Ultrafast laser oscillators: perspectives from past to futures. New frontiers in all-solid-state lasers: High average power High pulse repetition rate

Size: px
Start display at page:

Download "Ultrafast laser oscillators: perspectives from past to futures. New frontiers in all-solid-state lasers: High average power High pulse repetition rate"

Transcription

1 Ultrafast laser oscillators: perspectives from past to futures New frontiers in all-solid-state lasers: High average power High pulse repetition rate Ursula Keller Swiss Federal Institute of Technology Ë Zürich, Switzerland

2 Research Group of Prof. Keller Ultrafast diode-pumped solid-state lasers (R. Paschotta) Sub-10-femtosecond pulse generation (G. Steinmeyer) Novel materials: III-V/fluoride MBE (S. Schön) Attosecond Science (J. Tisch, J. Biegert)

3 Current status in ultrafast lasers Kerr-lens modelocked Ti:sapphire lasers Pulse duration of about two optical cycles ( 5.5 fs) Ultrafast diode-pumped solid-state lasers SESAM modelocking is becoming the standard approach Compact reliable lasers commercially available New Frontier: High average power fs lasers: 22 W, 240 fs, 25 MHz, 3.3.MW peak (Yb:KYW) ps lasers: 60 W, 6-24 ps, 34 MHz, 1.7 µj (Yb:YAG) New Frontier: High pulse repetition rate Up to 157 GHz (Nd:Vanadate miniature laser)

4 Mode locking τ 1 ν ~ I (ω) I (t) ~ I (ω) I (t) +π +π 0 0 ~ φ (ω) -π φ (t) ~ φ (ω) -π φ (t) axial modes in laser not phaselocked noise axial modes in laser phaselocked ultrashort pulse inverse proportional to phaselocked spectrum

5 Ultrashort pulse generation (Science 286, 1507, 1999) KLM First ML Laser Ti:Sapphire Chirped Mirror CEO control FWHM pulse width (sec) 10 ps 1 ps 100 fs 10 fs 1 fs dye laser 27 fs with 10 mw Ti:sapphire laser 5.5 fs with 200 mw Year compressed

6 Kerr Lens Modelocking (KLM) D. E. Spence, P. N. Kean, W. Sibbett, Opt. Lett. 16, 42, 1991 Incident beam Nonlinear medium Kerr lens Aperture Intense pulse Low intensity light Effective Saturable Absorber Saturation fluence Fast Self-Amp. Modulation Loss Gain Loss Pulse fluence on absorber Pulse Time

7 Passively modelocked solid-state lasers A. J. De Maria, D. A. Stetser, H. Heynau Appl. Phys. Lett. 8, 174, 1966 Q-switching instabilities continued to be a problem until 1992 SESAM 200 ns/div First passively modelocked (diode-pumped) solid-state laser without Q-switching 50 ns/div U. Keller et al. Opt. Lett. 17, 505, 1992 Nd:glass First passively modelocked laser Q-switched modelocked KLM Ti:Sapphire Flashlamp-pumped solid-state lasers Diode-pumped solid-state lasers (first demonstration 1963)

8 Enabling Technology: SESAM Semiconductor saturable absorber mirror (SESAM) High-finesse A-FPSA R 95 % Thin absorber AR-coated Low-finesse A-FPSA, SBR D-SAM Saturable absorber and negative dispersion Saturable absorber (Sat. abs.) R 0 % Sat. abs. R 30 % Sat. abs. R 30 % Sat. abs. R 100 % R 100 % R 100 % R 100 % April 92 Feb. 95 June/July 95 April 96 U. Keller et al., IEEE JSTQE 2, 435, 1996 Chapter 4 in Semiconductors and Semimetals, vol. 59, Academic Press, 1999

9 Q-switched mode locking is avoided if... C. Hönninger, R. Paschotta, F. Morier-Genoud, M. Moser, and U. Keller, JOSA B 16, 46 (1999) = P intra f rep 2 cw mode locking E 2 > E E R P sat,l sat,a A eff,l σ em,l = A F R eff,a sat,a Q-switched mode locking Laser power Laser power Time (multiples of round trip time) Time (multiples of round trip time) 40

