WHY A CRITICALITY EXCURSION WAS POSSIBLE IN THE FUKUSHIMA SPENT FUEL POOLS

Size: px
Start display at page:

Download "WHY A CRITICALITY EXCURSION WAS POSSIBLE IN THE FUKUSHIMA SPENT FUEL POOLS"

Transcription

1 PHYSOR 014 The Role of Reactor Physics Toward a Sustainable Future The Westin Miyako, Kyoto, Japan, September 8 October 3, 014, on CD-ROM (014) WHY CRITICLITY EXCURSION WS POSSIBLE IN THE FUKUSHIM SPENT FUEL POOLS G. Caplin,. Sargeni * Institut pour la Radioprotection et la Sûreté Nucléaire (IRSN) BP Fontenay-aux-Roses - FRNCE gregory.caplin@irsn.fr antonio.sargeni@irsn.fr BSTRCT During the Fukushima event, IRSN performed some calculations to assess whether a criticality excursion was likely to occur in case of a loss of coolant of the spent fuel pools (dry-out). The results of these calculations show that the k-eff of the spent fuel pool can increase when a water-air mixture is modeled within the storage (with subsequent water density decrease), compared to the k-eff value with a full water density within the pool. This k-eff increase reaches more than 5% for an optimal range of water-air mixture, which is more than usual safety margins kept to demonstrate the safety of the spent fuel pools. This initial study showed that the pitch between the fuel assemblies, the materials (steel with more or less boron) composing the storage rack and the water densities are the main parameters driving the magnitude of the k-eff increase. ll the above calculations were performed with the standard route of the CRISTL package [1] and, in order to interpret and understand the here-above results, investigations were performed in parallel using pure Monte-Carlo pointwise calculations and pure deterministic calculations so as to first confirm, then to explain the observed results using a reactivity splitting via the four factors formula. This paper presents these complementary studies showing how, when water density decreases and inter-assembly gap increases, the balance between increasing fast fissions and water absorption may justify a reactivity increase. Key Words: Fukushima, spent-fuel-pools, loss-of-coolant, reactivity, criticality 1. INTRODUCTION During the Fukushima event, IRSN performed some calculations to assess whether a criticality excursion was likely to occur in case of a loss of coolant of the spent fuel pools (dry-out). The results of these calculations show that the k-eff of the spent fuel pool can increase when a water-air mixture is modeled within the storage, compared to the k-eff value with a full water density within the pool. This k-eff increase reaches more than 5% for an optimal range of water-air mixture, which is more than usual safety margins kept to demonstrate the safety of the spent fuel pools. This effect was first demonstrated for fuels for Boiling Water Reactors (BWR) and for various designs of storage racks. In order to identify the main parameters and conditions leading to such a k-eff increase, and in order to show if this effect is specific to BWR fuels, the calculations performed during the Fukushima crisis were supplemented by a textbook case based on fuels for Pressurized Water Re- * Corresponding author

2 G. CPLIN &. SRGENI actors (PWR). It was shown that the k-eff of a spent fuel pool also increases in the case of PWR fuels. Moreover, the main parameters driving the magnitude of the k-eff increase were proved to be the pitch between the fuel assemblies, the materials (steel with more or less boron) composing the storage rack and the water densities. ll the above calculations were performed with the standard route of the CRISTL package (version 1.) [1]. This route consists in a first deterministic (Pij) calculation of the fissile material (lattice of cells modeling spent fuel rods) to get homogenized multi-group cross-sections (performed by the POLLO code), followed by a 3D Monte-Carlo k-eff calculation (performed by the MORET 4 code) of the spent fuel pool including several assemblies made of the above homogenized lattice of spent fuel rods. In order to interpret and understand the here-above results, investigations are performed in parallel using pure Monte-Carlo pointwise calculations and pure deterministic calculations in order to first confirm, then to explain the observed results using a reactivity splitting via the four factors formula. This paper presents these complementary studies.. DESCRIPTION OF THE STUDIED CSE The textbook case used for the study of the decrease of the water density in a spent fuel pool is based on an infinite array of undamaged 17x17 fuel assemblies in water, Uranium OXyde (UOX) fuels for PWR, initial enrichment in 35 U is 3.7 %. Preliminary studies showed that the studied behavior does not depend at first order on the fuel design. For this array of fuels: - the distance between the assemblies is made varying from 1 so-called Water Gap (the nominal distance between assemblies in a PWR reactor core, i.e cm) to 00 Water Gaps (i.e cm), - the water density (within the assemblies and between them) is made varying (homogeneously) to simulate the water-air mixture in case of a heating leading to an uncover of the fuel or a refilling of the pool, - there is no boron in the water (as for Fukushima s spent fuel pools and to account for a potential non borated water injection during an accident). The impacts of the fuel burn-up and of the neutron leakage (finite array) have also been studied. Only the general conclusions of these studies are presented in this paper. These very simple assumptions (infinite model, no account taken for a structural material between the assemblies, no water density variation along the assemblies, etc.) were chosen in order to: 1. see if the effect, observed in the more realistic calculations performed during the Fukushima event, is due to a particular design effect or is an intrinsic physical phenomenon for fuel pool storages,. ease the interpretation of the results. Nevertheless, more complete studies (with structural materials, presence of boron within the water, varying height of low water density, varying number of fuel assemblies, etc.), not presented in this paper, were performed to identify the main conditions driving the behavior of the storage reactivity in case of an accidental scenario. / 13 PHYSOR 014 The Role of Reactor Physics Toward a Sustainable Future Kyoto, Japan, September 8 October 3, 014

3 Why a criticality excursion was possible in the Fukushima Spent Fuel Pools 3. MONTE-CRLO CLCULTIONS Monte-Carlo calculations were performed with the MORET (version 5..1) 3D pointwise Monte-Carlo code, [3], associated with the JEFF3.1.1 nuclear library. The following picture shows the k-inf curves as a function of the inter-assembly distance (from WG 1 = cm up to WG 00 = cm) and the moderator density, going from the nominal value of 1 g/cm 3 to WG 1 WG 10 WG 30 WG 70 WG 100 WG 150 WG g/cm 3 Figure 1: K-inf behavior of a submerged fuel assemblies array when water density decreases for various distances between assemblies Figure 1 shows three types of k-inf behaviors with the moderator decreasing, which are in agreement with the results of the calculations made during and after the Fukushima event with the standard calculation route of the CRISTL package: a) a constant k-inf decrease for inter-assembly gap until, about, 3 cm (WG 0); b) an initial k-inf increase followed by a decrease for inter-assembly gap from 3 cm to about 15 cm (WG 100); c) an initial k-inf decrease followed by an increase and again a decrease for an inter-assembly gap bigger than 15 cm. The first behavior (a) is quite usual regarding fuel assemblies in a nuclear reactor core (a loss of reactivity in case of a decrease of the water density, due to the under-moderation -by design- of the fuel assemblies). Both other behaviors (b) and (c) are specific of storage in pools and need some investigations to be interpreted. PHYSOR 014 The Role of Reactor Physics Towarda Sustainable Future Kyoto, Japan, September 8 October 3, / 13

4 G. CPLIN &. SRGENI 4. PHYSICL INTERPRETTION To try to understand the behaviors different from the usual reactor core behavior, idea was to analyze the k-inf variations using the classical 4 factors formula in order to separate the different physical effects and to grasp the origin of these behaviors. The code used for this analysis is the DRGON deterministic code [4] (computation scheme: JEFF3.1 library, 81 groups SHEM [6] energy meshing, a first step using a Pij technique to compute the flux, collapsing to 6 energy groups, and finally a k-inf computation by the Method of Characteristics MOC [7]). The method used for this study has been to repeat all the Monte-Carlo computations in order a) to check that we were able to reproduce these results and b) to be able to compute the 4 factors and the variations of the 4 factors when we changed the water density and the inter-assembly distance. The 4 factors formula [5] is: k = P, F P P = = p f η ε, where: P P = total neutron production - = total neutron absorption = thermal absorption (thermal cut-off at 0.65 ev),f = thermal fuel absorption; P = thermal production, F p = = resonance escape probability; f = = thermal utilization factor P P η = = reproduction factor; ε = = fast fission factor, F P δ k δ p δ f δη δε t first order, the k-inf variation is: and, in such a way, it is possible to grasp the origin of a k-inf variation; in other words, what we want to understand are the k p f η ε physical reasons for such reactivity variations. Starting from the nominal moderator density of 1 g/cm 3, we have decreased the density by steps of 0.05 g/cm 3 and, for each step, we have analyzed the relative k-inf variation as a sum of the 4 factors relative variations. The modeled assembly has zero Burn-Up (BU) and no leakage. Some complementary studies have been executed to take into account the effects of not zero BU and leakage (see 3.5). The three types of k-inf behaviors above-mentioned are separately analyzed in the next sub-sections K-inf behavior between 0 and 3 cm of inter-assembly distance In the range from 0 to 3 cm of inter-assembly distance, k-inf acts towards the moderator decreasing density in a classical way: k-inf decreases as moderator density decreases. Figures and 3 show the k-inf, the 4 factors and their relative variations as functions of the water density in the reference case (inter-assembly distance equals to cm)., F 4 / 13 PHYSOR 014 The Role of Reactor Physics Toward a Sustainable Future Kyoto, Japan, September 8 October 3, 014

