OECD/NEA Source Convergence Benchmark Program: Overview and Summary of Results

Size: px
Start display at page:

Download "OECD/NEA Source Convergence Benchmark Program: Overview and Summary of Results"

Transcription

1 23 OECD/NEA Source Convergence Benchmark Program: Overview and Summary of Results Roger BLOMQUIST *, Ali NOURI 2, Malcolm Armishaw 3, Olivier JACQUET 4, Yoshitaka NAITO 5, and Yoshinori MIYOSHI 6, Toshihiro YAMAMOTO 6 Argonne National Laboratory, 9700 S. Cass Ave., Argonne, IL USA 2 OECD Nuclear Energy Agency, Le Seine Saint-Germain, 2, boulevard des Iles, F-9230 Issy-les-Moulineaux FRANCE 3 Serco Assurance, Winfrith Technology Center, Dorchester, Dorset DT28DH, UNITED KINGDOM 4 IRSN/DPEA/SEC, B.P. 6, F Fontenay Aux Roses FRANCE 5 NAIS Co., 46 MuramatsuTokai-mura, Naka-gun, Ibaraki 39-2, JAPAN 6 JAERI, 2-4 Tokai-mura, Naka-gun, Ibaraki 39-95, JAPAN This paper describes the work of the OECD Nuclear Energy Agency Expert Group on Source Convergence in Criticality Safety Analysis. A set of test problems is presented, some computational results are given, and the effects of source convergence difficulties are described. KEYWORDS: Fission source convergence, Monte Carlo. Introduction Slow source convergence has long been a challenge in the analysis of some loosely coupled neutronics problems, ranging from the Whitesides criticality of the world problem identified in 97 to some very recent burnup credit benchmark calculation comparisons under the auspices of the OECD Nuclear Energy Agency (NEA). 2 Also, in the case of Monte Carlo calculations, slow convergence and statistical fluctuations can combine to produce unreliable source distributions and fission rates and underestimate both k eff and its uncertainty. Moreover, these calculations are characterized by a strong dependence of the results on the initial source distribution, an indication that source convergence is not achieved. This problem is especially important when no symptoms of non-convergence are apparent to the analyst. References 3, 4, and 5 describe some of the work on Monte Carlo source convergence methods. Obviously, the fundamental parameter of interest in criticality safety analysis is the system eigenvalue. It will be seen that the effect on k eff of incomplete convergence and other related computational difficulties is frequently small, but our premise is that an eigenvalue produced using an unconverged source is not reliably estimated and should not be used in a safety analysis. Consequently, in this work, both eigenvalues and fission distributions are examined to assess the state of convergence. Although results reported here were from Monte Carlo calculations, additional work has been done using deterministic methods. To explore these problems for the benefit of the international criticality safety community, the NEA Working Party on Nuclear Criticality Safety established an Expert Group on Source Convergence in Criticality Safety Analysis in the fall of 999. One of the group s objectives is to improve criticality safety analyses with respect to source convergence by comparing source convergence methods and tests, and by publishing and sharing information on source convergence problems relating to criticality safety analysis. The Expert Group is comprised of about ten participating laboratories in six countries, meeting annually to review progress and plan further work. The technical work is funded through programs at the participating institutions. 2. Source Convergence Test Problems A set of four idealized test problems that represent cases previously encountered in real criticality safety analyses has been developed. Their specifications have been modified to simplify input preparation and to reduce computation times, while retaining the source convergence properties of the original system. These are more test problems than benchmark problems in that they are used as a basis for comparison of source convergence performance, rather than comparison of physics results. Although all of these problems can be deemed to experience slow convergence, the dependence of the eigenvalue on the degree of source convergence is highly variable. Each exhibits slow convergence, undersampling effects, source-related statistical anomalies, or some combination of these effects. The effects of differences in nuclear data, transport equation approximations, and reference solutions have not been thoroughly examined because they are * Corresponding author, Tel. (630) , Fax. (630) , RNBlomquist@anl.gov

2 outside of the scope of the program. Instead, the focus has been on convergence and statistical behavior. 2. Checkerboard Fuel Storage Array Test problem, submitted by N. Smith (Answers Software), is a fuel storage facility surrounded by concrete on three sides and water on the fourth in which 36 identical fresh fuel assemblies with about 5 weight percent enriched UO 2 and Zr clad are stored in an alternating (checkerboard) pattern with empty locations, in a square grid composed of 0.5cm steel plate. The fueled locations consist of a square pin lattice, and all locations are flooded with water. Figure shows a plan view. 27 cm 40 cm thick concrete, 420 cm tall 30 cm thick water, 420 cm tall Fuel position (,3), 360 cm tall, 27 cm square 0.5 cm steel wall 2.5 cm water gap Fig. Checkerboard spent fuel layout (23,3) Square pin lattice (5x5,.4cm pitch), fuel Adjacent fuel elements are almost completely decoupled, so deterministic and Monte Carlo calculations suffer from extremely slow convergence. A simplified calculation using VIM established that the probability that a neutron born in one subassembly in one column will cause a fission in a particular neighboring column is about The converged fission rate peaks in the upper left corner location (,3) due to the superior reflecting properties of concrete, so a uniform guess, is quite unrealistic, although such a guess is suggested by the problem layout. For the fission sites in (23,3) to collect in unit (,3), many generations will be required. Monte Carlo calculations may also show the effects of undersampling if insufficient numbers of histories per generation are used. A set of 36 cases was defined across which several Monte Carlo parameters were varied. The number of neutrons per generation was set at 000, 2000, or The number of generations skipped was 20, 40, or 00. The starting source distributions were either uniform, all in location (,), all in location (2,2), or all in location (23,3). Some participants performed additional calculations skipping many more generations and using many more neutrons per generation, or simplifying the geometry further to study the convergence behavior or to quantify the effects of the asymmetric reflection in the x-y plane on the converged fission source and eigenvalue. Results were submitted by nine participants from four countries. The codes used were KENO, MCNP 4B and 4C, VIM, MORET4, and MONK8A. Because the source converges very slowly, its drift is not obvious from the drift in the eigenvalue during the course of the calculation. Figure 2 shows the influence of Monte Carlo computational strategy on estimated fission distributions when a straightforward generation-by-generation power iteration is used. Since the status of the fission source convergence is manifested mainly along the x-axis, we show only the fission fractions for row 3, which includes the location with the most reactive cell. The most conservative strategy of the specified cases (case 27: uniform initial source, 5000 histories per generation, skip 00 before tallying) does identify the most reactive array element, but badly underestimates its fission rate unless more than 500 generations are skipped. As commonly happens for very slowly converging problems, the uncertainties are also underestimated. Increasing the number of histories per generation to substantially improves both the cell (,3) fission rate and its uncertainty estimate. Skipping 500 generations instead of 00, and tallying over 000 generations brings the fission distribution close to convergence. Table shows the range of eigenvalues among the cases for each code, which can be viewed as a measure of the uncertainty due to the choice of Monte Carlo computational parameters. The table also shows the differences between the largest eigenvalue and case 27, which among the specified cases, is the closest case to a reference. The last digit(s) of the estimated uncertainties are shown in parentheses. Clearly, the range of eigenvalues substantially exceeds the estimated uncertainties, so these cases are deemed to suffer from insufficient source convergence and/or inaccurate statistical treatment. Statistical tests were unable to detect the eigenvalue drift (typically 0.002) during source iterations. At least 700 skip generations are required to converge the source using conventional power iterations. Fission Fraction H/G, Skip 00, Score H/G, Skip 00, Score H/G, Skip 500, Score Cell Column # Fig. 2 Checkerboard row 3 fission fraction profiles 2.2 Depleted Fuel Pin Array Test problem 2, submitted by Y. Naito (NAIS), is a flooded infinite lattice of depleted LWR pins. Six cases are considered which describe various symmetric and non-symmetric axial composition profiles due either to axial enrichment grading or

