Ultrafast laser-driven spin dynamics in antiferromagnetic and ferromagnetic solids: Ab-initio studies with real-time TDDFT

Size: px
Start display at page:

Download "Ultrafast laser-driven spin dynamics in antiferromagnetic and ferromagnetic solids: Ab-initio studies with real-time TDDFT"

Transcription

1 Ultrafast laser-driven spin dynamics in antiferromagnetic and ferromagnetic solids: Ab-initio studies with real-time TDDFT E.K.U. Gross Max-Planck Institute of Microstructure Physics Halle (Saale)

2 First experiment on ultrafast laser induced demagnetization Beaurepaire et al, PRL 76, 4250 (1996)

3 Possible mechanisms for demagnetisation Direct interaction of spins with the magnetic component of the laser Zhang, Huebner, PRL 85, 3025 (2000) Spin-flip electron-phonon scattering (ultimately leading to transfer of spin angular momentum to the lattice) Koopmans et al, PRL 95, (2005) Super-diffusive spin transport Battiato, Carva, Oppeneer, PRL 105, (2010) Our proposal for the first 50 fs: Laser-induced charge excitation followed by spin-orbit-driven demagnetization of the remaining d-electrons

4 Time-dependent density-functional theory (E. Runge, E.K.U.G., PRL 52, 997 (1984)) Basic 1-1 correspondence: 1-1 ( ) ¾ r ( rt) vrt KS theorem: The time-dependent density determines uniquely the time-dependent external potential and hence all physical observables for fixed initial state. The time-dependent density of the interacting system of interest can be calculated as density of an auxiliary non-interacting (KS) system with the local potential N ( ) ( ) 2 ρ rt = å j j j = 1 3 vs r't' rt v rt d r' rt 2 2 æ h Ñ ö ih j j rt = ç - + vs r rt jj rt t è 2m ø ( ) [ ]( ) ( ) ( r't) r éër ( ) ùû( ) = ( ) + ò + vxc ér r't' ù rt r- r' ë û ( ) ( )

5 Basic 1-1 correspondence: 1-1 ( ) ¾ r ( rt) vrt KS theorem: Time-dependent density-functional theory The time-dependent density determines uniquely the time-dependent external potential and hence all physical observables for fixed initial state. The time-dependent density of the interacting system of interest can be calculated as density of an auxiliary non-interacting (KS) system with the local potential (E. Runge, E.K.U.G., PRL 52, 997 (1984)) Genuine ab-initio approach, in principle exact N ( ) ( ) 2 ρ rt = å j j j = 1 3 vs r't' rt v rt d r' rt 2 2 æ h Ñ ö ih j j rt = ç - + vs r rt jj rt t è 2m ø ( ) [ ]( ) ( ) ( r't) r éër ( ) ùû( ) = ( ) + ò + vxc ér r't' ù rt r- r' ë û ( ) ( )

6 Generalization: Non-collinear-Spin-TDDFT with SOC é 1 i jk ( r, t) = -iñ- Alaser ( t) + vs r, r, t - µ Bs BS r, r, t t ê ë 2 ( ) 2 [ m]( ) [ m]( ) µ B ù + s Ñ S[ r m]( ) - Ñ j k 2c úû ( v, r, t ) ( i ) ( r, t) r ( r, t) [ ]( ) ( ) 3 vs r, m r, t = vlattice r + ò d r + vxc, r, t r- r [ r, m](, ) = (, ) + [ r, m](, ) B r t B r t B r t S external xc [ r m]( ) where j (, ) k rt are Pauli spinors

7 Generalization: Non-collinear-Spin-TDDFT with SOC é 1 i jk ( r, t) = -iñ- Alaser ( t) + vs r, r, t - µ Bs BS r, r, t t ê ë 2 ( ) 2 [ m]( ) [ m]( ) µ B ù + s Ñ S[ r m]( ) - Ñ j k 2c úû ( v, r, t ) ( i ) ( r, t) r ( r, t) [ ]( ) ( ) 3 vs r, m r, t = vlattice r + ò d r + vxc, r, t r- r [ r, m](, ) = (, ) + [ r, m](, ) B r t B r t B r t S external xc [ r m]( ) Universal functionals of r and m where j (, ) k rt are Pauli spinors

8 Quantity of prime interest: vector field of spin magnetization

9 Quantity of prime interest: vector field of spin magnetization Cr monolayer in ground state

10 K. Krieger, K. Dewhurst, P. Elliott, S. Sharma, E.K.U.G., JCTC 11, 4870 (2015)

11 Aspects of the implementation Wave length of laser in the visible regime (very large compared to unit cell) Dipole approximation is made (i.e. electric field of laser is assumed to be spatially constant) Laser can be described by a purely time-dependent vector potential Periodicity of the TDKS Hamiltonian is preserved! Implementation in ELK code (FLAPW) (

12 Aspects of the implementation Wave length of laser in the visible regime (very large compared to unit cell) Dipole approximation is made (i.e. electric field of laser is assumed to be spatially constant) Laser can be described by a purely time-dependent vector potential Periodicity of the TDKS Hamiltonian is preserved! Implementation in ELK code (FLAPW) ( ELK = Electrons in K-Space or Electrons in Kay's Space Kay Dewhurst Sangeeta Sharma

13 Aspects of the implementation Wave length of laser in the visible regime (very large compared to unit cell) Dipole approximation is made (i.e. electric field of laser is assumed to be spatially constant) Laser can be described by a purely time-dependent vector potential Periodicity of the TDKS Hamiltonian is preserved! Implementation in ELK code (FLAPW) (

14 Analysis of the results

15 Calculation without spin-orbit coupling components of spin moment

16 Exact equation of motion M ( t) = i éh ˆ, s t h ë ˆ z KS z ù û { } = - ò 3 dr M x(r,t)b KS,y(rt) M y(r,t)b KS,x(rt) 1 + ò - 2c ëñ û ëñ t j(r, t) = sä ˆ pˆ spin current tensor { ˆ é ( ) ( ) ù ˆ ( ) ( ) } s y é s z ù 3 dr x v r,t j r,t y v r,t j r,t 2 û B KS(rt) = B ext (rt) + B XC(rt)