5 Why a criticality excursion was possible in the Fukushima Spent Fuel Pools Figure : Inter-assembly gap lower than 3 cm: k-inf and 4 factors Figure 3: Inter-assembly gap lower than 3 cm: k-inf and 4 factors variations s seen in the above pictures, k-inf decrease is mainly due to the p factor decrease that overwhelms the fast fissions factor increasing. This is due, of course, to the water density diminishing that, at the same time, decreases the slowing down and increases the fast neutron number. 4.. K-inf behavior between 3 and 15 cm of inter-assembly distance The behaviors of the k-inf, the 4 factors and their variations, for an inter-assembly distance between 3 and 15 cm, are shown in the Figures 4 and 5 (in the case of 50 water gaps between assemblies, i.e cm). PHYSOR 014 The Role of Reactor Physics Towarda Sustainable Future Kyoto, Japan, September 8 October 3, / 13

6 G. CPLIN &. SRGENI Figure 4: Inter-assembly gap between 3 and 15 cm: k-inf and 4 factors Figure 5: Inter-assembly gap between 3 and 15 cm: k-inf and 4 factors variations In this configuration, k-inf always grows until, about, 0.3 g/cm 3 where it starts decreasing. s seen in the previous pictures, k-inf relative variation is the sum of 3 components (analyzed in the following): 1. f : always positive and slightly increasing from 1 to 0.5 g/cm 3. p : always negative 3. ε : positive and increasing Thermal utilization factor (f) The f factor variation is, in turn, divided into its components variations (at first order): fuel thermal absorption (,F ) and total thermal absorption ( ), whose variations are shown in the Figure 6. δf δ, F δ f, F 6 / 13 PHYSOR 014 The Role of Reactor Physics Toward a Sustainable Future Kyoto, Japan, September 8 October 3, 014

7 Why a criticality excursion was possible in the Fukushima Spent Fuel Pools Figure 6: Inter-assembly gap between 3 and 15 cm: variations of f factor and its components On the above picture, the positive f variation is a sum of an always negative contribution of the fuel thermal absorption (explained by a decrease of the thermal neutron number due to the water density decrease) and of an always more negative contribution of the total thermal absorption, i.e. and F decrease but decreases faster, thus their ratio increases Resonance escape probability factor (p) The escape factor p and its two components (thermal absorption) and (total absorption) variations are represented in the Figure 7. Figure 7: Inter-assembly gap between 3 and 15 cm: variations of p factor and its components Escape factor constantly decreases with the water density decrease.what we note is that the total absorption increases quickly in the low density region and this is due to the increase of the fast fissions. PHYSOR 014 The Role of Reactor Physics Towarda Sustainable Future Kyoto, Japan, September 8 October 3, / 13

8 G. CPLIN &. SRGENI Fast fission factor ( eps, ε) The fast fission factor ε relative variation and the relative variation of P (total production) and P (thermal production) are reproduced in Figure 8. Figure 8: Inter-assembly gap between 3 and 15 cm: variations of eps factor and its components These curves highlight the big increase of fast fissions when the water density decreases. Explanation is, probably, simply due to the growth of the fast neutrons population with the moderation decrease. 4.3 K-inf behavior for more than 15 cm of inter-assembly distance The infinite assemblies array with a total water gap equivalent to 100 nominal water gaps (inter-assembly distance of 15.6 cm) has the k-inf and 4-factor curves shown in the Figure 9. Figure 9: Inter-assembly gap higher than 15 cm: k-inf and 4 factors This picture shows how the k-inf follows the f factor s curve. Both parameters have first a tendency to slightly decrease with the water density decrease and then to increase. The relative 8 / 13 PHYSOR 014 The Role of Reactor Physics Toward a Sustainable Future Kyoto, Japan, September 8 October 3, 014

9 Why a criticality excursion was possible in the Fukushima Spent Fuel Pools variations of k-inf and of the 4 factors are presented in the Figure 10.,0 1,5 1,0 p 0,5 f % 0,0 1,0-0,5 0,9 0,8 0,7 0,6 0,5 0,4 0,3 0, eta eps Kinf -1,0-1,5 g/cm3 Figure 10: Inter-assembly gap higher than 15 cm: k-inf and 4 factors variations The previous picture shows that: K-inf variation is essentially determined by f variation; t high water densities, k-inf decreases due to p and f decrease; f factor (and the k-inf) decreases until about 0.8 g/cm 3,after the tendency inverts; ε contribution is always positive and growing, but is compensated at low density by p decrease; η contribution is negligible. Only the main term f is analyzed in the following. Figures 11 and 1 illustrate this f factor and its components (fuel thermal absorption, F and total thermal absorption ) behavior with the water density decrease. Figure 11: Inter-assembly gap higher than 15 cm: f factor and its components PHYSOR 014 The Role of Reactor Physics Towarda Sustainable Future Kyoto, Japan, September 8 October 3, / 13

10 G. CPLIN &. SRGENI Figure 1: Inter-assembly gap higher than 15 cm: variations of f factor and its components f factor variation is explained (see above pictures) as the sum of the negative variation of the fuel total thermal absorption (thermal neutron number decreases with the decreasing of the water density) and of the total thermal absorption, firstly negative and after positive. To better understand this last point, given its importance on f variation, the total thermal absorption variation has been split up into a sum of the absorption variations of fuel (, ), clad ( F, ), in-assembly C water ( ) and inter-assembly water (, SB _ W ):, INTER _ W δ δ, F δ, C δ, SB _ W δ, INTER _ W = These variations are presented in the Figure 13. Figure 13: Inter-assembly gap higher than 15 cm: variations of total thermal absorption components The above picture shows how the total thermal absorption is essentially driven by the inter-assembly water absorption. Moreover, two zones can be distinguished: a first one, where the inter-assembly thermal absorption increases with the water density decreasing and a second one (stating around 0.7 g/cm 3 ), where the thermal reaction rate constantly decreases. In turn, the in- 10 / 13 PHYSOR 014 The Role of Reactor Physics Toward a Sustainable Future Kyoto, Japan, September 8 October 3, 014

11 Why a criticality excursion was possible in the Fukushima Spent Fuel Pools ter-assembly water thermal absorption rate ( ) can be decomposed as the product of a, INTER _ W mean macroscopic cross section (Σ ) and an integrated thermal flux (ϕ ): Σ ϕ, INTER _ W = Σ ϕ = ϕ = Σ ϕ, whose relative first-order variation is: ϕ δ, INTER _ W, INTER _ W δσ Σ δϕ +, that are represented in Figure 14. ϕ Figure 14: Inter-assembly gap higher than 15 cm: variations of inter-assembly water thermal components The mean cross-section (see above pictures) always decreases but the thermal flux begins to increase and then, afterwards, decreases. The sum of these two terms produces the thermal absorption variation trend. The thermal flux (Figure 15) increases due to the increase of the fast flux (in turn, due to the fast fissions and to the decreasing of the water moderation) and, globally, the spectrum becomes harder. Figure 15: Inter-assembly gap higher than 15 cm: Inter-assembly water thermal and fast flux PHYSOR 014 The Role of Reactor Physics Towarda Sustainable Future Kyoto, Japan, September 8 October 3, / 13