10 Saturation fluence and modulation depth C. Hönninger, R. Paschotta, F. Morier-Genoud, M. Moser, and U. Keller, JOSA B 16, 46 (1999) SESAM E 2 > E E R P sat,l sat,a Semiconductor saturable absorber mirror A F R eff,a sat,a F sat,a σ A Absorber σ [ A cm 2 ] ion-doped solidstate dye F sat, A Saturation fluence Reflectivity (%) 95 R ns Non-saturable losses R Modulation depth semiconductor Incident pulse fluence F p ( µj/cm 2 )

11 Recovery times in semiconductors R. Paschotta, U. Keller, Applied Physics B 73, 653, 2001 Time Delay E Absorption E Interband Recombination ns LT grown materials: Electron trapping ps - ns D Intraband Thermalization 100 fs D Density of states D Density of states D τ 10τ to 30τ A p p

12 KLM vs. SESAM modelocking loss loss gain gain pulse pulse time Kerr lens modelocking (KLM) - fast/broadband saturable abs. - critical cavity adjustment: KLM better at cavity stability limit - typically not self-starting time SESAM modelocking - not so fast saturable absorber - absorber independent of cavity design - self-starting

13 Slow saturable absorber modelocking R. Paschotta, U. Keller, Appl. Phys. B submitted absorber delays pulse loss Fully saturated absorber: leading edge of pulse negligible loss for has significant loss from trailing edge of pulse the saturable absorber time Dominant stabilization process: Picosecond domain: absorber delays pulse The pulse is constantly moving backward and can swallow any noise growing behind itself Femtosecond domain: dispersion in soliton modelocking

14 fs domain: soliton modelocking F. X. Kärtner, U. Keller, Optics Lett. 20, 16, 1995 Invited Paper: F. X. Kärtner, I. D. Jung, U. Keller, IEEE JSTQE, 2, 540, 1996 Soliton Perturbation Theory: A(T,t) = Asech t τ T exp i Φ 0 T R { soliton + small perturbations { continuum only GVD & SAM Continuum Loss GDD spreading Continuum GDD Gain Gain Pulse Pulse Frequency Time Frequency domain Time domain Dispersion spreads continuum out where it sees more loss

15 Motivation for Mode-Locked High-Power Lasers Multi-kW to MW peak powers, µj pulse energies Applications: Material processing Medical applications Nonlinear frequency conversion e.g. with high-power optical parametric oscillators: RGB laser displays mid-infrared sources tunable femtosecond sources

16 Thin-Disk Laser Head S. Erhard, A. Giesen, M. Karszewski, T. Rupp, C. Stewen, I. Johannsen, and K. Contag, in OSA Topical Meeting, Advanced Solid-State Lasers, 1999 fiber coupled diode laser roof prism heat sink with crystal in focal plane laser output collimating lens parabolic mirror nearly one-dimensional longitudinal heat flow 16-pass arrangement Yb:YAG as gain material efficient cooling high pump intensities possible very weak thermal lensing efficient pump absorption excellent thermal properties broad emission bandwidth

17 Passively Mode-Locked Thin Disk Laser output coupler heat sink saturation parameter S := E p /(F sat,a A eff,a ) in our thin disk laser: S < 10 far below damage threshold (S > ) Brewster plate negative group delay dispersion generated with a GTI linear polarization enforced by Brewster plate GTI SEmiconductor Saturable Absorber Mirror wedged Yb:YAG disk on cooling finger R=1 m R=1.5 m R=0.5 m SESAM: F sat,a 100 µj/cm 2 R 0.5% R ns 0.3%

18 Passively ML Yb:YAG thin-disk laser J. Aus der Au et al., Opt. Lett. 25, 859, 2000 Autocorrelation trace P avg τ p Time delay (ps) = 16.2 W = 730 fs P peak 560 kw ν τ p = 0.32 τ p = 730 fs Spectral intensity (a.u.) f rep = 34.6 MHz E p 0.47 µj S 7 M 2 < nm Wavelength (nm) 1034 far away from SESAM damage (S > ) optical-to-optical efficiency: 28%

