Issues in Metric Selection and the TPC-D Single Stream Power

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Issues in Metric Selection and the TPC-D Single Stream Power"

Transcription

1 Issues n Metrc Selecton and the TPC-D Sngle Stream Power Alan Crolotte AT&T Global Informaton Solutons The purpose of ths paper s to examne some of the ssues faced by benchmark desgners n stuatons where potentally very large and very small numbers need to be aggregated nto a sngle number.we use, as an example, the case of TPC-D and examne the soluton retaned as descrbed n the TPC-D Draft 6.0 []. The paper focuses on basc ssues whch are at the core of the metrc selecton problem and how choces on the basc ssues naturally lead to choces on metrc alternatves. To smplfy the dscusson, a mathematcal appendx (Appendx A) has been provded thus freeng up the text from mathematcs as much as possble. The Problem In a stuaton where test results for a sngle vendor can be dstrbuted over a very wde range, how can one aggregate all the results nto a sngle fgure of mert so that () the underlyng busness model s represented n the metrc and (2), meanngful vendor to vendor comparsons can be performed? Also, we assume that "small s good".e., a low metrc equates to a good score. Ths s the case for the 9 TPC-D queres [] whch represent a large sample of realstc busness questons n a decson-support envronment. For a gven system and a gven database sze, query executon tmes can vary over a wde range, e.g. some queres could take a few seconds whle others could take several mnutes or even hours. Small ndvdual observatons should, of course, equate to a good score. Averagng, n some fashon, the observatons,.e. fndng a characterstc of central tendency, and takng the nverse wll provde such a score. The smplest characterstc of central tendency s the smple mean whch s equal to the sum of all observatons (query tmes for TPC-D) dvded by the number of observatons. The man advantage of usng the smple mean s ts "physcal" sgnfcance. For TPC-D ts nverse s the average number of queres processed per unt of tme. One of the well- known drawbacks of the arthmetc average s ts senstvty to large observatons whch are out of scope. For nstance, f all observatons are wthn the to 0 range an abnormal observaton of 000 could domnate the arthmetc average so much that the resultng value could be meanngless. In ths knd of a stuaton t s customary to resort to the geometrc average. However, the geometrc average s not a unversal panacea as we see n the sequel. For a gven set of n observatons (e.g. TPC-D query tmes) x 's, the smple mean x - s gven by x - x + x x 2 n n and the geometrc average g s gven by the formula g n x x...x (the query power metrc s computed as the nverse of g.) The formula defnng g 2 n looks smple but t s somewhat confusng when one tres to understand ts physcal meanng. By takng the logarthm and bearng n mnd ts elementary propertes (.e and ), the formula for g can be rewrtten as log x + log x log x 2 n log g n Vewng the geometrc average n ths fashon provdes a more ntutve approach to understandng a metrc based on a geometrc average. Ths s a result of the fact that addng s "easer" than multplyng, the very reason why logarthms were nvented. Wth ths formula we see that the geometrc average can be vewed as an average also! Remember that the smple mean s very senstve to large out of scope values. The same apples to the geometrc average except that the senstvty s to very small values of x resultng n very large (negatve) values of logx.

2 More Averages In summary, so far, we have the arthmetc average whch s too senstve to large values and the geometrc average whch s too senstve to small values. Ths makes the geometrc average senstve to "benchmark specals". A vendor havng found a trcky way to make one observaton extremely small would reap enormous benefts. As we saw earler, the problem wth the geometrc average comes from the "dscontnuty" of the logarthm at the orgn. So long as the observatons are away from zero the geometrc average s well-behaved. To try stayng away from zero let us add a small quantty f to all the x 's and to g whch becomes say g defned f by log (x +f)+ log (x +f) log (x +f) 2 n log (g +f) f n In ths formula f s a fxed quantty ndependent of the observatons. Although ths formula looks dentcal to the "correcton formula" portrayed n paragraph of the TPC-D Draft 6.0 [], t s dfferent n the sense that, n the Draft, the quantty f s not fxed but a functon of the observatons. Snce there are major drawbacks n usng a value of f whch s not fxed (see Appendx B) we confne ourselves to fxed values of f for the purpose of ths analyss. We have "coned" the term f-dsplaced geometrc average for the quantty defned n the above formula. The purpose of the dsplacement s to guard aganst benchmark specals. But then, what to chose for f? We have retaned two canddates, f/000 and f. The frst choce s remnscent of the max/mn rato n the "correcton formula" and there s a good reason for the second choce explaned n Appendx A. Then, there s the half-way average called ths way because t s a compromse, half-way between the smple mean and geometrc average (agan see Appendx A). The half-way average s s defned by the equaton: x + x x 2 n s n Dmensons of Value The queston we can ask ourselves next s: What are the propertes whch make a metrc "good"? Next, we have defned fve dmensons of value so that we can assess the above defned averages or any other metrc, n terms of these dmensons of value. These are: () Ease To Explan referrng to the amount of dffculty one encounters when explanng the metrc to non-mathematcally orented users - t s related to how ntutve the measure s (everybody understands the smple mean). (2) Meanng refers to the ablty to translate the measure nto somethng usable drectly whle dong data base processng (e.g. a transacton rate). (3) Nonhypersenstvty To Extreme Values whch refers to the propensty of a metrc to be overwhelmed by certan values out of range. (4) Scalablty whch refers to the property of a metrc to be scaled by the same amount as the ndvdual observatons (e.g. f all values are dvded by 2 then the metrc s dvded by 2). (5) Balance whch refers to the property of a metrc to favor a relatve decrease n a large value over the same relatve decrease n a small value. Ease To Explan and Meanng These two dmensons are very closely related. Of all the measures consdered only the smple mean has meanng snce t easly translates nto a number of data base transactons a user could expect to perform n a unt of tme. Of course the actual clent workload may not be represented adequately but ths s a general problem and customers can exercse responsblty and make sure they understand ther workload and how t would affect ther throughput. It wll be dffcult to explan any metrc other than the smple mean. In the case of TPC-D, although all averages examned have the dmenson of a query tme they don't have meanng because they cannot be translated nto a number of transactons one can perform. They can, however, be effectve for summary and comparson purposes. Hypersenstvty to Extreme Values The half-way average s not as senstve as the smple mean to large values. For example, takng {,2,...0} and brngng to 000, the smple mean s multpled by 20 but the half-way average s multpled by 6 whle the geometrc average s multpled by 2 only. For small values the geometrc and the dsplaced geometrc averages behave smlarly. Scalablty Ths property s mportant. All averages examned so far, except the f- dsplaced geometrc average, scale wth the observatons;.e. f all observatons are multpled (or dvded) by a factor K then the average s also multpled (or dvded) by the same factor K. Non scalablty s the major drawback of the -dsplaced geometrc average whch looks so good