17 Exact equation of motion M ( t) = i éh ˆ, s t h ë ˆ z KS z ù û { } = - ò 3 dr M x(r,t)b KS,y(rt) M y(r,t)b KS,x(rt) 1 + ò - 2c ëñ û ëñ t j(r, t) = sä ˆ pˆ spin current tensor Global torque exerted by B KS { ˆ é ( ) ( ) ù ˆ ( ) ( ) } s y é s z ù 3 dr x v r,t j r,t y v r,t j r,t 2 û B KS(rt) = B ext (rt) + B XC(rt)

18 Exact equation of motion M ( t) = i éh ˆ, s t h ë ˆ z KS z ù û { } = - ò 3 dr M x(r,t)b KS,y(rt) M y(r,t)b KS,x(rt) 1 + ò - 2c ëñ û ëñ t j(r, t) = sä ˆ pˆ spin current tensor Global torque exerted by B KS { ˆ é ( ) ( ) ù ˆ ( ) ( ) } s y é s z ù 3 dr x v r,t j r,t y v r,t j r,t 2 û B KS(rt) = B ext (rt) + B XC(rt) Global torque = 0, if B ext = 0 (due to zero-torque theorem for B xc )

19 Note: Ground state of bulk Fe, Co, Ni is collinear

20

21 Demagnetization occurs in two steps: - Initial excitation by laser moves magnetization from atomic region into interstitial region. Total Moment is basically conserved during this phase. - Spin-Orbit term drives demagnetization of the more localized electrons until stabilization at lower moment is achieved

22 Beyond 3D bulk

23 Cr monolayer

24

25 (fs)

26 Streamlines for J x, the spin-current vector field of the x component of spin, around a Ni atom in bulk (left) and for the outermost Ni atom in the slab (right).

27 (fs)

28

29 Effect of spin transport across interfaces:

30

31 Heusler compounds

32 Ni 2 MnGa Ga 0.02 µb Mn µb Ni µb

33 Ni 2 MnGa Laser parameters: ω=2.72ev Ipeak= 1x1015 W/cm2 J = 935 mj/cm2 FWHM = 2.42 fs See loss in global moment

34 Ni 2 MnGa Also change in local moments Transfer of moment from Mn to Ni (does not require SOC) Followed by spin-orbit mediated demagnetization on Ni

35 P. Elliott, T. Mueller, K. Dewhurst, S. Sharma, E.K.U.G., arxiv

36 M(t) (µ B ) Time(fs) Sb

37 NiMnSb

38 DOS (states/ev) M(t) (µ B ) Time(fs) Energy (ev)

39 Mn 3 Ga Ga Mn

40 Mn 3 Ga Laser parameters: ω=2.72ev Ipeak= 1x1015 W/cm2 J = 935 mj/cm2 FWHM = 2.42 fs Global moment M(t) preserved Local moments around each atom change P. Elliott, T. Mueller, K. Dewhurst, S. Sharma, E.K.U.G., arxiv

41 DOS (states/ev) Energy (ev)

42

43 Summary Demagnetization in first 50 fs is a universal two-step process: 1. Initial excitation of electrons into highly excited delocalised states (without much of a change in the total magnetization) 2. Spin-orbit coupling drives demagnetization of the more localized electrons No significant change in M x and M y in bulk Fe, Co, Ni Interfaces show spin currents as important as spin-orbit coupling Ultrafast (3-5 fs) transfer of spin moment between sublattices of Heusler compounds by purely optical excitation: Easily understood on the basis of the ground-state DOS

44 Kevin Krieger Sangeeta Sharma Florian Eich Kay Dewhurst Peter Elliott

45 Future: Include relaxation processes due to el-el scattering - in principle contained in TDDFT, - but not with adiabatic xc functionals - need xc functional approximations with memory vxc éër r't' ùû rt Include relaxation processes due to el-phonon scattering Include relaxation due to radiative effects simultaneous propagation of TDKS and Maxwell equations Include dipole-dipole interaction to describe motion of domains construct approximate xc functionals which refer to the dipole int Optimal-control theory to find optimized laser pulses to selectively demagnetize/remagnetize, i.e. to switch, the magnetic moment Create Skyrmions with suitably shaped laser pulses ( ) ( )

Time-dependent density functional theory

Time-dependent density functional theory Time-dependent density functional theory E.K.U. Gross Max-Planck Institute for Microstructure Physics OUTLINE LECTURE I Phenomena to be described by TDDFT Some generalities on functional theories LECTURE

More information

All electron optimized effective potential method for solids

All electron optimized effective potential method for solids All electron optimized effective potential method for solids Institut für Theoretische Physik Freie Universität Berlin, Germany and Fritz Haber Institute of the Max Planck Society, Berlin, Germany. 22

More information

F O R SOCI AL WORK RESE ARCH

F O R SOCI AL WORK RESE ARCH 7 TH EUROPE AN CONFERENCE F O R SOCI AL WORK RESE ARCH C h a l l e n g e s i n s o c i a l w o r k r e s e a r c h c o n f l i c t s, b a r r i e r s a n d p o s s i b i l i t i e s i n r e l a t i o n

More information

Time-dependent density functional theory

Time-dependent density functional theory Time-dependent density functional theory E.K.U. Gross Max-Planck Institute for Microstructure Physics OUTLINE LECTURE I Phenomena to be described by TDDFT LECTURE II Review of ground-state DFT LECTURE

More information

Optimized Effective Potential method for non-collinear Spin-DFT: view to spin-dynamics

Optimized Effective Potential method for non-collinear Spin-DFT: view to spin-dynamics Optimized Effective Potential method for non-collinear Spin-DFT: view to spin-dynamics Sangeeta Sharma 1,2, J. K. Dewhurst 3, C. Ambrosch-Draxl 4, S. Pittalis 2, S. Kurth 2, N. Helbig 2, S. Shallcross

More information

Non-collinear OEP for solids: SDFT vs CSDFT

Non-collinear OEP for solids: SDFT vs CSDFT Non-collinear OEP for solids: SDFT vs Sangeeta Sharma 1,2, J. K. Dewhurst 3 S. Pittalis 2, S. Kurth 2, S. Shallcross 4 and E. K. U. Gross 2 1. Fritz-Haber nstitut of the Max Planck Society, Berlin, Germany