3 Table k eff ranges (and uncertainties) over all cases, and difference between largest eigenvalue and case 27. Participant/Code Max(k eff ) Min(k eff ) Max(k eff ) Case 27 k eff ANL/VIM a (6) (6) JAERI/MCNP4B a (9) (9) JNC/KENO-Va a (8) 0.00 (4) KFKI/MCNP4C a (4) (9) LANL/MCNP4C a (2) (6) ORNL/KENO-Va a (0) (0) Answers/MONK8A b (2) (8) EMS/KENO-Va a (8) (4) IRSN/MORET4 a (2) (9) IRSN/MORET4 b (4) (9) IRSN/MORET4 c (9) (7) a conventional power iteration, b superhistory method, c stratified sampling to an idealized burnup profile. This is a simplified version of the NEA Burnup Credit (Phase III-A) Benchmark Problem 2. Figure 3 shows the axial layout of the pin cell. The lattice pitch is.33 cm, the fuel radius is 0.42 cm and the cladding radius is cm. The fuel pins end with a.75 cm-long end plug, and there are 30 cm water reflectors beyond both ends of the pins. 5cm (2) 5cm (24) 0cm (30) 2 3 End plug (.75cm) A cm length of high-burnup, low-multiplication fuel in the center decouples the two reactive ends. Because there are only two reactive regions, undersampling is not experienced at either end. Nevertheless, a Monte Carlo calculation with a tractable number of histories will be effectively unable to generate fissions in the high-burnup section. Neutron transport between the ends will therefore not speed the redistribution of fission sites to the fundamental mode. Eight participants from five countries submitted results, using MORET4, MCNP 4B and 4C, KENO, and VIM. Figure 4 shows the slow evolution of the fission source distribution in case 2-3, the most nearly symmetric of the asymmetric spent fuel cases. The axial composition key is shown below the plot. For the cases with a larger asymmetry, source convergence is significantly faster, although still somewhat slow. The axially symmetric cases appeared to produce non-symmetric fission distributions, but were in fact exhibiting underestimates of fission rate uncertainties. The nearly symmetric cases require about 600 generations for source convergence, and the eigenvalue drift during convergence is about Source distribution 4.0E E E E E-02.5E-02.0E E-03 cycle 00 cycle 300 cycle cm (40) 4 5 Fuel regions E+00 Burnup GWD/MTU Axial distance (cm) B2G B24G B30G B40G B55G B40G B30G B30G B24G Fig. 4 Typical source evolution in the depleted pin cell problem case cm (55) 20cm (40or 55) water End plug (.75 cm) Fig. 3 Depleted pin cell, (burnups in MWD/MTU), not to scale 2.3 Loosely Uranyl Nitrate Slabs Problem 3 (Figure 5), submitted by T. Yamamoto (JAERI), describes two slabs of uranyl nitrate solution decoupled by an intervening moderating slab of water similar to the problem described in reference 4. The solution contains 300 gu/l at 0 wt.% enrichment and.0 mole/l nitric acid. The twelve cases consist of varying the left solution slab thickness to 2, 5, 8, and 20 cm, and the moderating slab to 0, 20, and 30 cm. This problem was used to test a fission matrix method 4, which acts as a restoring force to unduly fluctuating fission distributions. One computational difficulty discovered is that the homogenized compositions exacerbate the ill effects of using collisions to generate fission sites, a common Monte Carlo technique. When combined with the system s slow convergence, the result is a serious underestimate in reaction rate variances. This was most clearly evident in the moderately

4 decoupled symmetric case ( ) shown in Figure 6, when the fission fraction ratios reached 40. vacuum Reflective Vacuum Uranyl nitrate H 2 O Uranyl nitrate Vacuum variable variable 20 cm Source Ratio Fig. 5 Uranyl nitrate slabs VIM(collision) VIM(absorption) MCNP Reflective Generation Fig. 6 Fission source ratio for three source treatments Selecting fission sites on absorption produced a dramatic reduction in the fission distribution variation during the calculation. Even when 2,000 histories per generation are sampled, undersampling is possible, especially in the most decoupled of the symmetric systems. Increasing the generation size to 20,000 substantially reduced the fluctuations by reducing statistical variations. Seven participants in four countries submitted results using VIM, KENO-Va, MORET4 (both conventional power iterations and superhistory powering), and MCNP-4B and -4C. Due to relatively good coupling between the end slabs, the cases with the 0 cm water slab did not suffer from large fluctuations in fission distribution. When the water slab thickness was 30 cm, however, large fluctuations resulted, with fission fraction ratios approaching 0. In the most asymmetric cases, even with a 30 cm water slab, the source required only about 20 generations to converge. The eigenvalue drift during convergence is about x5x5 Array of Metal Spheres Problem 4 (Figure 7), submitted by O. Jacquet (IRSN), is a reduced-scale (5x5x) version 2 of the Whitesides problem, an array of metal spheres in vacuum. The initial source is chosen to be far from the converged source distribution, possibly resulting in a badly underestimated k eff. Fig. 7 5x5x array of spheres (not to scale) The center sphere is much larger than the other 24, so source sites will accumulate in it while the source is converging. Unlike the checkerboard test problem where a nearly one-dimensional array of cells acts to inhibit convergence, each sphere is directly coupled to two to four others in its row and column, and to roughly half of the spheres. The specified initial source contains only 25 neutrons per generation with a single neutron at the center of each sphere and 0 concentrated at the center of the lower left corner sphere. Figure 8 shows the evolution of a few fission fractions from a set of 0 statistically independent replica calculations. The randomness introduced by undersampling is dramatic, and is easily reduced by increasing the number of histories per generation. It is clear that this problem does not suffer from slow convergence per se; once the central sphere contains a few fission sites, its fission fraction rapidly approaches convergence. In fact, this problem converges easily when a uniform initial source is used. Center Sphere Fission Fraction Fig Batch # (5 Generations/Batch) 5x5x array source evolution in the central sphere Monte Carlo results were submitted by each participant for 00 statistically independent replica calculations. This allowed estimation of the probability that the source fails to converge. In 00 replicas, between 00 and 900 skip generations were

5 required to converge the fission source. The eigenvalue drift during convergence is The MORET4 results sere generated using three different methods, i.e., stratified sampling, superhistory powering, and conventional power iterations. The two enhanced methods produce superior performance. 4. Conclusion The test problem comparison program of the expert group has stimulated a useful set of investigations into the algorithm currently used to propagate neutron sources in Monte Carlo calculations. It is common knowledge that understanding the underlying physics of criticality problems is necessary to ensure satisfactory source convergence in criticality calculations These test problems demonstrate that reliance on statistical tests applied to eigenvalue estimates cannot be relied upon to detect inadequate source convergence. Furthermore, statistical tests commonly applied to detect non-convergence are being evaluated, and new ones are being proposed and tested. Acknowledgements Work supported by the U.S. Department of Energy, Nuclear Energy Program under W-3-09-ENG-38. References ) G. E. WHITESIDES, A Difficulty in Computing the k-effective of the World, Trans. Am. Nucl. Soc., 4, 680 (97) 2) OECD/NEA Expert Group on Burn-up Credit web site at 3) R. J. BRISSENDEN and A. R. GARLICK, Biases in the Estimation of k eff and its Error by Monte Carlo Methods, Ann. Nucl. Energy, Vol. 3, No. 2, pp (986). 4) T. YAMAMOTO, T NAKAMURA, and Y. MIYOSHI, Fission Source Convergence of Monte Carlo Criticality Calculations in Weakly Coupled Fissile Arrays, J. of Nucl. Sci. and Tech., Vol. 37, No., pp. 4-45, January, ) A. MOHAMED and E. GELBARD, Stratified Source-Sampling Techniques for Monte Carlo Eigenvalue Analysis, Proc. Int. Conf. On Physics of Nuclear Science and Technology, Hauppage, N.Y., Oct. 5-8, ) The OECD/NEA Expert Group on Source Convergence in Criticality-Safety Analysis web site at html. 7) SCALE: A Modular Code System for Performing Standardized Computer Analyses for Licensing Evaluation, NUREG/CR-0200, Rev. 6 (ORNL/NUREG/CSD-2/R6), Vols. I, II, and III (December, 999). 8) J. F. Briesmeister, Ed., MCNP A General Monte Carlo N-Particle Transport Code Version 4B, LA-2625 (997). 9) R. N. Blomquist, "VIM Continuous Energy Monte Carlo Transport Code," Proc. Int. Conf. On Mathematics, Computations, Reactor Physics, and Environmental Analyses, Portland, OR, April 30 - May 4, ) A. Nouri, et al, MORET4: A Versatile and Accurate Monte Carlo Code for Criticality Calculations, IPSN Report SEC/T/00.06 (France). ) N. SMITH, The Unification of MONK Extending the Monte Carlo Horizon, ICNC 99, Versailles, France (20-24 September, 999). 2) KADOTANI, Acceleration of Fission Distribution Convergence Using Eigenvectors from Matrix K Calculations in the KENO Code, ICNC 9, II-, Oxford, September, 99.