3 otherwse, especally consderng the fact that f all observatons are small then the -dsplaced geometrc average s close to the smple mean. Balance What we have called here a balanced measure s one whch rewards "workng" on large observatons. Of all measures consdered only the unbalanced measure s the geometrc mean. In other words, wth the geometrc mean t does not pay to "work" on the system to brng the larger observatons down because a relatve drop of say 0% n a large observaton wll equate n the same drop for the geometrc average as would a drop of 0% n a larger observaton. Ths was what the TPC-D subcommttee wanted to accomplsh and that s why the TPC-D metrc s based on a geometrc aver- age. Table and the graph under t show a comparson between the smple mean, the new measures and the geometrc average n order to llustrate some of the ponts just mentoned. TABLE. Comparson Between Arthmetc Average, Geometrc Average, f- Dsplaced Geometrc Average and Half-Average For Fve Sets of Hypothetcal Data set set 2 set 3 set 4 set 5 x x 2 x 3 x x x x x x x mean g g g / s mean g s g/000 g 0 set set 2 set 3 set 4 set 5 In set all observatons are of the same order of magntude and the values of the fve statstcs are very smlar. In set 2 an observaton has been brought down artfcally through the use of a "benchmark specal". The net effect on the geometrc average s a dvson by 2 (correspondng to a doublng of the power whch s the nverse) whle the -dsplaced average or the half-way average behave smlarly to the smple mean and decrease moderately. The /000-dsplaced geometrc average behaves also dentcally to the geometrc average. As the number of

4 observatons whch are brought down ncreases, the hgh senstvty of the geometrc average s exemplfed resultng n doublng the power every tme whle the ncrease usng the -dsplaced geometrc average or the half-way average s moderate, reflectng more of an "addtve" effect. Where do we go from here? Table 2 portrays the summary of the analyss whch took place above. Based on the desred effect, what s mportant and how ths translates nto the above dmensons of value, a choce can be made. The usefulness of what s ds- cussed here s the focus on the real ssues (the dmensons of value). In the case of TPC- D, for example, a major consderaton was the unbalance (N n the balance column). The resultng choce was the geometrc average and the advantages and drawbacks whch come wth t. But, nstead of debatng choces on metrc types, people can debate the real ssues and the relatve mportance of these ssues. Table 2 can then assst n selectng a metrc once the real ssues and the choces on these ssues are clear. My per- sonal choce n a decson support envronment s the half-way average. On one hand I am afrad of benchmark specals because they have a tendency to cast a doubt on the entre benchmark process so I am afrad of the geometrc average n spte of the very good arguments for t. On the other hand, I lke the arthmetc average because t has meanng but t s overwhelmed by large values. The half-way average s rght n between, t s not senstve to extreme values and t scales. Therefore t s the rght choce. TABLE 2. Comparson Summary for Consdered Measures Measure Ease to Meanng Non- Scalablty Balance Explan Hypersenstv ty to Extreme Values current [] N N N N N smple mean Y Y N Y Y XXX N N Y N Y XXX N N N Y N XXX N N N N Y s Y/N N Y Y Y APPENDIX A The ph-average. Gven a set of n observatons x,..., x, and ther assocated weghts or n frequences f,..,f one can defne a gamut of averages. A very broad range of such averages n fall under the general category of ph-averages defned as n [2]: gven a monotonc functon φ the ph-average M s gven by the formula φ n φ( M ) f φ(x ) φ The r-average (Also known as Power Average of Order r). The r-average m s a specal case of φ: x--> x r and s gven by r m r ( f x r ) /r Important subcases are r (the arthmetc average often noted as x - ), r - (the harmonc average), and r 0 whch s a lmt case yeldng the geometrc average (g), and r /2 (the halfway average s). We now proceed to show that h < x - < g. Frst we show that x - < g by notcng that x --> log x s concave and that, therefore log f x f logx

5 The above equaton merely expresses log g log x - whch mples g x -. By rewrtng the above equaton wth y we obtan yet another way of wrtng log g log h where g and h are the geometrc and harmonc averages of the / x 's. The relatonshp between the harmonc average and the geometrc average can be further exploted to show that the r-average s an ncreasng functon of r. Takng the dervatve wth respect to r n the equaton defnng m yelds r where y x r. dm r dr m r ( r 2 -log f logx f x + f x ) Settng g f y / f x we can further reduce the above equaton to dm r dr m r r 2 ( -log f x + g logy ) Callng H the harmonc average of the / y 's wth weghts g the above equaton can be rewrtten as dm r dr m r r 2 ( log H - g log y ) whch s postve snce the second term nsde the parentheses n the equaton above s log G where G s the geometrc average of the / y 's wth weghts g. Therefore, the dervatve of m r wth respect to r s postve and therefore m r s an ncreasng functon of r. The geometrc average as the 0-average. When r --> 0 we can wrte a r e rlog a + rlog a + o(r) and thus: m r r + rlog m + o(r) f (x ) r f + r f log x + o(r) whch smplfes nto r log m r f log x + o(r) r fnally yeldng log m f log x 0 whch s the defnton of the geometrc average, the ph-average for φ: x --> logx. As a result, the half-way average correspondng to r /2 s half-way between the geometrc average (r 0) and the smple average (r ). The-dsplaced average. Consder a ph-average closely related to the geometrc average namely the a-dsplaced geometrc average defned by log (a + g ) f log (a + x ) a where a s postve. Consderng the -dsplaced geometrc average from the pont of vew of ts mathematcal propertes, we have already notced that t falls nto the category of ph-averages correspondng to the functon x--> log (a + x); but, n ths famly of functons (a beng the parameter), the -dsplaced geometrc average (correspondng to a ) plays a role of anchor because t s the only one for whch the value of the functon s zero when the varable s equal to zero. Ths s why t was retaned as a canddate.

6 Relatonshp between arthmetc, geometrc and f-dsplaced geometrc averages The geometrc average can be denoted as g for consstency. It could also be denoted as m 0 0 snce t s also the 0-average, and for ths reason, snce we know that the r-average s an ncreasng functon of r, we have g x -. We are now showng that g s between g and x -. 0 a 0 Frst, notce that x --> log (a + x) s concave and that therefore log f (a + x ) f log (a + x ) Hence, log (a + x - ) log (a + g ) and, snce x --> log (a + x) s also monotonc ncreasng, then a x - g and ths establshes the frst part of the nequalty. a To establsh the second part of the nequalty consder the a-dsplaced geometrc average g a defned by log (a + g ) f log (a + x ) a a + g can also be nterpreted as G(y), the geometrc average of the y 's defned by y a + x. a Takng the dervatve wth respect to a n the equaton defnng g yelds a + d da g a a + g a f a + x whch can be rewrtten as G(y) d da g a f y - G(y) Notce that the equaton H(y) f y defnes H(y) the harmonc average of the y 's and that H(y) G(y) (remember that the harmonc average s the (-)-average whle the geometrc average plays the role of 0-average and that the r-average s an ncreasng functon of r.) Therefore, G(y) d da g a H(y) - G(y) 0 And thus, d da g a 0 nsurng that g a s ncreasng and therefore g g. Ths also establshes 0 that Q n [] wth correcton factor ( / g ) s smaller than the value wthout correcton factor ( / p f g ). 0 Varatons A very mportant pont s related to optmzaton. What should a vendor do n order to obtan a better score? In other words, are there any gudelnes to mprove the perfor- mance? The queston here s "how do the varous averages reward decreases n the ndvdual contrbutors dependng on ther relatve sze?". From the defnton of the r- average m r r f x r