12 G. CPLIN &. SRGENI The main conclusions of this analysis are: total thermal assembly absorption increases between 1 and 0.7 g/cm 3 and, afterwards, decreases,, F as a consequence, f = increases below 0.7 g/cm 3 because fuel thermal absorption remains, practically, constant, total thermal absorption is driven, essentially, by the inter-assembly water absorption which, in turn, follows the thermal flux variation, the thermal flux increase is due to the fast flux increase: as long as the water moderation is sufficient, the thermal flux increase brings about an increase of thermal absorption hence a reactivity decrease. When the water density begins to become really small, the thermal flux decrease induces a decrease of the thermal absorption, hence the k-inf growth. 4.4 ssembly with Not Zero Burn-Up and Leakage The method used to take into account depletion effects was to deplete at nominal condition (i.e., reference water gap, critical buckling) up to 18 GWd/t and 36 GWd/t and, starting with the isotopic concentrations corresponding to these burn-up, water density and inter-assembly distance have been modified exactly as shown in the previous paragraph. From a qualitative point of view, the curves obtained are exactly the same. The only BU effect is to shift the k-inf towards smaller values, but the curves shapes are preserved. In order to take into account leakage effects, an approximate Buckling value of 10-4 cm - (actual buckling varies with the water density) has been computed using MORET5, by modeling a realistic 3D storage pool. Leakage does not perturb the k-inf curves (at least for B values of this magnitude order) and shapes are still preserved. Moreover, k-eff behaves like the k-inf. 5. CONCLUSIONS In this paper we have tried to highlight the physical reasons of the behavior of a spent fuel pool k-inf in case of a water density lower than 1 g/cm 3. s shown by a sequence of MORET5 (pointwise Monte-Carlo) computations, k-inf may increase with the water density decrease and its behavior is also depending on the inter-assembly distance. To explain where this behavior comes from, all the computations have been repeated with the deterministic transport code DRGON: k-inf relative variations with water density, for a number of inter-assembly gaps, have been split using the 4-factors formula and results demonstrate how such behaviors are possible if the adapted conditions are brought together. Indeed, for a given inter-assembly distance, k-inf may increase or decrease because: fast fissions increase when water density decrease, hence reactivity increases; resonances escape probability always decreases with the water density decrease, hence reactivity decreases; water thermal absorption depends, at the same time, of the water density and of the inter-assembly gap. Water thermal absorption follows the thermal flux that can increase or decrease if there is enough water to moderate the fast neutrons produced by the fast fissions; hence reactivity can increase or decrease if the water thermal absorption decreases or increases. 1 / 13 PHYSOR 014 The Role of Reactor Physics Toward a Sustainable Future Kyoto, Japan, September 8 October 3, 014

13 Why a criticality excursion was possible in the Fukushima Spent Fuel Pools When the k-inf increases, the maximal value is obtained for a water density range between 0.1 and 0.3 g/cm 3 (i.e. a water-air mixture with a void fraction between 70% and 90%). Conditions of such low water densities within a spent fuel pool may be reached in case of: a long term loss of coolant (water heating due the residual spent fuel power); in case of refilling operations following a dry-out of the pool (injection of water by spraying devices). IRSN is studying these two scenarios as the increase of the k-eff may reach criticality. In particular, the designs of spent fuel pools that may become critical with realistic conditions are under investigation. Even if the main issue regarding loss of coolant of a spent fuel pool is the release of radioactive materials, the occurrence of a criticality accident would induce consequences (more heating power due to induced fissions, more radiations, etc.) that should be accounted for the prediction of the evolution of such a situation and to define adequate emergency actions. REFERENCES [1] J.-M. Gomit et al., CRISTL V1: Criticality package for burn up credit calculations, Proc. Int. Conf. International Conference on Nuclear Criticality Safety(ICNC003), Tokai-Mura, Japan, Oct. 0-4 (003). [] G. Caplin et al., Criticality accident in case of a spent fuel pool dry-out, EUROSFE FORUM 011, Paris, France, Nov. 7-8 (011), [3] L. Heulers et al., MORET 5 Overview of the new capabilities implemented in the multigroup/continuous-energy version, Proc. Int. Conf. International Conference on Nuclear Criticality Safety(ICNC011), Edinburgh, Scotland, Sep. 19- (011). [4] G. Marleau,. Hébert, R. Roy, New Computational Methods Used in the Lattice Code DRGON, Proc. Int. Topical. Mtg. on dvances in Reactor Physics, merican Nuclear Society, Charleston, US, March 8-11, 199 [5] P. Reuss, Neutron Physics, EDP Sciences, Les Ulis, France, (008) [6] N. Hafaiedh,. Santamarina, Determination of the Optimized SHEM Mesh for Neutron Transport Calculations, Proc. Topical. Mtg. in Mathematics and Computations, Reactor Physics and Nuclear and Biological pplications, September 9-15, vignon, France, 005 [7] T. Reysset, Development and Qualification of dvanced Computational Schemes for PWR and Creation of Specific Interfaces towards GRS Full-Core Tools, EcolePolytechnique de Montréal, Canada, URL PHYSOR 014 The Role of Reactor Physics Towarda Sustainable Future Kyoto, Japan, September 8 October 3, / 13

REACTOR PHYSICS ASPECTS OF PLUTONIUM RECYCLING IN PWRs

REACTOR PHYSICS ASPECTS OF PLUTONIUM RECYCLING IN PWRs REACTOR PHYSICS ASPECTS OF PLUTONIUM RECYCLING IN s Present address: J.L. Kloosterman Interfaculty Reactor Institute Delft University of Technology Mekelweg 15, NL-2629 JB Delft, the Netherlands Fax: ++31

More information

Parametric Studies of the Effect of MOx Environment and Control Rods for PWR-UOx Burnup Credit Implementation

Parametric Studies of the Effect of MOx Environment and Control Rods for PWR-UOx Burnup Credit Implementation 42 Parametric Studies of the Effect of MOx Environment and Control Rods for PWR-UOx Burnup Credit Implementation Anne BARREAU 1*, Bénédicte ROQUE 1, Pierre MARIMBEAU 1, Christophe VENARD 1 Philippe BIOUX

More information

A PWR ASSEMBLY COMPUTATIONAL SCHEME BASED ON THE DRAGON V4 LATTICE CODE

A PWR ASSEMBLY COMPUTATIONAL SCHEME BASED ON THE DRAGON V4 LATTICE CODE Supercomputing in Nuclear Applications (M&C + SNA 2007) Monterey, California, April 15-19, 2007, on CD-ROM, American Nuclear Society, LaGrange Park, IL (2007) A PWR ASSEMBLY COMPUTATIONAL SCHEME BASED

More information

JOYO MK-III Performance Test at Low Power and Its Analysis

JOYO MK-III Performance Test at Low Power and Its Analysis PHYSOR 200 -The Physics of Fuel Cycles and Advanced Nuclear Systems: Global Developments Chicago, Illinois, April 25-29, 200, on CD-ROM, American Nuclear Society, Lagrange Park, IL. (200) JOYO MK-III Performance

More information

PROPOSAL OF INTEGRAL CRITICAL EXPERIMENTS FOR LOW-MODERATED MOX FISSILE MEDIA

PROPOSAL OF INTEGRAL CRITICAL EXPERIMENTS FOR LOW-MODERATED MOX FISSILE MEDIA Integrating Criticality Safety in the Resurgence of Nuclear Power Knoxville, Tennessee, September 19 22, 2005, on CD-ROM, American Nuclear Society, LaGrange Park, IL (2005) PROPOSAL OF INTEGRAL CRITICAL

More information

Impact of Photon Transport on Power Distribution

Impact of Photon Transport on Power Distribution Impact of Photon Transport on Power Distribution LIEGEARD Clément, CALLOO Ansar, MARLEAU Guy, GIRARDI Enrico Électricité de France, R&D, Simulation neutronique techniques de l information et calcul scientifique

More information

USE OF LATTICE CODE DRAGON IN REACTOR CALUCLATIONS

USE OF LATTICE CODE DRAGON IN REACTOR CALUCLATIONS USE OF LATTICE CODE DRAGON IN REACTOR CALUCLATIONS ABSTRACT Dušan Ćalić ZEL-EN razvojni center Hočevarjev trg 1 Slovenia-SI8270, Krško, Slovenia dusan.calic@zel-en.si Andrej Trkov, Marjan Kromar J. Stefan

More information

CALCULATION OF TEMPERATURE REACTIVITY COEFFICIENTS IN KRITZ-2 CRITICAL EXPERIMENTS USING WIMS ABSTRACT

CALCULATION OF TEMPERATURE REACTIVITY COEFFICIENTS IN KRITZ-2 CRITICAL EXPERIMENTS USING WIMS ABSTRACT CALCULATION OF TEMPERATURE REACTIVITY COEFFICIENTS IN KRITZ-2 CRITICAL EXPERIMENTS USING WIMS D J Powney AEA Technology, Nuclear Science, Winfrith Technology Centre, Dorchester, Dorset DT2 8DH United Kingdom