More information

Role of Spin Flips versus Spin Transport in Non Thermal Electrons Excited by Ultrashort Optical Pulses in Transition Metals

Role of Spin Flips versus Spin Transport in Non Thermal Electrons Excited by Ultrashort Optical Pulses in Transition Metals Role of Spin Flips versus Spin Transport in Non Thermal Electrons Excited by Ultrashort Optical Pulses in Transition Metals V. Shokeen, M. Sanchez Piaia, and J.-Y. Bigot Université de Strasbourg, CNRS,

More information

Supplementary Figure S1 The magneto-optical images of Gd24Fe66.5Co9.5

Supplementary Figure S1 The magneto-optical images of Gd24Fe66.5Co9.5 Supplementary Figure S1 The magneto-optical images of Gd24Fe66.5Co9.5 continuous film obtained after the action of a sequence of the N right-handed (σ+ σ+) σ+ and left-handed (σ σ ) σ circularly-polarized

More information

Femtosecond Heating as a Sufficient Stimulus for Magnetization Reversal

Femtosecond Heating as a Sufficient Stimulus for Magnetization Reversal Femtosecond Heating as a Sufficient Stimulus for Magnetization Reversal T. Ostler, J. Barker, R. F. L. Evans and R. W. Chantrell Dept. of Physics, The University of York, York, United Kingdom. Seagate,

More information

Radboud Universeit Nijmegen

Radboud Universeit Nijmegen Magnetism and Light Theo Rasing Radboud Universeit Nijmegen Challenges Magnetism and on the Opportunities timescale of fth the exchange interaction ti Theo Rasing Radboud University Nijmegen JFe-Fe=1.4x10-19

More information

How to make the Born-Oppenheimer approximation exact: A fresh look at potential energy surfaces and Berry phases

How to make the Born-Oppenheimer approximation exact: A fresh look at potential energy surfaces and Berry phases How to make the Born-Oppenheimer approximation exact: A fresh look at potential energy surfaces and Berry phases E.K.U. Gross Max-Planck Institute of Microstructure Physics Halle (Saale) Process of vision

More information

Magnetic neutron diffraction. Rob McQueeney, Ames Laboratory and Iowa State University

Magnetic neutron diffraction. Rob McQueeney, Ames Laboratory and Iowa State University Magnetic neutron diffraction Rob McQueeney, Ames Laboratory and Iowa State University September 19, 2018 Magnetic moment-rare earths Progressive filling of 4f levels Strong Hund s rules Strong spin-orbit

More information

Introduction to spin and spin-dependent phenomenon

Introduction to spin and spin-dependent phenomenon Introduction to spin and spin-dependent phenomenon Institut für Theoretische Physik Freie Universität Berlin, Germany and Fritz Haber Institute of the Max Planck Society, Berlin, Germany. May 16th, 2007

More information

Time-Dependent Density-Functional Theory

Time-Dependent Density-Functional Theory Summer School on First Principles Calculations for Condensed Matter and Nanoscience August 21 September 3, 2005 Santa Barbara, California Time-Dependent Density-Functional Theory X. Gonze, Université Catholique

More information

Time-Dependent Electron Localization Function! (TD-ELF)! GOAL! Time-resolved visualization of the breaking and formation of chemical bonds.!

Time-Dependent Electron Localization Function! (TD-ELF)! GOAL! Time-resolved visualization of the breaking and formation of chemical bonds.! Time-Dependent Electron Localization Function! (TD-ELF)! GOAL! Time-resolved visualization of the breaking and formation of chemical bonds.! How can one give a rigorous mathematical meaning to chemical

More information

How to make the Born-Oppenheimer approximation exact: A fresh look at potential energy surfaces and Berry phases

How to make the Born-Oppenheimer approximation exact: A fresh look at potential energy surfaces and Berry phases How to make the Born-Oppenheimer approximation exact: A fresh look at potential energy surfaces and Berry phases E.K.U. Gross Max-Planck Institute of Microstructure Physics Halle (Saale) Hamiltonian for

More information

Neutron and x-ray spectroscopy

Neutron and x-ray spectroscopy Neutron and x-ray spectroscopy B. Keimer Max-Planck-Institute for Solid State Research outline 1. self-contained introduction neutron scattering and spectroscopy x-ray scattering and spectroscopy 2. application

More information

Femtosecond spin dynamics in two- and threemagnetic-center

Femtosecond spin dynamics in two- and threemagnetic-center Femtosecond spin dynamics in two- and threemagnetic-center molecules W. Hübner and G. Lefkidis Department of Physics and Research Center OPTIMAS, University of Kaiserslautern, Box 3049, 67653 Kaiserslautern,

More information

Models for Time-Dependent Phenomena

Models for Time-Dependent Phenomena Models for Time-Dependent Phenomena I. Phenomena in laser-matter interaction: atoms II. Phenomena in laser-matter interaction: molecules III. Model systems and TDDFT Manfred Lein p. Outline Phenomena in

More information

Optimized Effective Potential method for non-collinear Spin-DFT: view to spindynamics

Optimized Effective Potential method for non-collinear Spin-DFT: view to spindynamics Optimized Effective Potential method for non-collinear Spin-DFT: view to spindynamics S. Sharma and E. K. U. Gross nstitut für Theoretische Physik, FU Berlin Fritz-Haber nstitut, Berlin 21 Sept 2006 Synopsis

More information

Electron spins in nonmagnetic semiconductors

Electron spins in nonmagnetic semiconductors Electron spins in nonmagnetic semiconductors Yuichiro K. Kato Institute of Engineering Innovation, The University of Tokyo Physics of non-interacting spins Optical spin injection and detection Spin manipulation

More information

Peter Oppeneer. Department of Physics and Astronomy Uppsala University, S Uppsala, Sweden

Peter Oppeneer. Department of Physics and Astronomy Uppsala University, S Uppsala, Sweden Light Matter Interactions (II Peter Oppeneer Department of Physics and Astronomy Uppsala University, S-751 20 Uppsala, Sweden 1 Outline Lecture II Light-magnetism interaction Phenomenology of magnetic