7 we can determne the ncrease n the r-average as a functon of the ncrease n one query tme assumng all the others are equal. Dfferentatng the above equaton one obtans the followng equaton r-?m r x f?x m r- r Ths translates nto whch yelds x r- dm f r m r- r dm dx f x r r m / x r f xr whch lnks the relatve varaton of an ndvdual query tme to the varaton of the measure of central tendency. The term at the left sde of the above equaton s referred to as the "elastcty" n Economcs. Whenever r > 0 we have x > x _ x r 2 > xr 2 and therefore, the elastcty of m r wth respect to x s an ncreasng functon of x. In other words, the bgger x the bgger the relatve decrease of m for a gven relatve decrease d x r / x. Ths s true n partcular for the half-way average correspondng to r /2 (and for the smple mean whch we knew already). It s not true for the geometrc average whch treats equally large and small observatons.for the dsplaced geometrc averages the argument s smlar. Startng wth the defnton of the a-dsplaced geometrc average log (a + g ) a f log (a + x ) and takng the dfferental n both sdes assumng that x only vares dg g x dx a a g a + g f a + x x a a dx Assumng that all the weghts f are equal, notcng that g a a + g a s constant, and that the functon x--> x/ (a + x) s monotonc ncreasng, t s clear that the larger x the larger the relatve ncrease of g for a gven relatve ncrease of x. Therefore the a-dsplaced average s a balanced a measure. APPPENDIX B As we saw, the formula for the f-dsplaced average s log (x + f) + log (x + f) log (x + f) 2 n log (g + f) f n The quantty g defned above s used n the defnton of the power metrc when the rato between f the max and the mn query tme s larger than 000; f s defned as the maxmum query tme dvded by 000. As shown n appendx A, g s always larger than g (the geometrc average) no f matter what the value of s as long as t s postve. Ths property s used to penalze a vendor who would have a "benchmark specal" resultng n one query tme dsproportonally small compared to the other query tmes.

8 As a result, there are two formulas for the power metrc n []. One s used when the max over mn query tme rato s larger than 000 and the other when the rato s larger than 000. Table 3 shows sample data llustratng the dffcultes assocated wth ths "dual formula" stuaton resultng n a lack of "contnuty". Frst, notce set 2 whch llustrates the pont that the smple mean s very senstve to large out of scope values and set 3 whch llustrates the pont that the geometrc average g s very senstve to small values. Set 4 nvolves a margnal case where the max/mn rato s 000 and thus, the geometrc average s used (value 2.86). In set 3, the max/mn rato s larger than 000 and s used (value 2.88) s very close to 2.86 but the problem s that set 3 s "better" than set 4 and yet the power (nverse of the geometrc average) decreases! TABLE 3. Varatons of the Current Metrc for Sample Data set set 2 set 3 set 4 set 5 x x x x x x x x x x mean g g f The stuaton s slghtly dfferent when comparng set 4 and set 5. In set 5 the max/mn s hgher than 000 so g s used wth f 0./ yeldng the value 3.06 compared to set 4 f whch yelds 2.86 wth the geometrc average. Lookng at set 5 n solaton one can see that usng the "corrected" metrc does penalze (3.06 vs. 2.86) but comparng set 5 and set 4 there s a bg drop from set 5 to set 4 (about 7%) but set 4 and set 5 are almost the same. Actually, f we had used to geometrc average, we would have concluded that set 4 and set 5 where about the same (2.86). Indeed, the only real dfference between set 4 and set 5 s that the formula has changed! Based on the recommendaton of ths author the correcton formula has been abandoned by the TPC-D subcommttee. REFERENCES [] TPC BENCHMARK D (Decson Support), Workng Draft 6.0, August, 993, Edted by Franços Raab, Transacton Processng Councl. [2] Calot, G., Cours de Statstque Descrptve, 964, Dunod, Pars

Lecture 10 Support Vector Machines II

Lecture 10 Support Vector Machines II Lecture 10 Support Vector Machnes II 22 February 2016 Taylor B. Arnold Yale Statstcs STAT 365/665 1/28 Notes: Problem 3 s posted and due ths upcomng Frday There was an early bug n the fake-test data; fxed

More information

8.6 The Complex Number System

8.6 The Complex Number System 8.6 The Complex Number System Earler n the chapter, we mentoned that we cannot have a negatve under a square root, snce the square of any postve or negatve number s always postve. In ths secton we want

More information

THE CHINESE REMAINDER THEOREM. We should thank the Chinese for their wonderful remainder theorem. Glenn Stevens

THE CHINESE REMAINDER THEOREM. We should thank the Chinese for their wonderful remainder theorem. Glenn Stevens THE CHINESE REMAINDER THEOREM KEITH CONRAD We should thank the Chnese for ther wonderful remander theorem. Glenn Stevens 1. Introducton The Chnese remander theorem says we can unquely solve any par of

More information

STATISTICS QUESTIONS. Step by Step Solutions.

STATISTICS QUESTIONS. Step by Step Solutions. STATISTICS QUESTIONS Step by Step Solutons www.mathcracker.com 9//016 Problem 1: A researcher s nterested n the effects of famly sze on delnquency for a group of offenders and examnes famles wth one to

More information

Week3, Chapter 4. Position and Displacement. Motion in Two Dimensions. Instantaneous Velocity. Average Velocity

Week3, Chapter 4. Position and Displacement. Motion in Two Dimensions. Instantaneous Velocity. Average Velocity Week3, Chapter 4 Moton n Two Dmensons Lecture Quz A partcle confned to moton along the x axs moves wth constant acceleraton from x =.0 m to x = 8.0 m durng a 1-s tme nterval. The velocty of the partcle

More information

Lecture 12: Discrete Laplacian

Lecture 12: Discrete Laplacian Lecture 12: Dscrete Laplacan Scrbe: Tanye Lu Our goal s to come up wth a dscrete verson of Laplacan operator for trangulated surfaces, so that we can use t n practce to solve related problems We are mostly

More information

ELASTIC WAVE PROPAGATION IN A CONTINUOUS MEDIUM

ELASTIC WAVE PROPAGATION IN A CONTINUOUS MEDIUM ELASTIC WAVE PROPAGATION IN A CONTINUOUS MEDIUM An elastc wave s a deformaton of the body that travels throughout the body n all drectons. We can examne the deformaton over a perod of tme by fxng our look

More information

Module 3 LOSSY IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur

Module 3 LOSSY IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur Module 3 LOSSY IMAGE COMPRESSION SYSTEMS Verson ECE IIT, Kharagpur Lesson 6 Theory of Quantzaton Verson ECE IIT, Kharagpur Instructonal Objectves At the end of ths lesson, the students should be able to:

More information

Psychology 282 Lecture #24 Outline Regression Diagnostics: Outliers

Psychology 282 Lecture #24 Outline Regression Diagnostics: Outliers Psychology 282 Lecture #24 Outlne Regresson Dagnostcs: Outlers In an earler lecture we studed the statstcal assumptons underlyng the regresson model, ncludng the followng ponts: Formal statement of assumptons.