More information

Critical Experiment Analyses by CHAPLET-3D Code in Two- and Three-Dimensional Core Models

Critical Experiment Analyses by CHAPLET-3D Code in Two- and Three-Dimensional Core Models Journal of NUCLEAR SCIENCE and TECHNOLOGY, Vol. 42, No. 1, p. 101 108 (January 2005) TECHNICAL REPORT Critical Experiment Analyses by CHAPLET-3D Code in Two- and Three-Dimensional Core Models Shinya KOSAKA

More information

USA HTR NEUTRONIC CHARACTERIZATION OF THE SAFARI-1 MATERIAL TESTING REACTOR

USA HTR NEUTRONIC CHARACTERIZATION OF THE SAFARI-1 MATERIAL TESTING REACTOR Proceedings of HTR2008 4 th International Topical Meeting on High Temperature Reactors September 28-October 1, 2008, Washington, D.C, USA HTR2008-58155 NEUTRONIC CHARACTERIZATION OF THE SAFARI-1 MATERIAL

More information

DOPPLER COEFFICIENT OF REACTIVITY BENCHMARK CALCULATIONS FOR DIFFERENT ENRICHMENTS OF UO 2

DOPPLER COEFFICIENT OF REACTIVITY BENCHMARK CALCULATIONS FOR DIFFERENT ENRICHMENTS OF UO 2 Supercomputing in Nuclear Applications (M&C + SNA 2007) Monterey, California, April 15-19, 2007, on CD-ROM, American Nuclear Society, LaGrange Park, IL (2007) DOPPLER COEFFICIENT OF REACTIVITY BENCHMARK

More information

PWR CONTROL ROD EJECTION ANALYSIS WITH THE MOC CODE DECART

PWR CONTROL ROD EJECTION ANALYSIS WITH THE MOC CODE DECART PWR CONTROL ROD EJECTION ANALYSIS WITH THE MOC CODE DECART Mathieu Hursin and Thomas Downar University of California Berkeley, USA mhursin@nuc.berkeley.edu,downar@nuc.berkeley.edu ABSTRACT During the past

More information

Reactor radiation skyshine calculations with TRIPOLI-4 code for Baikal-1 experiments

Reactor radiation skyshine calculations with TRIPOLI-4 code for Baikal-1 experiments DOI: 10.15669/pnst.4.303 Progress in Nuclear Science and Technology Volume 4 (2014) pp. 303-307 ARTICLE Reactor radiation skyshine calculations with code for Baikal-1 experiments Yi-Kang Lee * Commissariat

More information

Continuous-energy perturbation calculations using Taylor series expansion in the MORET code. Alexis Jinaphanh, Nicolas Leclaire

Continuous-energy perturbation calculations using Taylor series expansion in the MORET code. Alexis Jinaphanh, Nicolas Leclaire Continuous-energy perturbation calculations using Taylor series expansion in the MORET code Alexis Jinaphanh, Nicolas Leclaire Institut de Radioprotection et de sûreté nucléaire (IRSN), PSN-EXP/SNC/LNC

More information

Evaluation of Neutron Physics Parameters and Reactivity Coefficients for Sodium Cooled Fast Reactors

Evaluation of Neutron Physics Parameters and Reactivity Coefficients for Sodium Cooled Fast Reactors Evaluation of Neutron Physics Parameters and Reactivity Coefficients for Sodium Cooled Fast Reactors A. Ponomarev, C.H.M. Broeders, R. Dagan, M. Becker Institute for Neutron Physics and Reactor Technology,

More information

A Dummy Core for V&V and Education & Training Purposes at TechnicAtome: In and Ex-Core Calculations

A Dummy Core for V&V and Education & Training Purposes at TechnicAtome: In and Ex-Core Calculations A Dummy Core for V&V and Education & Training Purposes at TechnicAtome: In and Ex-Core Calculations S. Nicolas, A. Noguès, L. Manifacier, L. Chabert TechnicAtome, CS 50497, 13593 Aix-en-Provence Cedex

More information

MONTE CALRLO MODELLING OF VOID COEFFICIENT OF REACTIVITY EXPERIMENT

MONTE CALRLO MODELLING OF VOID COEFFICIENT OF REACTIVITY EXPERIMENT MONTE CALRLO MODELLING OF VOID COEFFICIENT OF REACTIVITY EXPERIMENT R. KHAN, M. VILLA, H. BÖCK Vienna University of Technology Atominstitute Stadionallee 2, A-1020, Vienna, Austria ABSTRACT The Atominstitute

More information

JAERI-Conf Dr Jacques ANNO', Wronique ROUYER, Nicolas LECLAIRE

JAERI-Conf Dr Jacques ANNO', Wronique ROUYER, Nicolas LECLAIRE JP0450021 Minimum Critical Values of Uranyl and Plutonium Nitrate Solutions Calculated by Various Routes of the French Criticality Codes System CRISTAL using the New Isopiestic Nitrate Density Law. Dr

More information

A Reformulation of the Transport-Transport SPH Equivalence Technique

A Reformulation of the Transport-Transport SPH Equivalence Technique Ottawa Marriott Hotel, Ottawa, Ontario, Canada, October 8-, 05 A Reformulation of the Transport-Transport SPH Equivalence Technique A Hébert École Polytechnique de Montréal, Montréal, QC, Canada alainhebert@polymtlca

More information

Implementation of the CLUTCH method in the MORET code. Alexis Jinaphanh

Implementation of the CLUTCH method in the MORET code. Alexis Jinaphanh Implementation of the CLUTCH method in the MORET code Alexis Jinaphanh Institut de Radioprotection et de sûreté nucléaire (IRSN), PSN-EXP/SNC/LNC BP 17, 92262 Fontenay-aux-Roses, France alexis.jinaphanh@irsn.fr

More information

Reactivity Coefficients

Reactivity Coefficients Reactivity Coefficients B. Rouben McMaster University Course EP 4D03/6D03 Nuclear Reactor Analysis (Reactor Physics) 2015 Sept.-Dec. 2015 September 1 Reactivity Changes In studying kinetics, we have seen

More information

SENSITIVITY ANALYSIS OF ALLEGRO MOX CORE. Bratislava, Iľkovičova 3, Bratislava, Slovakia

SENSITIVITY ANALYSIS OF ALLEGRO MOX CORE. Bratislava, Iľkovičova 3, Bratislava, Slovakia SENSITIVITY ANALYSIS OF ALLEGRO MOX CORE Jakub Lüley 1, Ján Haščík 1, Vladimír Slugeň 1, Vladimír Nečas 1 1 Institute of Nuclear and Physical Engineering, Slovak University of Technology in Bratislava,

More information

Estimation of Control Rods Worth for WWR-S Research Reactor Using WIMS-D4 and CITATION Codes

Estimation of Control Rods Worth for WWR-S Research Reactor Using WIMS-D4 and CITATION Codes Estimation of Control Rods Worth for WWR-S Research Reactor Using WIMS-D4 and CITATION Codes M. S. El-Nagdy 1, M. S. El-Koliel 2, D. H. Daher 1,2 )1( Department of Physics, Faculty of Science, Halwan University,

More information

Neutron reproduction. factor ε. k eff = Neutron Life Cycle. x η

Neutron reproduction. factor ε. k eff = Neutron Life Cycle. x η Neutron reproduction factor k eff = 1.000 What is: Migration length? Critical size? How does the geometry affect the reproduction factor? x 0.9 Thermal utilization factor f x 0.9 Resonance escape probability

More information

(1) SCK CEN, Boeretang 200, B-2400 Mol, Belgium (2) Belgonucléaire, Av. Arianelaan 4, B-1200 Brussels, Belgium

(1) SCK CEN, Boeretang 200, B-2400 Mol, Belgium (2) Belgonucléaire, Av. Arianelaan 4, B-1200 Brussels, Belgium The REBUS Experimental Programme for Burn-up Credit Peter Baeten (1)*, Pierre D'hondt (1), Leo Sannen (1), Daniel Marloye (2), Benoit Lance (2), Alfred Renard (2), Jacques Basselier (2) (1) SCK CEN, Boeretang

More information

Parametric Study of Control Rod Exposure for PWR Burnup Credit Criticality Safety Analyses