Monte Carlo Source Convergence and the Whitesides Problem ABSTRACT

Monte Carlo Source Convergence and the Whitesides Problem ABSTRACT Monte Carlo Source Convergence and the Whitesides Problem Roger N. Blomquist Reactor Analysis Division Argonne National Laboratory * 9700 S. Cass Ave. Argonne, IL 60439 RNBlomquist@anl.gov ABSTRACT The

More information

On the Use of Shannon Entropy of the Fission Distribution for Assessing Convergence of Monte Carlo Criticality Calculations.

On the Use of Shannon Entropy of the Fission Distribution for Assessing Convergence of Monte Carlo Criticality Calculations. Organized and hosted by the Canadian Nuclear Society. Vancouver, BC, Canada. 2006 September 10-14 On the Use of Shannon Entropy of the Fission Distribution for Assessing Convergence of Monte Carlo Criticality

More information

Implementation of the CLUTCH method in the MORET code. Alexis Jinaphanh

Implementation of the CLUTCH method in the MORET code. Alexis Jinaphanh Implementation of the CLUTCH method in the MORET code Alexis Jinaphanh Institut de Radioprotection et de sûreté nucléaire (IRSN), PSN-EXP/SNC/LNC BP 17, 92262 Fontenay-aux-Roses, France alexis.jinaphanh@irsn.fr

More information

K-effective of the World and Other Concerns for Monte Carlo Eigenvalue Calculations

K-effective of the World and Other Concerns for Monte Carlo Eigenvalue Calculations Progress in NULER SIENE and TEHNOLOGY, Vol. 2, pp.738-742 (2011) RTILE K-effective of the World and Other oncerns for Monte arlo Eigenvalue alculations Forrest. ROWN Los lamos National Laboratory, Los

More information

Critical Experiment Analyses by CHAPLET-3D Code in Two- and Three-Dimensional Core Models

Critical Experiment Analyses by CHAPLET-3D Code in Two- and Three-Dimensional Core Models Journal of NUCLEAR SCIENCE and TECHNOLOGY, Vol. 42, No. 1, p. 101 108 (January 2005) TECHNICAL REPORT Critical Experiment Analyses by CHAPLET-3D Code in Two- and Three-Dimensional Core Models Shinya KOSAKA

More information

Parametric Study of Control Rod Exposure for PWR Burnup Credit Criticality Safety Analyses

Parametric Study of Control Rod Exposure for PWR Burnup Credit Criticality Safety Analyses 35281 NCSD Conference Paper #2 7/17/01 3:58:06 PM Computational Physics and Engineering Division (10) Parametric Study of Control Rod Exposure for PWR Burnup Credit Criticality Safety Analyses Charlotta

More information

(1) SCK CEN, Boeretang 200, B-2400 Mol, Belgium (2) Belgonucléaire, Av. Arianelaan 4, B-1200 Brussels, Belgium

(1) SCK CEN, Boeretang 200, B-2400 Mol, Belgium (2) Belgonucléaire, Av. Arianelaan 4, B-1200 Brussels, Belgium The REBUS Experimental Programme for Burn-up Credit Peter Baeten (1)*, Pierre D'hondt (1), Leo Sannen (1), Daniel Marloye (2), Benoit Lance (2), Alfred Renard (2), Jacques Basselier (2) (1) SCK CEN, Boeretang

More information

Analysis of High Enriched Uranyl Nitrate Solution Containing Cadmium

Analysis of High Enriched Uranyl Nitrate Solution Containing Cadmium INL/CON-05-01002 PREPRINT Analysis of High Enriched Uranyl Nitrate Solution Containing Cadmium PHYSOR-2006 Topical Meeting Soon Sam Kim September 2006 This is a preprint of a paper intended for publication

More information

CRITICAL LOADING CONFIGURATIONS OF THE IPEN/MB-01 REACTOR WITH UO 2 GD 2 O 3 BURNABLE POISON RODS

CRITICAL LOADING CONFIGURATIONS OF THE IPEN/MB-01 REACTOR WITH UO 2 GD 2 O 3 BURNABLE POISON RODS CRITICAL LOADING CONFIGURATIONS OF THE IPEN/MB-01 REACTOR WITH UO 2 GD 2 O 3 BURNABLE POISON RODS Alfredo Abe 1, Rinaldo Fuga 1, Adimir dos Santos 2, Graciete S. de Andrade e Silva 2, Leda C. C. B. Fanaro

More information

JAERI-Conf Dr Jacques ANNO', Wronique ROUYER, Nicolas LECLAIRE

JAERI-Conf Dr Jacques ANNO', Wronique ROUYER, Nicolas LECLAIRE JP0450021 Minimum Critical Values of Uranyl and Plutonium Nitrate Solutions Calculated by Various Routes of the French Criticality Codes System CRISTAL using the New Isopiestic Nitrate Density Law. Dr

More information

Available online at ScienceDirect. Energy Procedia 71 (2015 )

Available online at   ScienceDirect. Energy Procedia 71 (2015 ) Available online at www.sciencedirect.com ScienceDirect Energy Procedia 71 (2015 ) 97 105 The Fourth International Symposium on Innovative Nuclear Energy Systems, INES-4 High-Safety Fast Reactor Core Concepts

More information

WHY A CRITICALITY EXCURSION WAS POSSIBLE IN THE FUKUSHIMA SPENT FUEL POOLS

WHY A CRITICALITY EXCURSION WAS POSSIBLE IN THE FUKUSHIMA SPENT FUEL POOLS PHYSOR 014 The Role of Reactor Physics Toward a Sustainable Future The Westin Miyako, Kyoto, Japan, September 8 October 3, 014, on CD-ROM (014) WHY CRITICLITY EXCURSION WS POSSIBLE IN THE FUKUSHIM SPENT

More information

REACTOR PHYSICS ASPECTS OF PLUTONIUM RECYCLING IN PWRs

REACTOR PHYSICS ASPECTS OF PLUTONIUM RECYCLING IN PWRs REACTOR PHYSICS ASPECTS OF PLUTONIUM RECYCLING IN s Present address: J.L. Kloosterman Interfaculty Reactor Institute Delft University of Technology Mekelweg 15, NL-2629 JB Delft, the Netherlands Fax: ++31

More information

CALCULATION OF TEMPERATURE REACTIVITY COEFFICIENTS IN KRITZ-2 CRITICAL EXPERIMENTS USING WIMS ABSTRACT

CALCULATION OF TEMPERATURE REACTIVITY COEFFICIENTS IN KRITZ-2 CRITICAL EXPERIMENTS USING WIMS ABSTRACT CALCULATION OF TEMPERATURE REACTIVITY COEFFICIENTS IN KRITZ-2 CRITICAL EXPERIMENTS USING WIMS D J Powney AEA Technology, Nuclear Science, Winfrith Technology Centre, Dorchester, Dorset DT2 8DH United Kingdom