More information

Chapter 8 Indicator Variables

Chapter 8 Indicator Variables Chapter 8 Indcator Varables In general, e explanatory varables n any regresson analyss are assumed to be quanttatve n nature. For example, e varables lke temperature, dstance, age etc. are quanttatve n

More information

Department of Statistics University of Toronto STA305H1S / 1004 HS Design and Analysis of Experiments Term Test - Winter Solution

Department of Statistics University of Toronto STA305H1S / 1004 HS Design and Analysis of Experiments Term Test - Winter Solution Department of Statstcs Unversty of Toronto STA35HS / HS Desgn and Analyss of Experments Term Test - Wnter - Soluton February, Last Name: Frst Name: Student Number: Instructons: Tme: hours. Ads: a non-programmable

More information

Integrals and Invariants of Euler-Lagrange Equations

Integrals and Invariants of Euler-Lagrange Equations Lecture 16 Integrals and Invarants of Euler-Lagrange Equatons ME 256 at the Indan Insttute of Scence, Bengaluru Varatonal Methods and Structural Optmzaton G. K. Ananthasuresh Professor, Mechancal Engneerng,

More information

Physics 5153 Classical Mechanics. Principle of Virtual Work-1

Physics 5153 Classical Mechanics. Principle of Virtual Work-1 P. Guterrez 1 Introducton Physcs 5153 Classcal Mechancs Prncple of Vrtual Work The frst varatonal prncple we encounter n mechancs s the prncple of vrtual work. It establshes the equlbrum condton of a mechancal

More information

x i1 =1 for all i (the constant ).

x i1 =1 for all i (the constant ). Chapter 5 The Multple Regresson Model Consder an economc model where the dependent varable s a functon of K explanatory varables. The economc model has the form: y = f ( x,x,..., ) xk Approxmate ths by

More information

Uncertainty in measurements of power and energy on power networks

Uncertainty in measurements of power and energy on power networks Uncertanty n measurements of power and energy on power networks E. Manov, N. Kolev Department of Measurement and Instrumentaton, Techncal Unversty Sofa, bul. Klment Ohrdsk No8, bl., 000 Sofa, Bulgara Tel./fax:

More information

Sampling Theory MODULE VII LECTURE - 23 VARYING PROBABILITY SAMPLING

Sampling Theory MODULE VII LECTURE - 23 VARYING PROBABILITY SAMPLING Samplng heory MODULE VII LECURE - 3 VARYIG PROBABILIY SAMPLIG DR. SHALABH DEPARME OF MAHEMAICS AD SAISICS IDIA ISIUE OF ECHOLOGY KAPUR he smple random samplng scheme provdes a random sample where every

More information

Unit 5: Quadratic Equations & Functions

Unit 5: Quadratic Equations & Functions Date Perod Unt 5: Quadratc Equatons & Functons DAY TOPIC 1 Modelng Data wth Quadratc Functons Factorng Quadratc Epressons 3 Solvng Quadratc Equatons 4 Comple Numbers Smplfcaton, Addton/Subtracton & Multplcaton

More information

Module 1 : The equation of continuity. Lecture 1: Equation of Continuity

Module 1 : The equation of continuity. Lecture 1: Equation of Continuity 1 Module 1 : The equaton of contnuty Lecture 1: Equaton of Contnuty 2 Advanced Heat and Mass Transfer: Modules 1. THE EQUATION OF CONTINUITY : Lectures 1-6 () () () (v) (v) Overall Mass Balance Momentum

More information

Chapter 12 Analysis of Covariance

Chapter 12 Analysis of Covariance Chapter Analyss of Covarance Any scentfc experment s performed to know somethng that s unknown about a group of treatments and to test certan hypothess about the correspondng treatment effect When varablty

More information

NUMERICAL DIFFERENTIATION

NUMERICAL DIFFERENTIATION NUMERICAL DIFFERENTIATION 1 Introducton Dfferentaton s a method to compute the rate at whch a dependent output y changes wth respect to the change n the ndependent nput x. Ths rate of change s called the

More information

Lecture 3 Stat102, Spring 2007

Lecture 3 Stat102, Spring 2007 Lecture 3 Stat0, Sprng 007 Chapter 3. 3.: Introducton to regresson analyss Lnear regresson as a descrptve technque The least-squares equatons Chapter 3.3 Samplng dstrbuton of b 0, b. Contnued n net lecture

More information

The Second Anti-Mathima on Game Theory

The Second Anti-Mathima on Game Theory The Second Ant-Mathma on Game Theory Ath. Kehagas December 1 2006 1 Introducton In ths note we wll examne the noton of game equlbrum for three types of games 1. 2-player 2-acton zero-sum games 2. 2-player

More information

Markov Chain Monte Carlo Lecture 6

Markov Chain Monte Carlo Lecture 6 where (x 1,..., x N ) X N, N s called the populaton sze, f(x) f (x) for at least one {1, 2,..., N}, and those dfferent from f(x) are called the tral dstrbutons n terms of mportance samplng. Dfferent ways

More information

Problem Set 9 Solutions

Problem Set 9 Solutions Desgn and Analyss of Algorthms May 4, 2015 Massachusetts Insttute of Technology 6.046J/18.410J Profs. Erk Demane, Srn Devadas, and Nancy Lynch Problem Set 9 Solutons Problem Set 9 Solutons Ths problem

More information

Econ107 Applied Econometrics Topic 3: Classical Model (Studenmund, Chapter 4)

Econ107 Applied Econometrics Topic 3: Classical Model (Studenmund, Chapter 4) I. Classcal Assumptons Econ7 Appled Econometrcs Topc 3: Classcal Model (Studenmund, Chapter 4) We have defned OLS and studed some algebrac propertes of OLS. In ths topc we wll study statstcal propertes

More information

Copyright 2017 by Taylor Enterprises, Inc., All Rights Reserved. Adjusted Control Limits for U Charts. Dr. Wayne A. Taylor

Copyright 2017 by Taylor Enterprises, Inc., All Rights Reserved. Adjusted Control Limits for U Charts. Dr. Wayne A. Taylor Taylor Enterprses, Inc. Adjusted Control Lmts for U Charts Copyrght 207 by Taylor Enterprses, Inc., All Rghts Reserved. Adjusted Control Lmts for U Charts Dr. Wayne A. Taylor Abstract: U charts are used

More information

F statistic = s2 1 s 2 ( F for Fisher )

F statistic = s2 1 s 2 ( F for Fisher ) Stat 4 ANOVA Analyss of Varance /6/04 Comparng Two varances: F dstrbuton Typcal Data Sets One way analyss of varance : example Notaton for one way ANOVA Comparng Two varances: F dstrbuton We saw that the

More information

10. Canonical Transformations Michael Fowler

10. Canonical Transformations Michael Fowler 10. Canoncal Transformatons Mchael Fowler Pont Transformatons It s clear that Lagrange s equatons are correct for any reasonable choce of parameters labelng the system confguraton. Let s call our frst

More information

LINEAR REGRESSION ANALYSIS. MODULE IX Lecture Multicollinearity

LINEAR REGRESSION ANALYSIS. MODULE IX Lecture Multicollinearity LINEAR REGRESSION ANALYSIS MODULE IX Lecture - 30 Multcollnearty Dr. Shalabh Department of Mathematcs and Statstcs Indan Insttute of Technology Kanpur 2 Remedes for multcollnearty Varous technques have

More information

MA 323 Geometric Modelling Course Notes: Day 13 Bezier Curves & Bernstein Polynomials

MA 323 Geometric Modelling Course Notes: Day 13 Bezier Curves & Bernstein Polynomials MA 323 Geometrc Modellng Course Notes: Day 13 Bezer Curves & Bernsten Polynomals Davd L. Fnn Over the past few days, we have looked at de Casteljau s algorthm for generatng a polynomal curve, and we have

More information

Department of Quantitative Methods & Information Systems. Time Series and Their Components QMIS 320. Chapter 6

Department of Quantitative Methods & Information Systems. Time Series and Their Components QMIS 320. Chapter 6 Department of Quanttatve Methods & Informaton Systems Tme Seres and Ther Components QMIS 30 Chapter 6 Fall 00 Dr. Mohammad Zanal These sldes were modfed from ther orgnal source for educatonal purpose only.

