Section 6.5 Impulse Functions

Size: px
Start display at page:

Download "Section 6.5 Impulse Functions"

Transcription

1 Section 6.5 Impulse Functions Key terms/ideas: Unit impulse function (technically a generalized function or distribution ) Dirac delta function Laplace transform of the Dirac delta function IVPs with forcing functions that are impulses

2 For years physicists and engineers have found it useful to use the notion of an applied force at a particular instant in time or to view a mass concentrated in a single point. For example:. Concentrated load at a single point. 2. Electrical potential applied instantaneously in a circuit. 3. A collision or sharp blow in a mechanical system; a) A ball hitting a bat. b) Collision of billiard balls. Such applied forces are called IMPULSE FUNCTIONS. Technically they are not functions, but are "generalized" functions or "distributions". An impulse function, often called the (Dirac delta function), is defined not by its values but by its behavior in a limit and by its behavior under integration. The Dirac delta function provides a model for a force that concentrates a large amount of energy over a short time interval. Ref: Polking et. al.

3 In order to better understand the definition of the Dirac delta function, we first discuss the impulse of a force. (Keep in mind that the objective is to determine a way to represent a force that produces an impulse.) Definition: Suppose F(t) represents a force applied to an object at time t. Then the impulse of force F over time interval a t b is defined as impulse b a F(t) dt Geometrically, the impulse of F(t) is the area under the curve y = F(t) over interval [a, b]. From the point of view of mechanics, the impulse is the change in momentum of a mass as the force is applied to it over the time interval from a to b. We can see this as follows. Recall that momentum is the product of the mass with velocity. So by Newton s second law, the force F(t) = ma = m dv/dt. Therefore b b b dv impulse F(t) dt ma dt m b m v(t) mv(b) mv(a) a a a dt dt a which is the change of momentum from t = a to t = b.

4 Now let s consider a force of unit impulse acting over a short time interval. A force of unit impulse will have impulse b a F(t) dt = We consider a sequence of forces modeled by functions expressed in terms of unit step functions. For illustration purposes we will use such functions centered around t = 2 to visually display things which can then be reformulated in a sequence and a limit expression.

5 t = 2, t =, base = 2, height = /2, [. ) F(t) / 2, [, 3), [ 3, ) F(t) / 2u (t) / 2u (t) 3

6 t = 2, t = /2, base =, height =, [.. 5) F(t), [. 5, 2. 5), [ 2. 5, ) F(t) u (t) u (t)

7 t = 2, t = /3, base = 2/3, height = 3/ The expression for the newest F(t) is constructed in a similar fashion.

8 t = 2, t = /4, base = /2, height = The expression for the newest F(t) is constructed in a similar fashion.

9 t = 2, t = /5, base = 2/5, height = 5/ The expression for the newest F(t) is constructed in a similar fashion.

10 t = 2, t = /6, base = 2/6, height = The expression for the newest F(t) is constructed in a similar fashion.

11 t = 2, t = /7, base = 2/7, height = 7/ The expression for the newest F(t) is constructed in a similar fashion.

12 t = 2, t = /8, base = 2/8, height = The expression for the newest F(t) is constructed in a similar fashion. As the length of the base shrinks to zero, what is the intuitive value of the area of the rectangle? (In the limit the base is a single point!)

13 We use a force of unit impulse acting over a short time interval. A force of unit impulse will have impulse b a F(t) dt = Area of the rectangle is. Let ε (epsilon) be a small positive value and consider an interval from t = p to t = p + ε, then a force of unit impulse can be modeled by a rectangle with base from p to p + ε and height / ε. Force F e (t) can expressed in terms of step functions: / e, [p,p e) F e(t) u p(t) u pe(t), for t p and t p e e As epsilon varies so does the force function. But regardless of how small epsilon becomes the rectangle will have area, because as the base decreases the height increases. So we always have a force that produces a unit impulse.

14 A reasonable way to model a sharp, instantaneous force at time t = p is to take the limit of force F e (t) as epsilon goes to zero. We next make this the definition of the Dirac delta function. Definition: The Dirac delta function δ(t p) centered at t = p is the limit of / e, [p,p e) F e(t) u p(t) u pe(t), for t p and t p e e as epsilon goes to zero. We have δ(t p) lim F (t) lim / e, [p,p e) e e e, for t p and t p e When p = we use the notation δ(t ). Sometimes the limit is expressed as by writing, for t p δ(t p), for t p which gives the feeling of an instantaneous blow by a hammer, but is not mathematically correct even though we use the term Dirac delta function. It is not a function in the usual sense of calculus. It is more precise to call it a generalized function or a distribution.