More information

Novel topologies in superconducting junctions

Novel topologies in superconducting junctions Novel topologies in superconducting junctions Yuli V. Nazarov Delft University of Technology The Capri Spring School on Transport in Nanostructures 2018, Anacapri IT, April 15-22 2018 Overview of 3 lectures

More information

Drickamer type. Disk containing the specimen. Pressure cell. Press

Drickamer type. Disk containing the specimen. Pressure cell. Press ε-fe Drickamer type Press Pressure cell Disk containing the specimen Low Temperature Cryostat Diamond Anvil Cell (DAC) Ruby manometry Re gasket for collimation Small size of specimen space High-density

More information

Time-dependent density functional theory

Time-dependent density functional theory Time-dependent density functional theory E.K.U. Gross Max-Planck Institute of Microstructure Physics Halle (Saale) OUTLINE Phenomena to be described by TDDFT: Matter in weak and strong laser fields Basic

More information

Exact factorization of the electron-nuclear wave function and the concept of exact forces in MD

Exact factorization of the electron-nuclear wave function and the concept of exact forces in MD Exact factorization of the electron-nuclear wave function and the concept of exact forces in MD E.K.U. Gross Max-Planck Institute for Microstructure Physics Halle (Saale) OUTLINE Thanks Exact factorisation

More information

What s the correct classical force on the nuclei

What s the correct classical force on the nuclei What s the correct classical force on the nuclei E.K.U. Gross Max-Planck Institute of Microstructure Physics Halle (Saale) What s the correct classical force on the nuclei or: How to make the Born-Oppenheimer

More information

Luigi Paolasini

Luigi Paolasini Luigi Paolasini paolasini@esrf.fr LECTURE 4: MAGNETIC INTERACTIONS - Dipole vs exchange magnetic interactions. - Direct and indirect exchange interactions. - Anisotropic exchange interactions. - Interplay

More information

Mesoscopic Spintronics

Mesoscopic Spintronics Mesoscopic Spintronics Taro WAKAMURA (Université Paris-Sud) Lecture 1 Today s Topics 1.1 History of Spintronics 1.2 Fudamentals in Spintronics Spin-dependent transport GMR and TMR effect Spin injection

More information

CHAPTER 2 MAGNETISM. 2.1 Magnetic materials

CHAPTER 2 MAGNETISM. 2.1 Magnetic materials CHAPTER 2 MAGNETISM Magnetism plays a crucial role in the development of memories for mass storage, and in sensors to name a few. Spintronics is an integration of the magnetic material with semiconductor

More information

Models for Time-Dependent Phenomena. I. Laser-matter interaction: atoms II. Laser-matter interaction: molecules III. Model systems and TDDFT

Models for Time-Dependent Phenomena. I. Laser-matter interaction: atoms II. Laser-matter interaction: molecules III. Model systems and TDDFT Models for Time-Dependent Phenomena I. Laser-matter interaction: atoms II. Laser-matter interaction: molecules III. Model systems and TDDFT Manfred Lein, TDDFT school Benasque 22 p. Outline Laser-matter

More information

Spin orbit torque driven magnetic switching and memory. Debanjan Bhowmik

Spin orbit torque driven magnetic switching and memory. Debanjan Bhowmik Spin orbit torque driven magnetic switching and memory Debanjan Bhowmik Spin Transfer Torque Fixed Layer Free Layer Fixed Layer Free Layer Current coming out of the fixed layer (F2) is spin polarized in

More information

Density-functional theory of superconductivity

Density-functional theory of superconductivity Density-functional theory of superconductivity E. K. U. Gross MPI for Microstructure Physics Halle http://users.physi.fu-berlin.de/~ag-gross CO-WORKERS: HALLE A. Sanna C. Bersier A. Linscheid H. Glawe

More information

Petahertz Spintronics

Petahertz Spintronics Petahertz Spintronics Florian Siegrist 1,5, Julia A. Gessner 1,5, Marcus Ossiander 1, Christian Denker 2, Yi-Ping Chang 1, Malte C. Schröder 1, Alexander Guggenmos 1,5, Yang Cui 5, Jakob Walowski 2, Ulrike

More information

Spin-orbit coupling: Dirac equation

Spin-orbit coupling: Dirac equation Dirac equation : Dirac equation term couples spin of the electron σ = 2S/ with movement of the electron mv = p ea in presence of electrical field E. H SOC = e 4m 2 σ [E (p ea)] c2 The maximal coupling

More information

Picosecond spin caloritronics

Picosecond spin caloritronics Picosecond spin caloritronics David Cahill, Johannes Kimling, and Gyung-Min Choi Department of Materials Science and Engineering, Materials Research Laboratory, University of Illinois at Urbana-Champaign

More information

Supporting Information

Supporting Information Supporting Information Wu et al. 1.173/pnas.15492112 SI Text S1) Derivation of the Wind-Chime Model Each pulse generates an angular momentum on each MoS 2 flake that makes them rotate unless they develop

More information

Ultrafast study of Dirac fermions in out of equilibrium Topological Insulators

Ultrafast study of Dirac fermions in out of equilibrium Topological Insulators Ultrafast study of Dirac fermions in out of equilibrium Topological Insulators Marino Marsi Laboratoire de Physique des Solides CNRS Univ. Paris-Sud - Université Paris-Saclay IMPACT, Cargèse, August 26

More information

Spin effects (spin polarized systems, spin-orbit ) G. Zérah CEA-DAM Ile de France Bruyères-le-Châtel

Spin effects (spin polarized systems, spin-orbit ) G. Zérah CEA-DAM Ile de France Bruyères-le-Châtel Spin effects (spin polarized systems, spin-orbit ) G. Zérah CEA-DAM Ile de France 91680 Bruyères-le-Châtel 1 Macroscopic magnetization A crystal can be found in different magnetization states. The direction

More information

Magnetic Materials. The inductor Φ B = LI (Q = CV) = L I = N Φ. Power = VI = LI. Energy = Power dt = LIdI = 1 LI 2 = 1 NΦ B capacitor CV 2

Magnetic Materials. The inductor Φ B = LI (Q = CV) = L I = N Φ. Power = VI = LI. Energy = Power dt = LIdI = 1 LI 2 = 1 NΦ B capacitor CV 2 Magnetic Materials The inductor Φ B = LI (Q = CV) Φ B 1 B = L I E = (CGS) t t c t EdS = 1 ( BdS )= 1 Φ V EMF = N Φ B = L I t t c t B c t I V Φ B magnetic flux density V = L (recall I = C for the capacitor)