More information

Physics 2A Chapters 6 - Work & Energy Fall 2017

Physics 2A Chapters 6 - Work & Energy Fall 2017 Physcs A Chapters 6 - Work & Energy Fall 017 These notes are eght pages. A quck summary: The work-energy theorem s a combnaton o Chap and Chap 4 equatons. Work s dened as the product o the orce actng on

More information

JAB Chain. Long-tail claims development. ASTIN - September 2005 B.Verdier A. Klinger

JAB Chain. Long-tail claims development. ASTIN - September 2005 B.Verdier A. Klinger JAB Chan Long-tal clams development ASTIN - September 2005 B.Verder A. Klnger Outlne Chan Ladder : comments A frst soluton: Munch Chan Ladder JAB Chan Chan Ladder: Comments Black lne: average pad to ncurred

More information

The Geometry of Logit and Probit

The Geometry of Logit and Probit The Geometry of Logt and Probt Ths short note s meant as a supplement to Chapters and 3 of Spatal Models of Parlamentary Votng and the notaton and reference to fgures n the text below s to those two chapters.

More information

Lecture Note 3. Eshelby s Inclusion II

Lecture Note 3. Eshelby s Inclusion II ME340B Elastcty of Mcroscopc Structures Stanford Unversty Wnter 004 Lecture Note 3. Eshelby s Incluson II Chrs Wenberger and We Ca c All rghts reserved January 6, 004 Contents 1 Incluson energy n an nfnte

More information

10-701/ Machine Learning, Fall 2005 Homework 3

10-701/ Machine Learning, Fall 2005 Homework 3 10-701/15-781 Machne Learnng, Fall 2005 Homework 3 Out: 10/20/05 Due: begnnng of the class 11/01/05 Instructons Contact questons-10701@autonlaborg for queston Problem 1 Regresson and Cross-valdaton [40

More information

Workshop: Approximating energies and wave functions Quantum aspects of physical chemistry

Workshop: Approximating energies and wave functions Quantum aspects of physical chemistry Workshop: Approxmatng energes and wave functons Quantum aspects of physcal chemstry http://quantum.bu.edu/pltl/6/6.pdf Last updated Thursday, November 7, 25 7:9:5-5: Copyrght 25 Dan Dll (dan@bu.edu) Department

More information

PART I: MULTIPLE CHOICE (32 questions, each multiple choice question has a 2-point value, 64 points total).

PART I: MULTIPLE CHOICE (32 questions, each multiple choice question has a 2-point value, 64 points total). CHEMISTRY 123-07 Mdterm #2 answer key November 04, 2010 Statstcs: Average: 68 p (68%); Hghest: 91 p (91%); Lowest: 37 p (37%) Number of students performng at or above average: 58 (53%) Number of students

More information

Joint Statistical Meetings - Biopharmaceutical Section

Joint Statistical Meetings - Biopharmaceutical Section Iteratve Ch-Square Test for Equvalence of Multple Treatment Groups Te-Hua Ng*, U.S. Food and Drug Admnstraton 1401 Rockvlle Pke, #200S, HFM-217, Rockvlle, MD 20852-1448 Key Words: Equvalence Testng; Actve

More information

REAL ANALYSIS I HOMEWORK 1

REAL ANALYSIS I HOMEWORK 1 REAL ANALYSIS I HOMEWORK CİHAN BAHRAN The questons are from Tao s text. Exercse 0.0.. If (x α ) α A s a collecton of numbers x α [0, + ] such that x α

More information

Pulse Coded Modulation

Pulse Coded Modulation Pulse Coded Modulaton PCM (Pulse Coded Modulaton) s a voce codng technque defned by the ITU-T G.711 standard and t s used n dgtal telephony to encode the voce sgnal. The frst step n the analog to dgtal

More information

,, MRTS is the marginal rate of technical substitution

,, MRTS is the marginal rate of technical substitution Mscellaneous Notes on roducton Economcs ompled by eter F Orazem September 9, 00 I Implcatons of conve soquants Two nput case, along an soquant 0 along an soquant Slope of the soquant,, MRTS s the margnal

More information

ECE559VV Project Report

ECE559VV Project Report ECE559VV Project Report (Supplementary Notes Loc Xuan Bu I. MAX SUM-RATE SCHEDULING: THE UPLINK CASE We have seen (n the presentaton that, for downlnk (broadcast channels, the strategy maxmzng the sum-rate

More information

III. Econometric Methodology Regression Analysis

III. Econometric Methodology Regression Analysis Page Econ07 Appled Econometrcs Topc : An Overvew of Regresson Analyss (Studenmund, Chapter ) I. The Nature and Scope of Econometrcs. Lot s of defntons of econometrcs. Nobel Prze Commttee Paul Samuelson,

More information

Statistics for Business and Economics

Statistics for Business and Economics Statstcs for Busness and Economcs Chapter 11 Smple Regresson Copyrght 010 Pearson Educaton, Inc. Publshng as Prentce Hall Ch. 11-1 11.1 Overvew of Lnear Models n An equaton can be ft to show the best lnear

More information

princeton univ. F 17 cos 521: Advanced Algorithm Design Lecture 7: LP Duality Lecturer: Matt Weinberg

princeton univ. F 17 cos 521: Advanced Algorithm Design Lecture 7: LP Duality Lecturer: Matt Weinberg prnceton unv. F 17 cos 521: Advanced Algorthm Desgn Lecture 7: LP Dualty Lecturer: Matt Wenberg Scrbe: LP Dualty s an extremely useful tool for analyzng structural propertes of lnear programs. Whle there

More information

12. The Hamilton-Jacobi Equation Michael Fowler

12. The Hamilton-Jacobi Equation Michael Fowler 1. The Hamlton-Jacob Equaton Mchael Fowler Back to Confguraton Space We ve establshed that the acton, regarded as a functon of ts coordnate endponts and tme, satsfes ( ) ( ) S q, t / t+ H qpt,, = 0, and

More information

Module 3: Element Properties Lecture 1: Natural Coordinates

Module 3: Element Properties Lecture 1: Natural Coordinates Module 3: Element Propertes Lecture : Natural Coordnates Natural coordnate system s bascally a local coordnate system whch allows the specfcaton of a pont wthn the element by a set of dmensonless numbers