15 As we stated previously the Dirac delta function is defined not by its values but by its behavior in a limit and by its behavior under integration. With this in mind we can use the limit definition δ(t p) lim F (t) lim / e, [p,p e) e e e, for t p and t p e to develop properties and compute its Laplace transform. Property. (We state the following without proof which involves the definition and a manipulation involving an integral.) If p is any fixed value so that p and g(t) is any function continuous near t = p, then sp Property 2. L (t p) e δ(t p)g(t)dt g(p) Proof: By definition of the Laplace transform sp Now use Property. This gives L (t p) e s If p = we have L (t) e st L (t p) (t p)e dt

16 Property 3. The derivative of unit step function u p (t ) is δ(t p). Proof: Recall that δ(t p) lim F (t) lim / e, [p,p e) e e e, for t p and t p e d lim u p(t) u pe(t) u p(t) e dt e This is expression is just the form of the definition of a derivative from calculus: lim x f(x x) f(x) x

17 Example: A mass-spring system remains at rest until struck by a sharp blow at time t = 2. We describe this by the IVP 4y'' + 36y = δ(t - 2), y() =, y'() =. Find the equation of motion of the mass. Taking Laplace transforms of both sides we have: Solving for Y(s): So taking inverse transforms we have e2 s 3e2 s 3e2 s 4 s s s2 9 y(t) L L L, t2 u 2(t)sin( 3(t 2)) 2 sin( 3(t 2)),t 2 2 #3 in our table So until t = 2 we have no motion. Then the impulse δ(t - 2) causes a subsequent sinusoidal oscillation.

18 IVP 4y'' + 36y = δ(t - 2), y() =, y'() = , t 2 y(t) u 2(t) sin( 3(t 2)) 2 sin( 3(t 2)),t 2 2

19 Example: A mass-spring system remains at rest until struck by a sharp blow at time t = 2 and a second blow of twice the magnitude at t= 5. We now describe this by the IVP 4y'' + 36y = δ(t - 2)+ 2 δ(t 5), y() =, y'() =. Find the equation of motion of the mass. Taking Laplace transforms of both sides we have: Solving for Y(s): So taking inverse transforms we have e2s 2e5s 4 s29 s29 y(t) = L - = 2 u(t 2)sin( 3(t 2)) u(t 5)sin( 3(t 5)) 2 2 #3 in our table, [,2) = sin(3(t - 2)), [2,5) 2 2 sin(3(t - 2)) + sin(3(t - 5)), [5, ) 2 2

20 . What s happening here? IVP 4y'' + 36y = δ(t - 2)+ 2 δ(t 5), y() =, y'() = y(t) u(t 2)sin( 3(t 2)) 2 u(t 5)sin( 3(t 5)) 2 2, [,2) = sin(3(t - 2)), [2,5) 2 2 sin(3(t - 2)) + sin(3(t - 5)), [5, ) 2 2

21 2 y(t) u(t 2)sin( 3(t 2)) u(t 5)sin( 3(t 5)) 2 2 Lets look at the derivative of From MATLAB y'(t) is (heaviside(t - 2)*cos(3*t - 6))/4 + (heaviside(t - 5)*cos(3*t - 5))/2 + (dirac(t - 2)*sin(3*t - 6))/2 + (dirac(t - 5)*sin(3*t - 5))/6 Look at the discontinuities in the derivative.

22 Example: y'' 5y' 6y (t 3), y( ), y'( ) Y(s) 3s e (s 2)(s 3) Solution: 93t 62 y(t) u 3(t) e e t

23 Example: y'' 5y' 6y (t 3), y( ), y'( ) Y(s) e S 3s (s 2)(s 3) Solution: y(t) e e u (t) e e t 2t 9 3t 6 2t 3

April 24, 2012 (Tue) Lecture 19: Impulse Function and its Laplace Transform ( 6.5)

April 24, 2012 (Tue) Lecture 19: Impulse Function and its Laplace Transform ( 6.5) Lecture 19: Impulse Function and its Laplace Transform ( 6.5) April 24, 2012 (Tue) Impulse Phenomena of an impulsive nature, such as the action of very large forces (or voltages) over very short intervals

More information

Generalized sources (Sect. 6.5). The Dirac delta generalized function. Definition Consider the sequence of functions for n 1, Remarks:

Generalized sources (Sect. 6.5). The Dirac delta generalized function. Definition Consider the sequence of functions for n 1, Remarks: Generalized sources (Sect. 6.5). The Dirac delta generalized function. Definition Consider the sequence of functions for n, d n, t < δ n (t) = n, t 3 d3 d n, t > n. d t The Dirac delta generalized function

More information

Section 6.4 DEs with Discontinuous Forcing Functions

Section 6.4 DEs with Discontinuous Forcing Functions Section 6.4 DEs with Discontinuous Forcing Functions Key terms/ideas: Discontinuous forcing function in nd order linear IVPs Application of Laplace transforms Comparison to viewing the problem s solution

More information

Lecture Notes for Math 251: ODE and PDE. Lecture 22: 6.5 Dirac Delta and Laplace Transforms

Lecture Notes for Math 251: ODE and PDE. Lecture 22: 6.5 Dirac Delta and Laplace Transforms Lecture Notes for Math : ODE and PDE. Lecture : 6. Dirac Delta and Laplace Transforms Shawn D. Ryan Spring 0 Dirac Delta and the Laplace Transform Last Time: We studied differential equations with discontinuous

More information

Second order Unit Impulse Response. 1. Effect of a Unit Impulse on a Second order System

Second order Unit Impulse Response. 1. Effect of a Unit Impulse on a Second order System Effect of a Unit Impulse on a Second order System We consider a second order system mx + bx + kx = f (t) () Our first task is to derive the following If the input f (t) is an impulse cδ(t a), then the

More information

Math Shifting theorems

Math Shifting theorems Math 37 - Shifting theorems Erik Kjær Pedersen November 29, 2005 Let us recall the Dirac delta function. It is a function δ(t) which is 0 everywhere but at t = 0 it is so large that b a (δ(t)dt = when

More information

MAT 275 Laboratory 7 Laplace Transform and the Symbolic Math Toolbox

MAT 275 Laboratory 7 Laplace Transform and the Symbolic Math Toolbox Laplace Transform and the Symbolic Math Toolbox 1 MAT 275 Laboratory 7 Laplace Transform and the Symbolic Math Toolbox In this laboratory session we will learn how to 1. Use the Symbolic Math Toolbox 2.