Parametric Study of Control Rod Exposure for PWR Burnup Credit Criticality Safety Analyses 35281 NCSD Conference Paper #2 7/17/01 3:58:06 PM Computational Physics and Engineering Division (10) Parametric Study of Control Rod Exposure for PWR Burnup Credit Criticality Safety Analyses Charlotta

More information

English text only NUCLEAR ENERGY AGENCY NUCLEAR SCIENCE COMMITTEE

English text only NUCLEAR ENERGY AGENCY NUCLEAR SCIENCE COMMITTEE Unclassified NEA/NSC/DOC(2007)9 NEA/NSC/DOC(2007)9 Unclassified Organisation de Coopération et de Développement Economiques Organisation for Economic Co-operation and Development 14-Dec-2007 English text

More information

IMPACT OF THE FISSION YIELD COVARIANCE DATA IN BURN-UP CALCULATIONS

IMPACT OF THE FISSION YIELD COVARIANCE DATA IN BURN-UP CALCULATIONS IMPACT OF THE FISSION YIELD COVARIANCE DATA IN BRN-P CALCLATIONS O. Cabellos, D. Piedra, Carlos J. Diez Department of Nuclear Engineering, niversidad Politécnica de Madrid, Spain E-mail: oscar.cabellos@upm.es

More information

THE NEXT GENERATION WIMS LATTICE CODE : WIMS9

THE NEXT GENERATION WIMS LATTICE CODE : WIMS9 THE NEXT GENERATION WIMS LATTICE CODE : WIMS9 T D Newton and J L Hutton Serco Assurance Winfrith Technology Centre Dorchester Dorset DT2 8ZE United Kingdom tim.newton@sercoassurance.com ABSTRACT The WIMS8

More information

Advanced Heavy Water Reactor. Amit Thakur Reactor Physics Design Division Bhabha Atomic Research Centre, INDIA

Advanced Heavy Water Reactor. Amit Thakur Reactor Physics Design Division Bhabha Atomic Research Centre, INDIA Advanced Heavy Water Reactor Amit Thakur Reactor Physics Design Division Bhabha Atomic Research Centre, INDIA Design objectives of AHWR The Advanced Heavy Water Reactor (AHWR) is a unique reactor designed

More information

SUB-CHAPTER D.1. SUMMARY DESCRIPTION

SUB-CHAPTER D.1. SUMMARY DESCRIPTION PAGE : 1 / 12 CHAPTER D. REACTOR AND CORE SUB-CHAPTER D.1. SUMMARY DESCRIPTION Chapter D describes the nuclear, hydraulic and thermal characteristics of the reactor, the proposals made at the present stage

More information

Technical workshop : Dynamic nuclear fuel cycle

Technical workshop : Dynamic nuclear fuel cycle Technical workshop : Dynamic nuclear fuel cycle Reactor description in CLASS Baptiste LENIAU* Institut d Astrophysique de Paris 6-8 July, 2016 Introduction Summary Summary The CLASS package : a brief overview

More information

Chem 481 Lecture Material 4/22/09

Chem 481 Lecture Material 4/22/09 Chem 481 Lecture Material 4/22/09 Nuclear Reactors Poisons The neutron population in an operating reactor is controlled by the use of poisons in the form of control rods. A poison is any substance that

More information

QUALIFICATION OF THE APOLLO 2 ASSEMBLY CODE USING PWR-UO 2 ISOTOPIC ASSAYS.

QUALIFICATION OF THE APOLLO 2 ASSEMBLY CODE USING PWR-UO 2 ISOTOPIC ASSAYS. QUALIFICATION OF THE APOLLO 2 ASSEMBLY CODE USING PWR-UO 2 ISOTOPIC ASSAYS. THE IMPORTANCE OF IRRADIATION HISTORY AND THERMO-MECHANICS ON FUEL INVENTORY PREDICTION Christine Chabert, Alain Santamarina,

More information

Fuel cycle studies on minor actinide transmutation in Generation IV fast reactors

Fuel cycle studies on minor actinide transmutation in Generation IV fast reactors Fuel cycle studies on minor actinide transmutation in Generation IV fast reactors M. Halász, M. Szieberth, S. Fehér Budapest University of Technology and Economics, Institute of Nuclear Techniques Contents

More information

Improvements of Isotopic Ratios Prediction through Takahama-3 Chemical Assays with the JEFF3.0 Nuclear Data Library

Improvements of Isotopic Ratios Prediction through Takahama-3 Chemical Assays with the JEFF3.0 Nuclear Data Library PHYSOR 2004 -The Physics of Fuel Cycles and Advanced Nuclear Systems: Global Developments Chicago, Illinois, April 25-29, 2004, on CD-ROM, American Nuclear Society, Lagrange Park, IL. (2004) Improvements

More information

X. Assembling the Pieces

X. Assembling the Pieces X. Assembling the Pieces 179 Introduction Our goal all along has been to gain an understanding of nuclear reactors. As we ve noted many times, this requires knowledge of how neutrons are produced and lost.

More information

Research Article Calculations for a BWR Lattice with Adjacent Gadolinium Pins Using the Monte Carlo Cell Code Serpent v.1.1.7

Research Article Calculations for a BWR Lattice with Adjacent Gadolinium Pins Using the Monte Carlo Cell Code Serpent v.1.1.7 Science and Technology of Nuclear Installations Volume 2, Article ID 65946, 4 pages doi:.55/2/65946 Research Article Calculations for a BWR Lattice with Adjacent Gadolinium Pins Using the Monte Carlo Cell

More information

A PERTURBATION ANALYSIS SCHEME IN WIMS USING TRANSPORT THEORY FLUX SOLUTIONS

A PERTURBATION ANALYSIS SCHEME IN WIMS USING TRANSPORT THEORY FLUX SOLUTIONS A PERTURBATION ANALYSIS SCHEME IN WIMS USING TRANSPORT THEORY FLUX SOLUTIONS J G Hosking, T D Newton, B A Lindley, P J Smith and R P Hiles Amec Foster Wheeler Dorchester, Dorset, UK glynn.hosking@amecfw.com

More information

Nuclear Fission. 1/v Fast neutrons. U thermal cross sections σ fission 584 b. σ scattering 9 b. σ radiative capture 97 b.

Nuclear Fission. 1/v Fast neutrons. U thermal cross sections σ fission 584 b. σ scattering 9 b. σ radiative capture 97 b. Nuclear Fission 1/v Fast neutrons should be moderated. 235 U thermal cross sections σ fission 584 b. σ scattering 9 b. σ radiative capture 97 b. Fission Barriers 1 Nuclear Fission Q for 235 U + n 236 U

More information

A Deterministic against Monte-Carlo Depletion Calculation Benchmark for JHR Core Configurations. A. Chambon, P. Vinai, C.

A Deterministic against Monte-Carlo Depletion Calculation Benchmark for JHR Core Configurations. A. Chambon, P. Vinai, C. A Deterministic against Monte-Carlo Depletion Calculation Benchmark for JHR Core Configurations A. Chambon, P. Vinai, C. Demazière Chalmers University of Technology, Department of Physics, SE-412 96 Gothenburg,

More information

Lectures on Applied Reactor Technology and Nuclear Power Safety. Lecture No 5. Title: Reactor Kinetics and Reactor Operation

Lectures on Applied Reactor Technology and Nuclear Power Safety. Lecture No 5. Title: Reactor Kinetics and Reactor Operation Lectures on Nuclear Power Safety Lecture No 5 Title: Reactor Kinetics and Reactor Operation Department of Energy Technology KTH Spring 2005 Slide No 1 Outline of the Lecture (1) Reactor Kinetics Reactor

More information

REFLECTOR FEEDBACK COEFFICIENT: NEUTRONIC CONSIDERATIONS IN MTR-TYPE RESEARCH REACTORS ABSTRACT

REFLECTOR FEEDBACK COEFFICIENT: NEUTRONIC CONSIDERATIONS IN MTR-TYPE RESEARCH REACTORS ABSTRACT REFLECTOR FEEDBACK COEFFICIENT: NEUTRONIC CONSIDERATIONS IN MTR-TYPE RESEARCH REACTORS L. MANIFACIER, L. CHABERT, M. BOYARD TechnicAtome, CS 50497, 13593 Aix-en-Provence Cedex 3, France ABSTRACT Having