19 Power Scaling: How to Double the Output Power Thin disk laser head: SESAM: double pump power and mode area in gain medium double mode area on SESAM, keep SESAM parameters unchanged unchanged temperature rise (1-dim. heat flow) unchanged intensities no SESAM damage thermal lensing not increased Q-switching tendency not increased

20 Passively ML Yb:KYW thin-disk laser F. Brunner et al., CLEO 2002, accepted Autocorrelation signal fs Time delay (ps) Spectral intensity (normalized) nm Wavelength (nm) P avg τ p f rep M = 22 W = 240 fs = 24.6 MHz P peak 3.3 MW E p 0.9 µj I peak = 2 x W/cm 2, 2 µm radius

21 New frontiers: high pulse repetition rates 10 4 High Power Nd:YVO 4 Passive ML Active ML Average Output Power [mw] Ti:sapphire VECSEL Nd:YLF Miniature Nd:YVO 4 Er:Yb:glass Cr:YAG Nd:BEL Semicon. lasers Fiber lasers Semicon. lasers Repetition Rate [GHz]

22 Quasi-Monolithic Cavity Setup L. Krainer et al., Electron. Lett. 35, 1160, 1999 (29 GHz) APL 77, 2104, 2000 (up to 59 GHz), Electron. Lett. 36, 1846, 2000 (77 GHz) 4 Crystal lengths: mm (FSR ~ GHz) Nd:YVO 4 doping: 3 % (90 µm absoption length)

23 Passively modelocked Nd:Vanadate Electron. Lett., 34, 14, (1999) 29 GHz Crystal length = 2.31 mm Appl. Phys. Lett., 77, 14, (2000) 39 GHz Crystal length = 1.76 mm Electron. Lett., submitted 77 GHz Crystal length = 0.9 mm Autocorrelation 34 ps Autocorrelation 26 ps Autocorrelation 13 ps Time, ps Optical spectrum τ P = 6.8 ps E p = 2.8 pj P out = 81 mw Wavelength, nm Optical Spectrum Time, ps τ P = 5 ps E p = 1.5 pj P out = 60 mw Optical spectrum Time, ps τ P = 2.7 ps E p = 0.8 pj P out = 65 mw Wavelength, nm Wavelength, nm

24 150 GHz Nd:Vanadate Laser L. Krainer et al., CLEO 2002 Autocorrelation trace of the 157 GHz pulse train. The pulses are about 6.4 ps apart. s.h. intensity, a.u time, ps

25 10 GHz Er:Yb:glass laser L. Krainer et al., Electron. Lett., to be published March 1, 2002 Photo detector signal (dbc) Autocorrelation signal span: 5 MHz res. bw.: 30 khz τ p = 3.8 ps Frequency (GHz) measured sech 2 fit P out at QML threshold (mw) Wavelength (nm) Pulse duration (ps) Time delay (ps)

26 What about diode-pumped semiconductor lasers? Edge emitting lasers Stripe width limited by beam quality requirements Facet damage limits peak power Surface emitting device External cavity needed (repetition rate: GHz) Electrical pumping: ring electrode limits size Optical pumping: large area with homogeneous inversion Optical pumped Vertical-External-Cavity Surface-Emitting Laser (VECSEL)* * M. Kuznetsov, F. Hakimi, R. Sprague, and A. Mooradian, JSTQE 2, (1996)

27 Optically pumped VECSEL Simple cavity fiber coupled diode array large pump diameter curved output coupler spot size smaller on SESAM than on gain structure loss gain pulse time First demonstration of passively modelocked optically pumped VECSEL: S. Hoogland et al., IEEE Photon. Technol. Lett. 12, 1135 (2000).

28 Autocorrelation at 530 mw Autocorrelation signal (a.u.) Pulses with low chirp SESAM absorber: 8 nm In 0.15 Ga 0.85 As ( R 1.5%) Gaussian pulse shape 3.9 ps FWHM duration only 1.5 times over Fourier limit measured 3.9 ps gaussian 0.5 nm Wavelength (nm) Delay time (ps) Optical density (a.u.)

