Basic Geodynamics of Landslides: III. Flow-slides

Size: px
Start display at page:

Download "Basic Geodynamics of Landslides: III. Flow-slides"

Transcription

1 International School LAndslide Risk Assessment and Mitigation LARAM School 2007 (3-15 September, Ravello, Italy) Session 1: Introduction to landslides: Landslide analysis using approaches based on: Geology, Geotechnics and Geomechanics Basic Geodynamics of Landslides: III. Flow-slides Ioannis Vardoulakis N.T.U. Athens ( 1

2 The dynamic slip circle method The dynamics of landslide run-out Flow-slides (eulerian) 2

3 The Lagrangean Approach to continuum mechanics emphasizes the particulate (material) description of a motion The pathlines of car-particles flowing in a highway: Red paths belong to receding particles; white paths to approaching particles. In Fluid Mechanics these lines are called the pathlines. We notice however this snapshot corresponds to a photograph with long exposure. Thus long exposures yield the Lagrangian view, whereas short exposures the Eulerian view 3

4 The Eulerian Approach to continuum mechanics emphasizes the spatial description of a motion Ground-wind velocities meteorologic map of a given place at a given instant. In Fluid Mechanics the integral curves of this velocity field are called the streamlines v = v( x, y, t) 4

5 Natural Phenomena: Debris flows Mud flows Avalanches Granular flows 5

6 Aeolic Perlitic flow in south Melos Island Greece (mostly harmless) 6

7 Debris flow landing on a rural road of Crete after heavy rainfall (accidental) 7

8 Santa Tecla neighbourhood of San Salvador: Las Colinas landslide of January 13, 2001, near San Salvador city after an earthquake, measuring 7.6 on the Richter scale (catastrophic). 8

9 III. Flow-slides Gray, J. M. N. T., Tai, Y.-C. and Noelle, S. (2003) Shock waves, dead-zones and particle-free regionsin rapid granular free surface flows. J. Fluid Mech. 491, Quecedo, M., Pastor, M., Herreros, M.I., Merodo, J.A.F. (2004). Numerical modelling of the propagation of fast landslides using the finite element method. International Journal for Numerical Methods in Engineering 59 (12), R.J. Roberts, A One-Dimensional Introduction to Continuum Mechanics, World Scientific, Savage, S.B. and Hutter, K. (1989). The motion of a finite mass of granular mate-rial down a rough incline. J. Fluid Mech. 199,

10 Shallow-water approximation h v = h(,) s t q = = v(,) s t A v = vet a = a e + a e t t n n a t = v v v v = + v, an = t s r 2 10

11 Material time derivative v v 1 a = (( v v) + ( v v )) t t E E E v v v = v ( x+ x, t) v ( x, t) x x E E E E E v v v = v ( x+ xt, + t) v ( x+ xt, ) v ( xt, + t) v ( xt, ) t t E E v v E a = + v t x 11

12 Mass balance h t + = s ( hv) 0 12

13 Balance of lin. momentum in normal direction : σ ds ρg cosβhds σ hdθ = ρhds n h σn = ρgcos βh+ r σ + σ = Kσ t n t ( 2 ) t ρv 2 v r ( ) sin /cos if : ϕ ϕ β ϕ K = Ka if :0 β ϕ and active plastic flow K p if :0 β ϕ and pasive plastic flow 13

14 Limit equilibrium configurations 14

15 Normal reaction stress h h =, 0 h << 1 r 2 v σ n = ρh g + + O( h ) ; g = gcosβ r 15

16 Balance of linear momentum in tangential direction : ( hσt) + ρghsinβ τn = ρhv s τ = σ tanϕ n n v v v v v + Kg h 1+ = g tanβ tanϕ 1+ t s h s g r g r 16

17 h h v + v + h = t s s v v 1 1 v 1 v + v + Kg h 1+ = g tanβ tanϕ 1+ t s h s g r g r These equations constitute the set of governing p.d. equations of flow-slides in an 1D-setting and variable topography. They are usually termed as shallow-water or depth-integrated equations and constitute a system of quasi-linear hyperbolic p.d. equations. The solutions of these equations include the formation of sharp discontinuities ( shocks ), thus such a system of hyperbolic equations is treated numerically by the so-called shock capturing techniques. 17

18 A remark made by Gray et al. (2003) concerning shock-capturing ; see references therein and Tai et al. 2001): The development of these methods has a long history starting with the classic papers of Godunov (1959), Van Leer (1979), Harten (1983) and Yee (1987), and there are now a wide range of textbooks on the subject (e.g. Le Veque 1990; Godlewski & Raviart 1996; Kröner 1997; Toro 1997). Here we have opted to use the recent high-resolution shockcapturing non-oscillatory central (NOC) scheme first introduced by Nessyahu & Tadmor (1990) and extended to multi-dimensions by Arminjon & Viallon (1995, 1999); Jiang & Tadmor (1998) and Lie & Noelle (2003). Recently Professor M. Pastor and his team have developed a 2D-model for the analysis of the propagation of fast landslides, using a finite element formulation and the Navier Stokes depth-integrated equations (Quecedo et al., 2004). 18

19 Shear flows inertia number v I = Ti z T i = D g g 19

20 Friction shear rate hardening 20

21 Friction shear rate softening 21

22 Steadily moving mud-flow down on a planar track An aerial view shows Saturday, Feb. 18, 2006, the extent of the landslide that buried the whole village of Guinsaugon, St. Bernard town in Southern Leyte province in central Philippines. Officials estimate those who perished in the landslide to be 1,800. [AP] 22

23 Governing equations: planar track s x, β = const., 1/ r = 0 h t + ( hv) = x 0 v v 1 ( 2 τ ) n + v + Kg h = g tan β t x h x σ n 23

24 Bagnold model (non-linear frictional-viscous model) n τ = σ tan ϕ + f ν γ, n = 3/ 2 n n w σ = ρ hg, ρ = ρ ρ n w f 0.26λ ρ ρ D 7/4 B w s g λ B = 1 n 1 n 1 min 1/3 1 γ 2 v h 24

25 Steadily moving mudslide v + v t v 1 ( 2 + Kg h ) = x h x ρ 3/2 f ν w v g tan β tanϕ 2 ρ ρgh h 3/2 v v v = const. v = + v = 0 t x x = x Vt h = H( x ) 25

