Homogenization Methods for Full Core Solution of the Pn Transport Equations with 3-D Cross Sections. Andrew Hall October 16, 2015

Size: px
Start display at page:

Download "Homogenization Methods for Full Core Solution of the Pn Transport Equations with 3-D Cross Sections. Andrew Hall October 16, 2015"

Transcription

1 Homogenization Methods for Full Core Solution of the Pn Transport Equations with 3-D Cross Sections Andrew Hall October 16, 2015

2 Outline Resource-Renewable Boiling Water Reactor (RBWR) Current Neutron Diffusion Methods for RBWR Analysis Advanced Methods: Quasi-diffusion Methods Numerical Results Summary and Conclusions 2

3 LWR-RBWR Comparison : BWR Fuel Assembly 2: ABWR Core 3: RBWR Core Layout 4: RBWR Assembly 3

4 Resource-Renewable Boiling Water Reactor (RBWR) The RBWR is a reactor design originally proposed by Hitachi which is capable of achieving a conversion ratio of 1.0 Design features include: Short, parfait style core Tight pitch fuel lattice Smaller coolant mass flow-rate Large exit void fraction Less negative core void reactivity coefficient Y-shaped control blades 4

5 normalized neutron spectra per unit lethargy RBWR Characteristics Hard neutron spectrum compared to typical Light Water Reactors (LWRs) Average core void fraction of 53% compared to 36% for the ABWR Thermal Reactor RBWR ARR PWR Fast Reactor Double peaked axial power distribution provides large axial heterogeneity compared to radial The use of 2-D cross sections has difficulty capturing these axial heterogeneities Neutron Energy (ev) 5

6 Coupled Code System for RBWR Simulation Lattice Code: Serpent GENPMAXS Neutron Flux Solver: PARCS T/H: PATHS Cross Section Library (PMAX) Equilibrium Search 6

7 Monte Carlo XSEC Homogenization The traditional homogenization performed for the RBWR involves modeling a 3-D assembly and generating cross sections for various axial levels For the RBWR, a 12-group energy structure was used to collapse the cross sections Energy groups and regions with low neutron populations require additional neutron histories (slows down the simulation) The thermal energy groups have a larger uncertainty compared to the fast energy groups Group Number Upper Energy (ev) E E E E E E E E E E E E-1 Minimum E-5 One of the main quantities of interest is the diffusion coefficient D which has no tabulated continuous-energy data It is determined using the Monte Carlo estimate for the transport cross section This value is used for all directions Σ tr,g = K k=1 φ k,g Σ t,k,g Σ s1,k,g K k=1 φ k,g D g = 1 3Σ tr,g 7

8 Axial Discontinuity Factors (ZDFs) In addition to the group constants provided from the 3-D Serpent calculation, axial discontinuity factors (ZDFs) are determined for the interfaces between axial segments Het Hom For axially heterogeneous cores, the material interface can lead to steep flux gradients which diffusion theory has difficulty capturing In this situation an axial discontinuity factor (ZDF) is desired based on a boundary problem and not because of homogenization (radial discontinuity factors) ZDFs are based on the same definition as traditional discontinuity factors, where the homogeneous flux is made discontinuous to conserve continuity of current Φ + i f + i = Φ i+1 f i+1 This application of ZDFs was discussed at previous Serpent meetings f i + = Φ i + Φ i +, f i+1 = Φ i+1 Φ i+1 8

9 PARCS/PATHS Core Simulator All of this group constant information is used within the nodal code PARCS for assembly and full core problems For hexagonal lattices, PARCS solves a coupled 2-D radial diffusion equation and 1-D axial diffusion equation Due to the axial heterogeneity of the RBWR, diffusion has difficulty solving this axial diffusion problem even with the use of ZDFs This is because during the generation of ZDFs, the values can become negative or very large which can cause instabilities within the simulation for large core systems with feedback or burnup 9

10 Full Core Results with Bounded ZDFs Instead, a bounding approximation was applied to the ZDFs that improved stability but introduced error into the simulation This allowed us to produce full-core equilibrium results using PARCS/PATHS Axial Power distribution Radial Power distribution Though this method provided a stable solution, error was introduced due to the ZDF bounding Investigated methods that reduce or eliminate this source of error

11 Higher-Order Axial Solutions To improve the accuracy of the RBWR simulation, we wanted to improve upon the use of diffusion for the axial solver Looked at implementing spherical harmonics equations (P1, P2, P3) as well as Quasi-diffusion The focus of the work presented here will be based on the Quasi-diffusion method that was used All of the results are based on 1-D solutions for the axial direction of an RBWR-type assembly 11

12 Quasi-diffusion Equations The Quasi-diffusion equation is based on the use of Eddington factors defined as: d Ω Ω 4π u Ω v ψ E uv = d Ω ψ These expressions are based on the diffusion equation without estimating the angular flux as a linear function of angle 4π The Eddington factors are calculated from the Monte Carlo simulation by determining the angular weighted fluxes φ 2,uv = d 4π Ω Ω u Ω v ψ φ 2,uv = φ 2,xx φ 2,xy φ 2,xz φ 2,yx φ 2,yy φ 2,yz E uv = φ 2,zx φ 2,zy φ 2,zz If the Eddington factor is used as an approximation within the 1-D transport equation, this produces the 1-D Quasi-diffusion equation: d d dx 1 Σ tr (r, E) dx E j r, E φ 0 (r, E) + Σ t (r, E)φ 0 (r, E) = de Σ s r, E E φ 0 r, E 0 φ 2,xx φ 0 φ 2,yx φ 0 φ 2,zx φ 0 φ 2,xy φ 0 φ 2,yy φ 0 φ 2,zy φ 0 + λχ(r, E) deνσ f r, E φ 0 (r, E ) 0 φ 2,xz φ 0 φ 2,yz φ 0 φ 2,zz φ 0 12

13 Quasi-diffusion Equations (Cont.) In 1-D there are two equivalent ways to solve the Quasi-diffusion equation The first method involves multiplying and dividing by the Eddington factor and solving for the product E j x, E φ 0 (x, E) (Only valid in 1-D) d dx 1 Σ tr x, E d dx E j x, E φ 0 x, E + Σ t x, E E j x, E E j x, E φ 0 x, E = de Σ s x, E E x, E 0 E j E j x, E φ 0 x, E + λχ x, E de νσ f x, E 0 E j x, E E j x, E φ 0 (x, E ) The second method involves using the Eddington factor as a discontinuity factor d dx D(x, E) d dx 3E j x, E φ 0 x, E + Σ t x, E φ 0 x, E = de Σ s x, E E φ 0 x, E + λχ x, E deνσ f x, E φ 0 (x, E ) 0 For this study, the first method is used 0 13