More information

PROPOSAL OF INTEGRAL CRITICAL EXPERIMENTS FOR LOW-MODERATED MOX FISSILE MEDIA

PROPOSAL OF INTEGRAL CRITICAL EXPERIMENTS FOR LOW-MODERATED MOX FISSILE MEDIA Integrating Criticality Safety in the Resurgence of Nuclear Power Knoxville, Tennessee, September 19 22, 2005, on CD-ROM, American Nuclear Society, LaGrange Park, IL (2005) PROPOSAL OF INTEGRAL CRITICAL

More information

Evaluation of RAPID for a UNF cask benchmark problem

Evaluation of RAPID for a UNF cask benchmark problem Evaluation of RAPID for a UNF cask benchmark problem Valerio Mascolino, Alireza Haghighat, and Nathan Roskoff Virginia Tech Nuclear Science and Engineering Laboratory Nuclear Engineering Program, Mechanical

More information

MONK Under-sampling bias calculations for benchmark S2 - Initial results. Presented by PAUL SMITH EGAMCT Meeting, Paris 6 th July 2016

MONK Under-sampling bias calculations for benchmark S2 - Initial results. Presented by PAUL SMITH EGAMCT Meeting, Paris 6 th July 2016 MONK Under-sampling bias calculations for benchmark S2 - Initial results Presented by PAUL SMITH EGAMCT Meeting, Paris 6 th July 2016 Acknowledgement Team work the work was performed by the following ANSWERS

More information

RANDOMLY DISPERSED PARTICLE FUEL MODEL IN THE PSG MONTE CARLO NEUTRON TRANSPORT CODE

RANDOMLY DISPERSED PARTICLE FUEL MODEL IN THE PSG MONTE CARLO NEUTRON TRANSPORT CODE Supercomputing in Nuclear Applications (M&C + SNA 2007) Monterey, California, April 15-19, 2007, on CD-ROM, American Nuclear Society, LaGrange Park, IL (2007) RANDOMLY DISPERSED PARTICLE FUEL MODEL IN

More information

COVARIANCE DATA FOR 233 U IN THE RESOLVED RESONANCE REGION FOR CRITICALITY SAFETY APPLICATIONS

COVARIANCE DATA FOR 233 U IN THE RESOLVED RESONANCE REGION FOR CRITICALITY SAFETY APPLICATIONS Mathematics and Computation, Supercomputing, Reactor Physics and Nuclear and Biological Applications Palais des Papes, Avignon, France, September 12-15, 2005, on CD-ROM, American Nuclear Society, LaGrange

More information

REVIEW OF RESULTS FOR THE OECD/NEA PHASE VII BENCHMARK: STUDY OF SPENT FUEL COMPOSITIONS FOR LONG-TERM DISPOSAL

REVIEW OF RESULTS FOR THE OECD/NEA PHASE VII BENCHMARK: STUDY OF SPENT FUEL COMPOSITIONS FOR LONG-TERM DISPOSAL REVIEW OF RESULTS FOR THE OECD/NEA PHASE VII BENCHMARK: STUDY OF SPENT FUEL COMPOSITIONS FOR LONG-TERM DISPOSAL Georgeta Radulescu John Wagner (presenter) Oak Ridge National Laboratory International Workshop

More information

Study on SiC Components to Improve the Neutron Economy in HTGR

Study on SiC Components to Improve the Neutron Economy in HTGR Study on SiC Components to Improve the Neutron Economy in HTGR Piyatida TRINURUK and Assoc.Prof.Dr. Toru OBARA Department of Nuclear Engineering Research Laboratory for Nuclear Reactors Tokyo Institute

More information

The Effect of Burnup on Reactivity for VVER-1000 with MOXGD and UGD Fuel Assemblies Using MCNPX Code

The Effect of Burnup on Reactivity for VVER-1000 with MOXGD and UGD Fuel Assemblies Using MCNPX Code Journal of Nuclear and Particle Physics 2016, 6(3): 61-71 DOI: 10.5923/j.jnpp.20160603.03 The Effect of Burnup on Reactivity for VVER-1000 with MOXGD and UGD Fuel Assemblies Using MCNPX Code Heba K. Louis

More information

JOYO MK-III Performance Test at Low Power and Its Analysis

JOYO MK-III Performance Test at Low Power and Its Analysis PHYSOR 200 -The Physics of Fuel Cycles and Advanced Nuclear Systems: Global Developments Chicago, Illinois, April 25-29, 200, on CD-ROM, American Nuclear Society, Lagrange Park, IL. (200) JOYO MK-III Performance

More information

Reactor radiation skyshine calculations with TRIPOLI-4 code for Baikal-1 experiments

Reactor radiation skyshine calculations with TRIPOLI-4 code for Baikal-1 experiments DOI: 10.15669/pnst.4.303 Progress in Nuclear Science and Technology Volume 4 (2014) pp. 303-307 ARTICLE Reactor radiation skyshine calculations with code for Baikal-1 experiments Yi-Kang Lee * Commissariat

More information

DOPPLER COEFFICIENT OF REACTIVITY BENCHMARK CALCULATIONS FOR DIFFERENT ENRICHMENTS OF UO 2

DOPPLER COEFFICIENT OF REACTIVITY BENCHMARK CALCULATIONS FOR DIFFERENT ENRICHMENTS OF UO 2 Supercomputing in Nuclear Applications (M&C + SNA 2007) Monterey, California, April 15-19, 2007, on CD-ROM, American Nuclear Society, LaGrange Park, IL (2007) DOPPLER COEFFICIENT OF REACTIVITY BENCHMARK

More information

Reactor-physical calculations using an MCAM based MCNP model of the Training Reactor of Budapest University of Technology and Economics

Reactor-physical calculations using an MCAM based MCNP model of the Training Reactor of Budapest University of Technology and Economics Nukleon 016. december IX. évf. (016) 00 Reactor-physical calculations using an MCAM based MCNP model of the Training Reactor of Budapest University of Technology and Economics Tran Thuy Duong 1, Nguyễn

More information

Safety analyses of criticality control systems for transportation packages include an assumption

Safety analyses of criticality control systems for transportation packages include an assumption Isotopic Validation for PWR Actinide-OD-!y Burnup Credit Using Yankee Rowe Data INTRODUCTION Safety analyses of criticality control systems for transportation packages include an assumption that the spent

More information

IMPACT OF THE FISSION YIELD COVARIANCE DATA IN BURN-UP CALCULATIONS

IMPACT OF THE FISSION YIELD COVARIANCE DATA IN BURN-UP CALCULATIONS IMPACT OF THE FISSION YIELD COVARIANCE DATA IN BRN-P CALCLATIONS O. Cabellos, D. Piedra, Carlos J. Diez Department of Nuclear Engineering, niversidad Politécnica de Madrid, Spain E-mail: oscar.cabellos@upm.es

More information

Prompt Alpha Calculation With Monte Carlo Code JMCT

Prompt Alpha Calculation With Monte Carlo Code JMCT Prompt Alpha Calculation With Monte Carlo Code JMCT Rui LI 1,2, Tao YE 1, Gang LI 1,2 *, Yun BAI 1, Li DENG 1,2 1 Institute of Applied Physics and Computational Mathematics(IAPCM): FengHao East Road No.2,

More information

CONTROL ROD WORTH EVALUATION OF TRIGA MARK II REACTOR

CONTROL ROD WORTH EVALUATION OF TRIGA MARK II REACTOR International Conference Nuclear Energy in Central Europe 2001 Hoteli Bernardin, Portorož, Slovenia, September 10-13, 2001 www: http://www.drustvo-js.si/port2001/ e-mail: PORT2001@ijs.si tel.:+ 386 1 588

More information

THE NEXT GENERATION WIMS LATTICE CODE : WIMS9

THE NEXT GENERATION WIMS LATTICE CODE : WIMS9 THE NEXT GENERATION WIMS LATTICE CODE : WIMS9 T D Newton and J L Hutton Serco Assurance Winfrith Technology Centre Dorchester Dorset DT2 8ZE United Kingdom tim.newton@sercoassurance.com ABSTRACT The WIMS8