29 Microwave Frequency at 530 mw RF power density (dbc) Frequency (GHz) Frequency (GHz) Stable mode-locking Resolution 300 khz Noise free to -55 dbc Repetition rate = GHz Polarized: >100:1 nearly diffraction limited M 2 < W pump power 300 µm pump diameter 3 C heat sink temperature

30 Autocorrelation at 950 mw Autocorrelation signal (a.u.) measured 15.3 ps sech 2 1 nm Wavelength (nm) Delay time (ps) Optical density (a.u.) Higher power / longer pulse sech 2 shape, 15.3 ps FWHM duration 1 nm optical bandwidth chirp continuous wave: 2.2 W

31 Gain structure Refractive index Mirror QWs AR Position (nm)

32 Gain structure 100 Refractive index Mirror QWs AR Position (nm) Reflectivity (%) Wavelength (nm) R > 99.95% for 950 nm R 97% for 805 nm, 45 double pass pump light

33 Gain structure Reflectivity (%) Refractive index Wavelength (nm) R > 99.95% for 950 nm R 97% for 805 nm, 45 double pass pump light Mirror QWs AR Position (nm) Reflectivity (%) Wavelength (nm) 1000 R < 1% for 950 nm R 10% for 805 nm, 45

34 Gain structure Refractive index Mirror QWs AR Position (nm) Reflectivity (%) Wavelength (nm) Reflectivity (%) Wavelength (nm) 1000 R > 99.95% for 950 nm R 97% for 805 nm, 45 double pass pump light 5 InGaAs Quantum wells Spacer absorbs pump, carrier trapped in QWs R < 1% for 950 nm R 10% for 805 nm, 45

35 Thermal impedance: Idea Consider epitaxial lift-off structure (substrate replaced with a heat sink) heat source is a thin sheet d 1 µm, Ø 500 µm 1-dimensional heat flow in vicinity of source power scalable approach e.g. double pump spot, keep pump intensity constant temperature is unchanged, output power doubled

36 Thermal impedance Check of validity T 3d model Simulation T (K) T 1d model w crit constant intensity varied pump spot copper heat sink Radius (µm) Critical radius heat sink and semiconductor contribute equally

37 Success story is base on... Transition from dye to solid-state lasers Kerr lens modelocking Ti:sapphire laser produces shorter pulses and more average power Diode-pumped solid-state lasers development of high-power and high-brightness diode lasers for direct pumping of solid-state lasers efficient, compact and reliable sources Semiconductor saturable absorbers stable passive modelocking of diode-pumped solid-state lasers (self-starting and no Q-switching instabilities) many different parameter regimes such as laser wavelength, pulse duration and power levels engineering of linear and nonlinear optical response

38 Hot topics in the near future Ultrafast diode-pumped solid-state lasers High average power in the 100 W regime for picosecond to sub-100-fs pulse durations Very simple ( single-pass ) and efficient nonlinear frequency conversion (SHG, OPG, fiber OPO,.) Many 10 GHz pulse repetition rates at longer wavelength (1.3 µm and 1.5 µm, telecom application)

Ultrafast Laser Physics

Ultrafast Laser Physics Ultrafast Laser Physics Ursula Keller / Lukas Gallmann ETH Zurich, Physics Department, Switzerland www.ulp.ethz.ch Chapter 8: Passive modelocking Ultrafast Laser Physics ETH Zurich Pulse-shaping in passive

More information

SESAM modelocked solid-state lasers Lecture 2 SESAM! Semiconductor saturable absorber

SESAM modelocked solid-state lasers Lecture 2 SESAM! Semiconductor saturable absorber SESAM technology ultrafast lasers for industrial application SESAM modelocked solid-state lasers Lecture SESAM! Ursula Keller U. Keller et al. Opt. Lett. 7, 55, 99 IEEE JSTQE, 5, 996" Progress in Optics