26 Profile equation dh ρ 2K = tn a β tanϕ 2 dx ρ f ν 3/2 w 3/2 5/2 ρ g V H dh K dx = µ 2 m µ st dn 26

27 Remark: the action of seepage β 1 φ 2 27

28 Remark contnd. b ρ ρ = tan β tan ϕ, ρ ρ 1 2 Recall the static slope stability analysis: In case of an infinite slope under the action of seepage the safe slope inclination is, ρ 1 1 tan β < tanϕ tanϕ or β < ϕ ρ 2 2 The implication of this estimate are evident. A natural slope that after a heavy and protracted rainfall gets water-saturated (e.g. due to loss of its protecting cover-vegetation ). This slope will become unstable if the above inequality is true and we may have the triggering of the herein considered mud-flow. 28

29 Far-field solution H = lim H( x ) x dh dx x = 0 dh 2K dx = m µ µ st dn 0 2/3 3/2 5/2 b 5/3 H = b cv H V = c 29

30 Example β = 10 ϕ 5 c 0.5msec 3/2 5/3 V λ H, λ = 0.41 m 1 2/3 sec 30

31 Mud-flow profile * x * H b x =, h =, B = H H 2K dh dx ( 5/2 1 h ) = B x = 1 B h 0 1 dy y 5/2 31

32 Photo of a debris flow experiment, taken from R.M. Iverson, J.E. Costa, and R.G. LaHusen, 1992, Debris-Flow Flume at H.J. Andrews Experimental Forest, Oregon: U.S. Geological Survey Open-File Report The flowwave shows the formation of steep front and the development of roll-waves ( smovement/publications/ofr92-483/ofr92-483_inlined.html ) 32

33 Front geometry? Pouliquen,

34 The front of a rapid granular flow. The arrow indicates the direction of the flow Weak, long surface waves. Surface waves with long wavelength. 34

35 Roll waves Roll-waves are observed in open-channel hydraulics and are stair-like structures that move down-stream with a speed that is less then the flow velocity itself. Roll-waves are a possibility in debris flows. Dressler (1949) has shown that in open channel hydraulics roll waves cannot be described with patching of piece-wise continuous Bresse profiles. He showed also that the dynamic stability of these roll waves is explained from the fact that the front is a shock wave which moves with a constant celerity: Ahead of the shock the flow is super-critical, whereas behind the shock it is sub-critical. It can be shown that in this case the particles move through the shock front, from the region of small flow-height to the region of big height 35

36 Roller waves? (Dressler 1949) Forterre& Pouliquen,

37 The deposition bore Gray et al. (2003) 37

38 Rankine-Hugoniot campatibity conditions c D dd = dt + [[ h]] = h h + [[ v]] = v v + + [[ q] ] = v h v h D ( ) c h h = v h v h 1 1 K g ( h ) K g h ) c hv v hv v hv c ( = D ( ) ( ) + ( ) D ( hv) 38

39 The deposition bore v + = 0 st ( ) 1 R. H : c h h = v h D + nd R. H : K g ( h ) K g ( h ) = cd hv v hv 2 2 ( ) ( ) h K h K h cd = g h h h ( ) 39

40 The deposition bore is observed at slope inclinations where uniform flow is possible. For the simple of Coulomb type friction law this is the case when + β = ϕ K = K = 1+ sin cos 2 2 ϕ ϕ 1 cd = λ gh, h = h + h 2 ( + ) λ = 2 1+ sin ϕ cosϕ 2 cos ϕ h h + 40

41 Granular Solid-Fluid Transitions 41

42 Deposition layer (Ancey 2001) Flow-slide in cylindrical topography: deposition shock-wave (Bassanou 2000). 42

43 Run-out: smooth base Self-damming flow (Bassanou 2000) 43

44 Uphill moving "hydraulic jump" in granular flow model test in an incline with variable topography (Bassanou 2000) 44

45 Run-out: rough base, self damming (Bassanou 2000) 45

Ioannis Vardoulakis N.T.U. Athens

Ioannis Vardoulakis N.T.U. Athens ENSHMG March 10-14, 2008 an EU SOCRATES short course on Engineering Continuum Mechanics: traffic flow and shallow water waves Ioannis Vardoulakis N.T.U. Athens (http://geolab.mechan.ntua.gr) 1 natural

More information

SIMULATION OF A 2D GRANULAR COLUMN COLLAPSE ON A RIGID BED

SIMULATION OF A 2D GRANULAR COLUMN COLLAPSE ON A RIGID BED 1 SIMULATION OF A 2D GRANULAR COLUMN COLLAPSE ON A RIGID BED WITH LATERAL FRICTIONAL EFFECTS High slope results and comparison with experimental data Nathan Martin1, Ioan Ionescu2, Anne Mangeney1,3 François

More information

Dry granular flows: gas, liquid or solid?

Dry granular flows: gas, liquid or solid? Dry granular flows: gas, liquid or solid? Figure 1: Forterre & Pouliquen, Annu. Rev. Fluid Mechanics, 2008 1 Characterizing size and size distribution Grains are not uniform (size, shape, ) Statistical

More information

Slope Stability. loader

Slope Stability. loader Slope Stability Slope Stability loader Lower San Fernando Dam Failure, 1971 Outlines Introduction Definition of key terms Some types of slope failure Some causes of slope failure Shear Strength of Soils

More information

Plane and oblique shocks in shallow granular flows

Plane and oblique shocks in shallow granular flows Plane and oblique shocks in shallow granular flows Issw22 J.M.N.T. Gray 1, A. Irmer 2, Y.C. Tai 1, K. Hutter 1 1. Institut für Mechanik, Technische Universität Darmstadt, 64289 Darmstadt, Germany 2. Numerische

More information

Frequency of Rock Avalanches

Frequency of Rock Avalanches Frequency of Rock Avalanches Reference Location Area (1 3 km 2 ) Geology Study Period Number of Cases Frequency 1 (cases/year /1, km 2 ) Return period (years per 1, km 2 Abele (1974) North calcareous Alps

More information

Debris flow: categories, characteristics, hazard assessment, mitigation measures. Hariklia D. SKILODIMOU, George D. BATHRELLOS

Debris flow: categories, characteristics, hazard assessment, mitigation measures. Hariklia D. SKILODIMOU, George D. BATHRELLOS Debris flow: categories, characteristics, hazard assessment, mitigation measures Hariklia D. SKILODIMOU, George D. BATHRELLOS Natural hazards: physical phenomena, active in geological time capable of producing