More information

Chapter 8 Magnetic Resonance

Chapter 8 Magnetic Resonance Chapter 8 Magnetic Resonance 9.1 Electron paramagnetic resonance 9.2 Ferromagnetic resonance 9.3 Nuclear magnetic resonance 9.4 Other resonance methods TCD March 2007 1 A resonance experiment involves

More information

Theory and numerical implementations

Theory and numerical implementations Theory and numerical implementations COMPUTE 2012 Daniel Karlsson Mathematical Physics, Lund University Solid State Theory: Other groups: Claudio Verdozzi (COMPUTE contact) Carl-Olof Almbladh Ulf von Barth

More information

ARPES experiments on 3D topological insulators. Inna Vishik Physics 250 (Special topics: spectroscopies of quantum materials) UC Davis, Fall 2016

ARPES experiments on 3D topological insulators. Inna Vishik Physics 250 (Special topics: spectroscopies of quantum materials) UC Davis, Fall 2016 ARPES experiments on 3D topological insulators Inna Vishik Physics 250 (Special topics: spectroscopies of quantum materials) UC Davis, Fall 2016 Outline Using ARPES to demonstrate that certain materials

More information

J 12 J 23 J 34. Driving forces in the nano-magnetism world. Intra-atomic exchange, electron correlation effects: Inter-atomic exchange: MAGNETIC ORDER

J 12 J 23 J 34. Driving forces in the nano-magnetism world. Intra-atomic exchange, electron correlation effects: Inter-atomic exchange: MAGNETIC ORDER Driving forces in the nano-magnetism world Intra-atomic exchange, electron correlation effects: LOCAL (ATOMIC) MAGNETIC MOMENTS m d or f electrons Inter-atomic exchange: MAGNETIC ORDER H exc J S S i j

More information

Chapter 6. Magnetostatic Fields in Matter

Chapter 6. Magnetostatic Fields in Matter Chapter 6. Magnetostatic Fields in Matter 6.1. Magnetization Any macroscopic object consists of many atoms or molecules, each having electric charges in motion. With each electron in an atom or molecule

More information

Exchange Correlation Functional Investigation of RT-TDDFT on a Sodium Chloride. Dimer. Philip Straughn

Exchange Correlation Functional Investigation of RT-TDDFT on a Sodium Chloride. Dimer. Philip Straughn Exchange Correlation Functional Investigation of RT-TDDFT on a Sodium Chloride Dimer Philip Straughn Abstract Charge transfer between Na and Cl ions is an important problem in physical chemistry. However,

More information

Neutron diffraction of magnetic materials. Richard J. Harrison Department of Earth Sciences, University of Cambridge

Neutron diffraction of magnetic materials. Richard J. Harrison Department of Earth Sciences, University of Cambridge Neutron diffraction of magnetic materials Richard J. Harrison Department of Earth Sciences, University of Cambridge Why use neutrons to study magnetic materials? Why use neutrons to study magnetic materials?

More information

Magnetism. Eric Bousquet. University of Liège. Abinit School, Lyon, France 16/05/2014

Magnetism. Eric Bousquet. University of Liège. Abinit School, Lyon, France 16/05/2014 Magnetism University of Liège eric.bousquet@ulg.ac.be Abinit School, Lyon, France 16/05/2014 Outline Origin of magnetism: Inside an atom Between 2 atoms Interaction with ligands Interaction through ligands

More information

Spins and spin-orbit coupling in semiconductors, metals, and nanostructures

Spins and spin-orbit coupling in semiconductors, metals, and nanostructures B. Halperin Spin lecture 1 Spins and spin-orbit coupling in semiconductors, metals, and nanostructures Behavior of non-equilibrium spin populations. Spin relaxation and spin transport. How does one produce

More information

Ultrafast surface carrier dynamics in topological insulators: Bi 2 Te 3. Marino Marsi

Ultrafast surface carrier dynamics in topological insulators: Bi 2 Te 3. Marino Marsi Ultrafast surface carrier dynamics in topological insulators: Bi 2 Te 3 Marino Marsi Laboratoire de Physique des Solides CNRS UMR 8502 - Université Paris-Sud IMPACT, Orsay, September 2012 Outline Topological

More information

Electrical spin-injection into semiconductors

Electrical spin-injection into semiconductors Electrical spin-injection into semiconductors L. W. Molenkamp Physikalisches Institut Universität Würzburg Am Hubland 97074 Würzburg Germany Contents Motivation The usual approach Theoretical treatment

More information

Max Planck Institute for Microstructure Physics Theory Department

Max Planck Institute for Microstructure Physics Theory Department Max Planck Institute for Microstructure Physics Theory Department ANALYSIS AND CONTROL OF ELECTRON DYNAMICS K. Krieger, M. Hellgren, M. Odashima, D. Nitsche, A. Castañeda Medina In the mid eighties, Runge

More information

Damping of magnetization dynamics

Damping of magnetization dynamics Damping of magnetization dynamics Andrei Kirilyuk! Radboud University, Institute for Molecules and Materials, Nijmegen, The Netherlands 1 2 Landau-Lifshitz equation N Heff energy gain:! torque equation:

More information

Magnetic neutron diffraction

Magnetic neutron diffraction Magnetic neutron diffraction Rob McQueeney Physics 590 1 Magnetic moment-rare earths Progressive filling of 4f levels Strong Hund s rules Strong spin-orbit interaction Weak CEF Unpaired electrons Total

More information

Phonons In The Elk Code

Phonons In The Elk Code Phonons In The Elk Code Kay Dewhurst, Sangeeta Sharma, Antonio Sanna, Hardy Gross Max-Planck-Institut für Mikrostrukturphysik, Halle If you are allowed to measure only one property of a material, make

More information

doi: /PhysRevLett

doi: /PhysRevLett doi: 1.113/PhysRevLett.9.17 PRL 9, 17 (7) 5 JANUARY 7 Optical Control of the Magnetic Anisotropy of Ferromagnetic Bilayered Manganites S. Tomimoto, 1 M. Matsubara, 1 T. Ogasawara, 1 H. Okamoto, 1, T. Kimura,