14 Eddington Factors from Serpent As shown in the previous slides, Eddington factors were calculated from Serpent by adding additional angular weighted tallies when scoring the flux This produces a 3x3 Matrix for each group constant universe and energy group Some useful properties of Eddington factors: For typical LWRs with non-axially varying fuel, the diagonal elements of this 3x3 Matrix are close to 1/3 Off-diagonal elements are close to 0 The values for Eddington factors can only vary between 0 and 1 If the diagonal elements of this Matrix are 1/3 and the off-diagonal elements are 0, then the Quasi-diffusion equation reduces to the Diffusion equation First investigated a pin cell problem for an RBWR-type geometry to evaluate the magnitude of the Eddington factors 14

15 RBWR Pin Cell: Fuel vs. Non-Fuel Eddington Factors UB LF Coolant IB UF LB Wanted to develop a deeper understanding of the physics happening within the fuel and non-fuel regions Developed a pin-cell based on the RBWR assembly Tallied the particles traveling in each separate region

16 Fuel Eddington Factor Non-Fuel Eddington Factor Fast Group: Fuel vs. Non-Fuel Eddington Factors Fuel Group 1 - Fast Most Group zz xx yy Non-Fuel Group 1 - Fast Most Group zz xx yy Axial Height (cm) Axial Height (cm) There is little difference between the fuel and non-fuel Eddington factors for the fast group Looked next at the thermal most group

17 Fuel Eddington Factor Non-Fuel Eddington Factor Thermal Group: Fuel vs. Non-Fuel Eddington Factors Fuel Group 12 - Thermal Most Group zz xx yy Non-Fuel Group 12 - Thermal Most Group zz xx yy Axial Height (cm) Axial Height (cm) There is a notable difference between the fuel and non-fuel Eddington factors for the thermal group in the fissile regions Next slide compares just the axial (zz) Eddington Factors

18 Eddington Factor (Ezz) Eddington Factor (Ezz) Axial Eddington Factors (zz): Fuel vs. Non-Fuel Eddington Factors 0.5 Group 1 - Axial (zz) Fuel vs. Non-Fuel Eddington Factors Fuel Non-Fuel 0.5 Group 12 - Axial (zz) Fuel vs. Non-Fuel Eddington Factors Fuel Non-Fuel Axial Height (cm) Axial Height (cm)

19 Pin Cell Discussion From the pin cell analysis, it is clear that the Eddington factors can deviate significantly from 1/3 The goal is that these values will act as a correction to improve the axial solution and reduce the need for ZDFs Created a full 3-D assembly in Serpent and generated cross sections and group constants Calculated assembly results using P1, P2, P3 and Quasidiffusion to compare the accuracy 19

20 Assembly Solution Created an RBWR problem with no axial reflectors and reflective boundary conditions on all sides Serpent 3-D cross sections and values 34 axial regions and 12 energy groups Improvement noticed in eigenvalue from P1 -> P3 and Quasi-diffusion Compared the group 1 and 12 flux distributions Also compared assembly Eddington factors for E xx, E yy and E zz Solver Eigenvalue Difference from Serpent (pcm) Serpent P P P Quasi-diffusion

21 Assembly Flux Comparison 21

22 Eddington Factors from Serpent Group 1 (fast) and Group 12 (thermal) are shown for illustration If E zz =1/3, neutrons travel isotropically If E zz >1/3, neutrons favor traveling axially If E zz <1/3, neutrons favor traveling radially Mean Free Path: Fast: ~5-6cm Thermal: ~1-2cm

23 Solution with Discontinuity Factors Each of these methods can also be used with ZDFs to reproduce the reference solution Solver Reference (Serpent) Use of Discontinuity Eigenvalue Difference from Factors Serpent (pcm) P1 No DFs P1 With DFs P2 No DFs P2 With DFs P3 No DFs P3 With DFs QD No DFs QD With DFs Further details can be found in my thesis 23

24 Assembly Analysis Discussion Quasi-diffusion improved the axial solution for an RBWRtype assembly compared to typical diffusion The Quasi-diffusion method provided similar results for the eigenvalue and flux as the P3 approximation ZDFs can be used for higher-order methods to reproduce the exact transport solution from Serpent Further improvements can be made by refining the axial meshing within Serpent but increases the computational burden to achieve statistical accuracy within each GCU 24

25 Summary and Conclusions For axially heterogeneous cores such as the RBWR, diffusion theory is unable to capture the axial streaming effect. Higher-order transport corrections are required such as P3 or Quasi-diffusion Implemented tallies within the Serpent Monte Carlo code to calculate Eddington factors for the Quasi-diffusion method The generation of Eddington factors is computationally inexpensive using Monte Carlo methods Currently working on implementing the Quasi-diffusion method into the nodal code PARCS 25

26 Questions?

Advanced Methods Development for Equilibrium Cycle Calculations of the RBWR. Andrew Hall 11/7/2013

Advanced Methods Development for Equilibrium Cycle Calculations of the RBWR. Andrew Hall 11/7/2013 Advanced Methods Development for Equilibrium Cycle Calculations of the RBWR Andrew Hall 11/7/2013 Outline RBWR Motivation and Desin Why use Serpent Cross Sections? Modelin the RBWR Axial Discontinuity

More information

Cross Section Generation Strategy for High Conversion Light Water Reactors Bryan Herman and Eugene Shwageraus

Cross Section Generation Strategy for High Conversion Light Water Reactors Bryan Herman and Eugene Shwageraus Cross Section Generation Strategy for High Conversion Light Water Reactors Bryan Herman and Eugene Shwageraus 1 Department of Nuclear Science and Engineering Massachusetts Institute of Technology 77 Massachusetts

More information

On the use of SERPENT code for few-group XS generation for Sodium Fast Reactors

On the use of SERPENT code for few-group XS generation for Sodium Fast Reactors On the use of SERPENT code for few-group XS generation for Sodium Fast Reactors Raquel Ochoa Nuclear Engineering Department UPM CONTENTS: 1. Introduction 2. Comparison with ERANOS 3. Parameters required

More information

Neutronic analysis of SFR lattices: Serpent vs. HELIOS-2

Neutronic analysis of SFR lattices: Serpent vs. HELIOS-2 Neutronic analysis of SFR lattices: Serpent vs. HELIOS-2 E. Fridman 1, R. Rachamin 1, C. Wemple 2 1 Helmholtz Zentrum Dresden Rossendorf 2 Studsvik Scandpower Inc. Text optional: Institutsname Prof. Dr.