More information

MA/LLFP Transmutation Experiment Options in the Future Monju Core

MA/LLFP Transmutation Experiment Options in the Future Monju Core MA/LLFP Transmutation Experiment Options in the Future Monju Core Akihiro KITANO 1, Hiroshi NISHI 1*, Junichi ISHIBASHI 1 and Mitsuaki YAMAOKA 2 1 International Cooperation and Technology Development Center,

More information

Introduction to Reactivity and Reactor Control

Introduction to Reactivity and Reactor Control Introduction to Reactivity and Reactor Control Larry Foulke Adjunct Professor Director of Nuclear Education Outreach University of Pittsburgh IAEA Workshop on Desktop Simulation October 2011 Learning Objectives

More information

A Hybrid Deterministic / Stochastic Calculation Model for Transient Analysis

A Hybrid Deterministic / Stochastic Calculation Model for Transient Analysis A Hybrid Deterministic / Stochastic Calculation Model for Transient Analysis A. Aures 1,2, A. Pautz 2, K. Velkov 1, W. Zwermann 1 1 Gesellschaft für Anlagen- und Reaktorsicherheit (GRS) ggmbh Boltzmannstraße

More information

REVIEW OF RESULTS FOR THE OECD/NEA PHASE VII BENCHMARK: STUDY OF SPENT FUEL COMPOSITIONS FOR LONG-TERM DISPOSAL

REVIEW OF RESULTS FOR THE OECD/NEA PHASE VII BENCHMARK: STUDY OF SPENT FUEL COMPOSITIONS FOR LONG-TERM DISPOSAL REVIEW OF RESULTS FOR THE OECD/NEA PHASE VII BENCHMARK: STUDY OF SPENT FUEL COMPOSITIONS FOR LONG-TERM DISPOSAL Georgeta Radulescu John Wagner (presenter) Oak Ridge National Laboratory International Workshop

More information

The Effect of Burnup on Reactivity for VVER-1000 with MOXGD and UGD Fuel Assemblies Using MCNPX Code

The Effect of Burnup on Reactivity for VVER-1000 with MOXGD and UGD Fuel Assemblies Using MCNPX Code Journal of Nuclear and Particle Physics 2016, 6(3): 61-71 DOI: 10.5923/j.jnpp.20160603.03 The Effect of Burnup on Reactivity for VVER-1000 with MOXGD and UGD Fuel Assemblies Using MCNPX Code Heba K. Louis

More information

Error Estimation for ADS Nuclear Properties by using Nuclear Data Covariances

Error Estimation for ADS Nuclear Properties by using Nuclear Data Covariances Error Estimation for ADS Nuclear Properties by using Nuclear Data Covariances Kasufumi TSUJIMOTO Center for Proton Accelerator Facilities, Japan Atomic Energy Research Institute Tokai-mura, Naka-gun, Ibaraki-ken

More information

REACTOR PHYSICS FOR NON-NUCLEAR ENGINEERS

REACTOR PHYSICS FOR NON-NUCLEAR ENGINEERS International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2011) Rio de Janeiro, RJ, Brazil, May 8-12, 2011, on CD-ROM, Latin American Section (LAS)

More information

Reactivity Coefficients

Reactivity Coefficients Revision 1 December 2014 Reactivity Coefficients Student Guide GENERAL DISTRIBUTION GENERAL DISTRIBUTION: Copyright 2014 by the National Academy for Nuclear Training. Not for sale or for commercial use.

More information

«CALCULATION OF ISOTOPE BURN-UP AND CHANGE IN EFFICIENCY OF ABSORBING ELEMENTS OF WWER-1000 CONTROL AND PROTECTION SYSTEM DURING BURN-UP».

«CALCULATION OF ISOTOPE BURN-UP AND CHANGE IN EFFICIENCY OF ABSORBING ELEMENTS OF WWER-1000 CONTROL AND PROTECTION SYSTEM DURING BURN-UP». «CALCULATION OF ISOTOPE BURN-UP AND CHANGE IN EFFICIENCY OF ABSORBING ELEMENTS OF WWER-1000 CONTROL AND PROTECTION SYSTEM DURING BURN-UP». O.A. Timofeeva, K.U. Kurakin FSUE EDO «GIDROPRESS», Podolsk, Russia

More information

APPLICATION OF THE COUPLED THREE DIMENSIONAL THERMAL- HYDRAULICS AND NEUTRON KINETICS MODELS TO PWR STEAM LINE BREAK ANALYSIS

APPLICATION OF THE COUPLED THREE DIMENSIONAL THERMAL- HYDRAULICS AND NEUTRON KINETICS MODELS TO PWR STEAM LINE BREAK ANALYSIS APPLICATION OF THE COUPLED THREE DIMENSIONAL THERMAL- HYDRAULICS AND NEUTRON KINETICS MODELS TO PWR STEAM LINE BREAK ANALYSIS Michel GONNET and Michel CANAC FRAMATOME Tour Framatome. Cedex 16, Paris-La

More information

QUADRATIC DEPLETION MODEL FOR GADOLINIUM ISOTOPES IN CASMO-5

QUADRATIC DEPLETION MODEL FOR GADOLINIUM ISOTOPES IN CASMO-5 Advances in Nuclear Fuel Management IV (ANFM 2009) Hilton Head Island, South Carolina, USA, April 12-15, 2009, on CD-ROM, American Nuclear Society, LaGrange Park, IL (2009) QUADRATIC DEPLETION MODEL FOR

More information

Lecture 20 Reactor Theory-V

Lecture 20 Reactor Theory-V Objectives In this lecture you will learn the following We will discuss the criticality condition and then introduce the concept of k eff.. We then will introduce the four factor formula and two group

More information

Fundamentals of Nuclear Reactor Physics

Fundamentals of Nuclear Reactor Physics Fundamentals of Nuclear Reactor Physics E. E. Lewis Professor of Mechanical Engineering McCormick School of Engineering and Applied Science Northwestern University AMSTERDAM BOSTON HEIDELBERG LONDON NEW

More information

Term 3 Week 2 Nuclear Fusion & Nuclear Fission

Term 3 Week 2 Nuclear Fusion & Nuclear Fission Term 3 Week 2 Nuclear Fusion & Nuclear Fission Tuesday, November 04, 2014 Nuclear Fusion To understand nuclear fusion & fission Nuclear Fusion Why do stars shine? Stars release energy as a result of fusing

More information

THORIUM SELF-SUFFICIENT FUEL CYCLE OF CANDU POWER REACTOR

THORIUM SELF-SUFFICIENT FUEL CYCLE OF CANDU POWER REACTOR International Conference Nuclear Energy for New Europe 2005 Bled, Slovenia, September 5-8, 2005 ABSTRACT THORIUM SELF-SUFFICIENT FUEL CYCLE OF CANDU POWER REACTOR Boris Bergelson, Alexander Gerasimov Institute

More information

COMPARATIVE ANALYSIS OF WWER-440 REACTOR CORE WITH PARCS/HELIOS AND PARCS/SERPENT CODES

COMPARATIVE ANALYSIS OF WWER-440 REACTOR CORE WITH PARCS/HELIOS AND PARCS/SERPENT CODES COMPARATIVE ANALYSIS OF WWER-440 REACTOR CORE WITH PARCS/HELIOS AND PARCS/SERPENT CODES S. Bznuni, A. Amirjanyan, N. Baghdasaryan Nuclear and Radiation Safety Center Yerevan, Armenia Email: s.bznuni@nrsc.am

More information

Lesson 14: Reactivity Variations and Control

Lesson 14: Reactivity Variations and Control Lesson 14: Reactivity Variations and Control Reactivity Variations External, Internal Short-term Variations Reactivity Feedbacks Reactivity Coefficients and Safety Medium-term Variations Xe 135 Poisoning

More information

The moderator temperature coefficient MTC is defined as the change in reactivity per degree change in moderator temperature.

The moderator temperature coefficient MTC is defined as the change in reactivity per degree change in moderator temperature. Moderator Temperature Coefficient MTC 1 Moderator Temperature Coefficient The moderator temperature coefficient MTC is defined as the change in reactivity per degree change in moderator temperature. α

More information

Symmetry in Monte Carlo. Dennis Mennerdahl OECD/NEA/NSC/WPNCS/AMCT EG, Paris, 18 September 2014

Symmetry in Monte Carlo. Dennis Mennerdahl OECD/NEA/NSC/WPNCS/AMCT EG, Paris, 18 September 2014 Symmetry in Monte Carlo Dennis Mennerdahl OECD/NEA/NSC/WPNCS/AMCT EG, Paris, 18 September 2014 OVERVIEW Identical events - Full model results contain everything and more Symmetry to improve convergence?