More information

Lecture 1 Signals. notation and meaning. common signals. size of a signal. qualitative properties of signals. impulsive signals

Lecture 1 Signals. notation and meaning. common signals. size of a signal. qualitative properties of signals. impulsive signals EE102 spring 2002 Handout #2 Lecture 1 Signals notation and meaning common signals size of a signal qualitative properties of signals impulsive signals 1 1 Signals a signal is a function of time, e.g.,

More information

Section 2.1 (First Order) Linear DEs; Method of Integrating Factors. General first order linear DEs Standard Form; y'(t) + p(t) y = g(t)

Section 2.1 (First Order) Linear DEs; Method of Integrating Factors. General first order linear DEs Standard Form; y'(t) + p(t) y = g(t) Section 2.1 (First Order) Linear DEs; Method of Integrating Factors Key Terms/Ideas: General first order linear DEs Standard Form; y'(t) + p(t) y = g(t) Integrating factor; a function μ(t) that transforms

More information

Math 221 Topics since the second exam

Math 221 Topics since the second exam Laplace Transforms. Math 1 Topics since the second exam There is a whole different set of techniques for solving n-th order linear equations, which are based on the Laplace transform of a function. For

More information

e st f (t) dt = e st tf(t) dt = L {t f(t)} s

e st f (t) dt = e st tf(t) dt = L {t f(t)} s Additional operational properties How to find the Laplace transform of a function f (t) that is multiplied by a monomial t n, the transform of a special type of integral, and the transform of a periodic

More information

20.3. Further Laplace Transforms. Introduction. Prerequisites. Learning Outcomes

20.3. Further Laplace Transforms. Introduction. Prerequisites. Learning Outcomes Further Laplace Transforms 2.3 Introduction In this Section we introduce the second shift theorem which simplifies the determination of Laplace and inverse Laplace transforms in some complicated cases.

More information

(f g)(t) = Example 4.5.1: Find f g the convolution of the functions f(t) = e t and g(t) = sin(t). Solution: The definition of convolution is,

(f g)(t) = Example 4.5.1: Find f g the convolution of the functions f(t) = e t and g(t) = sin(t). Solution: The definition of convolution is, .5. Convolutions and Solutions Solutions of initial value problems for linear nonhomogeneous differential equations can be decomposed in a nice way. The part of the solution coming from the initial data

More information

Chapter DEs with Discontinuous Force Functions

Chapter DEs with Discontinuous Force Functions Chapter 6 6.4 DEs with Discontinuous Force Functions Discontinuous Force Functions Using Laplace Transform, as in 6.2, we solve nonhomogeneous linear second order DEs with constant coefficients. The only

More information

Computing inverse Laplace Transforms.

Computing inverse Laplace Transforms. Review Exam 3. Sections 4.-4.5 in Lecture Notes. 60 minutes. 7 problems. 70 grade attempts. (0 attempts per problem. No partial grading. (Exceptions allowed, ask you TA. Integration table included. Complete

More information

f(t)e st dt. (4.1) Note that the integral defining the Laplace transform converges for s s 0 provided f(t) Ke s 0t for some constant K.

f(t)e st dt. (4.1) Note that the integral defining the Laplace transform converges for s s 0 provided f(t) Ke s 0t for some constant K. 4 Laplace transforms 4. Definition and basic properties The Laplace transform is a useful tool for solving differential equations, in particular initial value problems. It also provides an example of integral

More information

Time Response of Systems

Time Response of Systems Chapter 0 Time Response of Systems 0. Some Standard Time Responses Let us try to get some impulse time responses just by inspection: Poles F (s) f(t) s-plane Time response p =0 s p =0,p 2 =0 s 2 t p =

More information

APPLICATIONS OF DIFFERENTIATION

APPLICATIONS OF DIFFERENTIATION 4 APPLICATIONS OF DIFFERENTIATION APPLICATIONS OF DIFFERENTIATION 4.9 Antiderivatives In this section, we will learn about: Antiderivatives and how they are useful in solving certain scientific problems.

More information

Ordinary differential equations

Ordinary differential equations Class 11 We will address the following topics Convolution of functions Consider the following question: Suppose that u(t) has Laplace transform U(s), v(t) has Laplace transform V(s), what is the inverse

More information

Ch 6.4: Differential Equations with Discontinuous Forcing Functions

Ch 6.4: Differential Equations with Discontinuous Forcing Functions Ch 6.4: Differential Equations with Discontinuous Forcing Functions! In this section focus on examples of nonhomogeneous initial value problems in which the forcing function is discontinuous. Example 1:

More information

Chapter 8: Particle Systems and Linear Momentum

Chapter 8: Particle Systems and Linear Momentum Chapter 8: Particle Systems and Linear Momentum Up to this point in our study of classical mechanics, we have studied primarily the motion of a single particle or body. To further our comprehension of