More information

Prof. B V S Viswanadham, Department of Civil Engineering, IIT Bombay

Prof. B V S Viswanadham, Department of Civil Engineering, IIT Bombay 19 Module 5: Lecture -1 on Stability of Slopes Contents Stability analysis of a slope and finding critical slip surface; Sudden Draw down condition, effective stress and total stress analysis; Seismic

More information

Numerical approaches for rockfall analysis: a comparison

Numerical approaches for rockfall analysis: a comparison 18 th World IMACS / MODSIM Congress, Cairns, Australia 13-17 July 2009 http://mssanz.org.au/modsim09 Numerical approaches for rockfall analysis: a comparison Salciarini D. 1, Tamagnini C. 1 and Conversini

More information

Need of Proper Development in Hilly Urban Areas to Avoid

Need of Proper Development in Hilly Urban Areas to Avoid Need of Proper Development in Hilly Urban Areas to Avoid Landslide Hazard Dr. Arvind Phukan, P.E. Cosultant/Former Professor of Civil Engineering University of Alaska, Anchorage, USA RI District Governor

More information

DEM 6 6 th International Conference on Discrete Element Methods and Related Techniques

DEM 6 6 th International Conference on Discrete Element Methods and Related Techniques DEM 6 6 th International Conference on Discrete Element Methods and Related Techniques August 5-6, 2013 Graham Mustoe DEM6 Conference Chair Graham Mustoe DEM6 Conference Organizational Team Melody Francisco

More information

POLITECNICO DI TORINO

POLITECNICO DI TORINO POLITECNICO DI TORINO Whatever is the numerical approach to the study of rock avalanche evolution, obtained results depend on the choice of the value that is assigned to the characteristic parameters of

More information

DAM-BREAK FLOWS OF DRY GRANULAR MATERIAL ON GENTLE SLOPES

DAM-BREAK FLOWS OF DRY GRANULAR MATERIAL ON GENTLE SLOPES DOI: 10.4408/IJEGE.2011-03.B-056 DAM-BREAK FLOWS OF DRY GRANULAR MATERIAL ON GENTLE SLOPES Luca SARNO (*), Maria Nicolina PAPA (**) & Riccardo MARTINO (*) (*) University of Naples Federico II - Dept. of

More information

EFFECT OF SAND MINING ACTIVITY ON THE SEDIMENT CONTROL SYSTEM (A CASE STUDY OF SOMBE-LEWARA RIVER, DONGGALA, INDONESIA)

EFFECT OF SAND MINING ACTIVITY ON THE SEDIMENT CONTROL SYSTEM (A CASE STUDY OF SOMBE-LEWARA RIVER, DONGGALA, INDONESIA) Civil Engineering Forum Volume XXI/1 - January 01 EFFECT OF SAND MINING ACTIVITY ON THE SEDIMENT CONTROL SYSTEM (A CASE STUDY OF SOMBE-LEWARA RIVER, DONGGALA, INDONESIA) Y. A. Bawias Agency of Public Works,

More information

Testing various constitutive equations for debris flow modelling

Testing various constitutive equations for debris flow modelling Hydrology, Water Resources and Ecology in Headwaters (Proceedings of the HeadWater'98 Conference held at Meran/Merano, Italy, April 1998). IAHS Publ. no. 48, 1998. 49 Testing various constitutive equations

More information

Examining the Soil Responses during the Initiation of a Flow Landslide by Coupled Numerical Simulations

Examining the Soil Responses during the Initiation of a Flow Landslide by Coupled Numerical Simulations The 2012 World Congress on Advances in Civil, Environmental, and Materials Research (ACEM 12) Seoul, Korea, August 26-30, 2012 Examining the Soil Responses during the Initiation of a Flow Landslide by

More information

Duality methods for variational inequalities and Non-Newtonian fluid mechanics

Duality methods for variational inequalities and Non-Newtonian fluid mechanics Duality methods for variational inequalities and Non-Newtonian fluid mechanics Enrique Fernández-Nieto, Paul Vigneaux Dpto. Matemática Aplicada I, Universidad de Sevilla UMPA, Ecole Normale Supérieure

More information

Bifurcation Analysis in Geomechanics

Bifurcation Analysis in Geomechanics Bifurcation Analysis in Geomechanics I. VARDOULAKIS Department of Engineering Science National Technical University of Athens Greece and J. SULEM Centre d'enseignement et de Recherche en Mecanique des

More information

Debris flow modelling accounting for large boulder transport

Debris flow modelling accounting for large boulder transport Monitoring, Simulation, Prevention and Remediation of Dense and Debris lows III 9 Debris flow modelling accounting for large boulder transport C. Martinez 1,. Miralles-Wilhelm 1 & R. Garcia-Martinez 1

More information

The shallow water equations Lecture 8. (photo due to Clark Little /SWNS)

The shallow water equations Lecture 8. (photo due to Clark Little /SWNS) The shallow water equations Lecture 8 (photo due to Clark Little /SWNS) The shallow water equations This lecture: 1) Derive the shallow water equations 2) Their mathematical structure 3) Some consequences

More information

IMPLEMENTATION OF NON-NEWTONIAN RHEOLOGY FOR GRANULAR FLOW SIMULATION

IMPLEMENTATION OF NON-NEWTONIAN RHEOLOGY FOR GRANULAR FLOW SIMULATION 9. National Conference on Computational Mechanics MekIT 17 B. Skallerud and H I Andersson (Eds) IMPLEMENTATION OF NON-NEWTONIAN RHEOLOGY FOR GRANULAR FLOW SIMULATION Petter Fornes 1,, Hans Bihs 1 and Steinar

More information

Deep-Seated Landslides and Landslide Dams Characteristics Caused by Typhoon Talas at Kii Peninsula, Japan

Deep-Seated Landslides and Landslide Dams Characteristics Caused by Typhoon Talas at Kii Peninsula, Japan Deep-Seated Landslides and Landslide Dams Characteristics Caused by Typhoon Talas at Kii Peninsula, Japan Hefryan Sukma KHARISMALATRI*,1, Hitomi KIKUCHI 1, Yoshiharu ISHIKAWA 1, Takashi GOMI 1, Katsushige

More information

Analysis of soil failure modes using flume tests

Analysis of soil failure modes using flume tests Analysis of soil failure modes using flume tests A. Spickermann & J.-P. Malet CNRS UMR 7516, School and Observatory of Earth Sciences, University of Strasbourg, Strasbourg, France Th.W.J. van Asch, M.C.G.