More information

CALCULATION OF TEMPERATURE REACTIVITY COEFFICIENTS IN KRITZ-2 CRITICAL EXPERIMENTS USING WIMS ABSTRACT

CALCULATION OF TEMPERATURE REACTIVITY COEFFICIENTS IN KRITZ-2 CRITICAL EXPERIMENTS USING WIMS ABSTRACT CALCULATION OF TEMPERATURE REACTIVITY COEFFICIENTS IN KRITZ-2 CRITICAL EXPERIMENTS USING WIMS D J Powney AEA Technology, Nuclear Science, Winfrith Technology Centre, Dorchester, Dorset DT2 8DH United Kingdom

More information

Critical Experiment Analyses by CHAPLET-3D Code in Two- and Three-Dimensional Core Models

Critical Experiment Analyses by CHAPLET-3D Code in Two- and Three-Dimensional Core Models Journal of NUCLEAR SCIENCE and TECHNOLOGY, Vol. 42, No. 1, p. 101 108 (January 2005) TECHNICAL REPORT Critical Experiment Analyses by CHAPLET-3D Code in Two- and Three-Dimensional Core Models Shinya KOSAKA

More information

Click to edit Master title style

Click to edit Master title style Automated calculation sequence for group constant generation in Serpent 4th International Serpent UGM, Cambridge, UK, Sept. 17-19, 014 Jaakko Leppänen VTT Technical Research Center of Finland Click to

More information

PWR CONTROL ROD EJECTION ANALYSIS WITH THE MOC CODE DECART

PWR CONTROL ROD EJECTION ANALYSIS WITH THE MOC CODE DECART PWR CONTROL ROD EJECTION ANALYSIS WITH THE MOC CODE DECART Mathieu Hursin and Thomas Downar University of California Berkeley, USA mhursin@nuc.berkeley.edu,downar@nuc.berkeley.edu ABSTRACT During the past

More information

Computational and Experimental Benchmarking for Transient Fuel Testing: Neutronics Tasks

Computational and Experimental Benchmarking for Transient Fuel Testing: Neutronics Tasks Computational and Experimental Benchmarking for Transient Fuel Testing: Neutronics Tasks T. Downar W. Martin University of Michigan C. Lee Argonne National Laboratory November 19, 2015 Objective of Neutronics

More information

Challenges in Prismatic HTR Reactor Physics

Challenges in Prismatic HTR Reactor Physics Challenges in Prismatic HTR Reactor Physics Javier Ortensi R&D Scientist - Idaho National Laboratory www.inl.gov Advanced Reactor Concepts Workshop, PHYSOR 2012 April 15, 2012 Outline HTR reactor physics

More information

A DARK GREY P O N T, with a Switch Tail, and a small Star on the Forehead. Any

A DARK GREY P O N T, with a Switch Tail, and a small Star on the Forehead. Any Y Y Y X X «/ YY Y Y ««Y x ) & \ & & } # Y \#$& / Y Y X» \\ / X X X x & Y Y X «q «z \x» = q Y # % \ & [ & Z \ & { + % ) / / «q zy» / & / / / & x x X / % % ) Y x X Y $ Z % Y Y x x } / % «] «] # z» & Y X»

More information

On the Use of Serpent for SMR Modeling and Cross Section Generation

On the Use of Serpent for SMR Modeling and Cross Section Generation On the Use of Serpent for SMR Modeling and Cross Section Generation Yousef Alzaben, Victor. H. Sánchez-Espinoza, Robert Stieglitz INSTITUTE for NEUTRON PHYSICS and REACTOR TECHNOLOGY (INR) KIT The Research

More information

Nuclear Reactor Physics I Final Exam Solutions

Nuclear Reactor Physics I Final Exam Solutions .11 Nuclear Reactor Physics I Final Exam Solutions Author: Lulu Li Professor: Kord Smith May 5, 01 Prof. Smith wants to stress a couple of concepts that get people confused: Square cylinder means a cylinder

More information

A Hybrid Stochastic Deterministic Approach for Full Core Neutronics Seyed Rida Housseiny Milany, Guy Marleau

A Hybrid Stochastic Deterministic Approach for Full Core Neutronics Seyed Rida Housseiny Milany, Guy Marleau A Hybrid Stochastic Deterministic Approach for Full Core Neutronics Seyed Rida Housseiny Milany, Guy Marleau Institute of Nuclear Engineering, Ecole Polytechnique de Montreal, C.P. 6079 succ Centre-Ville,

More information

2. The Steady State and the Diffusion Equation

2. The Steady State and the Diffusion Equation 2. The Steady State and the Diffusion Equation The Neutron Field Basic field quantity in reactor physics is the neutron angular flux density distribution: Φ( r r, E, r Ω,t) = v(e)n( r r, E, r Ω,t) -- distribution

More information

Control Rod Homogenization in Heterogeneous Sodium-Cooled Fast Reactors.

Control Rod Homogenization in Heterogeneous Sodium-Cooled Fast Reactors. Control Rod Homogenization in Heterogeneous Sodium-Cooled Fast Reactors. Mikael Andersson - Chalmers SNEC/SKC student/industry day, 14 June, 2016 Content M. Andersson Control rods in voided SFRs 2 / 12

More information

Fuel BurnupCalculations and Uncertainties

Fuel BurnupCalculations and Uncertainties Fuel BurnupCalculations and Uncertainties Outline Review lattice physics methods Different approaches to burnup predictions Linkage to fuel safety criteria Sources of uncertainty Survey of available codes

More information

VERIFICATION OF A REACTOR PHYSICS CALCULATION SCHEME FOR THE CROCUS REACTOR. Paul Scherrer Institut (PSI) CH-5232 Villigen-PSI 2

VERIFICATION OF A REACTOR PHYSICS CALCULATION SCHEME FOR THE CROCUS REACTOR. Paul Scherrer Institut (PSI) CH-5232 Villigen-PSI 2 VERIFICATION OF A REACTOR PHYSICS CALCULATION SCHEME FOR THE CROCUS REACTOR M. Hursin 1,*, D. Siefman 2, A. Rais 2, G. Girardin 2 and A. Pautz 1,2 1 Paul Scherrer Institut (PSI) CH-5232 Villigen-PSI 2

More information

Cost-accuracy analysis of a variational nodal 2D/1D approach to pin resolved neutron transport

Cost-accuracy analysis of a variational nodal 2D/1D approach to pin resolved neutron transport Cost-accuracy analysis of a variational nodal 2D/1D approach to pin resolved neutron transport ZHANG Tengfei 1, WU Hongchun 1, CAO Liangzhi 1, LEWIS Elmer-E. 2, SMITH Micheal-A. 3, and YANG Won-sik 4 1.