More information

YALINA-Booster Conversion Project

YALINA-Booster Conversion Project 1 ADS/ET-06 YALINA-Booster Conversion Project Y. Gohar 1, I. Bolshinsky 2, G. Aliberti 1, F. Kondev 1, D. Smith 1, A. Talamo 1, Z. Zhong 1, H. Kiyavitskaya 3,V. Bournos 3, Y. Fokov 3, C. Routkovskaya 3,

More information

A Dummy Core for V&V and Education & Training Purposes at TechnicAtome: In and Ex-Core Calculations

A Dummy Core for V&V and Education & Training Purposes at TechnicAtome: In and Ex-Core Calculations A Dummy Core for V&V and Education & Training Purposes at TechnicAtome: In and Ex-Core Calculations S. Nicolas, A. Noguès, L. Manifacier, L. Chabert TechnicAtome, CS 50497, 13593 Aix-en-Provence Cedex

More information

USA HTR NEUTRONIC CHARACTERIZATION OF THE SAFARI-1 MATERIAL TESTING REACTOR

USA HTR NEUTRONIC CHARACTERIZATION OF THE SAFARI-1 MATERIAL TESTING REACTOR Proceedings of HTR2008 4 th International Topical Meeting on High Temperature Reactors September 28-October 1, 2008, Washington, D.C, USA HTR2008-58155 NEUTRONIC CHARACTERIZATION OF THE SAFARI-1 MATERIAL

More information

A PERTURBATION ANALYSIS SCHEME IN WIMS USING TRANSPORT THEORY FLUX SOLUTIONS

A PERTURBATION ANALYSIS SCHEME IN WIMS USING TRANSPORT THEORY FLUX SOLUTIONS A PERTURBATION ANALYSIS SCHEME IN WIMS USING TRANSPORT THEORY FLUX SOLUTIONS J G Hosking, T D Newton, B A Lindley, P J Smith and R P Hiles Amec Foster Wheeler Dorchester, Dorset, UK glynn.hosking@amecfw.com

More information

Annals of Nuclear Energy

Annals of Nuclear Energy Annals of Nuclear Energy 37 (2010) 1649 1658 Contents lists available at ScienceDirect Annals of Nuclear Energy journal homepage: www.elsevier.com/locate/anucene Acceleration of source convergence in Monte

More information

A Brief Sensitivity Analysis for the GIRM and Other Related Technique using a One-Group Cross Section Library for Graphite- Moderated Reactors

A Brief Sensitivity Analysis for the GIRM and Other Related Technique using a One-Group Cross Section Library for Graphite- Moderated Reactors A Brief Sensitivity Analysis for the GIRM and Other Related Technique using a One-Group Cross Section Library for Graphite- Moderated Reactors Kristin E. Chesson, William S. Charlton Nuclear Security Science

More information

Parametric Studies of the Effect of MOx Environment and Control Rods for PWR-UOx Burnup Credit Implementation

Parametric Studies of the Effect of MOx Environment and Control Rods for PWR-UOx Burnup Credit Implementation 42 Parametric Studies of the Effect of MOx Environment and Control Rods for PWR-UOx Burnup Credit Implementation Anne BARREAU 1*, Bénédicte ROQUE 1, Pierre MARIMBEAU 1, Christophe VENARD 1 Philippe BIOUX

More information

in U. S. Department of Energy Nuclear Criticality Technology and Safety Project 1995 Annual Meeting SanDiego, CA

in U. S. Department of Energy Nuclear Criticality Technology and Safety Project 1995 Annual Meeting SanDiego, CA T. LESSONS LEARNED FROM APPLYING VIM TO FAST REACTOR CRITICAL EXPERIMENTS by R. W. Schaefer, R. D. McKnight and P. J. Collins Argonne National Laboratory P. 0. Box 2528 Idaho Falls, ID 83404-2528 Summary

More information

REFLECTOR FEEDBACK COEFFICIENT: NEUTRONIC CONSIDERATIONS IN MTR-TYPE RESEARCH REACTORS ABSTRACT

REFLECTOR FEEDBACK COEFFICIENT: NEUTRONIC CONSIDERATIONS IN MTR-TYPE RESEARCH REACTORS ABSTRACT REFLECTOR FEEDBACK COEFFICIENT: NEUTRONIC CONSIDERATIONS IN MTR-TYPE RESEARCH REACTORS L. MANIFACIER, L. CHABERT, M. BOYARD TechnicAtome, CS 50497, 13593 Aix-en-Provence Cedex 3, France ABSTRACT Having

More information

CALCULATING UNCERTAINTY ON K-EFFECTIVE WITH MONK10

CALCULATING UNCERTAINTY ON K-EFFECTIVE WITH MONK10 CALCULATING UNCERTAINTY ON K-EFFECTIVE WITH MONK10 Christopher Baker, Paul N Smith, Robert Mason, Max Shepherd, Simon Richards, Richard Hiles, Ray Perry, Dave Hanlon and Geoff Dobson ANSWERS SOFTWARE SERVICE

More information

Estimation of Sample Reactivity Worth with Differential Operator Sampling Method

Estimation of Sample Reactivity Worth with Differential Operator Sampling Method Progress in NUCLEAR SCIENCE and TECHNOLOGY, Vol. 2, pp.842-850 (2011) ARTICLE Estimation o Sample Reactivity Worth with Dierential Operator Sampling Method Yasunobu NAGAYA and Takamasa MORI Japan Atomic

More information

Serpent Monte Carlo Neutron Transport Code

Serpent Monte Carlo Neutron Transport Code Serpent Monte Carlo Neutron Transport Code NEA Expert Group on Advanced Monte Carlo Techniques, Meeting September 17 2012 Jaakko Leppänen / Tuomas Viitanen VTT Technical Research Centre of Finland Outline

More information

KEYWORDS: chord length sampling, random media, radiation transport, Monte Carlo method, chord length probability distribution function.

KEYWORDS: chord length sampling, random media, radiation transport, Monte Carlo method, chord length probability distribution function. On the Chord Length Sampling in 1-D Binary Stochastic Media Chao Liang and Wei Ji * Department of Mechanical, Aerospace, and Nuclear Engineering Rensselaer Polytechnic Institute, Troy, NY 12180-3590 *

More information

HTR Spherical Super Lattice Model For Equilibrium Fuel Cycle Analysis. Gray S. Chang. September 12-15, 2005

HTR Spherical Super Lattice Model For Equilibrium Fuel Cycle Analysis. Gray S. Chang. September 12-15, 2005 INEEL/CON-05-02655, Revision 3 PREPRINT HTR Spherical Super Lattice Model For Equilibrium Fuel Cycle Analysis Gray S. Chang September 12-15, 2005 Mathematics And Computation, Supercomputing, Reactor Physics

More information

ORNL/TM-2002/118 Plutonium Production Using Natural Uranium From the Front-End of the Nuclear Fuel Cycle

ORNL/TM-2002/118 Plutonium Production Using Natural Uranium From the Front-End of the Nuclear Fuel Cycle ORNL/TM-2002/118 Plutonium Production Using Natural Uranium From the Front-End of the Nuclear Fuel Cycle C. V. Parks B. D. Murphy L. M. Petrie C. M. Hopper DOCUMENT AVAILABILITY Reports produced after

More information

The Lead-Based VENUS-F Facility: Status of the FREYA Project

The Lead-Based VENUS-F Facility: Status of the FREYA Project EPJ Web of Conferences 106, 06004 (2016) DOI: 10.1051/epjconf/201610606004 C Owned by the authors, published by EDP Sciences, 2016 The Lead-Based VENUS-F Facility: Status of the FREYA Project Anatoly Kochetkov

More information

Status of J-PARC Transmutation Experimental Facility

Status of J-PARC Transmutation Experimental Facility Status of J-PARC Transmutation Experimental Facility 10 th OECD/NEA Information Exchange Meeting for Actinide and Fission Product Partitioning and Transmutation 2008.10.9 Japan Atomic Energy Agency Toshinobu