More information

Nonlinear Optical Response of Massless Dirac Fermions in Graphene and Topological Materials

Nonlinear Optical Response of Massless Dirac Fermions in Graphene and Topological Materials Nonlinear Optical Response of Massless Dirac Fermions in Graphene and Topological Materials Alexey Belyanin Department of Physics and Astronomy Texas A&M University Zhongqu Long, Sultan Almutairi, Ryan

More information

Resonant Inelastic X-ray Scattering on elementary excitations

Resonant Inelastic X-ray Scattering on elementary excitations Resonant Inelastic X-ray Scattering on elementary excitations Jeroen van den Brink Ament, van Veenendaal, Devereaux, Hill & JvdB Rev. Mod. Phys. 83, 705 (2011) Autumn School in Correlated Electrons Jülich

More information

Exploring Ultrafast Excitations in Solids with Pulsed e-beams

Exploring Ultrafast Excitations in Solids with Pulsed e-beams Exploring Ultrafast Excitations in Solids with Pulsed e-beams Joachim Stöhr and Hans Siegmann Stanford Synchrotron Radiation Laboratory Collaborators: Y. Acremann, Sara Gamble, Mark Burkhardt ( SLAC/Stanford

More information

EFFECTIVE MAGNETIC HAMILTONIANS: ab initio determination

EFFECTIVE MAGNETIC HAMILTONIANS: ab initio determination ICSM212, Istanbul, May 3, 212, Theoretical Magnetism I, 17:2 p. 1 EFFECTIVE MAGNETIC HAMILTONIANS: ab initio determination Václav Drchal Institute of Physics ASCR, Praha, Czech Republic in collaboration

More information

μ (vector) = magnetic dipole moment (not to be confused with the permeability μ). Magnetism Electromagnetic Fields in a Solid

μ (vector) = magnetic dipole moment (not to be confused with the permeability μ). Magnetism Electromagnetic Fields in a Solid Magnetism Electromagnetic Fields in a Solid SI units cgs (Gaussian) units Total magnetic field: B = μ 0 (H + M) = μ μ 0 H B = H + 4π M = μ H Total electric field: E = 1/ε 0 (D P) = 1/εε 0 D E = D 4π P

More information

Pressure dependence of Curie temperature and resistivity of complex Heusler alloys

Pressure dependence of Curie temperature and resistivity of complex Heusler alloys DPG Frühjahrstagung Berlin, 25. - 30. März 2012 Sektion Kondensierte Materie (SKM), 2012 p. 1 Pressure dependence of Curie temperature and resistivity of complex Heusler alloys Václav Drchal Institute

More information

Low- and High-Energy Excitations in the Unitary Fermi Gas

Low- and High-Energy Excitations in the Unitary Fermi Gas Low- and High-Energy Excitations in the Unitary Fermi Gas Introduction / Motivation Homogeneous Gas Momentum Distribution Quasi-Particle Spectrum Low Energy Excitations and Static Structure Function Inhomogeneous

More information

ROTONS AND STRIPES IN SPIN-ORBIT COUPLED BECs

ROTONS AND STRIPES IN SPIN-ORBIT COUPLED BECs INT Seattle 5 March 5 ROTONS AND STRIPES IN SPIN-ORBIT COUPLED BECs Yun Li, Giovanni Martone, Lev Pitaevskii and Sandro Stringari University of Trento CNR-INO Now in Swinburne Now in Bari Stimulating discussions

More information

arxiv: v2 [cond-mat.mtrl-sci] 18 Mar 2010

arxiv: v2 [cond-mat.mtrl-sci] 18 Mar 2010 Femtosecond x-ray absorption spectroscopy of spin and orbital angular momentum in photoexcited Ni films during ultrafast demagnetization C. Stamm, a N. Pontius, T. Kachel, M. Wietstruk, and H. A. Dürr

More information

Emerging spintronics-based logic technologies

Emerging spintronics-based logic technologies Center for Spintronic Materials, Interfaces, and Novel Architectures Emerging spintronics-based logic technologies Zhaoxin Liang Meghna Mankalale Jian-Ping Wang Sachin S. Sapatnekar University of Minnesota

More information

Preliminary Examination - Day 1 Thursday, August 10, 2017

Preliminary Examination - Day 1 Thursday, August 10, 2017 UNL - Department of Physics and Astronomy Preliminary Examination - Day Thursday, August, 7 This test covers the topics of Quantum Mechanics (Topic ) and Electrodynamics (Topic ). Each topic has 4 A questions

More information

Magnetism in Condensed Matter

Magnetism in Condensed Matter Magnetism in Condensed Matter STEPHEN BLUNDELL Department of Physics University of Oxford OXFORD 'UNIVERSITY PRESS Contents 1 Introduction 1.1 Magnetic moments 1 1 1.1.1 Magnetic moments and angular momentum

More information

Advanced TDDFT I: Memory and Initial-State Dependence

Advanced TDDFT I: Memory and Initial-State Dependence Advanced TDDFT I: Memory and Initial-State Dependence when the adiabatic approximation commits a crime Where were you at the time the photon was annihilated? I..um I just can t remember! V xc( r,t ) n(r,t)

More information

Introduction to Heisenberg model. Javier Junquera

Introduction to Heisenberg model. Javier Junquera Introduction to Heisenberg model Javier Junquera Most important reference followed in this lecture Magnetism in Condensed Matter Physics Stephen Blundell Oxford Master Series in Condensed Matter Physics

More information

Enhanced spin orbit torques by oxygen incorporation in tungsten films

Enhanced spin orbit torques by oxygen incorporation in tungsten films Enhanced spin orbit torques by oxygen incorporation in tungsten films Timothy Phung IBM Almaden Research Center, San Jose, California, USA 1 Motivation: Memory devices based on spin currents Spin Transfer

More information

Time-dependent density functional theory

Time-dependent density functional theory Time-dependent density functional theory E.K.U. Gross Max-Planck Institute of Microstructure Physics Halle (Saale) OUTLINE Phenomena to be described by TDDFT Basic theorems of TDDFT Approximate xc functionals:

More information

Demagnetization Dynamics and Spin-dependent Lifetimes in Ferromagnets

Demagnetization Dynamics and Spin-dependent Lifetimes in Ferromagnets Demagnetization Dynamics and Spin-dependent Lifetimes in Ferromagnets Hans Christian Schneider Physics Department University of Kaiserslautern 2014-06-17 Condensed-Matter Seminar Universität Mainz Thanks

More information

Finite-temperature magnetism of ultrathin lms and nanoclusters PhD Thesis Booklet. Levente Rózsa Supervisor: László Udvardi

Finite-temperature magnetism of ultrathin lms and nanoclusters PhD Thesis Booklet. Levente Rózsa Supervisor: László Udvardi Finite-temperature magnetism of ultrathin lms and nanoclusters PhD Thesis Booklet Levente Rózsa Supervisor: László Udvardi BME 2016 Background of the research Magnetic materials continue to play an ever

More information

Ψ t = ih Ψ t t. Time Dependent Wave Equation Quantum Mechanical Description. Hamiltonian Static/Time-dependent. Time-dependent Energy operator

Ψ t = ih Ψ t t. Time Dependent Wave Equation Quantum Mechanical Description. Hamiltonian Static/Time-dependent. Time-dependent Energy operator Time Dependent Wave Equation Quantum Mechanical Description Hamiltonian Static/Time-dependent Time-dependent Energy operator H 0 + H t Ψ t = ih Ψ t t The Hamiltonian and wavefunction are time-dependent

More information

The nature of superfluidity in the cold atomic unitary Fermi gas

The nature of superfluidity in the cold atomic unitary Fermi gas The nature of superfluidity in the cold atomic unitary Fermi gas Introduction Yoram Alhassid (Yale University) Finite-temperature auxiliary-field Monte Carlo (AFMC) method The trapped unitary Fermi gas

More information

l μ M Right hand Screw rule

l μ M Right hand Screw rule Magnetic materials Magnetic property The response of the materials to external magnetic field All the materials are magnetic, only the degree of response varies, which is measured in terms of their magnetization

More information

Lecture 5. Chapters 3 & 4. Induced magnetization: that which is induced in the presence of an applied magnetic field. diamagnetic.

Lecture 5. Chapters 3 & 4. Induced magnetization: that which is induced in the presence of an applied magnetic field. diamagnetic. Lecture 5 Induced magnetization: that which is induced in the presence of an applied magnetic field diamagnetic paramagnetic Remanent magnetization: that which remains in the absence of an external field

More information

Chern insulator and Chern half-metal states in the two-dimensional. spin-gapless semiconductor Mn 2 C 6 S 12

Chern insulator and Chern half-metal states in the two-dimensional. spin-gapless semiconductor Mn 2 C 6 S 12 Supporting Information for Chern insulator and Chern half-metal states in the two-dimensional spin-gapless semiconductor Mn 2 C 6 S 12 Aizhu Wang 1,2, Xiaoming Zhang 1, Yuanping Feng 3 * and Mingwen Zhao

More information

Fe Co Si. Fe Co Si. Ref. p. 59] d elements and C, Si, Ge, Sn or Pb Alloys and compounds with Ge

Fe Co Si. Fe Co Si. Ref. p. 59] d elements and C, Si, Ge, Sn or Pb Alloys and compounds with Ge Ref. p. 59] 1.5. 3d elements and C, Si, Ge, Sn or Pb 7 1.75 1.50 Co Si 0.8 0. 3.50 3.5 Co Si 0.8 0. H cr Magnetic field H [koe] 1.5 1.00 0.75 0.50 0.5 C C IF "A" P Frequency ωγ / e [koe] 3.00.75.50.5.00

More information

/21. Tsuneya Yoshida. Collaborators: Robert Peters, Satoshi Fujimoto, and N. Kawakami 2013/6/07 (EQPCM) 1. Kyoto Univ.

/21. Tsuneya Yoshida. Collaborators: Robert Peters, Satoshi Fujimoto, and N. Kawakami 2013/6/07 (EQPCM) 1. Kyoto Univ. 2013/6/07 (EQPCM) 1 /21 Tsuneya Yoshida Kyoto Univ. Collaborators: Robert Peters, Satoshi Fujimoto, and N. Kawakami T.Y., Satoshi Fujimoto, and Norio Kawakami Phys. Rev. B 85, 125113 (2012) Outline 2 /21

More information

Lecture2: Quantum Decoherence and Maxwell Angels L. J. Sham, University of California San Diego

Lecture2: Quantum Decoherence and Maxwell Angels L. J. Sham, University of California San Diego Michigan Quantum Summer School Ann Arbor, June 16-27, 2008. Lecture2: Quantum Decoherence and Maxwell Angels L. J. Sham, University of California San Diego 1. Motivation: Quantum superiority in superposition

More information

Optimal Controlled Phasegates for Trapped Neutral Atoms at the Quantum Speed Limit

Optimal Controlled Phasegates for Trapped Neutral Atoms at the Quantum Speed Limit with Ultracold Trapped Atoms at the Quantum Speed Limit Michael Goerz May 31, 2011 with Ultracold Trapped Atoms Prologue: with Ultracold Trapped Atoms Classical Computing: 4-Bit Full Adder Inside the CPU:

More information

Theory of magnetic interactions in real materials. Mikhail Katsnelson

Theory of magnetic interactions in real materials. Mikhail Katsnelson Theory of magnetic interactions in real materials Mikhail Katsnelson Outline 1. Introduction 2. Exchange interactions from first principles 3. Beyond DFT: correlated systems and LDA+DMFT 4. Applications:

More information

Key concepts in Density Functional Theory (I) Silvana Botti

Key concepts in Density Functional Theory (I) Silvana Botti From the many body problem to the Kohn-Sham scheme European Theoretical Spectroscopy Facility (ETSF) CNRS - Laboratoire des Solides Irradiés Ecole Polytechnique, Palaiseau - France Temporary Address: Centre

More information

Time-dependent density functional theory : direct computation of excitation energies

Time-dependent density functional theory : direct computation of excitation energies CECAM Tutorial Electronic excitations and spectroscopies : Theory and Codes Lyon 007 Time-dependent density functional theory : direct computation of excitation energies X. Gonze Université Catholique

More information

Spin pumping in Ferromagnet-Topological Insulator-Ferromagnet Heterostructures Supplementary Information.