More information

Rattlesnake, MAMMOTH and Research in Support of TREAT Kinetics Calculations

Rattlesnake, MAMMOTH and Research in Support of TREAT Kinetics Calculations Rattlesnake, MAMMOTH and Research in Support of TREAT Kinetics Calculations www.inl.gov DOE NEUP-IRP Meeting University of Michigan May 24, 2016 TREAT s mission is to deliver transient energy deposition

More information

Study of Predictor-corrector methods. for Monte Carlo Burnup Codes. Dan Kotlyar Dr. Eugene Shwageraus. Supervisor

Study of Predictor-corrector methods. for Monte Carlo Burnup Codes. Dan Kotlyar Dr. Eugene Shwageraus. Supervisor Serpent International Users Group Meeting Madrid, Spain, September 19-21, 2012 Study of Predictor-corrector methods for Monte Carlo Burnup Codes By Supervisor Dan Kotlyar Dr. Eugene Shwageraus Introduction

More information

A Hybrid Deterministic / Stochastic Calculation Model for Transient Analysis

A Hybrid Deterministic / Stochastic Calculation Model for Transient Analysis A Hybrid Deterministic / Stochastic Calculation Model for Transient Analysis A. Aures 1,2, A. Pautz 2, K. Velkov 1, W. Zwermann 1 1 Gesellschaft für Anlagen- und Reaktorsicherheit (GRS) ggmbh Boltzmannstraße

More information

Nonlinear Iterative Solution of the Neutron Transport Equation

Nonlinear Iterative Solution of the Neutron Transport Equation Nonlinear Iterative Solution of the Neutron Transport Equation Emiliano Masiello Commissariat à l Energie Atomique de Saclay /DANS//SERMA/LTSD emiliano.masiello@cea.fr 1/37 Outline - motivations and framework

More information

Testing the EPRI Reactivity Depletion Decrement Uncertainty Methods

Testing the EPRI Reactivity Depletion Decrement Uncertainty Methods Testing the EPRI Reactivity Depletion Decrement Uncertainty Methods by Elliot M. Sykora B.S. Physics, Massachusetts Institute of Technology (0) Submitted to the Department of Nuclear Science and Engineering

More information

COMPARATIVE ANALYSIS OF WWER-440 REACTOR CORE WITH PARCS/HELIOS AND PARCS/SERPENT CODES

COMPARATIVE ANALYSIS OF WWER-440 REACTOR CORE WITH PARCS/HELIOS AND PARCS/SERPENT CODES COMPARATIVE ANALYSIS OF WWER-440 REACTOR CORE WITH PARCS/HELIOS AND PARCS/SERPENT CODES S. Bznuni, A. Amirjanyan, N. Baghdasaryan Nuclear and Radiation Safety Center Yerevan, Armenia Email: s.bznuni@nrsc.am

More information

Malcolm Bean AT THE MAY All Rights Reserved. Signature of Author: Malcolm Bean Department of Nuclear Science and Engineering

Malcolm Bean AT THE MAY All Rights Reserved. Signature of Author: Malcolm Bean Department of Nuclear Science and Engineering COMPUTATIONAL NEUTRONICS ANALYSIS OF TRIGA REACTORS DURING POWER PULSING ARCHIIVE By Malcolm Bean SUBMITTED TO THE DEPARTMENT OF NUCLEAR SCIENCE AND ENGINEERING IN PARTIAL FULFILLMENT OF THE REQUIREMENT

More information

Core Physics Second Part How We Calculate LWRs

Core Physics Second Part How We Calculate LWRs Core Physics Second Part How We Calculate LWRs Dr. E. E. Pilat MIT NSED CANES Center for Advanced Nuclear Energy Systems Method of Attack Important nuclides Course of calc Point calc(pd + N) ϕ dn/dt N

More information

Available online at ScienceDirect. Energy Procedia 71 (2015 )

Available online at   ScienceDirect. Energy Procedia 71 (2015 ) Available online at www.sciencedirect.com ScienceDirect Energy Procedia 71 (2015 ) 97 105 The Fourth International Symposium on Innovative Nuclear Energy Systems, INES-4 High-Safety Fast Reactor Core Concepts

More information

Application of the next generation of the OSCAR code system to the ETRR-2 multi-cycle depletion benchmark

Application of the next generation of the OSCAR code system to the ETRR-2 multi-cycle depletion benchmark Application of the next generation of the OSCAR code system to the ETRR-2 multi-cycle depletion benchmark M. Mashau 1, S.A. Groenewald 1, F.A. van Heerden 1 1) The South African Nuclear Energy Corporation

More information

High-Order Finite Difference Nodal Method for Neutron Diffusion Equation

High-Order Finite Difference Nodal Method for Neutron Diffusion Equation Journal of NUCLEAR SCIENCE and TECHNOLOGY, 28[4], pp. 285~292 (April 1991) 285 High-Order Finite Difference Nodal Method for Neutron Diffusion Equation Kazuo AZEKURA and Kunitoshi KURIHARA Energy Research

More information

Diffusion coefficients and critical spectrum methods in Serpent

Diffusion coefficients and critical spectrum methods in Serpent Diffusion coefficients and critical spectrum methods in Serpent Serpent User Group Meeting 2018 May 30, 2018 Espoo, Finland A. Rintala VTT Technical Research Centre of Finland Ltd Overview Some diffusion

More information

ENHANCEMENT OF COMPUTER SYSTEMS FOR CANDU REACTOR PHYSICS SIMULATIONS

ENHANCEMENT OF COMPUTER SYSTEMS FOR CANDU REACTOR PHYSICS SIMULATIONS ENHANCEMENT OF COMPUTER SYSTEMS FOR CANDU REACTOR PHYSICS SIMULATIONS E. Varin, M. Dahmani, W. Shen, B. Phelps, A. Zkiek, E-L. Pelletier, T. Sissaoui Candu Energy Inc. WORKSHOP ON ADVANCED CODE SUITE FOR

More information

On-the-fly Doppler Broadening in Serpent

On-the-fly Doppler Broadening in Serpent On-the-fly Doppler Broadening in Serpent 1st International Serpent User Group Meeting 16.9.2011, Dresden Tuomas Viitanen VTT Technical Research Centre of Finland Outline Fuel temperatures in neutronics

More information

CASMO-5/5M Code and Library Status. J. Rhodes, K. Smith, D. Lee, Z. Xu, & N. Gheorghiu Arizona 2008

CASMO-5/5M Code and Library Status. J. Rhodes, K. Smith, D. Lee, Z. Xu, & N. Gheorghiu Arizona 2008 CASMO-5/5M Code and Library Status J. Rhodes, K. Smith, D. Lee, Z. Xu, & N. Gheorghiu Arizona 2008 CASMO Methodolgy Evolution CASMO-3 Homo. transmission probability/external Gd depletion CASMO-4 up to

More information

SENSITIVITY ANALYSIS OF ALLEGRO MOX CORE. Bratislava, Iľkovičova 3, Bratislava, Slovakia

SENSITIVITY ANALYSIS OF ALLEGRO MOX CORE. Bratislava, Iľkovičova 3, Bratislava, Slovakia SENSITIVITY ANALYSIS OF ALLEGRO MOX CORE Jakub Lüley 1, Ján Haščík 1, Vladimír Slugeň 1, Vladimír Nečas 1 1 Institute of Nuclear and Physical Engineering, Slovak University of Technology in Bratislava,

More information

The Use of Serpent 2 in Support of Modeling of the Transient Test Reactor at Idaho National Laboratory