More information

FUNDAMENTAL STUDY OF BINGHAM FLUID BY MEANS OF DAM-BREAK FLOW MODEL

FUNDAMENTAL STUDY OF BINGHAM FLUID BY MEANS OF DAM-BREAK FLOW MODEL Annual Journal of Hydraulic Engineering, JSCE, Vol.54, 2010, February FUNDAMENTAL STUDY OF BINGHAM FLUID BY MEANS OF DAM-BREAK FLOW MODEL How Tion PUAY1 and Takashi HOSODA2 1 Member of JSCE, Phd Student,

More information

Numerical Study of Relationship Between Landslide Geometry and Run-out Distance of Landslide Mass

Numerical Study of Relationship Between Landslide Geometry and Run-out Distance of Landslide Mass Numerical Study of Relationship Between Landslide Geometry and Run-out Distance of Landslide Mass Muneyoshi Numada Research Associate, Institute of Industrial Science, The University of Tokyo, Japan Kazuo

More information

DYNAMIC IMPACT OF A DEBRIS FLOW FRONT AGAINST A VERTICAL WALL

DYNAMIC IMPACT OF A DEBRIS FLOW FRONT AGAINST A VERTICAL WALL DOI: 10.4408/IJEGE.2011-03.B-113 DYNAMIC IMPACT OF A DEBRIS FLOW FRONT AGAINST A VERTICAL WALL Aronne ARMANINI (*), Michele LARCHER (*) & Michela ODORIZZI (*) (*) Università degli Studi di Trento, via

More information

Landslides & Debris Flows

Landslides & Debris Flows T.#Perron# #12.001# #Landslides#&#Debris#Flows# 1# Landslides & Debris Flows Many geologic processes, including those shaping the land surface, are slowacting, involving feedbacks that operate over many

More information

Analysis of soil failure modes using flume tests

Analysis of soil failure modes using flume tests Analysis of soil failure modes using flume tests A. Spickermann & J.-P. Malet Institute of Earth Physics, CNRS UMR 751, University of Strasbourg, Strasbourg, France Th.W.J. van Asch, M.C.G. van Maarseveen,

More information

GG101 Lecture 22: Mass Wasting. Soil, debris, sediment, and broken rock is called regolith.

GG101 Lecture 22: Mass Wasting. Soil, debris, sediment, and broken rock is called regolith. GG101 Lecture 22: Mass Wasting Mass Wasting is the movement of rock and soil down a slope due to the force of gravity. Soil, debris, sediment, and broken rock is called regolith. Mass wasting creates broad

More information

Non-linear Wave Propagation and Non-Equilibrium Thermodynamics - Part 3

Non-linear Wave Propagation and Non-Equilibrium Thermodynamics - Part 3 Non-linear Wave Propagation and Non-Equilibrium Thermodynamics - Part 3 Tommaso Ruggeri Department of Mathematics and Research Center of Applied Mathematics University of Bologna January 21, 2017 ommaso

More information

A Numerical Method for Determine the Dredging Requirements for Channel Restoration Using Alishan Creek in Central Taiwan as an Example

A Numerical Method for Determine the Dredging Requirements for Channel Restoration Using Alishan Creek in Central Taiwan as an Example A Numerical Method for Determine the Dredging Requirements for Channel Restoration Using Alishan Creek in Central Taiwan as an Example Instructors : Dr. Jie-Dar Cheng Dr. Honglay Chen Dr. Chao-Yuan Lin

More information

Mass Wasting: The Work of Gravity

Mass Wasting: The Work of Gravity Chapter 15 Lecture Earth: An Introduction to Physical Geology Twelfth Edition Mass Wasting: The Work of Gravity Tarbuck and Lutgens Chapter 15 Mass Wasting The Importance of Mass Wasting Slopes are the

More information

Earthquake hazards. Aims 1. To know how hazards are classified 2. To be able to explain how the hazards occur 3. To be able to rank order hazards

Earthquake hazards. Aims 1. To know how hazards are classified 2. To be able to explain how the hazards occur 3. To be able to rank order hazards Earthquake hazards Aims 1. To know how hazards are classified 2. To be able to explain how the hazards occur 3. To be able to rank order hazards Types of hazard Primary A direct result of the earthquake

More information

Examination paper for TMA4195 Mathematical Modeling

Examination paper for TMA4195 Mathematical Modeling Department of Mathematical Sciences Examination paper for TMA4195 Mathematical Modeling Academic contact during examination: Elena Celledoni Phone: 48238584, 73593541 Examination date: 11th of December

More information

A STUDY ON DEBRIS FLOW OUTFLOW DISCHARGE AT A SERIES OF SABO DAMS

A STUDY ON DEBRIS FLOW OUTFLOW DISCHARGE AT A SERIES OF SABO DAMS A STUDY ON DEBRIS FLOW OUTFLOW DISCHARGE AT A SERIES OF SABO DAMS Namgyun KIM *, Hajime NAKAGAWA **, Kenji KAWAIKE *** and Hao ZHANG **** Abstract Debris flows are very dangerous phenomena in mountainous

More information

Gas Dynamics Equations: Computation

Gas Dynamics Equations: Computation Title: Name: Affil./Addr.: Gas Dynamics Equations: Computation Gui-Qiang G. Chen Mathematical Institute, University of Oxford 24 29 St Giles, Oxford, OX1 3LB, United Kingdom Homepage: http://people.maths.ox.ac.uk/chengq/

More information

Practical reliability approach to urban slope stability

Practical reliability approach to urban slope stability University of Wollongong Research Online Faculty of Engineering - Papers (Archive) Faculty of Engineering and Information Sciences 2011 Practical reliability approach to urban slope stability R. Chowdhury

More information

OE4625 Dredge Pumps and Slurry Transport. Vaclav Matousek October 13, 2004

OE4625 Dredge Pumps and Slurry Transport. Vaclav Matousek October 13, 2004 OE465 Vaclav Matousek October 13, 004 1 Dredge Vermelding Pumps onderdeel and Slurry organisatie Transport OE465 Vaclav Matousek October 13, 004 Dredge Vermelding Pumps onderdeel and Slurry organisatie