More information

THE VIBRATIONS OF MOLECULES II THE CARBON DIOXIDE MOLECULE Student Instructions

THE VIBRATIONS OF MOLECULES II THE CARBON DIOXIDE MOLECULE Student Instructions THE VIBRATIONS OF MOLECULES II THE CARBON DIOXIDE MOLECULE Student Instructons by George Hardgrove Chemstry Department St. Olaf College Northfeld, MN 55057 hardgrov@lars.acc.stolaf.edu Copyrght George

More information

Fundamental loop-current method using virtual voltage sources technique for special cases

Fundamental loop-current method using virtual voltage sources technique for special cases Fundamental loop-current method usng vrtual voltage sources technque for specal cases George E. Chatzaraks, 1 Marna D. Tortorel 1 and Anastasos D. Tzolas 1 Electrcal and Electroncs Engneerng Departments,

More information

General Tips on How to Do Well in Physics Exams. 1. Establish a good habit in keeping track of your steps. For example, when you use the equation

General Tips on How to Do Well in Physics Exams. 1. Establish a good habit in keeping track of your steps. For example, when you use the equation General Tps on How to Do Well n Physcs Exams 1. Establsh a good habt n keepng track o your steps. For example when you use the equaton 1 1 1 + = d d to solve or d o you should rst rewrte t as 1 1 1 = d

More information

Topic 23 - Randomized Complete Block Designs (RCBD)

Topic 23 - Randomized Complete Block Designs (RCBD) Topc 3 ANOVA (III) 3-1 Topc 3 - Randomzed Complete Block Desgns (RCBD) Defn: A Randomzed Complete Block Desgn s a varant of the completely randomzed desgn (CRD) that we recently learned. In ths desgn,

More information

Introduction to Vapor/Liquid Equilibrium, part 2. Raoult s Law:

Introduction to Vapor/Liquid Equilibrium, part 2. Raoult s Law: CE304, Sprng 2004 Lecture 4 Introducton to Vapor/Lqud Equlbrum, part 2 Raoult s Law: The smplest model that allows us do VLE calculatons s obtaned when we assume that the vapor phase s an deal gas, and

More information

Games of Threats. Elon Kohlberg Abraham Neyman. Working Paper

Games of Threats. Elon Kohlberg Abraham Neyman. Working Paper Games of Threats Elon Kohlberg Abraham Neyman Workng Paper 18-023 Games of Threats Elon Kohlberg Harvard Busness School Abraham Neyman The Hebrew Unversty of Jerusalem Workng Paper 18-023 Copyrght 2017

More information

COS 521: Advanced Algorithms Game Theory and Linear Programming

COS 521: Advanced Algorithms Game Theory and Linear Programming COS 521: Advanced Algorthms Game Theory and Lnear Programmng Moses Charkar February 27, 2013 In these notes, we ntroduce some basc concepts n game theory and lnear programmng (LP). We show a connecton

More information

Copyright 2017 by Taylor Enterprises, Inc., All Rights Reserved. Adjusted Control Limits for P Charts. Dr. Wayne A. Taylor

Copyright 2017 by Taylor Enterprises, Inc., All Rights Reserved. Adjusted Control Limits for P Charts. Dr. Wayne A. Taylor Taylor Enterprses, Inc. Control Lmts for P Charts Copyrght 2017 by Taylor Enterprses, Inc., All Rghts Reserved. Control Lmts for P Charts Dr. Wayne A. Taylor Abstract: P charts are used for count data

More information

E Tail Inequalities. E.1 Markov s Inequality. Non-Lecture E: Tail Inequalities

E Tail Inequalities. E.1 Markov s Inequality. Non-Lecture E: Tail Inequalities Algorthms Non-Lecture E: Tal Inequaltes If you hold a cat by the tal you learn thngs you cannot learn any other way. Mar Twan E Tal Inequaltes The smple recursve structure of sp lsts made t relatvely easy

More information

A LINEAR PROGRAM TO COMPARE MULTIPLE GROSS CREDIT LOSS FORECASTS. Dr. Derald E. Wentzien, Wesley College, (302) ,

A LINEAR PROGRAM TO COMPARE MULTIPLE GROSS CREDIT LOSS FORECASTS. Dr. Derald E. Wentzien, Wesley College, (302) , A LINEAR PROGRAM TO COMPARE MULTIPLE GROSS CREDIT LOSS FORECASTS Dr. Derald E. Wentzen, Wesley College, (302) 736-2574, wentzde@wesley.edu ABSTRACT A lnear programmng model s developed and used to compare

More information

CHAPTER 7 STOCHASTIC ECONOMIC EMISSION DISPATCH-MODELED USING WEIGHTING METHOD

CHAPTER 7 STOCHASTIC ECONOMIC EMISSION DISPATCH-MODELED USING WEIGHTING METHOD 90 CHAPTER 7 STOCHASTIC ECOOMIC EMISSIO DISPATCH-MODELED USIG WEIGHTIG METHOD 7.1 ITRODUCTIO early 70% of electrc power produced n the world s by means of thermal plants. Thermal power statons are the

More information

Online Classification: Perceptron and Winnow

Online Classification: Perceptron and Winnow E0 370 Statstcal Learnng Theory Lecture 18 Nov 8, 011 Onlne Classfcaton: Perceptron and Wnnow Lecturer: Shvan Agarwal Scrbe: Shvan Agarwal 1 Introducton In ths lecture we wll start to study the onlne learnng

More information

Statistical Evaluation of WATFLOOD

Statistical Evaluation of WATFLOOD tatstcal Evaluaton of WATFLD By: Angela MacLean, Dept. of Cvl & Envronmental Engneerng, Unversty of Waterloo, n. ctober, 005 The statstcs program assocated wth WATFLD uses spl.csv fle that s produced wth

More information

Chapter 4: Regression With One Regressor

Chapter 4: Regression With One Regressor Chapter 4: Regresson Wth One Regressor Copyrght 2011 Pearson Addson-Wesley. All rghts reserved. 1-1 Outlne 1. Fttng a lne to data 2. The ordnary least squares (OLS) lne/regresson 3. Measures of ft 4. Populaton

More information

Lecture 5.8 Flux Vector Splitting

Lecture 5.8 Flux Vector Splitting Lecture 5.8 Flux Vector Splttng 1 Flux Vector Splttng The vector E n (5.7.) can be rewrtten as E = AU (5.8.1) (wth A as gven n (5.7.4) or (5.7.6) ) whenever, the equaton of state s of the separable form

More information

The Feynman path integral

The Feynman path integral The Feynman path ntegral Aprl 3, 205 Hesenberg and Schrödnger pctures The Schrödnger wave functon places the tme dependence of a physcal system n the state, ψ, t, where the state s a vector n Hlbert space

More information

CHAPTER 4. Vector Spaces

CHAPTER 4. Vector Spaces man 2007/2/16 page 234 CHAPTER 4 Vector Spaces To crtcze mathematcs for ts abstracton s to mss the pont entrel. Abstracton s what makes mathematcs work. Ian Stewart The man am of ths tet s to stud lnear

More information

Min Cut, Fast Cut, Polynomial Identities

Min Cut, Fast Cut, Polynomial Identities Randomzed Algorthms, Summer 016 Mn Cut, Fast Cut, Polynomal Identtes Instructor: Thomas Kesselhem and Kurt Mehlhorn 1 Mn Cuts n Graphs Lecture (5 pages) Throughout ths secton, G = (V, E) s a mult-graph.