The Use of Serpent 2 in Support of Modeling of the Transient Test Reactor at Idaho National Laboratory The Use of Serpent 2 in Support of Modeling of the Transient Test Reactor at Idaho National Laboratory Sixth International Serpent User s Group Meeting Politecnico di Milano, Milan, Italy 26-29 September,

More information

Neutron reproduction. factor ε. k eff = Neutron Life Cycle. x η

Neutron reproduction. factor ε. k eff = Neutron Life Cycle. x η Neutron reproduction factor k eff = 1.000 What is: Migration length? Critical size? How does the geometry affect the reproduction factor? x 0.9 Thermal utilization factor f x 0.9 Resonance escape probability

More information

Reactivity Coefficients

Reactivity Coefficients Reactivity Coefficients B. Rouben McMaster University Course EP 4D03/6D03 Nuclear Reactor Analysis (Reactor Physics) 2015 Sept.-Dec. 2015 September 1 Reactivity Changes In studying kinetics, we have seen

More information

Serco Assurance. Resonance Theory and Transport Theory in WIMSD J L Hutton

Serco Assurance. Resonance Theory and Transport Theory in WIMSD J L Hutton Serco Assurance Resonance Theory and Transport Theory in WIMSD J L Hutton 2 March 2004 Outline of Talk Resonance Treatment Outline of problem - pin cell geometry U 238 cross section Simple non-mathematical

More information

A Cumulative migration method for computing rigorous transport cross sections and diffusion coefficients for LWR lattices with Monte Carlo

A Cumulative migration method for computing rigorous transport cross sections and diffusion coefficients for LWR lattices with Monte Carlo A Cumulative migration method for computing rigorous transport cross sections and diffusion coefficients for LWR lattices with Monte Carlo The MIT Faculty has made this article openly available. Please

More information

Uncertainty quantification using SCALE 6.2 package and GPT techniques implemented in Serpent 2

Uncertainty quantification using SCALE 6.2 package and GPT techniques implemented in Serpent 2 6th International Serpent User Group Meeting Politecnico di Milano, Milan, Italy September 26 th -30 th, 2016 Uncertainty quantification using SCALE 6.2 package and GPT techniques implemented in Serpent

More information

Neutron Diffusion Theory: One Velocity Model

Neutron Diffusion Theory: One Velocity Model 22.05 Reactor Physics - Part Ten 1. Background: Neutron Diffusion Theory: One Velocity Model We now have sufficient tools to begin a study of the second method for the determination of neutron flux as

More information

Using the Application Builder for Neutron Transport in Discrete Ordinates

Using the Application Builder for Neutron Transport in Discrete Ordinates Using the Application Builder for Neutron Transport in Discrete Ordinates C.J. Hurt University of Tennessee Nuclear Engineering Department (This material is based upon work supported under a Department

More information

Preventing xenon oscillations in Monte Carlo burnup calculations by forcing equilibrium

Preventing xenon oscillations in Monte Carlo burnup calculations by forcing equilibrium Preventing xenon oscillations in Monte Carlo burnup calculations by forcing equilibrium Aarno Isotaloa), Jaakko Leppänenb), Jan Dufekcc) a) Aalto University, Finland b) VTT Technical Research Centrte of

More information

JOYO MK-III Performance Test at Low Power and Its Analysis

JOYO MK-III Performance Test at Low Power and Its Analysis PHYSOR 200 -The Physics of Fuel Cycles and Advanced Nuclear Systems: Global Developments Chicago, Illinois, April 25-29, 200, on CD-ROM, American Nuclear Society, Lagrange Park, IL. (200) JOYO MK-III Performance

More information

Modeling of the Multi-SERTTA Experiment with MAMMOTH

Modeling of the Multi-SERTTA Experiment with MAMMOTH INL/MIS-17-43729 INL/MIS-16-40269 Approved for for public release; distribution is is unlimited. Modeling of the Multi-SERTTA Experiment with MAMMOTH Javier Ortensi, Ph.D. P.E. R&D Scientist Nuclear Science

More information

Nuclear data sensitivity and uncertainty assessment of sodium voiding reactivity coefficients of an ASTRID-like Sodium Fast Reactor

Nuclear data sensitivity and uncertainty assessment of sodium voiding reactivity coefficients of an ASTRID-like Sodium Fast Reactor Nuclear data sensitivity and uncertainty assessment of sodium voiding reactivity coefficients of an ASTRID-like Sodium Fast Reactor García-Herranz Nuria 1,*, Panadero Anne-Laurène 2, Martinez Ana 1, Pelloni

More information

OECD/NEA Transient Benchmark Analysis with PARCS - THERMIX

OECD/NEA Transient Benchmark Analysis with PARCS - THERMIX OECD/NEA Transient Benchmark Analysis with PARCS - THERMIX Volkan Seker Thomas J. Downar OECD/NEA PBMR Workshop Paris, France June 16, 2005 Introduction Motivation of the benchmark Code-to-code comparisons.

More information

A Dummy Core for V&V and Education & Training Purposes at TechnicAtome: In and Ex-Core Calculations

A Dummy Core for V&V and Education & Training Purposes at TechnicAtome: In and Ex-Core Calculations A Dummy Core for V&V and Education & Training Purposes at TechnicAtome: In and Ex-Core Calculations S. Nicolas, A. Noguès, L. Manifacier, L. Chabert TechnicAtome, CS 50497, 13593 Aix-en-Provence Cedex

More information

LOWELL WEEKLY JOURNAL

LOWELL WEEKLY JOURNAL Y -» $ 5 Y 7 Y Y -Y- Q x Q» 75»»/ q } # ]»\ - - $ { Q» / X x»»- 3 q $ 9 ) Y q - 5 5 3 3 3 7 Q q - - Q _»»/Q Y - 9 - - - )- [ X 7» -» - )»? / /? Q Y»» # X Q» - -?» Q ) Q \ Q - - - 3? 7» -? #»»» 7 - / Q

More information

Safety Analyses for Dynamical Events (SADE) SAFIR2018 Interim Seminar Ville Sahlberg

Safety Analyses for Dynamical Events (SADE) SAFIR2018 Interim Seminar Ville Sahlberg VTT TECHNICAL RESEARCH CENTRE OF FINLAND LTD Safety Analyses for Dynamical Events (SADE) SAFIR2018 Interim Seminar Ville Sahlberg SADE Project SADE produces more reliable answers to safety requirements

More information

A PERTURBATION ANALYSIS SCHEME IN WIMS USING TRANSPORT THEORY FLUX SOLUTIONS

A PERTURBATION ANALYSIS SCHEME IN WIMS USING TRANSPORT THEORY FLUX SOLUTIONS A PERTURBATION ANALYSIS SCHEME IN WIMS USING TRANSPORT THEORY FLUX SOLUTIONS J G Hosking, T D Newton, B A Lindley, P J Smith and R P Hiles Amec Foster Wheeler Dorchester, Dorset, UK glynn.hosking@amecfw.com