More information

Beyond the Book. FOCUS Book

Beyond the Book. FOCUS Book FOCUS Book Suppose your city wants to build a new housing development on a steep slope outside town. Design a model to test whether the land is safe from the types of landslides you read about in this

More information

V (r,t) = i ˆ u( x, y,z,t) + ˆ j v( x, y,z,t) + k ˆ w( x, y, z,t)

V (r,t) = i ˆ u( x, y,z,t) + ˆ j v( x, y,z,t) + k ˆ w( x, y, z,t) IV. DIFFERENTIAL RELATIONS FOR A FLUID PARTICLE This chapter presents the development and application of the basic differential equations of fluid motion. Simplifications in the general equations and common

More information

Mass Wasting. Revisit: Erosion, Transportation, and Deposition

Mass Wasting. Revisit: Erosion, Transportation, and Deposition Mass Wasting Revisit: Erosion, Transportation, and Deposition While landslides are a normal part of erosion and surface processes, they can be very destructive to life and property! - Mass wasting: downslope

More information

The sketch map of field investigations in Wenchuan earthquake hit region, Chengdu City.

The sketch map of field investigations in Wenchuan earthquake hit region, Chengdu City. The sketch map of field investigations in Wenchuan earthquake hit region, Chengdu City. 1 Environmental and Geological Condition 1.1 Geomorphology BaiSha River Basin is located in Dujiangyan County, and

More information

Turbulence is a ubiquitous phenomenon in environmental fluid mechanics that dramatically affects flow structure and mixing.

Turbulence is a ubiquitous phenomenon in environmental fluid mechanics that dramatically affects flow structure and mixing. Turbulence is a ubiquitous phenomenon in environmental fluid mechanics that dramatically affects flow structure and mixing. Thus, it is very important to form both a conceptual understanding and a quantitative

More information

Research on the Concrete Dam Damage and Failure Rule under the Action of Fluid-Solid Coupling

Research on the Concrete Dam Damage and Failure Rule under the Action of Fluid-Solid Coupling Research on the Concrete Dam Damage and Failure Rule under the Action of Fluid-Solid Coupling Ke Ming Sun, Moj Raj Bagale Liaoning Technical University, Fuxin, Liaoning province P.R China Emails of the

More information

A METHODOLOGY FOR ASSESSING EARTHQUAKE-INDUCED LANDSLIDE RISK. Agency for the Environmental Protection, ITALY (

A METHODOLOGY FOR ASSESSING EARTHQUAKE-INDUCED LANDSLIDE RISK. Agency for the Environmental Protection, ITALY ( A METHODOLOGY FOR ASSESSING EARTHQUAKE-INDUCED LANDSLIDE RISK Roberto W. Romeo 1, Randall W. Jibson 2 & Antonio Pugliese 3 1 University of Urbino, ITALY (e-mail: rwromeo@uniurb.it) 2 U.S. Geological Survey

More information

Application of simulation technique on debris flow hazard zone delineation: a case study in the Daniao tribe, Eastern Taiwan

Application of simulation technique on debris flow hazard zone delineation: a case study in the Daniao tribe, Eastern Taiwan Nat. Hazards Earth Syst. Sci.,, 3053 306, 0 www.nat-hazards-earth-syst-sci.net//3053/0/ doi:0.594/nhess--3053-0 Author(s) 0. CC Attribution 3.0 License. Natural Hazards and Earth System Sciences Application

More information

AN APPROACH TO THE CLASSIFICATION OF SLOPE MOVEMENTS

AN APPROACH TO THE CLASSIFICATION OF SLOPE MOVEMENTS Training/workshop on Earthquake Vulnerability and Multi-Hazard Risk Assessment: Geospatial Tools for Rehabilitation and Reconstruction Effort 13 31 March 2006, Islamabad, Pakistan AN APPROACH TO THE CLASSIFICATION

More information

7. Basics of Turbulent Flow Figure 1.

7. Basics of Turbulent Flow Figure 1. 1 7. Basics of Turbulent Flow Whether a flow is laminar or turbulent depends of the relative importance of fluid friction (viscosity) and flow inertia. The ratio of inertial to viscous forces is the Reynolds

More information

AA214B: NUMERICAL METHODS FOR COMPRESSIBLE FLOWS

AA214B: NUMERICAL METHODS FOR COMPRESSIBLE FLOWS AA214B: NUMERICAL METHODS FOR COMPRESSIBLE FLOWS 1 / 29 AA214B: NUMERICAL METHODS FOR COMPRESSIBLE FLOWS Hierarchy of Mathematical Models 1 / 29 AA214B: NUMERICAL METHODS FOR COMPRESSIBLE FLOWS 2 / 29

More information

Study of flow landslide impact forces on protection structures with the Material Point Method

Study of flow landslide impact forces on protection structures with the Material Point Method Study of flow landslide impact forces on protection structures with the Material Point Method F. Ceccato DICEA University of Padua, Italy ABSTRACT: to assess the potential damage caused by a landslide

More information

THE HYDRAULIC PERFORMANCE OF ORIENTED SPUR DIKE IMPLEMENTATION IN OPEN CHANNEL

THE HYDRAULIC PERFORMANCE OF ORIENTED SPUR DIKE IMPLEMENTATION IN OPEN CHANNEL Tenth International Water Technology Conference, IWTC10 2006, Alexandria, Egypt 281 THE HYDRAULIC PERFORMANCE OF ORIENTED SPUR DIKE IMPLEMENTATION IN OPEN CHANNEL Karima Attia 1 and Gamal El Saied 2 1

More information

UNIFORM FLOW CRITICAL FLOW GRADUALLY VARIED FLOW

UNIFORM FLOW CRITICAL FLOW GRADUALLY VARIED FLOW UNIFORM FLOW CRITICAL FLOW GRADUALLY VARIED FLOW Derivation of uniform flow equation Dimensional analysis Computation of normal depth UNIFORM FLOW 1. Uniform flow is the flow condition obtained from a

More information

Lecture 6: Flow regimes fluid-like

Lecture 6: Flow regimes fluid-like Granular Flows 1 Lecture 6: Flow regimes fluid-like Quasi-static granular flows have plasticity laws, gaseous granular flows have kinetic theory -- how to model fluid-like flows? Intermediate, dense regime:

More information

High Resolution Integrated Weather- Flood Modelling Framework

High Resolution Integrated Weather- Flood Modelling Framework High Resolution Integrated Weather- Flood Modelling Framework IBM Research Team : Ulisses Mello, Lucas Villa Real, Vaibhav Saxena, Thomas George, Rashmi Mittal, Yogish Sabharwal Intern @ IBM Research :

More information

The module itself will take approximately 2 hours to complete. Please do not leave this until the last minute.

