimating Linear Classifiers

Engineering Part IIB: Module 4F10 Statistical Pattern Processing Lecture 5: Single Layer Perceptrons & Estimating Linear Classifiers Engineering Part IIB: Module 4F0 Statistical Pattern Processing Lecture 5: Single Layer Perceptrons & Estimating Linear Classifiers Phil Woodland: pcw@eng.cam.ac.uk Michaelmas 202 Engineering Part IIB:

More information

Security Analytics. Topic 6: Perceptron and Support Vector Machine

Security Analytics. Topic 6: Perceptron and Support Vector Machine Security Analytics Topic 6: Perceptron and Support Vector Machine Purdue University Prof. Ninghui Li Based on slides by Prof. Jenifer Neville and Chris Clifton Readings Principle of Data Mining Chapter

More information

8. Lecture Neural Networks

8. Lecture Neural Networks Soft Control (AT 3, RMA) 8. Lecture Neural Networks Learning Process Contents of the 8 th lecture 1. Introduction of Soft Control: Definition and Limitations, Basics of Intelligent" Systems 2. Knowledge

More information

Introduction to Support Vector Machines

Introduction to Support Vector Machines Introduction to Support Vector Machines Shivani Agarwal Support Vector Machines (SVMs) Algorithm for learning linear classifiers Motivated by idea of maximizing margin Efficient extension to non-linear

More information

Lecture 7 Artificial neural networks: Supervised learning

Lecture 7 Artificial neural networks: Supervised learning Lecture 7 Artificial neural networks: Supervised learning Introduction, or how the brain works The neuron as a simple computing element The perceptron Multilayer neural networks Accelerated learning in

More information

ECE 471/571 - Lecture 17. Types of NN. History. Back Propagation. Recurrent (feedback during operation) Feedforward

ECE 471/571 - Lecture 17. Types of NN. History. Back Propagation. Recurrent (feedback during operation) Feedforward ECE 47/57 - Lecture 7 Back Propagation Types of NN Recurrent (feedback during operation) n Hopfield n Kohonen n Associative memory Feedforward n No feedback during operation or testing (only during determination

More information

Neuro-Fuzzy Comp. Ch. 4 March 24, R p

Neuro-Fuzzy Comp. Ch. 4 March 24, R p 4 Feedforward Multilayer Neural Networks part I Feedforward multilayer neural networks (introduced in sec 17) with supervised error correcting learning are used to approximate (synthesise) a non-linear

More information

Comments. x > w = w > x. Clarification: this course is about getting you to be able to think as a machine learning expert

Comments. x > w = w > x. Clarification: this course is about getting you to be able to think as a machine learning expert Logistic regression Comments Mini-review and feedback These are equivalent: x > w = w > x Clarification: this course is about getting you to be able to think as a machine learning expert There has to be

More information

Artificial Neural Networks The Introduction

Artificial Neural Networks The Introduction Artificial Neural Networks The Introduction 01001110 01100101 01110101 01110010 01101111 01101110 01101111 01110110 01100001 00100000 01110011 01101011 01110101 01110000 01101001 01101110 01100001 00100000

More information

Machine Learning. Support Vector Machines. Fabio Vandin November 20, 2017

Machine Learning. Support Vector Machines. Fabio Vandin November 20, 2017 Machine Learning Support Vector Machines Fabio Vandin November 20, 2017 1 Classification and Margin Consider a classification problem with two classes: instance set X = R d label set Y = { 1, 1}. Training

More information

The Perceptron Algorithm

The Perceptron Algorithm The Perceptron Algorithm Greg Grudic Greg Grudic Machine Learning Questions? Greg Grudic Machine Learning 2 Binary Classification A binary classifier is a mapping from a set of d inputs to a single output

More information

Learning and Memory in Neural Networks

Learning and Memory in Neural Networks Learning and Memory in Neural Networks Guy Billings, Neuroinformatics Doctoral Training Centre, The School of Informatics, The University of Edinburgh, UK. Neural networks consist of computational units

More information

CS798: Selected topics in Machine Learning

CS798: Selected topics in Machine Learning CS798: Selected topics in Machine Learning Support Vector Machine Jakramate Bootkrajang Department of Computer Science Chiang Mai University Jakramate Bootkrajang CS798: Selected topics in Machine Learning

More information

Artificial Neural Networks. Part 2

Artificial Neural Networks. Part 2 Artificial Neural Netorks Part Artificial Neuron Model Folloing simplified model of real neurons is also knon as a Threshold Logic Unit x McCullouch-Pitts neuron (943) x x n n Body of neuron f out Biological

More information

Non-Bayesian Classifiers Part II: Linear Discriminants and Support Vector Machines

Non-Bayesian Classifiers Part II: Linear Discriminants and Support Vector Machines Non-Bayesian Classifiers Part II: Linear Discriminants and Support Vector Machines Selim Aksoy Department of Computer Engineering Bilkent University saksoy@cs.bilkent.edu.tr CS 551, Fall 2018 CS 551, Fall