More information

Excerpt from the Proceedings of the COMSOL Users Conference 2007 Grenoble

Excerpt from the Proceedings of the COMSOL Users Conference 2007 Grenoble Excerpt from the Proceedings of the COSOL Users Conference 007 Grenoble Evaluation of the moderator temperature coefficient of reactivity in a PWR V. emoli *,, A. Cammi Politecnico di ilano, Department

More information

ABSTRACT 1 INTRODUCTION

ABSTRACT 1 INTRODUCTION A NODAL SP 3 APPROACH FOR REACTORS WITH HEXAGONAL FUEL ASSEMBLIES S. Duerigen, U. Grundmann, S. Mittag, B. Merk, S. Kliem Forschungszentrum Dresden-Rossendorf e.v. Institute of Safety Research P.O. Box

More information

Demonstration of Full PWR Core Coupled Monte Carlo Neutron Transport and Thermal-Hydraulic Simulations Using Serpent 2/ SUBCHANFLOW

Demonstration of Full PWR Core Coupled Monte Carlo Neutron Transport and Thermal-Hydraulic Simulations Using Serpent 2/ SUBCHANFLOW Demonstration of Full PWR Core Coupled Monte Carlo Neutron Transport and Thermal-Hydraulic Simulations Using Serpent 2/ SUBCHANFLOW M. Daeubler Institute for Neutron Physics and Reactor Technology (INR)

More information

Advanced Heavy Water Reactor. Amit Thakur Reactor Physics Design Division Bhabha Atomic Research Centre, INDIA

Advanced Heavy Water Reactor. Amit Thakur Reactor Physics Design Division Bhabha Atomic Research Centre, INDIA Advanced Heavy Water Reactor Amit Thakur Reactor Physics Design Division Bhabha Atomic Research Centre, INDIA Design objectives of AHWR The Advanced Heavy Water Reactor (AHWR) is a unique reactor designed

More information

RECXWH2 W/o s3-1

RECXWH2 W/o s3-1 .,, Nuclear Energy Research Initiative (NERI) DE-FG03-99SF21922 Program Tasks 1 & 3 Quarterly Technical Progress Report July 1- September 30, 2000 An Innovative Reactor Analysis Methodology Based on a

More information

Sodium void coefficient map by Serpent

Sodium void coefficient map by Serpent Wir schaffen Wissen heute für morgen Paul Scheer Institut 4th Annual Serpent Users Group Meeting (Cambridge Sept 17-19, 2014): Sandro Pelloni Sodium void coefficient map by Serpent PSI, 8. September 2014

More information

Research Article Uncertainty and Sensitivity Analysis of Void Reactivity Feedback for 3D BWR Assembly Model

Research Article Uncertainty and Sensitivity Analysis of Void Reactivity Feedback for 3D BWR Assembly Model Hindawi Science and Technology of Nuclear Installations Volume 2017, Article ID 989727, 9 pages https://doi.org/10.1155/2017/989727 Research Article Uncertainty and Sensitivity Analysis of Void Reactivity

More information

Uniformity of the Universe

Uniformity of the Universe Outline Universe is homogenous and isotropic Spacetime metrics Friedmann-Walker-Robertson metric Number of numbers needed to specify a physical quantity. Energy-momentum tensor Energy-momentum tensor of

More information

Whole Core Pin-by-Pin Coupled Neutronic-Thermal-hydraulic Steady state and Transient Calculations using COBAYA3 code

Whole Core Pin-by-Pin Coupled Neutronic-Thermal-hydraulic Steady state and Transient Calculations using COBAYA3 code Whole Core Pin-by-Pin Coupled Neutronic-Thermal-hydraulic Steady state and Transient Calculations using COBAYA3 code J. Jiménez, J.J. Herrero, D. Cuervo and J.M. Aragonés Departamento de Ingeniería Nuclear

More information

Some remarks on XS preparation with SERPENT

Some remarks on XS preparation with SERPENT Some remarks on XS preparation wit SERPENT E. Fridman Text optional: Institutsname Prof. Dr. Hans Mustermann www.fzd.de Mitlied der Leibniz-Gemeinscaft Outline Leakae-corrected omoenized XS XS preparation

More information

Nonlinear Computational Methods for Simulating Interactions of Radiation with Matter in Physical Systems

Nonlinear Computational Methods for Simulating Interactions of Radiation with Matter in Physical Systems Nonlinear Computational Methods for Simulating Interactions of Radiation with Matter in Physical Systems Dmitriy Y. Anistratov Department of Nuclear Engineering North Carolina State University NE Seminar,

More information

ANALYSIS OF THE OECD PEACH BOTTOM TURBINE TRIP 2 TRANSIENT BENCHMARK WITH THE COUPLED NEUTRONIC AND THERMAL-HYDRAULICS CODE TRAC-M/PARCS

ANALYSIS OF THE OECD PEACH BOTTOM TURBINE TRIP 2 TRANSIENT BENCHMARK WITH THE COUPLED NEUTRONIC AND THERMAL-HYDRAULICS CODE TRAC-M/PARCS ANALYSIS OF THE OECD PEACH BOTTOM TURBINE TRIP 2 TRANSIENT BENCHMARK WITH THE COUPLED NEUTRONIC AND THERMAL-HYDRAULICS CODE TRAC-M/PARCS Deokjung Lee and Thomas J. Downar School of Nuclear Engineering

More information

PHYS-E0562 Ydinenergiatekniikan jatkokurssi Lecture 4 Diffusion theory

PHYS-E0562 Ydinenergiatekniikan jatkokurssi Lecture 4 Diffusion theory PHYS-E0562 Ydinenergiatekniikan jatkokurssi Lecture 4 Diffusion theory Jaakko Leppänen (Lecturer), Ville Valtavirta (Assistant) Department of Applied Physics Aalto University, School of Science Jaakko.Leppanen@aalto.fi

More information

Chapter 2 Nuclear Reactor Calculations

Chapter 2 Nuclear Reactor Calculations Chapter 2 Nuclear Reactor Calculations Keisuke Okumura, Yoshiaki Oka, and Yuki Ishiwatari Abstract The most fundamental evaluation quantity of the nuclear design calculation is the effective multiplication

More information

Fuel cycle studies on minor actinide transmutation in Generation IV fast reactors

Fuel cycle studies on minor actinide transmutation in Generation IV fast reactors Fuel cycle studies on minor actinide transmutation in Generation IV fast reactors M. Halász, M. Szieberth, S. Fehér Budapest University of Technology and Economics, Institute of Nuclear Techniques Contents

More information

The moderator temperature coefficient MTC is defined as the change in reactivity per degree change in moderator temperature.