The module itself will take approximately 2 hours to complete. Please do not leave this until the last minute. ATTENTION: Your grade for this assignment is based on your answers to the end-of-module questions AND the post-test. If you DO NOT take the post-test you will NOT be eligible for full points. The module

More information

9/23/2013. Introduction CHAPTER 7 SLOPE PROCESSES, LANDSLIDES, AND SUBSIDENCE. Case History: La Conchita Landslide

9/23/2013. Introduction CHAPTER 7 SLOPE PROCESSES, LANDSLIDES, AND SUBSIDENCE. Case History: La Conchita Landslide Introduction CHAPTER 7 SLOPE PROCESSES, LANDSLIDES, AND SUBSIDENCE Landslide and other ground failures posting substantial damage and loss of life In U.S., average 25 50 deaths; damage more than $3.5 billion

More information

Pore Water Pressure Contribution to Debris Flow Mobility

Pore Water Pressure Contribution to Debris Flow Mobility American Journal of Environmental Sciences 5 (4): 487-493, 2009 ISSN 1553-345X 2009 Science Publications Pore Water Pressure Contribution to Debris Flow Mobility Chiara Deangeli DITAG-Department of Land,

More information

SHORT COMMUNICATIONS

SHORT COMMUNICATIONS INTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS, VOL. 7, 485492 (ty83) SHORT COMMUNICATIONS ON THE SOLUTION OF PLANE FLOW OF GRANULAR MEDIA FOR JUMP NON-HOMOGENEITY RADOSLAW

More information

Latest Trends in Engineering Mechanics, Structures, Engineering Geology

Latest Trends in Engineering Mechanics, Structures, Engineering Geology Numerical modeling of a debris flow event occurred in Campania region, southern Italy: consideration on the rheological model parameters on the run-out ANNA MARIA PELLEGRINO Department of Engineering University

More information

9/13/2011 CHAPTER 9 AND SUBSIDENCE. Case History: La Conchita Landslide. Introduction

9/13/2011 CHAPTER 9 AND SUBSIDENCE. Case History: La Conchita Landslide. Introduction CHAPTER 9 SLOPE PROCESSES, LANDSLIDES, AND SUBSIDENCE Case History: La Conchita Landslide La Conchita: small coastal community 80 km (50 mi) northwest of Los Angeles Landslide occurred on January 10, 2005

More information

TWO DIMENSIONAL MODELING AND STABILITY ANALYSIS OF SLOPES OVERLAYING TO SHAHID RAGAEE POWER PLANT

TWO DIMENSIONAL MODELING AND STABILITY ANALYSIS OF SLOPES OVERLAYING TO SHAHID RAGAEE POWER PLANT 4 th International Conference on Earthquake Geotechnical Engineering June 25-28, 2007 Paper No. 1637 TWO DIMENSIONAL MODELING AND STABILITY ANALYSIS OF SLOPES OVERLAYING TO SHAHID RAGAEE POWER PLANT Mohammad

More information

MA3D1 Fluid Dynamics Support Class 5 - Shear Flows and Blunt Bodies

MA3D1 Fluid Dynamics Support Class 5 - Shear Flows and Blunt Bodies MA3D1 Fluid Dynamics Support Class 5 - Shear Flows and Blunt Bodies 13th February 2015 Jorge Lindley email: J.V.M.Lindley@warwick.ac.uk 1 2D Flows - Shear flows Example 1. Flow over an inclined plane A

More information

Modelling debris flows down general channels

Modelling debris flows down general channels Modelling debris flows down general channels S. P. Pudasaini, Y. Wang, K. Hutter To cite this version: S. P. Pudasaini, Y. Wang, K. Hutter. Modelling debris flows down general channels. Natural Hazards

More information

PIPE FLOWS: LECTURE /04/2017. Yesterday, for the example problem Δp = f(v, ρ, μ, L, D) We came up with the non dimensional relation

PIPE FLOWS: LECTURE /04/2017. Yesterday, for the example problem Δp = f(v, ρ, μ, L, D) We came up with the non dimensional relation /04/07 ECTURE 4 PIPE FOWS: Yesterday, for the example problem Δp = f(v, ρ, μ,, ) We came up with the non dimensional relation f (, ) 3 V or, p f(, ) You can plot π versus π with π 3 as a parameter. Or,

More information

The impact of vegetation on the characteristics of the flow in an inclined open channel using the piv method

The impact of vegetation on the characteristics of the flow in an inclined open channel using the piv method Water Resources and Ocean Science 2012;1(1):1-6 Published online December 30, 2012 (http:// www.sciencepublishinggroup.com/j/wors) doi:.11648/j.wors.201201.11 The impact of vegetation on the characteristics

More information

High-Resolution Finite Volume Methods and Adaptive Mesh Refinement

High-Resolution Finite Volume Methods and Adaptive Mesh Refinement High-Resolution Finite Volume Methods and Adaptive Mesh Refinement Randall J. LeVeque Department of Applied Mathematics University of Washington CLAWPACK and TsunamiClaw Software http://www.amath.washington.edu/~claw

More information

Geotechnical analysis of slopes and landslides: achievements and challenges

Geotechnical analysis of slopes and landslides: achievements and challenges University of Wollongong Research Online Faculty of Engineering - Papers (Archive) Faculty of Engineering and Information Sciences 2010 Geotechnical analysis of slopes and landslides: achievements and

More information

A STUDY ON DEBRIS FLOW DEPOSITION BY THE ARRANGEMENT OF SABO DAM

A STUDY ON DEBRIS FLOW DEPOSITION BY THE ARRANGEMENT OF SABO DAM Annual Journal of Hydraulic Engineering, JSCE, Vol.57, 2013, February A STUDY ON DEBRIS FLOW DEPOSITION BY THE ARRANGEMENT OF SABO DAM Namgyun Kim 1, Hajime NAKAGAWA 2, Kenji KAWAIKE 3, and Hao ZHANG 4