More information

MCNP CALCULATION OF NEUTRON SHIELDING FOR RBMK-1500 SPENT NUCLEAR FUEL CONTAINERS SAFETY ASSESMENT

MCNP CALCULATION OF NEUTRON SHIELDING FOR RBMK-1500 SPENT NUCLEAR FUEL CONTAINERS SAFETY ASSESMENT MCNP CALCULATION OF NEUTRON SHIELDING FOR RBMK-15 SPENT NUCLEAR FUEL CONTAINERS SAFETY ASSESMENT R. Plukienė 1), A. Plukis 1), V. Remeikis 1) and D. Ridikas 2) 1) Institute of Physics, Savanorių 231, LT-23

More information

Vladimir Sobes 2, Luiz Leal 3, Andrej Trkov 4 and Matt Falk 5

Vladimir Sobes 2, Luiz Leal 3, Andrej Trkov 4 and Matt Falk 5 A Study of the Required Fidelity for the Representation of Angular Distributions of Elastic Scattering in the Resolved Resonance Region for Nuclear Criticality Safety Applications 1 Vladimir Sobes 2, Luiz

More information

THORIUM SELF-SUFFICIENT FUEL CYCLE OF CANDU POWER REACTOR

THORIUM SELF-SUFFICIENT FUEL CYCLE OF CANDU POWER REACTOR International Conference Nuclear Energy for New Europe 2005 Bled, Slovenia, September 5-8, 2005 ABSTRACT THORIUM SELF-SUFFICIENT FUEL CYCLE OF CANDU POWER REACTOR Boris Bergelson, Alexander Gerasimov Institute

More information

Status of MORET5 source convergence improvements and benchmark proposal for Monte Carlo depletion calculations

Status of MORET5 source convergence improvements and benchmark proposal for Monte Carlo depletion calculations Status of MORET5 source convergence improvements and benchmark proposal for Monte Carlo depletion calculations Y. Richet ; W. Haeck ; J. Miss Criticality analysis department Study, Research, Codes Development

More information

Cost-accuracy analysis of a variational nodal 2D/1D approach to pin resolved neutron transport

Cost-accuracy analysis of a variational nodal 2D/1D approach to pin resolved neutron transport Cost-accuracy analysis of a variational nodal 2D/1D approach to pin resolved neutron transport ZHANG Tengfei 1, WU Hongchun 1, CAO Liangzhi 1, LEWIS Elmer-E. 2, SMITH Micheal-A. 3, and YANG Won-sik 4 1.

More information

Fuel Element Burnup Determination in HEU - LEU Mixed TRIGA Research Reactor Core

Fuel Element Burnup Determination in HEU - LEU Mixed TRIGA Research Reactor Core Fuel Element Burnup Determination in HEU - LEU Mixed TRIGA Research Reactor Core Tomaž Žagar, Matjaž Ravnik Institute "Jožef Stefan", Jamova 39, Ljubljana, Slovenia Tomaz.Zagar@ijs.si Abstract This paper

More information

Error Estimation for ADS Nuclear Properties by using Nuclear Data Covariances

Error Estimation for ADS Nuclear Properties by using Nuclear Data Covariances Error Estimation for ADS Nuclear Properties by using Nuclear Data Covariances Kasufumi TSUJIMOTO Center for Proton Accelerator Facilities, Japan Atomic Energy Research Institute Tokai-mura, Naka-gun, Ibaraki-ken

More information

Benchmark Calculation of KRITZ-2 by DRAGON/PARCS. M. Choi, H. Choi, R. Hon

Benchmark Calculation of KRITZ-2 by DRAGON/PARCS. M. Choi, H. Choi, R. Hon Benchmark Calculation of KRITZ-2 by DRAGON/PARCS M. Choi, H. Choi, R. Hon General Atomics: 3550 General Atomics Court, San Diego, CA 92121, USA, Hangbok.Choi@ga.com Abstract - Benchmark calculations have

More information

WM2015 Conference, March 15 19, 2015, Phoenix, Arizona, USA

WM2015 Conference, March 15 19, 2015, Phoenix, Arizona, USA On the Influence of the Power Plant Operational History on the Inventory and the Uncertainties of Radionuclides Relevant for the Final Disposal of PWR Spent Fuel 15149 ABSTRACT Ivan Fast *, Holger Tietze-Jaensch

More information

Simulating the Behaviour of the Fast Reactor JOYO

Simulating the Behaviour of the Fast Reactor JOYO IYNC 2008 Interlaken, Switzerland, 20 26 September 2008 Paper No. 163 Simulating the Behaviour of the Fast Reactor JOYO ABSTRACT Pauli Juutilainen VTT Technical Research Centre of Finland, P.O. Box 1000,

More information

On the Chord Length Sampling in 1-D Binary Stochastic Media

On the Chord Length Sampling in 1-D Binary Stochastic Media On the Chord Length Sampling in 1-D Binary Stochastic Media Chao Liang and Wei Ji * Department of Mechanical, Aerospace, and Nuclear Engineering Rensselaer Polytechnic Institute, Troy, NY 12180-3590 *

More information

SCALE-4 Analysis of Pressurized Water Reactor Critical Configurations: Volume 5 & Anna Unit 1 Cycle 5

SCALE-4 Analysis of Pressurized Water Reactor Critical Configurations: Volume 5 & Anna Unit 1 Cycle 5 North ORNL/TM-12294/V5 SCALE-4 Analysis of Pressurized Water Reactor Critical Configurations: Volume 5 & Anna Unit 1 Cycle 5 S. M. Bowman T. Suto This report has been reproduced directly from the best

More information

Continuous-energy perturbation calculations using Taylor series expansion in the MORET code. Alexis Jinaphanh, Nicolas Leclaire

Continuous-energy perturbation calculations using Taylor series expansion in the MORET code. Alexis Jinaphanh, Nicolas Leclaire Continuous-energy perturbation calculations using Taylor series expansion in the MORET code Alexis Jinaphanh, Nicolas Leclaire Institut de Radioprotection et de sûreté nucléaire (IRSN), PSN-EXP/SNC/LNC

More information

Sensitivity and Uncertainty Analysis Methodologies for Fast Reactor Physics and Design at JAEA

Sensitivity and Uncertainty Analysis Methodologies for Fast Reactor Physics and Design at JAEA Sensitivity and Uncertainty Analysis Methodologies for Fast Reactor Physics and Design at JAEA Kick off meeting of NEA Expert Group on Uncertainty Analysis for Criticality Safety Assessment IRSN, France

More information

Fuel cycle studies on minor actinide transmutation in Generation IV fast reactors

Fuel cycle studies on minor actinide transmutation in Generation IV fast reactors Fuel cycle studies on minor actinide transmutation in Generation IV fast reactors M. Halász, M. Szieberth, S. Fehér Budapest University of Technology and Economics, Institute of Nuclear Techniques Contents

More information

ABSTRACT 1 INTRODUCTION

ABSTRACT 1 INTRODUCTION Participation in OECD/NEA Oskarshamn-2 (O-2) BWR Stability Benchmark for Uncertainty Analysis in Modelling Using TRITON for Transport Calculations and SAMPLER for Cross-Sections Error Propagation A. Labarile,

More information

Figure 1. Layout of fuel assemblies, taken from BEAVRS full core benchmark, to demonstrate the modeling capabilities of OpenMC.