The moderator temperature coefficient MTC is defined as the change in reactivity per degree change in moderator temperature. Moderator Temperature Coefficient MTC 1 Moderator Temperature Coefficient The moderator temperature coefficient MTC is defined as the change in reactivity per degree change in moderator temperature. α

More information

Fundamentals of Nuclear Reactor Physics

Fundamentals of Nuclear Reactor Physics Fundamentals of Nuclear Reactor Physics E. E. Lewis Professor of Mechanical Engineering McCormick School of Engineering and Applied Science Northwestern University AMSTERDAM BOSTON HEIDELBERG LONDON NEW

More information

Neatest and Promptest Manner. E d i t u r ami rul)lihher. FOIt THE CIIILDIIES'. Trifles.

Neatest and Promptest Manner. E d i t u r ami rul)lihher. FOIt THE CIIILDIIES'. Trifles. » ~ $ ) 7 x X ) / ( 8 2 X 39 ««x» ««! «! / x? \» «({? «» q «(? (?? x! «? 8? ( z x x q? ) «q q q ) x z x 69 7( X X ( 3»«! ( ~«x ««x ) (» «8 4 X «4 «4 «8 X «x «(» X) ()»» «X «97 X X X 4 ( 86) x) ( ) z z

More information

Improved time integration methods for burnup calculations with Monte Carlo neutronics

Improved time integration methods for burnup calculations with Monte Carlo neutronics Improved time integration methods for burnup calculations with Monte Carlo neutronics Aarno Isotalo 13.4.2010 Burnup calculations Solving time development of reactor core parameters Nuclide inventory,

More information

Sensitivity Analysis of Gas-cooled Fast Reactor

Sensitivity Analysis of Gas-cooled Fast Reactor Sensitivity Analysis of Gas-cooled Fast Reactor Jakub Lüley, Štefan Čerba, Branislav Vrban, Ján Haščík Institute of Nuclear and Physical Engineering, Slovak University of Technology in Bratislava Ilkovičova

More information

Chapter 5. The Differential Forms of the Fundamental Laws

Chapter 5. The Differential Forms of the Fundamental Laws Chapter 5 The Differential Forms of the Fundamental Laws 1 5.1 Introduction Two primary methods in deriving the differential forms of fundamental laws: Gauss s Theorem: Allows area integrals of the equations

More information

Lesson 14: Reactivity Variations and Control

Lesson 14: Reactivity Variations and Control Lesson 14: Reactivity Variations and Control Reactivity Variations External, Internal Short-term Variations Reactivity Feedbacks Reactivity Coefficients and Safety Medium-term Variations Xe 135 Poisoning

More information

NEUTRON PHYSICAL ANALYSIS OF SIX ENERGETIC FAST REACTORS

NEUTRON PHYSICAL ANALYSIS OF SIX ENERGETIC FAST REACTORS NEUTRON PHYSICAL ANALYSIS OF SIX ENERGETIC FAST REACTORS Peter Vertes Hungarian Academy of Sciences, Centre for Energy Research ABSTRACT Numerous fast reactor constructions have been appeared world-wide

More information

Serpent Monte Carlo Neutron Transport Code

Serpent Monte Carlo Neutron Transport Code Serpent Monte Carlo Neutron Transport Code NEA Expert Group on Advanced Monte Carlo Techniques, Meeting September 17 2012 Jaakko Leppänen / Tuomas Viitanen VTT Technical Research Centre of Finland Outline

More information

Lesson 6: Diffusion Theory (cf. Transport), Applications

Lesson 6: Diffusion Theory (cf. Transport), Applications Lesson 6: Diffusion Theory (cf. Transport), Applications Transport Equation Diffusion Theory as Special Case Multi-zone Problems (Passive Media) Self-shielding Effects Diffusion Kernels Typical Values

More information

Homework 1/Solutions. Graded Exercises

Homework 1/Solutions. Graded Exercises MTH 310-3 Abstract Algebra I and Number Theory S18 Homework 1/Solutions Graded Exercises Exercise 1. Below are parts of the addition table and parts of the multiplication table of a ring. Complete both

More information

ANALYSIS OF THE COOLANT DENSITY REACTIVITY COEFFICIENT IN LFRs AND SFRs VIA MONTE CARLO PERTURBATION/SENSITIVITY

ANALYSIS OF THE COOLANT DENSITY REACTIVITY COEFFICIENT IN LFRs AND SFRs VIA MONTE CARLO PERTURBATION/SENSITIVITY ANALYSIS OF THE COOLANT DENSITY REACTIVITY COEFFICIENT IN LFRs AND SFRs VIA MONTE CARLO PERTURBATION/SENSITIVITY Manuele Aufiero, Michael Martin and Massimiliano Fratoni University of California, Berkeley,

More information

REACTOR PHYSICS ASPECTS OF PLUTONIUM RECYCLING IN PWRs

REACTOR PHYSICS ASPECTS OF PLUTONIUM RECYCLING IN PWRs REACTOR PHYSICS ASPECTS OF PLUTONIUM RECYCLING IN s Present address: J.L. Kloosterman Interfaculty Reactor Institute Delft University of Technology Mekelweg 15, NL-2629 JB Delft, the Netherlands Fax: ++31

More information

Two Posts to Fill On School Board

Two Posts to Fill On School Board Y Y 9 86 4 4 qz 86 x : ( ) z 7 854 Y x 4 z z x x 4 87 88 Y 5 x q x 8 Y 8 x x : 6 ; : 5 x ; 4 ( z ; ( ) ) x ; z 94 ; x 3 3 3 5 94 ; ; ; ; 3 x : 5 89 q ; ; x ; x ; ; x : ; ; ; ; ; ; 87 47% : () : / : 83

More information

Energy Dependence of Neutron Flux

Energy Dependence of Neutron Flux Energy Dependence of Neutron Flux B. Rouben McMaster University Course EP 4D03/6D03 Nuclear Reactor Analysis (Reactor Physics) 2015 Sept.-Dec. 2015 September 1 Contents We start the discussion of the energy

More information

New methods implemented in TRIPOLI-4. New methods implemented in TRIPOLI-4. J. Eduard Hoogenboom Delft University of Technology

New methods implemented in TRIPOLI-4. New methods implemented in TRIPOLI-4. J. Eduard Hoogenboom Delft University of Technology New methods implemented in TRIPOLI-4 New methods implemented in TRIPOLI-4 J. Eduard Hoogenboom Delft University of Technology on behalf of Cheikh Diop (WP1.1 leader) and all other contributors to WP1.1

More information

EFFECT OF DISTRIBUTION OF VOLUMETRIC HEAT GENERATION ON MODERATOR TEMPERATURE DISTRIBUTION

EFFECT OF DISTRIBUTION OF VOLUMETRIC HEAT GENERATION ON MODERATOR TEMPERATURE DISTRIBUTION EFFECT OF DISTRIBUTION OF VOLUMETRIC HEAT GENERATION ON MODERATOR TEMPERATURE DISTRIBUTION A. K. Kansal, P. Suryanarayana, N. K. Maheshwari Reactor Engineering Division, Bhabha Atomic Research Centre,