More information

CEE 271: Applied Mechanics II, Dynamics Lecture 9: Ch.13, Sec.4-5

CEE 271: Applied Mechanics II, Dynamics Lecture 9: Ch.13, Sec.4-5 1 / 40 CEE 271: Applied Mechanics II, Dynamics Lecture 9: Ch.13, Sec.4-5 Prof. Albert S. Kim Civil and Environmental Engineering, University of Hawaii at Manoa 2 / 40 EQUATIONS OF MOTION:RECTANGULAR COORDINATES

More information

A Very Brief Introduction to Conservation Laws

A Very Brief Introduction to Conservation Laws A Very Brief Introduction to Wen Shen Department of Mathematics, Penn State University Summer REU Tutorial, May 2013 Summer REU Tutorial, May 2013 1 / The derivation of conservation laws A conservation

More information

The Importance of Mass Wasting

The Importance of Mass Wasting Mass Wasting: The Work of Gravity Earth Chapter 15 Chapter 15 Mass Wasting The Importance of Mass Wasting Slopes are the most common elements in our physical landscape Slopes may appear to be stable, but

More information

FOUR-WAY COUPLED SIMULATIONS OF TURBULENT

FOUR-WAY COUPLED SIMULATIONS OF TURBULENT FOUR-WAY COUPLED SIMULATIONS OF TURBULENT FLOWS WITH NON-SPHERICAL PARTICLES Berend van Wachem Thermofluids Division, Department of Mechanical Engineering Imperial College London Exhibition Road, London,

More information

Viscoplastic Free-Surface Flows: The Herschel-Bulkley Case

Viscoplastic Free-Surface Flows: The Herschel-Bulkley Case Seventh International Conference on Computational Fluid Dynamics ICCFD7, Big Island, Hawaii, July 9-3, ICCFD7-33 Viscoplastic Free-Surface Flows: The Herschel-Bulkley Case C. Acary-Robert, E.D. Fernández-Nieto,

More information

Earthquake response analysis of rock-fall models by discontinuous deformation analysis

Earthquake response analysis of rock-fall models by discontinuous deformation analysis c Earthquake response analysis of rock-fall models by discontinuous deformation analysis T. Sasaki, I. Hagiwara & K. Sasaki Rock Engineering Lab., Suncoh Consultants Co. Ltd., Tokyo, Japan R. Yoshinaka

More information

ISMS Paper No Modelling the impact of particle flow on rigid structures: experimental and numerical investigations

ISMS Paper No Modelling the impact of particle flow on rigid structures: experimental and numerical investigations Paper No. 210 ISMS 2016 Modelling the impact of particle flow on rigid structures: experimental and numerical investigations M.A. Meguid a, Ge Gao b, M.M. Abouelkair c and M.Z. Abdelrahman c a Associate

More information

Ordinary Differential Equations

Ordinary Differential Equations Ordinary Differential Equations In this lecture, we will look at different options for coding simple differential equations. Start by considering bicycle riding as an example. Why does a bicycle move forward?

More information

Mass Wasting. Requirements for Mass Wasting. Slope Stability. Geol 104: mass wasting

Mass Wasting. Requirements for Mass Wasting. Slope Stability. Geol 104: mass wasting Mass Wasting Movement of earth materials downslope, driven by Gravitational Forces. Landslides - general term for rock or soil movement. In U.S., on average, mass wasting causes 1 to 2 billion dollars

More information

Variable Definition Notes & comments

Variable Definition Notes & comments Extended base dimension system Pi-theorem (also definition of physical quantities, ) Physical similarity Physical similarity means that all Pi-parameters are equal Galileo-number (solid mechanics) Reynolds

More information

DYNAMICS OF LIQUEFIED SEDIMENT FLOW. Advances in Natural and Technological Hazards Research Vol. 19

DYNAMICS OF LIQUEFIED SEDIMENT FLOW. Advances in Natural and Technological Hazards Research Vol. 19 DYNAMICS OF LIQUEFIED SEDIMENT FLOW Advances in Natural and Technological Hazards Research Vol. 9 THE DYNAMICS OF LIQUEFIED SEDIMENT FLOW UNDERGOING PROGRESSIVE SOLIDIFICATION S. SASSA Disaster Prevention

More information

The most common methods to identify velocity of flow are pathlines, streaklines and streamlines.

The most common methods to identify velocity of flow are pathlines, streaklines and streamlines. 4 FLUID FLOW 4.1 Introduction Many civil engineering problems in fluid mechanics are concerned with fluids in motion. The distribution of potable water, the collection of domestic sewage and storm water,

More information

The Shallow Water Equations

The Shallow Water Equations The Shallow Water Equations Clint Dawson and Christopher M. Mirabito Institute for Computational Engineering and Sciences University of Texas at Austin clint@ices.utexas.edu September 29, 2008 The Shallow

More information

SPH Molecules - a model of granular materials

SPH Molecules - a model of granular materials SPH Molecules - a model of granular materials Tatiana Capone DITS, Univeristy of Roma (la Sapienza) Roma, Italy Jules Kajtar School of Mathematical Sciences Monash University Vic. 3800, Australia Joe Monaghan

More information

Section 2: Lecture 1 Integral Form of the Conservation Equations for Compressible Flow

Section 2: Lecture 1 Integral Form of the Conservation Equations for Compressible Flow Section 2: Lecture 1 Integral Form of the Conservation Equations for Compressible Flow Anderson: Chapter 2 pp. 41-54 1 Equation of State: Section 1 Review p = R g T " > R g = R u M w - R u = 8314.4126

More information

Mechanics II. Which of the following relations among the forces W, k, N, and F must be true?