More information

Module 2. Random Processes. Version 2 ECE IIT, Kharagpur

Module 2. Random Processes. Version 2 ECE IIT, Kharagpur Module Random Processes Lesson 6 Functons of Random Varables After readng ths lesson, ou wll learn about cdf of functon of a random varable. Formula for determnng the pdf of a random varable. Let, X be

More information

Comparison of the Population Variance Estimators. of 2-Parameter Exponential Distribution Based on. Multiple Criteria Decision Making Method

Comparison of the Population Variance Estimators. of 2-Parameter Exponential Distribution Based on. Multiple Criteria Decision Making Method Appled Mathematcal Scences, Vol. 7, 0, no. 47, 07-0 HIARI Ltd, www.m-hkar.com Comparson of the Populaton Varance Estmators of -Parameter Exponental Dstrbuton Based on Multple Crtera Decson Makng Method

More information

8.4 COMPLEX VECTOR SPACES AND INNER PRODUCTS

8.4 COMPLEX VECTOR SPACES AND INNER PRODUCTS SECTION 8.4 COMPLEX VECTOR SPACES AND INNER PRODUCTS 493 8.4 COMPLEX VECTOR SPACES AND INNER PRODUCTS All the vector spaces you have studed thus far n the text are real vector spaces because the scalars

More information

Negative Binomial Regression

Negative Binomial Regression STATGRAPHICS Rev. 9/16/2013 Negatve Bnomal Regresson Summary... 1 Data Input... 3 Statstcal Model... 3 Analyss Summary... 4 Analyss Optons... 7 Plot of Ftted Model... 8 Observed Versus Predcted... 10 Predctons...

More information

Pivot-Wheel Drive Crab with a Twist! Clem McKown Team November-2009 (eq 1 edited 29-March-2010)

Pivot-Wheel Drive Crab with a Twist! Clem McKown Team November-2009 (eq 1 edited 29-March-2010) Pvot-Wheel Drve Crab wth a Twst! Clem McKown Team 1640 13-November-2009 (eq 1 edted 29-March-2010) 4-Wheel Independent Pvot-Wheel Drve descrbes a 4wd drve-tran n whch each of the (4) wheels are ndependently

More information

Singular Value Decomposition: Theory and Applications

Singular Value Decomposition: Theory and Applications Sngular Value Decomposton: Theory and Applcatons Danel Khashab Sprng 2015 Last Update: March 2, 2015 1 Introducton A = UDV where columns of U and V are orthonormal and matrx D s dagonal wth postve real

More information

Excess Error, Approximation Error, and Estimation Error

Excess Error, Approximation Error, and Estimation Error E0 370 Statstcal Learnng Theory Lecture 10 Sep 15, 011 Excess Error, Approxaton Error, and Estaton Error Lecturer: Shvan Agarwal Scrbe: Shvan Agarwal 1 Introducton So far, we have consdered the fnte saple

More information

9. Complex Numbers. 1. Numbers revisited. 2. Imaginary number i: General form of complex numbers. 3. Manipulation of complex numbers

9. Complex Numbers. 1. Numbers revisited. 2. Imaginary number i: General form of complex numbers. 3. Manipulation of complex numbers 9. Comple Numbers. Numbers revsted. Imagnar number : General form of comple numbers 3. Manpulaton of comple numbers 4. The Argand dagram 5. The polar form for comple numbers 9.. Numbers revsted We saw

More information

Entropy generation in a chemical reaction

Entropy generation in a chemical reaction Entropy generaton n a chemcal reacton E Mranda Área de Cencas Exactas COICET CCT Mendoza 5500 Mendoza, rgentna and Departamento de Físca Unversdad aconal de San Lus 5700 San Lus, rgentna bstract: Entropy

More information

The optimal delay of the second test is therefore approximately 210 hours earlier than =2.

The optimal delay of the second test is therefore approximately 210 hours earlier than =2. THE IEC 61508 FORMULAS 223 The optmal delay of the second test s therefore approxmately 210 hours earler than =2. 8.4 The IEC 61508 Formulas IEC 61508-6 provdes approxmaton formulas for the PF for smple

More information

20. Mon, Oct. 13 What we have done so far corresponds roughly to Chapters 2 & 3 of Lee. Now we turn to Chapter 4. The first idea is connectedness.

20. Mon, Oct. 13 What we have done so far corresponds roughly to Chapters 2 & 3 of Lee. Now we turn to Chapter 4. The first idea is connectedness. 20. Mon, Oct. 13 What we have done so far corresponds roughly to Chapters 2 & 3 of Lee. Now we turn to Chapter 4. The frst dea s connectedness. Essentally, we want to say that a space cannot be decomposed

More information

CHAPTER 8. Exercise Solutions

CHAPTER 8. Exercise Solutions CHAPTER 8 Exercse Solutons 77 Chapter 8, Exercse Solutons, Prncples of Econometrcs, 3e 78 EXERCISE 8. When = N N N ( x x) ( x x) ( x x) = = = N = = = N N N ( x ) ( ) ( ) ( x x ) x x x x x = = = = Chapter

More information

Exercises of Chapter 2

Exercises of Chapter 2 Exercses of Chapter Chuang-Cheh Ln Department of Computer Scence and Informaton Engneerng, Natonal Chung Cheng Unversty, Mng-Hsung, Chay 61, Tawan. Exercse.6. Suppose that we ndependently roll two standard

More information

University of California, Davis Date: June 22, 2009 Department of Agricultural and Resource Economics. PRELIMINARY EXAMINATION FOR THE Ph.D.

University of California, Davis Date: June 22, 2009 Department of Agricultural and Resource Economics. PRELIMINARY EXAMINATION FOR THE Ph.D. Unversty of Calforna, Davs Date: June 22, 29 Department of Agrcultural and Resource Economcs Department of Economcs Tme: 5 hours Mcroeconomcs Readng Tme: 2 mnutes PRELIMIARY EXAMIATIO FOR THE Ph.D. DEGREE

More information

Affine transformations and convexity

Affine transformations and convexity Affne transformatons and convexty The purpose of ths document s to prove some basc propertes of affne transformatons nvolvng convex sets. Here are a few onlne references for background nformaton: http://math.ucr.edu/

More information

ARTICLE IN PRESS. Available online at Mathematics and Computers in Simulation xxx (2009) xxx xxx

ARTICLE IN PRESS. Available online at  Mathematics and Computers in Simulation xxx (2009) xxx xxx Avalable onlne at wwwscencedrectcom Mathematcs and Computers n Smulaton xxx 29 xxx xxx Dervatve based global senstvty measures and ther lnk wth global senstvty ndces IM Sobol a, S Kucherenko b, a Insttute