More information

Recap: Energy Accounting

Recap: Energy Accounting Recap: Energy Accounting Energy accounting enables complex systems to be studied. Total Energy = KE + PE = conserved Even the simple pendulum is not easy to study using Newton s laws of motion, as the

More information

PRINCIPLE OF LINEAR IMPULSE AND MOMENTUM (Section 15.1)

PRINCIPLE OF LINEAR IMPULSE AND MOMENTUM (Section 15.1) PRINCIPLE OF LINEAR IMPULSE AND MOMENTUM (Section 15.1) Linear momentum: L = mv vector mv is called the linear momentum denoted as L (P in 1120) vector has the same direction as v. units of (kg m)/s or

More information

Chapter 4 Kinetics of Particle: Impulse and Momentum

Chapter 4 Kinetics of Particle: Impulse and Momentum Chapter 4 Kinetics of Particle: Impulse and Momentum Dr. Khairul Salleh Basaruddin Applied Mechanics Division School of Mechatronic Engineering Universiti Malaysia Perlis (UniMAP) khsalleh@unimap.edu.my

More information

ORDINARY DIFFERENTIAL EQUATIONS

ORDINARY DIFFERENTIAL EQUATIONS Page 1 of 15 ORDINARY DIFFERENTIAL EQUATIONS Lecture 17 Delta Functions & The Impulse Response (Revised 30 March, 2009 @ 09:40) Professor Stephen H Saperstone Department of Mathematical Sciences George

More information

The Laplace transform

The Laplace transform The Laplace transform Samy Tindel Purdue University Differential equations - MA 266 Taken from Elementary differential equations by Boyce and DiPrima Samy T. Laplace transform Differential equations 1

More information

Existence Theory: Green s Functions

Existence Theory: Green s Functions Chapter 5 Existence Theory: Green s Functions In this chapter we describe a method for constructing a Green s Function The method outlined is formal (not rigorous) When we find a solution to a PDE by constructing

More information

Lab/Demo 5 Periodic Motion and Momentum PHYS 1800

Lab/Demo 5 Periodic Motion and Momentum PHYS 1800 Lab/Demo 5 Periodic Motion and Momentum PHYS 1800 Objectives: Learn to recognize and describe periodic motion. Develop some intuition for the principle of conservation of energy in periodic systems. Use

More information

(an improper integral)

(an improper integral) Chapter 7 Laplace Transforms 7.1 Introduction: A Mixing Problem 7.2 Definition of the Laplace Transform Def 7.1. Let f(t) be a function on [, ). The Laplace transform of f is the function F (s) defined

More information

AP Physics C Summer Homework. Questions labeled in [brackets] are required only for students who have completed AP Calculus AB

AP Physics C Summer Homework. Questions labeled in [brackets] are required only for students who have completed AP Calculus AB 1. AP Physics C Summer Homework NAME: Questions labeled in [brackets] are required only for students who have completed AP Calculus AB 2. Fill in the radian conversion of each angle and the trigonometric

More information

Laplace Transform Part 1: Introduction (I&N Chap 13)

Laplace Transform Part 1: Introduction (I&N Chap 13) Laplace Transform Part 1: Introduction (I&N Chap 13) Definition of the L.T. L.T. of Singularity Functions L.T. Pairs Properties of the L.T. Inverse L.T. Convolution IVT(initial value theorem) & FVT (final

More information

M A : Ordinary Differential Equations

M A : Ordinary Differential Equations M A 2 0 5 1: Ordinary Differential Equations Essential Class Notes & Graphics C 17 * Sections C11-C18, C20 2016-2017 1 Required Background 1. INTRODUCTION CLASS 1 The definition of the derivative, Derivative

More information

MATH 2413 TEST ON CHAPTER 4 ANSWER ALL QUESTIONS. TIME 1.5 HRS.

MATH 2413 TEST ON CHAPTER 4 ANSWER ALL QUESTIONS. TIME 1.5 HRS. MATH 1 TEST ON CHAPTER ANSWER ALL QUESTIONS. TIME 1. HRS. M1c Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Use the summation formulas to rewrite the

More information

Differential Equations and Linear Algebra Exercises. Department of Mathematics, Heriot-Watt University, Edinburgh EH14 4AS

Differential Equations and Linear Algebra Exercises. Department of Mathematics, Heriot-Watt University, Edinburgh EH14 4AS Differential Equations and Linear Algebra Exercises Department of Mathematics, Heriot-Watt University, Edinburgh EH14 4AS CHAPTER 1 Linear second order ODEs Exercises 1.1. (*) 1 The following differential

More information

Later in this chapter, we are going to use vector functions to describe the motion of planets and other objects through space.

Later in this chapter, we are going to use vector functions to describe the motion of planets and other objects through space. 10 VECTOR FUNCTIONS VECTOR FUNCTIONS Later in this chapter, we are going to use vector functions to describe the motion of planets and other objects through space. Here, we prepare the way by developing

More information

What will you learn?