Mechanics II. Which of the following relations among the forces W, k, N, and F must be true? Mechanics II 1. By applying a force F on a block, a person pulls a block along a rough surface at constant velocity v (see Figure below; directions, but not necessarily magnitudes, are indicated). Which

More information

SLOPE FAILURE SLOPES. Landslides, Mudflows, Earthflows, and other Mass Wasting Processes

SLOPE FAILURE SLOPES. Landslides, Mudflows, Earthflows, and other Mass Wasting Processes GEOL g406 Environmental Geology SLOPE FAILURE Landslides, Mudflows, Earthflows, and other Mass Wasting Processes Read Chapter 5 in your textbook (Keller, 2000) Gros Ventre landslide, Wyoming S. Hughes,

More information

Rapid Mass Movements System RAMMS

Rapid Mass Movements System RAMMS Rapid Mass Movements System RAMMS Yves Bühler, Marc Christen, Perry Bartelt, Christoph Graf, Werner Gerber, Brian McArdell Swiss Federal Institute for Forest, Snow and Landscape Research WSL WSL Institute

More information

IX. Mass Wasting Processes

IX. Mass Wasting Processes IX. Mass Wasting Processes 1. Deris Flows Flow types: Deris flow, lahar (volcanic), mud flow (few gravel, no oulders) Flowing mixture of water, clay, silt, sand, gravel, oulder, etc. Flowing is liquefied

More information

Game Physics. Game and Media Technology Master Program - Utrecht University. Dr. Nicolas Pronost

Game Physics. Game and Media Technology Master Program - Utrecht University. Dr. Nicolas Pronost Game and Media Technology Master Program - Utrecht University Dr. Nicolas Pronost Soft body physics Soft bodies In reality, objects are not purely rigid for some it is a good approximation but if you hit

More information

Granular jets and hydraulic jumps on an inclined plane

Granular jets and hydraulic jumps on an inclined plane J. Fluid Mech. (2011), vol. 675, pp. 87 116. c Cambridge University Press 2011 doi:10.1017/jfm.2011.2 87 Granular jets and hydraulic jumps on an inclined plane C. G. JOHNSON AND J. M. N. T. GRAY School

More information

A scaling law for impact force of a granular avalanche flowing past a wall

A scaling law for impact force of a granular avalanche flowing past a wall GEOPHYSICAL RESEARCH LETTERS, VOL. 39,, doi:10.1029/2012gl054112, 2012 A scaling law for impact force of a granular avalanche flowing past a wall T. aug, 1 P. Caccamo, 1 and B. Chanut 1,2 Received 5 October

More information

Notes: Outline. Shock formation. Notes: Notes: Shocks in traffic flow

Notes: Outline. Shock formation. Notes: Notes: Shocks in traffic flow Outline Scalar nonlinear conservation laws Traffic flow Shocks and rarefaction waves Burgers equation Rankine-Hugoniot conditions Importance of conservation form Weak solutions Reading: Chapter, 2 R.J.

More information

New Topic Today. Mass Movement = Mass Wasting. =colluvial processes =slope processes =slope failures =LANDSLIDES. Landslides by U.S.

New Topic Today. Mass Movement = Mass Wasting. =colluvial processes =slope processes =slope failures =LANDSLIDES. Landslides by U.S. New Topic Today Mass Movement = Mass Wasting =colluvial processes =slope processes =slope failures =LANDSLIDES U.S. Landslide Risk Which states have lots of landslide damage? Landslides by U.S. Region

More information

1. Introduction, fluid properties (1.1, 2.8, 4.1, and handouts)

1. Introduction, fluid properties (1.1, 2.8, 4.1, and handouts) 1. Introduction, fluid properties (1.1, 2.8, 4.1, and handouts) Introduction, general information Course overview Fluids as a continuum Density Compressibility Viscosity Exercises: A1 Fluid mechanics Fluid

More information

Fluid Dynamics. Massimo Ricotti. University of Maryland. Fluid Dynamics p.1/14

Fluid Dynamics. Massimo Ricotti. University of Maryland. Fluid Dynamics p.1/14 Fluid Dynamics p.1/14 Fluid Dynamics Massimo Ricotti ricotti@astro.umd.edu University of Maryland Fluid Dynamics p.2/14 The equations of fluid dynamics are coupled PDEs that form an IVP (hyperbolic). Use

More information

Evaluation of Landslide Hazard Assessment Models at Regional Scale (SciNet NatHazPrev Project)

Evaluation of Landslide Hazard Assessment Models at Regional Scale (SciNet NatHazPrev Project) Evaluation of Landslide Hazard Assessment Models at Regional Scale (SciNet NatHazPrev Project) Democritus University of Thrace (P1) Department of Civil Engineering Geotechnical Division Scientific Staff:

More information

Basic Fluid Mechanics

Basic Fluid Mechanics Basic Fluid Mechanics Chapter 6A: Internal Incompressible Viscous Flow 4/16/2018 C6A: Internal Incompressible Viscous Flow 1 6.1 Introduction For the present chapter we will limit our study to incompressible

More information

R.SUNDARAVADIVELU Professor IIT Madras,Chennai - 36.

R.SUNDARAVADIVELU Professor IIT Madras,Chennai - 36. Behaviour of Berthing Structure under Changing Slope in Seismic Condition - A Case Study K.MUTHUKKUMARAN Research Scholar Department of Ocean Engineering, R.SUNDARAVADIVELU Professor IIT Madras,Chennai

More information

3/8/17. #20 - Landslides: Mitigation and Case Histories. Questions for Thought. Questions for Thought

3/8/17. #20 - Landslides: Mitigation and Case Histories. Questions for Thought. Questions for Thought #20 - Landslides: Mitigation and Case Histories Web Exercise #3 (Volcanoes) Due Wednesday There is a 2-point penalty for every day the assignment is late. Exam 1 Scores Scores and exam key are posted Vaiont

More information

QUASI-THREE DIMENSIONAL TWO-PHASE DEBRIS FLOW MODEL ACOUNTING FOR BOULDER TRANSPORT

QUASI-THREE DIMENSIONAL TWO-PHASE DEBRIS FLOW MODEL ACOUNTING FOR BOULDER TRANSPORT DOI: 10.4408/IJEGE.2011-03.B-051 QUASI-THREE DIMENSIONAL TWO-PHASE DEBRIS FLOW MODEL ACOUNTING FOR BOULDER TRANSPORT C.E. MARTINEZ (*), F. MIRALLES-WILHELM (**) & R. GARCIA-MARTINEZ (***) (*) Department

More information

Frictional rheologies have a wide range of applications in engineering

Frictional rheologies have a wide range of applications in engineering A liquid-crystal model for friction C. H. A. Cheng, L. H. Kellogg, S. Shkoller, and D. L. Turcotte Departments of Mathematics and Geology, University of California, Davis, CA 95616 ; Contributed by D.

More information