Figure 1. Layout of fuel assemblies, taken from BEAVRS full core benchmark, to demonstrate the modeling capabilities of OpenMC. Treatment of Neutron Resonance Elastic Scattering Using Multipole Representation of Cross Sections in Monte Carlo Simulations Vivian Y. Tran Benoit Forget Abstract Predictive modeling and simulation plays

More information

2017 Water Reactor Fuel Performance Meeting September 10 (Sun) ~ 14 (Thu), 2017 Ramada Plaza Jeju Jeju Island, Korea

2017 Water Reactor Fuel Performance Meeting September 10 (Sun) ~ 14 (Thu), 2017 Ramada Plaza Jeju Jeju Island, Korea Neutronic evaluation of thorium-uranium fuel in heavy water research reactor HADI SHAMORADIFAR 1,*, BEHZAD TEIMURI 2, PARVIZ PARVARESH 1, SAEED MOHAMMADI 1 1 Department of Nuclear physics, Payame Noor

More information

SENSITIVITY ANALYSIS OF ALLEGRO MOX CORE. Bratislava, Iľkovičova 3, Bratislava, Slovakia

SENSITIVITY ANALYSIS OF ALLEGRO MOX CORE. Bratislava, Iľkovičova 3, Bratislava, Slovakia SENSITIVITY ANALYSIS OF ALLEGRO MOX CORE Jakub Lüley 1, Ján Haščík 1, Vladimír Slugeň 1, Vladimír Nečas 1 1 Institute of Nuclear and Physical Engineering, Slovak University of Technology in Bratislava,

More information

Fuel BurnupCalculations and Uncertainties

Fuel BurnupCalculations and Uncertainties Fuel BurnupCalculations and Uncertainties Outline Review lattice physics methods Different approaches to burnup predictions Linkage to fuel safety criteria Sources of uncertainty Survey of available codes

More information

3.12 Development of Burn-up Calculation System for Fusion-Fission Hybrid Reactor

3.12 Development of Burn-up Calculation System for Fusion-Fission Hybrid Reactor 3.12 Development of Burn-up Calculation System for Fusion-Fission Hybrid Reactor M. Matsunaka, S. Shido, K. Kondo, H. Miyamaru, I. Murata Division of Electrical, Electronic and Information Engineering,

More information

Invited. ENDF/B-VII data testing with ICSBEP benchmarks. 1 Introduction. 2 Discussion

Invited. ENDF/B-VII data testing with ICSBEP benchmarks. 1 Introduction. 2 Discussion International Conference on Nuclear Data for Science and Technology 2007 DOI: 10.1051/ndata:07285 Invited ENDF/B-VII data testing with ICSBEP benchmarks A.C. Kahler and R.E. MacFarlane Los Alamos National

More information

Benchmark Test of JENDL High Energy File with MCNP

Benchmark Test of JENDL High Energy File with MCNP Benchmark Test of JENDL High Energy File with MCNP Masayuki WADA, Fujio MAEKAWA, Chikara KONNO Intense Neutron Source Laboratory, Department of Materials Science Japan Atomic Energy Research Institute,

More information

Use of Monte Carlo and Deterministic Codes for Calculation of Plutonium Radial Distribution in a Fuel Cell

Use of Monte Carlo and Deterministic Codes for Calculation of Plutonium Radial Distribution in a Fuel Cell Use of Monte Carlo and Deterministic Codes for Calculation of Plutonium Radial Distribution in a Fuel Cell Dušan Ćalić, Marjan Kromar, Andrej Trkov Jožef Stefan Institute Jamova 39, SI-1000 Ljubljana,

More information

Evaluation of the French Haut Taux de Combustion (HTC) Critical Experiment Data

Evaluation of the French Haut Taux de Combustion (HTC) Critical Experiment Data NUREG/CR-6979 ORNL/TM-2007/083 Evaluation of the French Haut Taux de Combustion (HTC) Critical Experiment Data Office of Nuclear Regulatory Research NUREG/CR-6979 ORNL/TM-2007/083 Evaluation of the French

More information

Requests on Nuclear Data in the Backend Field through PIE Analysis

Requests on Nuclear Data in the Backend Field through PIE Analysis Requests on Nuclear Data in the Backend Field through PIE Analysis Yoshihira Ando 1), Yasushi Ohkawachi 2) 1) TOSHIBA Corporation Power System & Services Company Power & Industrial Systems Research & Development

More information

Neutronic Issues and Ways to Resolve Them. P.A. Fomichenko National Research Center Kurchatov Institute Yu.P. Sukharev JSC Afrikantov OKBM,

Neutronic Issues and Ways to Resolve Them. P.A. Fomichenko National Research Center Kurchatov Institute Yu.P. Sukharev JSC Afrikantov OKBM, GT-MHR Project High-Temperature Reactor Neutronic Issues and Ways to Resolve Them P.A. Fomichenko National Research Center Kurchatov Institute Yu.P. Sukharev JSC Afrikantov OKBM, GT-MHR PROJECT MISSION

More information

MONTE CALRLO MODELLING OF VOID COEFFICIENT OF REACTIVITY EXPERIMENT

MONTE CALRLO MODELLING OF VOID COEFFICIENT OF REACTIVITY EXPERIMENT MONTE CALRLO MODELLING OF VOID COEFFICIENT OF REACTIVITY EXPERIMENT R. KHAN, M. VILLA, H. BÖCK Vienna University of Technology Atominstitute Stadionallee 2, A-1020, Vienna, Austria ABSTRACT The Atominstitute

More information

PROGRESS ON RMC --- A MONTE CARLO NEUTRON TRANSPORT CODE FOR REACTOR ANALYSIS

PROGRESS ON RMC --- A MONTE CARLO NEUTRON TRANSPORT CODE FOR REACTOR ANALYSIS International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2011) Rio de Janeiro, RJ, Brazil, May 8-12, 2011, on CD-ROM, Latin American Section (LAS)

More information

Research Article Analysis of NEA-NSC PWR Uncontrolled Control Rod Withdrawal at Zero Power Benchmark Cases with NODAL3 Code

Research Article Analysis of NEA-NSC PWR Uncontrolled Control Rod Withdrawal at Zero Power Benchmark Cases with NODAL3 Code Hindawi Science and Technology of Nuclear Installations Volume 2017, Article ID 5151890, 8 pages https://doi.org/10.1155/2017/5151890 Research Article Analysis of NEA-NSC PWR Uncontrolled Control Rod Withdrawal

More information

Effect of WIMSD4 libraries on Bushehr VVER-1000 Core Fuel Burn-up

Effect of WIMSD4 libraries on Bushehr VVER-1000 Core Fuel Burn-up International Conference Nuccllearr Enerrgy fforr New Eurrope 2009 Bled / Slovenia / September 14-17 ABSTRACT Effect of WIMSD4 libraries on Bushehr VVER-1000 Core Fuel Burn-up Ali Pazirandeh and Elham

More information

MUSE-4 BENCHMARK CALCULATIONS USING MCNP-4C AND DIFFERENT NUCLEAR DATA LIBRARIES

MUSE-4 BENCHMARK CALCULATIONS USING MCNP-4C AND DIFFERENT NUCLEAR DATA LIBRARIES MUSE-4 BENCHMARK CALCULATIONS USING MCNP-4C AND DIFFERENT NUCLEAR DATA LIBRARIES Nadia Messaoudi and Edouard Mbala Malambu SCK CEN Boeretang 200, B-2400 Mol, Belgium Email: nmessaou@sckcen.be Abstract

More information

MA/LLFP Transmutation Experiment Options in the Future Monju Core

MA/LLFP Transmutation Experiment Options in the Future Monju Core MA/LLFP Transmutation Experiment Options in the Future Monju Core Akihiro KITANO 1, Hiroshi NISHI 1*, Junichi ISHIBASHI 1 and Mitsuaki YAMAOKA 2 1 International Cooperation and Technology Development Center,

More information

Dose Rates Modeling of Pressurized Water Reactor Primary Loop Components with SCALE6.0

Dose Rates Modeling of Pressurized Water Reactor Primary Loop Components with SCALE6.0 ABSTRACT Dose Rates Modeling of Pressurized Water Reactor Primary Loop Components with SCALE6.0 Mario Matijević, Dubravko Pevec, Krešimir Trontl University of Zagreb, Faculty of Electrical Engineering

More information

Calculation of Spatial Weighting Functions for Ex-Core Detectors of VVER-440 Reactors by Monte Carlo Method

Calculation of Spatial Weighting Functions for Ex-Core Detectors of VVER-440 Reactors by Monte Carlo Method International Conference Nuclear Energy for New Europe 2003 Portorož, Slovenia, September 8-11, 2003 http://www.drustvo-js.si/port2003 Calculation of Spatial Weighting Functions for Ex-Core Detectors of