What will you learn? Section 2.2 Basic Differentiation Rules & Rates of Change Calc What will you learn? Find the derivative using the Constant Rule Find the derivative using the Power Rule Find the derivative using the Constant

More information

2.2 Average vs. Instantaneous Description

2.2 Average vs. Instantaneous Description 2 KINEMATICS 2.2 Average vs. Instantaneous Description Name: 2.2 Average vs. Instantaneous Description 2.2.1 Average vs. Instantaneous Velocity In the previous activity, you figured out that you can calculate

More information

IMPACT (Section 15.4)

IMPACT (Section 15.4) IMPACT (Section 15.4) Today s Objectives: Students will be able to: a) Understand and analyze the mechanics of impact. b) Analyze the motion of bodies undergoing a collision, in both central and oblique

More information

Section 1.3 Integration

Section 1.3 Integration Section 1.3 Integration Key terms: Integral Constant of integration Fundamental theorem of calculus First order DE One parameter family of solutions General solution Initial value problem Particular solution

More information

Analysis III for D-BAUG, Fall 2017 Lecture 10

Analysis III for D-BAUG, Fall 2017 Lecture 10 Analysis III for D-BAUG, Fall 27 Lecture Lecturer: Alex Sisto (sisto@math.ethz.ch Convolution (Faltung We have already seen that the Laplace transform is not multiplicative, that is, L {f(tg(t} L {f(t}

More information

06/12/ rws/jMc- modif SuFY10 (MPF) - Textbook Section IX 1

06/12/ rws/jMc- modif SuFY10 (MPF) - Textbook Section IX 1 IV. Continuous-Time Signals & LTI Systems [p. 3] Analog signal definition [p. 4] Periodic signal [p. 5] One-sided signal [p. 6] Finite length signal [p. 7] Impulse function [p. 9] Sampling property [p.11]

More information

1. SINGULARITY FUNCTIONS

1. SINGULARITY FUNCTIONS 1. SINGULARITY FUNCTIONS 1.0 INTRODUCTION Singularity functions are discontinuous functions or their derivatives are discontinuous. A singularity is a point at which a function does not possess a derivative.

More information

Solutions to Homework 1, Introduction to Differential Equations, 3450: , Dr. Montero, Spring y(x) = ce 2x + e x

Solutions to Homework 1, Introduction to Differential Equations, 3450: , Dr. Montero, Spring y(x) = ce 2x + e x Solutions to Homewor 1, Introduction to Differential Equations, 3450:335-003, Dr. Montero, Spring 2009 problem 2. The problem says that the function yx = ce 2x + e x solves the ODE y + 2y = e x, and ass

More information

Solving a RLC Circuit using Convolution with DERIVE for Windows

Solving a RLC Circuit using Convolution with DERIVE for Windows Solving a RLC Circuit using Convolution with DERIVE for Windows Michel Beaudin École de technologie supérieure, rue Notre-Dame Ouest Montréal (Québec) Canada, H3C K3 mbeaudin@seg.etsmtl.ca - Introduction

More information

Laplace Transforms Chapter 3

Laplace Transforms Chapter 3 Laplace Transforms Important analytical method for solving linear ordinary differential equations. - Application to nonlinear ODEs? Must linearize first. Laplace transforms play a key role in important

More information

Math 106 Answers to Exam 3a Fall 2015

Math 106 Answers to Exam 3a Fall 2015 Math 6 Answers to Exam 3a Fall 5.. Consider the curve given parametrically by x(t) = cos(t), y(t) = (t 3 ) 3, for t from π to π. (a) (6 points) Find all the points (x, y) where the graph has either a vertical

More information

Chapter 0 of Calculus ++, Differential calculus with several variables

Chapter 0 of Calculus ++, Differential calculus with several variables Chapter of Calculus ++, Differential calculus with several variables Background material by Eric A Carlen Professor of Mathematics Georgia Tech Spring 6 c 6 by the author, all rights reserved - Table of

More information

ME 680- Spring Representation and Stability Concepts

ME 680- Spring Representation and Stability Concepts ME 680- Spring 014 Representation and Stability Concepts 1 3. Representation and stability concepts 3.1 Continuous time systems: Consider systems of the form x F(x), x n (1) where F : U Vis a mapping U,V

More information

2tdt 1 y = t2 + C y = which implies C = 1 and the solution is y = 1

2tdt 1 y = t2 + C y = which implies C = 1 and the solution is y = 1 Lectures - Week 11 General First Order ODEs & Numerical Methods for IVPs In general, nonlinear problems are much more difficult to solve than linear ones. Unfortunately many phenomena exhibit nonlinear

More information

Math 256: Applied Differential Equations: Final Review

Math 256: Applied Differential Equations: Final Review Math 256: Applied Differential Equations: Final Review Chapter 1: Introduction, Sec 1.1, 1.2, 1.3 (a) Differential Equation, Mathematical Model (b) Direction (Slope) Field, Equilibrium Solution (c) Rate

More information

IMPACT Today s Objectives: In-Class Activities:

IMPACT Today s Objectives: In-Class Activities: Today s Objectives: Students will be able to: 1. Understand and analyze the mechanics of impact. 2. Analyze the motion of bodies undergoing a collision, in both central and oblique cases of impact. IMPACT

More information

Physics Fall Mechanics, Thermodynamics, Waves, Fluids. Recap: Position and displacement

Physics Fall Mechanics, Thermodynamics, Waves, Fluids. Recap: Position and displacement Physics 5 Fall 28 Mechanics, Thermodynamics, Waves, Fluids Lecture 3: motion in a straight line II Slide 3- Recap: Position and displacement In one dimension, position can be described by a positive or