More information

Indeterminate pin-jointed frames (trusses)

Indeterminate pin-jointed frames (trusses) Indetermnate pn-jonted frames (trusses) Calculaton of member forces usng force method I. Statcal determnacy. The degree of freedom of any truss can be derved as: w= k d a =, where k s the number of all

More information

2 Finite difference basics

2 Finite difference basics Numersche Methoden 1, WS 11/12 B.J.P. Kaus 2 Fnte dfference bascs Consder the one- The bascs of the fnte dfference method are best understood wth an example. dmensonal transent heat conducton equaton T

More information

How Differential Equations Arise. Newton s Second Law of Motion

How Differential Equations Arise. Newton s Second Law of Motion page 1 CHAPTER 1 Frst-Order Dfferental Equatons Among all of the mathematcal dscplnes the theory of dfferental equatons s the most mportant. It furnshes the explanaton of all those elementary manfestatons

More information

Approximate Smallest Enclosing Balls

Approximate Smallest Enclosing Balls Chapter 5 Approxmate Smallest Enclosng Balls 5. Boundng Volumes A boundng volume for a set S R d s a superset of S wth a smple shape, for example a box, a ball, or an ellpsod. Fgure 5.: Boundng boxes Q(P

More information

Lecture 9: Linear regression: centering, hypothesis testing, multiple covariates, and confounding

Lecture 9: Linear regression: centering, hypothesis testing, multiple covariates, and confounding Recall: man dea of lnear regresson Lecture 9: Lnear regresson: centerng, hypothess testng, multple covarates, and confoundng Sandy Eckel seckel@jhsph.edu 6 May 8 Lnear regresson can be used to study an

More information

Stat 642, Lecture notes for 01/27/ d i = 1 t. n i t nj. n j

Stat 642, Lecture notes for 01/27/ d i = 1 t. n i t nj. n j Stat 642, Lecture notes for 01/27/05 18 Rate Standardzaton Contnued: Note that f T n t where T s the cumulatve follow-up tme and n s the number of subjects at rsk at the mdpont or nterval, and d s the

More information

Chemical Equilibrium. Chapter 6 Spontaneity of Reactive Mixtures (gases) Taking into account there are many types of work that a sysem can perform

Chemical Equilibrium. Chapter 6 Spontaneity of Reactive Mixtures (gases) Taking into account there are many types of work that a sysem can perform Ths chapter deals wth chemcal reactons (system) wth lttle or no consderaton on the surroundngs. Chemcal Equlbrum Chapter 6 Spontanety of eactve Mxtures (gases) eactants generatng products would proceed

More information

since [1-( 0+ 1x1i+ 2x2 i)] [ 0+ 1x1i+ assumed to be a reasonable approximation

since [1-( 0+ 1x1i+ 2x2 i)] [ 0+ 1x1i+ assumed to be a reasonable approximation Econ 388 R. Butler 204 revsons Lecture 4 Dummy Dependent Varables I. Lnear Probablty Model: the Regresson model wth a dummy varables as the dependent varable assumpton, mplcaton regular multple regresson

More information

CS 468 Lecture 16: Isometry Invariance and Spectral Techniques

CS 468 Lecture 16: Isometry Invariance and Spectral Techniques CS 468 Lecture 16: Isometry Invarance and Spectral Technques Justn Solomon Scrbe: Evan Gawlk Introducton. In geometry processng, t s often desrable to characterze the shape of an object n a manner that

More information

Lecture 6/7 (February 10/12, 2014) DIRAC EQUATION. The non-relativistic Schrödinger equation was obtained by noting that the Hamiltonian 2

Lecture 6/7 (February 10/12, 2014) DIRAC EQUATION. The non-relativistic Schrödinger equation was obtained by noting that the Hamiltonian 2 P470 Lecture 6/7 (February 10/1, 014) DIRAC EQUATION The non-relatvstc Schrödnger equaton was obtaned by notng that the Hamltonan H = P (1) m can be transformed nto an operator form wth the substtutons

More information

x yi In chapter 14, we want to perform inference (i.e. calculate confidence intervals and perform tests of significance) in this setting.

x yi In chapter 14, we want to perform inference (i.e. calculate confidence intervals and perform tests of significance) in this setting. The Practce of Statstcs, nd ed. Chapter 14 Inference for Regresson Introducton In chapter 3 we used a least-squares regresson lne (LSRL) to represent a lnear relatonshp etween two quanttatve explanator

More information

18. SIMPLE LINEAR REGRESSION III

18. SIMPLE LINEAR REGRESSION III 8. SIMPLE LINEAR REGRESSION III US Domestc Beers: Calores vs. % Alcohol Ftted Values and Resduals To each observed x, there corresponds a y-value on the ftted lne, y ˆ ˆ = α + x. The are called ftted values.

More information

CONJUGACY IN THOMPSON S GROUP F. 1. Introduction

CONJUGACY IN THOMPSON S GROUP F. 1. Introduction CONJUGACY IN THOMPSON S GROUP F NICK GILL AND IAN SHORT Abstract. We complete the program begun by Brn and Squer of charactersng conjugacy n Thompson s group F usng the standard acton of F as a group of

More information

LOGIT ANALYSIS. A.K. VASISHT Indian Agricultural Statistics Research Institute, Library Avenue, New Delhi

LOGIT ANALYSIS. A.K. VASISHT Indian Agricultural Statistics Research Institute, Library Avenue, New Delhi LOGIT ANALYSIS A.K. VASISHT Indan Agrcultural Statstcs Research Insttute, Lbrary Avenue, New Delh-0 02 amtvassht@asr.res.n. Introducton In dummy regresson varable models, t s assumed mplctly that the dependent

More information

Case A. P k = Ni ( 2L i k 1 ) + (# big cells) 10d 2 P k.

Case A. P k = Ni ( 2L i k 1 ) + (# big cells) 10d 2 P k. THE CELLULAR METHOD In ths lecture, we ntroduce the cellular method as an approach to ncdence geometry theorems lke the Szemeréd-Trotter theorem. The method was ntroduced n the paper Combnatoral complexty

More information

Normally, in one phase reservoir simulation we would deal with one of the following fluid systems:

Normally, in one phase reservoir simulation we would deal with one of the following fluid systems: TPG4160 Reservor Smulaton 2017 page 1 of 9 ONE-DIMENSIONAL, ONE-PHASE RESERVOIR SIMULATION Flud systems The term sngle phase apples to any system wth only one phase present n the reservor In some cases

More information

Basic Business Statistics, 10/e

Basic Business Statistics, 10/e Chapter 13 13-1 Basc Busness Statstcs 11 th Edton Chapter 13 Smple Lnear Regresson Basc Busness Statstcs, 11e 009 Prentce-Hall, Inc. Chap 13-1 Learnng Objectves In ths chapter, you learn: How to use regresson

More information

Exercises. 18 Algorithms

Exercises. 18 Algorithms 18 Algorthms Exercses 0.1. In each of the followng stuatons, ndcate whether f = O(g), or f = Ω(g), or both (n whch case f = Θ(g)). f(n) g(n) (a) n 100 n 200 (b) n 1/2 n 2/3 (c) 100n + log n n + (log n)

More information