More information

Neutronic analysis of SFR lattices: Serpent vs. HELIOS-2

Neutronic analysis of SFR lattices: Serpent vs. HELIOS-2 Neutronic analysis of SFR lattices: Serpent vs. HELIOS-2 E. Fridman 1, R. Rachamin 1, C. Wemple 2 1 Helmholtz Zentrum Dresden Rossendorf 2 Studsvik Scandpower Inc. Text optional: Institutsname Prof. Dr.

More information

Sensitivity Analysis of Gas-cooled Fast Reactor

Sensitivity Analysis of Gas-cooled Fast Reactor Sensitivity Analysis of Gas-cooled Fast Reactor Jakub Lüley, Štefan Čerba, Branislav Vrban, Ján Haščík Institute of Nuclear and Physical Engineering, Slovak University of Technology in Bratislava Ilkovičova

More information

Study of Burnup Reactivity and Isotopic Inventories in REBUS Program

Study of Burnup Reactivity and Isotopic Inventories in REBUS Program Study of Burnup Reactivity and Isotopic Inventories in REBUS Program T. Yamamoto 1, Y. Ando 1, K. Sakurada 2, Y. Hayashi 2, and K. Azekura 3 1 Japan Nuclear Energy Safety Organization (JNES) 2 Toshiba

More information

Testing the EPRI Reactivity Depletion Decrement Uncertainty Methods

Testing the EPRI Reactivity Depletion Decrement Uncertainty Methods Testing the EPRI Reactivity Depletion Decrement Uncertainty Methods by Elliot M. Sykora B.S. Physics, Massachusetts Institute of Technology (0) Submitted to the Department of Nuclear Science and Engineering

More information

Neutronic Analysis of Moroccan TRIGA MARK-II Research Reactor using the DRAGON.v5 and TRIVAC.v5 codes

Neutronic Analysis of Moroccan TRIGA MARK-II Research Reactor using the DRAGON.v5 and TRIVAC.v5 codes Physics AUC, vol. 27, 41-49 (2017) PHYSICS AUC Neutronic Analysis of Moroccan TRIGA MARK-II Research Reactor using the DRAGON.v5 and TRIVAC.v5 codes DARIF Abdelaziz, CHETAINE Abdelouahed, KABACH Ouadie,

More information

Development of depletion models for radionuclide inventory, decay heat and source term estimation in discharged fuel

Development of depletion models for radionuclide inventory, decay heat and source term estimation in discharged fuel Development of depletion models for radionuclide inventory, decay heat and source term estimation in discharged fuel S. Caruso, A. Shama, M. M. Gutierrez National Cooperative for the Disposal of Radioactive

More information

Fundamentals of Nuclear Power. Original slides provided by Dr. Daniel Holland

Fundamentals of Nuclear Power. Original slides provided by Dr. Daniel Holland Fundamentals of Nuclear Power Original slides provided by Dr. Daniel Holland Nuclear Fission We convert mass into energy by breaking large atoms (usually Uranium) into smaller atoms. Note the increases

More information

Low-Grade Nuclear Materials as Possible Threats to the Nonproliferation Regime. (Report under CRDF Project RX0-1333)

Low-Grade Nuclear Materials as Possible Threats to the Nonproliferation Regime. (Report under CRDF Project RX0-1333) Low-Grade Nuclear Materials as Possible Threats to the Nonproliferation Regime (Report under CRDF Project RX0-1333) 2 Abstract This study addresses a number of issues related to low-grade fissile materials

More information

Cross Section Generation Strategy for High Conversion Light Water Reactors Bryan Herman and Eugene Shwageraus

Cross Section Generation Strategy for High Conversion Light Water Reactors Bryan Herman and Eugene Shwageraus Cross Section Generation Strategy for High Conversion Light Water Reactors Bryan Herman and Eugene Shwageraus 1 Department of Nuclear Science and Engineering Massachusetts Institute of Technology 77 Massachusetts

More information

Reactors and Fuels. Allen G. Croff Oak Ridge National Laboratory (ret.) NNSA/DOE Nevada Support Facility 232 Energy Way Las Vegas, NV

Reactors and Fuels. Allen G. Croff Oak Ridge National Laboratory (ret.) NNSA/DOE Nevada Support Facility 232 Energy Way Las Vegas, NV Reactors and Fuels Allen G. Croff Oak Ridge National Laboratory (ret.) NNSA/DOE Nevada Support Facility 232 Energy Way Las Vegas, NV July 19-21, 2011 This course is partially based on work supported by

More information

VALIDATION OF VISWAM SQUARE LATTICE MODULE WITH MOX PIN CELL BENCHMARK

VALIDATION OF VISWAM SQUARE LATTICE MODULE WITH MOX PIN CELL BENCHMARK U.P.B. Sci. Bull., Series C, Vol. 77, Iss. 4, 2015 ISSN 2286-3540 VALIDATION OF VISWAM SQUARE LATTICE MODULE WITH MOX PIN CELL BENCHMARK Arvind MATHUR 1, Suhail Ahmad KHAN 2, V. JAGANNATHAN 3, L. THILAGAM

More information

The discovery of nuclear reactions need not bring about the destruction of mankind any more than the discovery of matches - Albert Einstein

The discovery of nuclear reactions need not bring about the destruction of mankind any more than the discovery of matches - Albert Einstein The world has achieved brilliance without wisdom, power without conscience. Ours is a world of nuclear giants and ethical infants. - Omar Bradley (US general) The discovery of nuclear reactions need not

More information

Hybrid Low-Power Research Reactor with Separable Core Concept

Hybrid Low-Power Research Reactor with Separable Core Concept Hybrid Low-Power Research Reactor with Separable Core Concept S.T. Hong *, I.C.Lim, S.Y.Oh, S.B.Yum, D.H.Kim Korea Atomic Energy Research Institute (KAERI) 111, Daedeok-daero 989 beon-gil, Yuseong-gu,

More information

CASMO-5/5M Code and Library Status. J. Rhodes, K. Smith, D. Lee, Z. Xu, & N. Gheorghiu Arizona 2008

CASMO-5/5M Code and Library Status. J. Rhodes, K. Smith, D. Lee, Z. Xu, & N. Gheorghiu Arizona 2008 CASMO-5/5M Code and Library Status J. Rhodes, K. Smith, D. Lee, Z. Xu, & N. Gheorghiu Arizona 2008 CASMO Methodolgy Evolution CASMO-3 Homo. transmission probability/external Gd depletion CASMO-4 up to

More information

Present Status of JEFF-3.1 Qualification for LWR. Reactivity and Fuel Inventory Prediction

Present Status of JEFF-3.1 Qualification for LWR. Reactivity and Fuel Inventory Prediction Present Status of JEFF-3.1 Qualification for LWR Reactivity and Fuel Inventory Prediction Experimental Validation Group (CEA Cadarache/Saclay) D. BERNARD david.bernard@cea.fr A. COURCELLE arnaud.courcelle@cea.fr

More information

Working Party on Pu-MOX fuel physics and innovative fuel cycles (WPPR)

Working Party on Pu-MOX fuel physics and innovative fuel cycles (WPPR) R&D Needs in Nuclear Science 6-8th November, 2002 OECD/NEA, Paris Working Party on Pu-MOX fuel physics and innovative fuel cycles (WPPR) Hideki Takano Japan Atomic Energy Research Institute, Japan Introduction(1)

More information

WELCOME TO PERIOD 18: CONSEQUENCES OF NUCLEAR ENERGY

WELCOME TO PERIOD 18: CONSEQUENCES OF NUCLEAR ENERGY WELCOME TO PERIOD 18: CONSEQUENCES OF NUCLEAR ENERGY Homework #17 is due today. Midterm 2: Weds, Mar 27, 7:45 8:55 pm (Same room as your midterm 1 exam.) Covers periods 10 19 and videos 3 & 4 Review: Tues,

More information

Criticality analysis of ALLEGRO Fuel Assemblies Configurations

Criticality analysis of ALLEGRO Fuel Assemblies Configurations Criticality analysis of ALLEGRO Fuel Assemblies Configurations Radoslav ZAJAC Vladimír CHRAPČIAK 13-16 October 2015 5th International Serpent User Group Meeting at Knoxville, Tennessee ALLEGRO Core - Fuel