More information

Test # 1 Review Math MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Test # 1 Review Math MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Test # 1 Review Math 13 Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find the slope of the curve at the given point P and an equation of the

More information

Control Systems I. Lecture 6: Poles and Zeros. Readings: Emilio Frazzoli. Institute for Dynamic Systems and Control D-MAVT ETH Zürich

Control Systems I. Lecture 6: Poles and Zeros. Readings: Emilio Frazzoli. Institute for Dynamic Systems and Control D-MAVT ETH Zürich Control Systems I Lecture 6: Poles and Zeros Readings: Emilio Frazzoli Institute for Dynamic Systems and Control D-MAVT ETH Zürich October 27, 2017 E. Frazzoli (ETH) Lecture 6: Control Systems I 27/10/2017

More information

Math 307 A - Spring 2015 Final Exam June 10, 2015

Math 307 A - Spring 2015 Final Exam June 10, 2015 Name: Math 307 A - Spring 2015 Final Exam June 10, 2015 Student ID Number: There are 8 pages of questions. In addition, the last page is the basic Laplace transform table. Make sure your exam contains

More information

INTRODUCTION & RECTILINEAR KINEMATICS: CONTINUOUS MOTION

INTRODUCTION & RECTILINEAR KINEMATICS: CONTINUOUS MOTION INTRODUCTION & RECTILINEAR KINEMATICS: CONTINUOUS MOTION (Sections 12.1-12.2) Today s Objectives: Students will be able to find the kinematic quantities (position, displacement, velocity, and acceleration)

More information

Laplace Transform. Chapter 4

Laplace Transform. Chapter 4 Chapter 4 Laplace Transform It s time to stop guessing solutions and find a systematic way of finding solutions to non homogeneous linear ODEs. We define the Laplace transform of a function f in the following

More information

Predicting the future with Newton s Second Law

Predicting the future with Newton s Second Law Predicting the future with Newton s Second Law To represent the motion of an object (ignoring rotations for now), we need three functions x(t), y(t), and z(t), which describe the spatial coordinates of

More information

Math 3313: Differential Equations Laplace transforms

Math 3313: Differential Equations Laplace transforms Math 3313: Differential Equations Laplace transforms Thomas W. Carr Department of Mathematics Southern Methodist University Dallas, TX Outline Introduction Inverse Laplace transform Solving ODEs with Laplace

More information

The (Fast) Fourier Transform

The (Fast) Fourier Transform The (Fast) Fourier Transform The Fourier transform (FT) is the analog, for non-periodic functions, of the Fourier series for periodic functions can be considered as a Fourier series in the limit that the

More information

Lecture Notes in Mathematics. Arkansas Tech University Department of Mathematics

Lecture Notes in Mathematics. Arkansas Tech University Department of Mathematics Lecture Notes in Mathematics Arkansas Tech University Department of Mathematics Introductory Notes in Ordinary Differential Equations for Physical Sciences and Engineering Marcel B. Finan c All Rights

More information

Math 210 Differential Equations Mock Final Dec *************************************************************** 1. Initial Value Problems

Math 210 Differential Equations Mock Final Dec *************************************************************** 1. Initial Value Problems Math 210 Differential Equations Mock Final Dec. 2003 *************************************************************** 1. Initial Value Problems 1. Construct the explicit solution for the following initial

More information

Chapter 2: Motion a Straight Line

Chapter 2: Motion a Straight Line Formula Memorization: Displacement What is a vector? Average Velocity Average Speed Instanteous Velocity Average Acceleration Instantaneous Acceleration Constant Acceleration Equation (List all five of

More information

Chapter 1 Fundamental Concepts

Chapter 1 Fundamental Concepts Chapter 1 Fundamental Concepts Signals A signal is a pattern of variation of a physical quantity as a function of time, space, distance, position, temperature, pressure, etc. These quantities are usually

More information

{ } is an asymptotic sequence.

{ } is an asymptotic sequence. AMS B Perturbation Methods Lecture 3 Copyright by Hongyun Wang, UCSC Recap Iterative method for finding asymptotic series requirement on the iteration formula to make it work Singular perturbation use

More information

UNIVERSITY OF HOUSTON HIGH SCHOOL MATHEMATICS CONTEST Spring 2018 Calculus Test

UNIVERSITY OF HOUSTON HIGH SCHOOL MATHEMATICS CONTEST Spring 2018 Calculus Test UNIVERSITY OF HOUSTON HIGH SCHOOL MATHEMATICS CONTEST Spring 2018 Calculus Test NAME: SCHOOL: 1. Let f be some function for which you know only that if 0 < x < 1, then f(x) 5 < 0.1. Which of the following

More information

Dr. Ian R. Manchester

Dr. Ian R. Manchester Dr Ian R. Manchester Week Content Notes 1 Introduction 2 Frequency Domain Modelling 3 Transient Performance and the s-plane 4 Block Diagrams 5 Feedback System Characteristics Assign 1 Due 6 Root Locus

More information

Class 11 Physics NCERT Exemplar Solutions Motion in a Straight Line

Class 11 Physics NCERT Exemplar Solutions Motion in a Straight Line Class 11 Physics NCERT Exemplar Solutions Motion in a Straight Line Multiple Choice Questions Single Correct Answer Type Q1. Among the four graphs shown in the figure, there is only one graph for which