More information

Comparison of the Monte Carlo Adjoint-Weighted and Differential Operator Perturbation Methods

Comparison of the Monte Carlo Adjoint-Weighted and Differential Operator Perturbation Methods Progress in NUCLEAR SCIENCE and TECHNOLOGY, Vol., pp.836-841 (011) ARTICLE Comparison of the Monte Carlo Adjoint-Weighted and Differential Operator Perturbation Methods Brian C. KIEDROWSKI * and Forrest

More information

Appendix C DESCRIPTION OF EVALUATION METHODS

Appendix C DESCRIPTION OF EVALUATION METHODS Appendix C DESCRIPTION OF EVALUATION METHODS For each source of calculation results and of critical values, a brief summary of the methods applied is given below. Relevant information could include: calculation

More information

SUB-CHAPTER D.1. SUMMARY DESCRIPTION

SUB-CHAPTER D.1. SUMMARY DESCRIPTION PAGE : 1 / 12 CHAPTER D. REACTOR AND CORE SUB-CHAPTER D.1. SUMMARY DESCRIPTION Chapter D describes the nuclear, hydraulic and thermal characteristics of the reactor, the proposals made at the present stage

More information

Probabilistic Safety Assessment and Reliability Engineering: Reactor Safety and Incomplete Information

Probabilistic Safety Assessment and Reliability Engineering: Reactor Safety and Incomplete Information Probabilistic Safety Assessment and Reliability Engineering: Reactor Safety and Incomplete Information B. BEAUZAMY SCM - Société de Calcul Mathématique, Faubourg Saint Honoré, 75008 Paris, France Tel :

More information

Analytical Validation of Uncertainty in Reactor Physics Parameters for Nuclear Transmutation Systems

Analytical Validation of Uncertainty in Reactor Physics Parameters for Nuclear Transmutation Systems Journal of Nuclear Science and Technology ISSN: 22-3131 (Print) 1881-1248 (Online) Journal homepage: http://www.tandfonline.com/loi/tnst2 Analytical Validation of Uncertainty in Reactor Physics Parameters

More information

TRANSMUTATION OF CESIUM-135 WITH FAST REACTORS

TRANSMUTATION OF CESIUM-135 WITH FAST REACTORS TRANSMUTATION OF CESIUM-3 WITH FAST REACTORS Shigeo Ohki and Naoyuki Takaki O-arai Engineering Center Japan Nuclear Cycle Development Institute (JNC) 42, Narita-cho, O-arai-machi, Higashi-Ibaraki-gun,

More information

SIMPLIFIED BENCHMARK SPECIFICATION BASED ON #2670 ISTC VVER PIE. Ludmila Markova Frantisek Havluj NRI Rez, Czech Republic ABSTRACT

SIMPLIFIED BENCHMARK SPECIFICATION BASED ON #2670 ISTC VVER PIE. Ludmila Markova Frantisek Havluj NRI Rez, Czech Republic ABSTRACT 12 th Meeting of AER Working Group E on 'Physical Problems of Spent Fuel, Radwaste and Nuclear Power Plants Decommissioning' Modra, Slovakia, April 16-18, 2007 SIMPLIFIED BENCHMARK SPECIFICATION BASED

More information

Vectorization of Continuous Energy Monte Carlo Method for Neutron Transport Calculation

Vectorization of Continuous Energy Monte Carlo Method for Neutron Transport Calculation Journal of NUCLEAR SCIENCE and TECHNOLOGY, 29[4], pp. 325~336 (April 1992). 325 Vectorization of Continuous Energy Monte Carlo Method for Neutron Transport Calculation Takamasa MORI, Masayuki NAKAGAWA

More information

English text only NUCLEAR ENERGY AGENCY NUCLEAR SCIENCE COMMITTEE

English text only NUCLEAR ENERGY AGENCY NUCLEAR SCIENCE COMMITTEE Unclassified NEA/NSC/DOC(2007)9 NEA/NSC/DOC(2007)9 Unclassified Organisation de Coopération et de Développement Economiques Organisation for Economic Co-operation and Development 14-Dec-2007 English text

More information

Strategies for Applying Isotopic Uncertainties in Burnup Credit

Strategies for Applying Isotopic Uncertainties in Burnup Credit Conference Paper Friday, May 03, 2002 Nuclear Science and Technology Division (94) Strategies for Applying Isotopic Uncertainties in Burnup Credit I. C. Gauld and C. V. Parks Oak Ridge National Laboratory,

More information

Reference Values for Nuclear Criticality Safety

Reference Values for Nuclear Criticality Safety Nuclear Science ISBN 92-64-02333-X Reference Values for Nuclear Criticality Safety Homogeneous and Uniform UO 2, UNH, PuO 2 and PuNH, Moderated and Reflected by H 2 O A demonstration study by an Expert

More information

Status of the AGS Experiment for Mercury Spallation

Status of the AGS Experiment for Mercury Spallation Status of the AGS Experiment for Mercury Spallation Target Development Y. Ikeda 1 and ASTE Collaboration Team 2 1 Japan Atomic Energy Research Institute, Tokai-mura, Naka-gun, Ibaraki-ken 319-1195 2 International

More information

Homogenization Methods for Full Core Solution of the Pn Transport Equations with 3-D Cross Sections. Andrew Hall October 16, 2015

Homogenization Methods for Full Core Solution of the Pn Transport Equations with 3-D Cross Sections. Andrew Hall October 16, 2015 Homogenization Methods for Full Core Solution of the Pn Transport Equations with 3-D Cross Sections Andrew Hall October 16, 2015 Outline Resource-Renewable Boiling Water Reactor (RBWR) Current Neutron

More information

Extension of the MCBEND Monte Carlo Code to Perform Adjoint Calculations using Point Energy Data

Extension of the MCBEND Monte Carlo Code to Perform Adjoint Calculations using Point Energy Data Extension of the MCBEND Monte Carlo Code to Perform Adjoint Calculations using Point Energy Data Malcolm Grimstone Abstract In radiation transport calculations there are many situations where the adjoint

More information

Demonstration of Full PWR Core Coupled Monte Carlo Neutron Transport and Thermal-Hydraulic Simulations Using Serpent 2/ SUBCHANFLOW

Demonstration of Full PWR Core Coupled Monte Carlo Neutron Transport and Thermal-Hydraulic Simulations Using Serpent 2/ SUBCHANFLOW Demonstration of Full PWR Core Coupled Monte Carlo Neutron Transport and Thermal-Hydraulic Simulations Using Serpent 2/ SUBCHANFLOW M. Daeubler Institute for Neutron Physics and Reactor Technology (INR)

More information

«CALCULATION OF ISOTOPE BURN-UP AND CHANGE IN EFFICIENCY OF ABSORBING ELEMENTS OF WWER-1000 CONTROL AND PROTECTION SYSTEM DURING BURN-UP».

«CALCULATION OF ISOTOPE BURN-UP AND CHANGE IN EFFICIENCY OF ABSORBING ELEMENTS OF WWER-1000 CONTROL AND PROTECTION SYSTEM DURING BURN-UP». «CALCULATION OF ISOTOPE BURN-UP AND CHANGE IN EFFICIENCY OF ABSORBING ELEMENTS OF WWER-1000 CONTROL AND PROTECTION SYSTEM DURING BURN-UP». O.A. Timofeeva, K.U. Kurakin FSUE EDO «GIDROPRESS», Podolsk, Russia

More information

Working Party on Pu-MOX fuel physics and innovative fuel cycles (WPPR)

Working Party on Pu-MOX fuel physics and innovative fuel cycles (WPPR) R&D Needs in Nuclear Science 6-8th November, 2002 OECD/NEA, Paris Working Party on Pu-MOX fuel physics and innovative fuel cycles (WPPR) Hideki Takano Japan Atomic Energy Research Institute, Japan Introduction(1)

More information