More information

Cross Section Generation Guidelines for TRACE- PARCS

Cross Section Generation Guidelines for TRACE- PARCS NUREG/CR-764 ORNL/TM-202/58 Cross Section Generation Guidelines for TRACE- PARCS Office of Nuclear Regulatory Research AVAILABILITY OF REFERENCE MATERIALS IN NRC PUBLICATIONS NRC Reference Material As

More information

AE/ME 339. K. M. Isaac Professor of Aerospace Engineering. 12/21/01 topic7_ns_equations 1

AE/ME 339. K. M. Isaac Professor of Aerospace Engineering. 12/21/01 topic7_ns_equations 1 AE/ME 339 Professor of Aerospace Engineering 12/21/01 topic7_ns_equations 1 Continuity equation Governing equation summary Non-conservation form D Dt. V 0.(2.29) Conservation form ( V ) 0...(2.33) t 12/21/01

More information

CASMO-5 Development and Applications. Abstract

CASMO-5 Development and Applications. Abstract Organized and hosted by the Canadian Nuclear Society. Vancouver, BC, Canada. 2006 September 10-14 CASMO-5 Development and Applications Joel Rhodes *1, Kord Smith 1, and Deokjung Lee 1 1 Studsvik Scandpower

More information

Study of Burnup Reactivity and Isotopic Inventories in REBUS Program

Study of Burnup Reactivity and Isotopic Inventories in REBUS Program Study of Burnup Reactivity and Isotopic Inventories in REBUS Program T. Yamamoto 1, Y. Ando 1, K. Sakurada 2, Y. Hayashi 2, and K. Azekura 3 1 Japan Nuclear Energy Safety Organization (JNES) 2 Toshiba

More information

Lecture 20 Reactor Theory-V

Lecture 20 Reactor Theory-V Objectives In this lecture you will learn the following We will discuss the criticality condition and then introduce the concept of k eff.. We then will introduce the four factor formula and two group

More information

Incineration of Plutonium in PWR Using Hydride Fuel

Incineration of Plutonium in PWR Using Hydride Fuel Incineration of Plutonium in PWR Using Hydride Fuel Francesco Ganda and Ehud Greenspan University of California, Berkeley ARWIF-2005 Oak-Ridge, TN February 16-18, 2005 Pu transmutation overview Many approaches

More information

Chapter 1 Fluid Characteristics

Chapter 1 Fluid Characteristics Chapter 1 Fluid Characteristics 1.1 Introduction 1.1.1 Phases Solid increasing increasing spacing and intermolecular liquid latitude of cohesive Fluid gas (vapor) molecular force plasma motion 1.1.2 Fluidity

More information

Flight Dynamics & Control Equations of Motion of 6 dof Rigid Aircraft-Kinematics

Flight Dynamics & Control Equations of Motion of 6 dof Rigid Aircraft-Kinematics Flight Dynamic & Control Equation of Motion of 6 dof Rigid Aircraft-Kinematic Harry G. Kwatny Department of Mechanical Engineering & Mechanic Drexel Univerity Outline Rotation Matrix Angular Velocity Euler

More information

Reactor Core Methods. Kord Smith Studsvik Scandpower

Reactor Core Methods. Kord Smith Studsvik Scandpower Kord Smith Studsvik Scandpower kord@west.soa.com Presentation Outline 1. Background for LWR Core Analysis 2. Modern LWR Design Requirements 3. Factorization of the Core Analysis Space 4. Early Analysis

More information

Improved PWR Simulations by Monte-Carlo Uncertainty Analysis and Bayesian Inference

Improved PWR Simulations by Monte-Carlo Uncertainty Analysis and Bayesian Inference Improved PWR Simulations by Monte-Carlo Uncertainty Analysis and Bayesian Inference E. Castro, O. Buss, A. Hoefer PEPA1-G: Radiology & Criticality, AREVA GmbH, Germany Universidad Politécnica de Madrid

More information

LOWELL JOURNAL. MUST APOLOGIZE. such communication with the shore as Is m i Boimhle, noewwary and proper for the comfort

LOWELL JOURNAL. MUST APOLOGIZE. such communication with the shore as Is m i Boimhle, noewwary and proper for the comfort - 7 7 Z 8 q ) V x - X > q - < Y Y X V - z - - - - V - V - q \ - q q < -- V - - - x - - V q > x - x q - x q - x - - - 7 -» - - - - 6 q x - > - - x - - - x- - - q q - V - x - - ( Y q Y7 - >»> - x Y - ] [

More information

Evaluation of Neutron Physics Parameters and Reactivity Coefficients for Sodium Cooled Fast Reactors

Evaluation of Neutron Physics Parameters and Reactivity Coefficients for Sodium Cooled Fast Reactors Evaluation of Neutron Physics Parameters and Reactivity Coefficients for Sodium Cooled Fast Reactors A. Ponomarev, C.H.M. Broeders, R. Dagan, M. Becker Institute for Neutron Physics and Reactor Technology,

More information

MATH 19520/51 Class 5

MATH 19520/51 Class 5 MATH 19520/51 Class 5 Minh-Tam Trinh University of Chicago 2017-10-04 1 Definition of partial derivatives. 2 Geometry of partial derivatives. 3 Higher derivatives. 4 Definition of a partial differential

More information

Research Article Calculations for a BWR Lattice with Adjacent Gadolinium Pins Using the Monte Carlo Cell Code Serpent v.1.1.7

Research Article Calculations for a BWR Lattice with Adjacent Gadolinium Pins Using the Monte Carlo Cell Code Serpent v.1.1.7 Science and Technology of Nuclear Installations Volume 2, Article ID 65946, 4 pages doi:.55/2/65946 Research Article Calculations for a BWR Lattice with Adjacent Gadolinium Pins Using the Monte Carlo Cell

More information

Calculation of a Reactivity Initiated Accident with a 3D Cell-by-Cell Method: Application of the SAPHYR System to a Rod Ejection Accident in TMI1

Calculation of a Reactivity Initiated Accident with a 3D Cell-by-Cell Method: Application of the SAPHYR System to a Rod Ejection Accident in TMI1 Calculation of a Reactivity Initiated Accident with a 3D Cell-by-Cell Method: Application of the SAPHYR System to a Rod Ejection Accident in TMI1 S. Aniel-Buchheit 1, E. Royer 2, P. Ferraresi 3 1 S. Aniel

More information

Solution of Matrix Eigenvalue Problem

Solution of Matrix Eigenvalue Problem Outlines October 12, 2004 Outlines Part I: Review of Previous Lecture Part II: Review of Previous Lecture Outlines Part I: Review of Previous Lecture Part II: Standard Matrix Eigenvalue Problem Other Forms

More information