More information

Intelligent Systems Discriminative Learning, Neural Networks

Intelligent Systems Discriminative Learning, Neural Networks Intelligent Systems Discriminative Learning, Neural Networks Carsten Rother, Dmitrij Schlesinger WS2014/2015, Outline 1. Discriminative learning 2. Neurons and linear classifiers: 1) Perceptron-Algorithm

More information

Logistic Regression Logistic

Logistic Regression Logistic Case Study 1: Estimating Click Probabilities L2 Regularization for Logistic Regression Machine Learning/Statistics for Big Data CSE599C1/STAT592, University of Washington Carlos Guestrin January 10 th,

More information

Other Topologies. Y. LeCun: Machine Learning and Pattern Recognition p. 5/3

Other Topologies. Y. LeCun: Machine Learning and Pattern Recognition p. 5/3 Y. LeCun: Machine Learning and Pattern Recognition p. 5/3 Other Topologies The back-propagation procedure is not limited to feed-forward cascades. It can be applied to networks of module with any topology,

More information

CSCI-567: Machine Learning (Spring 2019)

CSCI-567: Machine Learning (Spring 2019) CSCI-567: Machine Learning (Spring 2019) Prof. Victor Adamchik U of Southern California Mar. 19, 2019 March 19, 2019 1 / 43 Administration March 19, 2019 2 / 43 Administration TA3 is due this week March

More information

2- AUTOASSOCIATIVE NET - The feedforward autoassociative net considered in this section is a special case of the heteroassociative net.

2- AUTOASSOCIATIVE NET - The feedforward autoassociative net considered in this section is a special case of the heteroassociative net. 2- AUTOASSOCIATIVE NET - The feedforward autoassociative net considered in this section is a special case of the heteroassociative net. - For an autoassociative net, the training input and target output

More information

Principles of Artificial Intelligence Fall 2005 Handout #7 Perceptrons

Principles of Artificial Intelligence Fall 2005 Handout #7 Perceptrons Principles of Artificial Intelligence Fall 2005 Handout #7 Perceptrons Vasant Honavar Artificial Intelligence Research Laboratory Department of Computer Science 226 Atanasoff Hall Iowa State University

More information

Support Vector Machine. Industrial AI Lab. Prof. Seungchul Lee

Support Vector Machine. Industrial AI Lab. Prof. Seungchul Lee Support Vector Machine Industrial AI Lab. Prof. Seungchul Lee Classification (Linear) Autonomously figure out which category (or class) an unknown item should be categorized into Number of categories /

More information

Kernel Methods and Support Vector Machines

Kernel Methods and Support Vector Machines Kernel Methods and Support Vector Machines Oliver Schulte - CMPT 726 Bishop PRML Ch. 6 Support Vector Machines Defining Characteristics Like logistic regression, good for continuous input features, discrete

More information

Neural Networks and the Back-propagation Algorithm

Neural Networks and the Back-propagation Algorithm Neural Networks and the Back-propagation Algorithm Francisco S. Melo In these notes, we provide a brief overview of the main concepts concerning neural networks and the back-propagation algorithm. We closely

More information

Linear Discriminant Functions

Linear Discriminant Functions Linear Discriminant Functions Linear discriminant functions and decision surfaces Definition It is a function that is a linear combination of the components of g() = t + 0 () here is the eight vector and

More information

Introduction to Natural Computation. Lecture 9. Multilayer Perceptrons and Backpropagation. Peter Lewis

Introduction to Natural Computation. Lecture 9. Multilayer Perceptrons and Backpropagation. Peter Lewis Introduction to Natural Computation Lecture 9 Multilayer Perceptrons and Backpropagation Peter Lewis 1 / 25 Overview of the Lecture Why multilayer perceptrons? Some applications of multilayer perceptrons.

More information

Neural Networks Lecture 4: Radial Bases Function Networks

Neural Networks Lecture 4: Radial Bases Function Networks Neural Networks Lecture 4: Radial Bases Function Networks H.A Talebi Farzaneh Abdollahi Department of Electrical Engineering Amirkabir University of Technology Winter 2011. A. Talebi, Farzaneh Abdollahi

More information

Machine Learning 2017

Machine Learning 2017 Machine Learning 2017 Volker Roth Department of Mathematics & Computer Science University of Basel 21st March 2017 Volker Roth (University of Basel) Machine Learning 2017 21st March 2017 1 / 41 Section

More information

Classification CE-717: Machine Learning Sharif University of Technology. M. Soleymani Fall 2012

Classification CE-717: Machine Learning Sharif University of Technology. M. Soleymani Fall 2012 Classification CE-717: Machine Learning Sharif University of Technology M. Soleymani Fall 2012 Topics Discriminant functions Logistic regression Perceptron Generative models Generative vs. discriminative

More information

Learning Methods for Linear Detectors

Learning Methods for Linear Detectors Intelligent Systems: Reasoning and Recognition James L. Crowley ENSIMAG 2 / MoSIG M1 Second Semester 2011/2012 Lesson 20 27 April 2012 Contents Learning Methods for Linear Detectors Learning Linear Detectors...2

More information