Spin pumping in Ferromagnet-Topological Insulator-Ferromagnet Heterostructures Supplementary Information. Spin pumping in Ferromagnet-Topological Insulator-Ferromagnet Heterostructures Supplementary Information. A.A. Baker,, 2 A.I. Figueroa, 2 L.J. Collins-McIntyre, G. van der Laan, 2 and T., a) Hesjedal )

More information

Advanced Lab Course. Tunneling Magneto Resistance

Advanced Lab Course. Tunneling Magneto Resistance Advanced Lab Course Tunneling Magneto Resistance M06 As of: 015-04-01 Aim: Measurement of tunneling magnetoresistance for different sample sizes and recording the TMR in dependency on the voltage. Content

More information

Nonlinear Optics (WiSe 2015/16) Lecture 12: January 15, 2016

Nonlinear Optics (WiSe 2015/16) Lecture 12: January 15, 2016 Nonlinear Optics (WiSe 2015/16) Lecture 12: January 15, 2016 12 High Harmonic Generation 12.1 Atomic units 12.2 The three step model 12.2.1 Ionization 12.2.2 Propagation 12.2.3 Recombination 12.3 Attosecond

More information

Ultrafast MOKE Study of Magnetization Dynamics in an Exchange-Biased IrMn/Co Thin Film

Ultrafast MOKE Study of Magnetization Dynamics in an Exchange-Biased IrMn/Co Thin Film Ultrafast MOKE Study of Magnetization Dynamics in an Exchange-Biased IrMn/Co Thin Film Keoki Seu, a Hailong Huang, a Anne Reilly, a Li Gan, b William Egelhoff, Jr. b a College of William and Mary, Williamsburg,

More information

X-Ray Spectro-Microscopy Joachim Stöhr Stanford Synchrotron Radiation Laboratory

X-Ray Spectro-Microscopy Joachim Stöhr Stanford Synchrotron Radiation Laboratory X-Ray Spectro-Microscopy Joachim Stöhr Stanford Synchrotron Radiation Laboratory X-Rays have come a long way Application to Magnetic Systems 1 µm 1895 1993 2003 http://www-ssrl.slac.stanford.edu/stohr/index.htm

More information

Ultra-fast response of nano-carbons under dynamical strong electric field

Ultra-fast response of nano-carbons under dynamical strong electric field Ultra-fast response of nano-carbons under dynamical strong electric field Yoshiyuki Miyamoto NEC Nano Electronics Res. Labs. Acknowledgements Dr. Nakamura (RIST, Tokyo) Prof. Tománek (Michigan Univ.) Prof.

More information

T i t l e o f t h e w o r k : L a M a r e a Y o k o h a m a. A r t i s t : M a r i a n o P e n s o t t i ( P l a y w r i g h t, D i r e c t o r )

T i t l e o f t h e w o r k : L a M a r e a Y o k o h a m a. A r t i s t : M a r i a n o P e n s o t t i ( P l a y w r i g h t, D i r e c t o r ) v e r. E N G O u t l i n e T i t l e o f t h e w o r k : L a M a r e a Y o k o h a m a A r t i s t : M a r i a n o P e n s o t t i ( P l a y w r i g h t, D i r e c t o r ) C o n t e n t s : T h i s w o

More information

1.1 Units, definitions and fundamental equations. How should we deal with B and H which are usually used for magnetic fields?

1.1 Units, definitions and fundamental equations. How should we deal with B and H which are usually used for magnetic fields? Advance Organizer: Chapter 1: Introduction to single magnetic moments: Magnetic dipoles Spin and orbital angular momenta Spin-orbit coupling Magnetic susceptibility, Magnetic dipoles in a magnetic field:

More information

Optical studies of current-induced magnetization

Optical studies of current-induced magnetization Optical studies of current-induced magnetization Virginia (Gina) Lorenz Department of Physics, University of Illinois at Urbana-Champaign PHYS403, December 5, 2017 The scaling of electronics John Bardeen,

More information

Supplementary Figure 1: Spin noise spectra of 55 Mn in bulk sample at BL =10.5 mt, before subtraction of the zero-frequency line. a, Contour plot of

Supplementary Figure 1: Spin noise spectra of 55 Mn in bulk sample at BL =10.5 mt, before subtraction of the zero-frequency line. a, Contour plot of 1 Supplementary Figure 1: Spin noise spectra of 55 Mn in bulk sample at BL =10.5 mt, before subtraction of the zero-frequency line. a, Contour plot of the spin noise spectra calculated with Eq. (2) for

More information

WORLD SCIENTIFIC (2014)

WORLD SCIENTIFIC (2014) WORLD SCIENTIFIC (2014) LIST OF PROBLEMS Chapter 1: Magnetism of Free Electrons and Atoms 1. Orbital and spin moments of an electron: Using the theory of angular momentum, calculate the orbital

More information

THz field strength larger than MV/cm generated in organic crystal

THz field strength larger than MV/cm generated in organic crystal SwissFEL Wir schaffen Wissen heute für morgen 1 2 C. Vicario 1, R. Clemens 1 and C. P. Hauri 1,2 THz field strength larger than MV/cm generated in organic crystal 10/16/12 Workshop on High Field THz science

More information

Spin-injection Spectroscopy of a Spin-orbit coupled Fermi Gas

Spin-injection Spectroscopy of a Spin-orbit coupled Fermi Gas Spin-injection Spectroscopy of a Spin-orbit coupled Fermi Gas Tarik Yefsah Lawrence Cheuk, Ariel Sommer, Zoran Hadzibabic, Waseem Bakr and Martin Zwierlein July 20, 2012 ENS Why spin-orbit coupling? A

More information

Atomic Term Symbols and Energy Splitting. λ=5890 Å

Atomic Term Symbols and Energy Splitting. λ=5890 Å Chemistry 362 Spring 2018 Dr. Jean M. Standard April 18, 2018 Atomic Term Symbols and Energy Splitting 1. Atomic Term Symbols and the Sodium D-Line The sodium D-line is responsible for the familiar orange

More information