More information

9.5 The Transfer Function

9.5 The Transfer Function Lecture Notes on Control Systems/D. Ghose/2012 0 9.5 The Transfer Function Consider the n-th order linear, time-invariant dynamical system. dy a 0 y + a 1 dt + a d 2 y 2 dt + + a d n y 2 n dt b du 0u +

More information

Chapter 9b: Numerical Methods for Calculus and Differential Equations. Initial-Value Problems Euler Method Time-Step Independence MATLAB ODE Solvers

Chapter 9b: Numerical Methods for Calculus and Differential Equations. Initial-Value Problems Euler Method Time-Step Independence MATLAB ODE Solvers Chapter 9b: Numerical Methods for Calculus and Differential Equations Initial-Value Problems Euler Method Time-Step Independence MATLAB ODE Solvers Acceleration Initial-Value Problems Consider a skydiver

More information

spring mass equilibrium position +v max

spring mass equilibrium position +v max Lecture 20 Oscillations (Chapter 11) Review of Simple Harmonic Motion Parameters Graphical Representation of SHM Review of mass-spring pendulum periods Let s review Simple Harmonic Motion. Recall we used

More information

Chapter 2. Motion along a Straight Line

Chapter 2. Motion along a Straight Line Chapter 2 Motion along a Straight Line 1 2.1 Motion Everything in the universe, from atoms to galaxies, is in motion. A first step to study motion is to consider simplified cases. In this chapter we study

More information

Midterm 1 Review. Distance = (x 1 x 0 ) 2 + (y 1 y 0 ) 2.

Midterm 1 Review. Distance = (x 1 x 0 ) 2 + (y 1 y 0 ) 2. Midterm 1 Review Comments about the midterm The midterm will consist of five questions and will test on material from the first seven lectures the material given below. No calculus either single variable

More information

Section 3.7. Rolle s Theorem and the Mean Value Theorem

Section 3.7. Rolle s Theorem and the Mean Value Theorem Section.7 Rolle s Theorem and the Mean Value Theorem The two theorems which are at the heart of this section draw connections between the instantaneous rate of change and the average rate of change of

More information

Sample Questions, Exam 1 Math 244 Spring 2007

Sample Questions, Exam 1 Math 244 Spring 2007 Sample Questions, Exam Math 244 Spring 2007 Remember, on the exam you may use a calculator, but NOT one that can perform symbolic manipulation (remembering derivative and integral formulas are a part of

More information

MathQuest: Differential Equations

MathQuest: Differential Equations MathQuest: Differential Equations Laplace Tranforms 1. True or False The Laplace transform method is the only way to solve some types of differential equations. (a) True, and I am very confident (b) True,

More information

Solutions to Homework 3

Solutions to Homework 3 Solutions to Homework 3 Section 3.4, Repeated Roots; Reduction of Order Q 1). Find the general solution to 2y + y = 0. Answer: The charactertic equation : r 2 2r + 1 = 0, solving it we get r = 1 as a repeated

More information

Section , #5. Let Q be the amount of salt in oz in the tank. The scenario can be modeled by a differential equation.

Section , #5. Let Q be the amount of salt in oz in the tank. The scenario can be modeled by a differential equation. Section.3.5.3, #5. Let Q be the amount of salt in oz in the tank. The scenario can be modeled by a differential equation dq = 1 4 (1 + sin(t) ) + Q, Q(0) = 50. (1) 100 (a) The differential equation given

More information

Science One Integral Calculus

Science One Integral Calculus Science One Integral Calculus January 018 Happy New Year! Differential Calculus central idea: The Derivative What is the derivative f (x) of a function f(x)? Differential Calculus central idea: The Derivative

More information

5.3 Definite Integrals and Antiderivatives

5.3 Definite Integrals and Antiderivatives 5.3 Definite Integrals and Antiderivatives Objective SWBAT use properties of definite integrals, average value of a function, mean value theorem for definite integrals, and connect differential and integral

More information

Math Laplace transform

Math Laplace transform 1 Math 371 - Laplace transform Erik Kjær Pedersen November 22, 2005 The functions we have treated with the power series method are called analytical functions y = a k t k The differential equations we

More information

LTI Systems (Continuous & Discrete) - Basics

LTI Systems (Continuous & Discrete) - Basics LTI Systems (Continuous & Discrete) - Basics 1. A system with an input x(t) and output y(t) is described by the relation: y(t) = t. x(t). This system is (a) linear and time-invariant (b) linear and time-varying

More information

Math 23 Practice Quiz 2018 Spring

Math 23 Practice Quiz 2018 Spring 1. Write a few examples of (a) a homogeneous linear differential equation (b) a non-homogeneous linear differential equation (c) a linear and a non-linear differential equation. 2. Calculate f (t). Your

More information

MATH 56A SPRING 2008 STOCHASTIC PROCESSES 197

MATH 56A SPRING 2008 STOCHASTIC PROCESSES 197 MATH 56A SPRING 8 STOCHASTIC PROCESSES 197 9.3. Itô s formula. First I stated the theorem. Then I did a simple example to make sure we understand what it says. Then I proved it. The key point is Lévy s

More information

Module 4: One-Dimensional Kinematics

Module 4: One-Dimensional Kinematics 4.1 Introduction Module 4: One-Dimensional Kinematics Kinematics is the mathematical description of motion. The term is derived from the Greek word kinema, meaning movement. In order to quantify motion,

More information

Section 8.0 Introduction to Boundary Value Problems. How do initial value problems (IVPs) and boundary value problems (BVPs) differ?