More information

Strongly enhanced negative dispersion from thermal lensing or other focusing effects in femtosecond laser cavities

Strongly enhanced negative dispersion from thermal lensing or other focusing effects in femtosecond laser cavities 646 J. Opt. Soc. Am. B/ Vol. 17, No. 4/ April 2000 Paschotta et al. Strongly enhanced negative dispersion from thermal lensing or other focusing effects in femtosecond laser cavities R. Paschotta, J. Aus

More information

Erzeugung und Anwendung ultrakurzer Laserpulse. Generation and Application of Ultrashort Laser Pulses

Erzeugung und Anwendung ultrakurzer Laserpulse. Generation and Application of Ultrashort Laser Pulses Erzeugung und Anwendung ultrakurzer Laserpulse Generation and Application of Ultrashort Laser Pulses Prof. Ursula Keller ETH Zurich, Switzerland Festvortrag zur akademischen Feier aus Anlass der erstmaligen

More information

High average power ultrafast lasers

High average power ultrafast lasers High average power ultrafast lasers C. J. Saraceno, F. Emaury, O. H. Heckl, C. R. E. Baer, M. Hoffmann, C. Schriber, M. Golling, and U. Keller Department of Physics, Institute for Quantum Electronics Zurich,

More information

Design and operation of antiresonant Fabry Perot saturable semiconductor absorbers for mode-locked solid-state lasers

Design and operation of antiresonant Fabry Perot saturable semiconductor absorbers for mode-locked solid-state lasers Brovelli et al. Vol. 12, No. 2/February 1995/J. Opt. Soc. Am. B 311 Design and operation of antiresonant Fabry Perot saturable semiconductor absorbers for mode-locked solid-state lasers L. R. Brovelli

More information

Ultrafast Laser Physics

Ultrafast Laser Physics Ultrafast Laser Physics Ursula Keller / Lukas Gallmann ETH Zurich, Physics Department, Switzerland www.ulp.ethz.ch Chapter 7: Active modelocking Ultrafast Laser Physics ETH Zurich Mode locking by forcing

More information

Q-switching stability limits of continuous-wave passive mode locking

Q-switching stability limits of continuous-wave passive mode locking 46 J. Opt. Soc. Am. B/Vol. 16, No. 1/January 1999 Hönninger et al. Q-switching stability limits of continuous-wave passive mode locking C. Hönninger, R. Paschotta, F. Morier-Genoud, M. Moser, and U. Keller

More information

Kurzpuls Laserquellen

Kurzpuls Laserquellen Kurzpuls Laserquellen Ursula Keller ETH Zurich, Physics Department, Switzerland Power Lasers: Clean Tech Day swisslaser-net (SLN), www.swisslaser.net Ultrafast Laser Physics ETH Zurich 2. Juli 2009 ETH

More information

Blue-green Emitting Semiconductor Disk Lasers with Intra-Cavity Frequency Doubling

Blue-green Emitting Semiconductor Disk Lasers with Intra-Cavity Frequency Doubling Blue-green Emitting Semiconductor Disk Lasers with Intra-Cavity Frequency Doubling Eckart Schiehlen and Michael Riedl Diode-pumped semiconductor disk lasers, also referred to as VECSEL (Vertical External

More information

New Concept of DPSSL

New Concept of DPSSL New Concept of DPSSL - Tuning laser parameters by controlling temperature - Junji Kawanaka Contributors ILS/UEC Tokyo S. Tokita, T. Norimatsu, N. Miyanaga, Y. Izawa H. Nishioka, K. Ueda M. Fujita Institute

More information

γ c = rl = lt R ~ e (g l)t/t R Intensität 0 e γ c t Zeit, ns

γ c = rl = lt R ~ e (g l)t/t R Intensität 0 e γ c t Zeit, ns There is however one main difference in this chapter compared to many other chapters. All loss and gain coefficients are given for the intensity and not the amplitude and are therefore a factor of 2 larger!