More information

On the use of SERPENT code for few-group XS generation for Sodium Fast Reactors

On the use of SERPENT code for few-group XS generation for Sodium Fast Reactors On the use of SERPENT code for few-group XS generation for Sodium Fast Reactors Raquel Ochoa Nuclear Engineering Department UPM CONTENTS: 1. Introduction 2. Comparison with ERANOS 3. Parameters required

More information

TRANSMUTATION PERFORMANCE OF MOLTEN SALT VERSUS SOLID FUEL REACTORS (DRAFT)

TRANSMUTATION PERFORMANCE OF MOLTEN SALT VERSUS SOLID FUEL REACTORS (DRAFT) 15 th International Conference on Nuclear Engineering Nagoya, Japan, April 22-26, 2007 ICONE15-10515 TRANSMUTATION PERFORMANCE OF MOLTEN SALT VERSUS SOLID FUEL REACTORS (DRAFT) Björn Becker University

More information

Comparison of the Monte Carlo Adjoint-Weighted and Differential Operator Perturbation Methods

Comparison of the Monte Carlo Adjoint-Weighted and Differential Operator Perturbation Methods Progress in NUCLEAR SCIENCE and TECHNOLOGY, Vol., pp.836-841 (011) ARTICLE Comparison of the Monte Carlo Adjoint-Weighted and Differential Operator Perturbation Methods Brian C. KIEDROWSKI * and Forrest

More information

CRISTAL V1: Criticality Package for Burn up Credit calculations

CRISTAL V1: Criticality Package for Burn up Credit calculations JP0450092 CRISTAL V1: Criticality Package for Burn up Credit calculations Jean-Michel GOMIT'*, Patrick COUSINOU', Cheikh DOp2, Guy FERNANDEZ de GRAD02, Frangoise GANTENBEIN1, Jean-Paul GROUILLER 3 Andrd

More information

THREE-DIMENSIONAL INTEGRAL NEUTRON TRANSPORT CELL CALCULATIONS FOR THE DETERMINATION OF MEAN CELL CROSS SECTIONS

THREE-DIMENSIONAL INTEGRAL NEUTRON TRANSPORT CELL CALCULATIONS FOR THE DETERMINATION OF MEAN CELL CROSS SECTIONS THREE-DIMENSIONAL INTEGRAL NEUTRON TRANSPORT CELL CALCULATIONS FOR THE DETERMINATION OF MEAN CELL CROSS SECTIONS Carsten Beckert 1. Introduction To calculate the neutron transport in a reactor, it is often

More information

Lecture 27 Reactor Kinetics-III

Lecture 27 Reactor Kinetics-III Objectives In this lecture you will learn the following In this lecture we will understand some general concepts on control. We will learn about reactivity coefficients and their general nature. Finally,

More information

Fission Reactors. Alternatives Inappropriate. Fission Reactors

Fission Reactors. Alternatives Inappropriate. Fission Reactors Page 1 of 5 Fission Reactors The Polywell Reactor Nuclear Reactions Alternatives Inappropriate Hidden Costs of Carbon Web Site Home Page Fission Reactors There are about 438 Neutron Fission Power Reactors

More information

Neutronics of MAX phase materials

Neutronics of MAX phase materials Neutronics of MAX phase materials Christopher Grove, Daniel Shepherd, Mike Thomas, Paul Little National Nuclear Laboratory, Preston Laboratory, Springfields, UK Abstract This paper examines the neutron

More information

Needs of reliable nuclear data and covariance matrices for Burnup Credit in JEFF-3 library

Needs of reliable nuclear data and covariance matrices for Burnup Credit in JEFF-3 library Needs of reliable nuclear data and covariance matrices for Burnup Credit in JEFF-3 library WONDER 2012 A. CHAMBON 1, A. SANTAMARINA 1, C. RIFFARD 1, F. LAVAUD 2, D. LECARPENTIER 2 1 CEA, DEN, DER, SPRC,

More information

Study on SiC Components to Improve the Neutron Economy in HTGR

Study on SiC Components to Improve the Neutron Economy in HTGR Study on SiC Components to Improve the Neutron Economy in HTGR Piyatida TRINURUK and Assoc.Prof.Dr. Toru OBARA Department of Nuclear Engineering Research Laboratory for Nuclear Reactors Tokyo Institute

More information

Requests on Nuclear Data in the Backend Field through PIE Analysis

Requests on Nuclear Data in the Backend Field through PIE Analysis Requests on Nuclear Data in the Backend Field through PIE Analysis Yoshihira Ando 1), Yasushi Ohkawachi 2) 1) TOSHIBA Corporation Power System & Services Company Power & Industrial Systems Research & Development

More information

Lectures on Applied Reactor Technology and Nuclear Power Safety. Lecture No 1. Title: Neutron Life Cycle

Lectures on Applied Reactor Technology and Nuclear Power Safety. Lecture No 1. Title: Neutron Life Cycle Lectures on Nuclear Power Safety Lecture No 1 Title: Neutron Life Cycle Department of Energy Technology KTH Spring 2005 Slide No 1 Outline of the Lecture Infinite Multiplication Factor, k Four Factor Formula

More information

Lesson 8: Slowing Down Spectra, p, Fermi Age

Lesson 8: Slowing Down Spectra, p, Fermi Age Lesson 8: Slowing Down Spectra, p, Fermi Age Slowing Down Spectra in Infinite Homogeneous Media Resonance Escape Probability ( p ) Resonance Integral ( I, I eff ) p, for a Reactor Lattice Semi-empirical

More information

Comparison of PWR burnup calculations with SCALE 5.0/TRITON other burnup codes and experimental results. Abstract

Comparison of PWR burnup calculations with SCALE 5.0/TRITON other burnup codes and experimental results. Abstract Comparison of PWR burnup calculations with SCALE 5.0/TRITON other burnup codes and experimental results Ph.Oberle, C.H.M.Broeders, R.Dagan Forschungszentrum Karlsruhe, Institut for Reactor Safety Hermann-von-Helmholtz-Platz-1,

More information

Impact of the Hypothetical RCCA Rodlet Separation on the Nuclear Parameters of the NPP Krško core

Impact of the Hypothetical RCCA Rodlet Separation on the Nuclear Parameters of the NPP Krško core International Conference Nuclear Energy for New Europe 2005 Bled, Slovenia, September 5-8, 2005 Impact of the Hypothetical RCCA Rodlet Separation on the Nuclear Parameters of the NPP Krško core ABSTRACT

More information

REACTOR PHYSICS CALCULATIONS ON MOX FUEL IN BOILING WATER REACTORS (BWRs)

REACTOR PHYSICS CALCULATIONS ON MOX FUEL IN BOILING WATER REACTORS (BWRs) REACTOR PHYSICS CALCULATIONS ON MOX FUEL IN BOILING ATER REACTORS (BRs) Christophe Demazière Chalmers University of Technology Department of Reactor Physics SE-42 96 Gothenburg Sweden Abstract The loading

More information

Mechanical Engineering Introduction to Nuclear Engineering /12

Mechanical Engineering Introduction to Nuclear Engineering /12 Mechanical Engineering Objectives In this lecture you will learn the following In this lecture the population and energy scenario in India are reviewed. The imminent rapid growth of nuclear power is brought

More information

Nuclear Reactor Physics I Final Exam Solutions

Nuclear Reactor Physics I Final Exam Solutions .11 Nuclear Reactor Physics I Final Exam Solutions Author: Lulu Li Professor: Kord Smith May 5, 01 Prof. Smith wants to stress a couple of concepts that get people confused: Square cylinder means a cylinder

More information

Lectures on Applied Reactor Technology and Nuclear Power Safety. Lecture No 4. Title: Control Rods and Sub-critical Systems

Lectures on Applied Reactor Technology and Nuclear Power Safety. Lecture No 4. Title: Control Rods and Sub-critical Systems Lectures on Nuclear Power Safety Lecture No 4 Title: Control Rods and Sub-critical Systems Department of Energy Technology KTH Spring 2005 Slide No 1 Outline of the Lecture Control Rods Selection of Control

More information

OECD/NEA Source Convergence Benchmark Program: Overview and Summary of Results

OECD/NEA Source Convergence Benchmark Program: Overview and Summary of Results 23 OECD/NEA Source Convergence Benchmark Program: Overview and Summary of Results Roger BLOMQUIST *, Ali NOURI 2, Malcolm Armishaw 3, Olivier JACQUET 4, Yoshitaka NAITO 5, and Yoshinori MIYOSHI 6, Toshihiro

More information