Section 8.0 Introduction to Boundary Value Problems. How do initial value problems (IVPs) and boundary value problems (BVPs) differ? Section 8.0 Introduction to Boundary Value Problems Key terms/ideas How do initial value problems (IVPs) and boundary value problems (BVPs) differ? What are boundary conditions? In what type of problems

More information

Mathematical Models. MATH 365 Ordinary Differential Equations. J. Robert Buchanan. Spring Department of Mathematics

Mathematical Models. MATH 365 Ordinary Differential Equations. J. Robert Buchanan. Spring Department of Mathematics Mathematical Models MATH 365 Ordinary Differential Equations J. Robert Buchanan Department of Mathematics Spring 2018 Ordinary Differential Equations The topic of ordinary differential equations (ODEs)

More information

The Calculus of Vec- tors

The Calculus of Vec- tors Physics 2460 Electricity and Magnetism I, Fall 2007, Lecture 3 1 The Calculus of Vec- Summary: tors 1. Calculus of Vectors: Limits and Derivatives 2. Parametric representation of Curves r(t) = [x(t), y(t),

More information

Mathematical Models. MATH 365 Ordinary Differential Equations. J. Robert Buchanan. Fall Department of Mathematics

Mathematical Models. MATH 365 Ordinary Differential Equations. J. Robert Buchanan. Fall Department of Mathematics Mathematical Models MATH 365 Ordinary Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Ordinary Differential Equations The topic of ordinary differential equations (ODEs) is

More information

Ordinary Differential Equations

Ordinary Differential Equations Ordinary Differential Equations for Engineers and Scientists Gregg Waterman Oregon Institute of Technology c 2017 Gregg Waterman This work is licensed under the Creative Commons Attribution 4.0 International

More information

Leaving Cert Applied Maths: Some Notes

Leaving Cert Applied Maths: Some Notes Leaving Cert Applied Maths: Some Notes Golden Rule of Applied Maths: Draw Pictures! Numbered equations are in the tables. Proportionality: Figure 1: Note that P = kq y = mx + c except c = 0 the line goes

More information

Momentum, impulse and energy

Momentum, impulse and energy Lecture 9 Momentum, impulse and energy Pre-reading: KJF 9.1 and 9.2 MOMENTUM AND IMPULSE KJF chapter 9 before after COLLISION complex interaction 3 Linear Momentum of a Body We define the momentum of an

More information

20.6. Transfer Functions. Introduction. Prerequisites. Learning Outcomes

20.6. Transfer Functions. Introduction. Prerequisites. Learning Outcomes Transfer Functions 2.6 Introduction In this Section we introduce the concept of a transfer function and then use this to obtain a Laplace transform model of a linear engineering system. (A linear engineering

More information

An object is launched straight upward so that its height, h, is a function of time, t, with

An object is launched straight upward so that its height, h, is a function of time, t, with WebAssign Lesson 13-3 Applications (Homework) Current Score : / 18 Due : Wednesday, April 30 2014 09:00 AM MDT Shari Dorsey Sp 14 Math 170, section 003, Spring 2014 Instructor: Shari Dorsey 1. /1 points

More information

Practice Problems For Test 3

Practice Problems For Test 3 Practice Problems For Test 3 Power Series Preliminary Material. Find the interval of convergence of the following. Be sure to determine the convergence at the endpoints. (a) ( ) k (x ) k (x 3) k= k (b)

More information

( ) f (k) = FT (R(x)) = R(k)

( ) f (k) = FT (R(x)) = R(k) Solving ODEs using Fourier Transforms The formulas for derivatives are particularly useful because they reduce ODEs to algebraic expressions. Consider the following ODE d 2 dx + p d 2 dx + q f (x) = R(x)

More information

Solutions to Math 53 Math 53 Practice Final

Solutions to Math 53 Math 53 Practice Final Solutions to Math 5 Math 5 Practice Final 20 points Consider the initial value problem y t 4yt = te t with y 0 = and y0 = 0 a 8 points Find the Laplace transform of the solution of this IVP b 8 points

More information

Chapter 1 Fundamental Concepts

Chapter 1 Fundamental Concepts Chapter 1 Fundamental Concepts 1 Signals A signal is a pattern of variation of a physical quantity, often as a function of time (but also space, distance, position, etc). These quantities are usually the

More information

What is momentum? Inertia in Motion.

What is momentum? Inertia in Motion. What is momentum? Inertia in Motion. p = mv From Newton s 2 nd Law: F = ma = dv d( mv) m = dt dt F = dp dt The time rate of change of the linear momentum of a particle is equal to the net force acting

More information

[1] Model of on/off process: a light turns on; first it is dark, then it is light. The basic model is the Heaviside unit step function

[1] Model of on/off process: a light turns on; first it is dark, then it is light. The basic model is the Heaviside unit step function 18.03 Class 23, April 2, 2010 Step and delta [1] Step function u(t) [2] Rates and delta(t) [3] Regular, singular, and generalized functions [4] Generalized derivative [5] Heaviside and Dirac Two additions

More information