More information

Experimentally confirmed design guidelines for passively Q-switched microchip lasers using semiconductor saturable absorbers

Experimentally confirmed design guidelines for passively Q-switched microchip lasers using semiconductor saturable absorbers 376 J. Opt. Soc. Am. B/Vol. 16, No. 3/March 1999 Spühler et al. Experimentally confirmed design guidelines for passively Q-switched microchip lasers using semiconductor saturable absorbers G. J. Spühler,

More information

Semiconductor Disk Laser on Microchannel Cooler

Semiconductor Disk Laser on Microchannel Cooler Semiconductor Disk Laser on Microchannel Cooler Eckart Gerster An optically pumped semiconductor disk laser with a double-band Bragg reflector mirror is presented. This mirror not only reflects the laser

More information

Time resolved optical spectroscopy methods for organic photovoltaics. Enrico Da Como. Department of Physics, University of Bath

Time resolved optical spectroscopy methods for organic photovoltaics. Enrico Da Como. Department of Physics, University of Bath Time resolved optical spectroscopy methods for organic photovoltaics Enrico Da Como Department of Physics, University of Bath Outline Introduction Why do we need time resolved spectroscopy in OPV? Short

More information

Graphene Based Saturable Absorber Modelockers at 2µm

Graphene Based Saturable Absorber Modelockers at 2µm ISLA Workshop Munich Integrated disruptive components for 2µm fibre Lasers ISLA Graphene Based Saturable Absorber Modelockers at 2µm Prof. Werner Blau - Trinity College Dublin Friday, 26th of June 2015

More information

Graphene mode-locked Cr:ZnS chirped-pulse oscillator

Graphene mode-locked Cr:ZnS chirped-pulse oscillator Graphene mode-locked Cr:ZnS chirped-pulse oscillator Nikolai Tolstik, 1,* Andreas Pospischil, 2 Evgeni Sorokin, 2 and Irina T. Sorokina 1 1 Department of Physics, Norwegian University of Science and Technology,

More information

E( t) = e Γt 2 e iω 0t. A( t) = e Γt 2, Γ Γ 1. Frontiers in ultrafast laser technology. Time and length scales. Example: Gaussian pulse.

E( t) = e Γt 2 e iω 0t. A( t) = e Γt 2, Γ Γ 1. Frontiers in ultrafast laser technology. Time and length scales. Example: Gaussian pulse. Time and length scales Frontiers in ultrafast laser technology Prof. Ursula Keller Department of Physics, Insitute of Quantum Electronics, ETH Zurich International Summer School New Frontiers in Optical

More information

MEFT / Quantum Optics and Lasers. Suggested problems Set 4 Gonçalo Figueira, spring 2015

MEFT / Quantum Optics and Lasers. Suggested problems Set 4 Gonçalo Figueira, spring 2015 MEFT / Quantum Optics and Lasers Suggested problems Set 4 Gonçalo Figueira, spring 05 Note: some problems are taken or adapted from Fundamentals of Photonics, in which case the corresponding number is

More information

Linear pulse propagation

Linear pulse propagation Ultrafast Laser Physics Ursula Keller / Lukas Gallmann ETH Zurich, Physics Department, Switzerland www.ulp.ethz.ch Linear pulse propagation Ultrafast Laser Physics ETH Zurich Superposition of many monochromatic

More information

ULTRAFAST laser sources have enormous impact on many

ULTRAFAST laser sources have enormous impact on many IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, VOL. 21, NO. 1, JANUARY/FEBRUARY 2015 1100318 Toward Millijoule-Level High-Power Ultrafast Thin-Disk Oscillators Clara J. Saraceno, Florian Emaury,

More information

Observation of spectral enhancement in a soliton fiber laser with fiber Bragg grating

Observation of spectral enhancement in a soliton fiber laser with fiber Bragg grating Observation of spectral enhancement in a soliton fiber laser with fiber Bragg grating L. M. Zhao 1*, C. Lu 1, H. Y. Tam 2, D. Y. Tang 3, L. Xia 3, and P. Shum 3 1 Department of Electronic and Information

More information

Dark Soliton Fiber Laser

Dark Soliton Fiber Laser Dark Soliton Fiber Laser H. Zhang, D. Y. Tang*, L. M. Zhao, and X. Wu School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798 *: edytang@ntu.edu.sg, corresponding

More information

Alexander Gaeta Department of Applied Physics and Applied Mathematics Michal Lipson Department of Electrical Engineering

Alexander Gaeta Department of Applied Physics and Applied Mathematics Michal Lipson Department of Electrical Engineering Chip-Based Optical Frequency Combs Alexander Gaeta Department of Applied Physics and Applied Mathematics Michal Lipson Department of Electrical Engineering KISS Frequency Comb Workshop Cal Tech, Nov. 2-5,

More information

Highly Nonlinear Fibers and Their Applications

Highly Nonlinear Fibers and Their Applications 1/32 Highly Nonlinear Fibers and Their Applications Govind P. Agrawal Institute of Optics University of Rochester Rochester, NY 14627 c 2007 G. P. Agrawal Introduction Many nonlinear effects inside optical

More information

Multipulse Operation and Limits of the Kerr-Lens Mode-Locking Stability

Multipulse Operation and Limits of the Kerr-Lens Mode-Locking Stability IEEE JOURNAL OF QUANTUM ELECTRONICS, VOL. 39, NO. 2, FEBRUARY 2003 323 Multipulse Operation and Limits of the Kerr-Lens Mode-Locking Stability Vladimir L. Kalashnikov, Evgeni Sorokin, and Irina T. Sorokina

More information

The Generation of Ultrashort Laser Pulses

The Generation of Ultrashort Laser Pulses The Generation of Ultrashort Laser Pulses The importance of bandwidth More than just a light bulb Two, three, and four levels rate equations Gain and saturation But first: the progress has been amazing!

More information

Steady state mode-locking of the Nd:YVO 4 laser operating on the 1.34 µm transition using intracavity SHG in BIBO or PPMgSLT

Steady state mode-locking of the Nd:YVO 4 laser operating on the 1.34 µm transition using intracavity SHG in BIBO or PPMgSLT Steady state mode-locking of the Nd:YVO 4 laser operating on the 1.34 µm transition using intracavity SHG in BIBO or PPMgSLT Hristo Iliev, a) Ivan Buchvarov, a) Veselin Alexandrov, a) Sunao Kurimura, b)

More information

High-power Cryogenic Yb:YAG Lasers and Optical Particle Targeting for EUV Sources *

High-power Cryogenic Yb:YAG Lasers and Optical Particle Targeting for EUV Sources * High-power Cryogenic Yb:YAG Lasers and Optical Particle Targeting for EUV Sources * J.D. Hybl**, T.Y. Fan, W.D. Herzog, T.H. Jeys, D.J.Ripin, and A. Sanchez 2008 International Workshop on EUV Lithography

More information

High-power Cryogenic Yb:YAG Lasers and Optical Particle Targeting for EUV Sources *

High-power Cryogenic Yb:YAG Lasers and Optical Particle Targeting for EUV Sources * High-power Cryogenic Yb:YAG Lasers and Optical Particle Targeting for EUV Sources * J.D. Hybl**, T.Y. Fan, W.D. Herzog, T.H. Jeys, D.J.Ripin, and A. Sanchez EUV Source Workshop 29 May 2009 * This work

More information

Laser Physics OXFORD UNIVERSITY PRESS SIMON HOOKER COLIN WEBB. and. Department of Physics, University of Oxford

Laser Physics OXFORD UNIVERSITY PRESS SIMON HOOKER COLIN WEBB. and. Department of Physics, University of Oxford Laser Physics SIMON HOOKER and COLIN WEBB Department of Physics, University of Oxford OXFORD UNIVERSITY PRESS Contents 1 Introduction 1.1 The laser 1.2 Electromagnetic radiation in a closed cavity 1.2.1

More information

Numerical Analysis of Soft-Aperture Kerr-Lens Mode Locking in Ti:Sapphire Laser Cavities by Using Nonlinear ABCD Matrices

Numerical Analysis of Soft-Aperture Kerr-Lens Mode Locking in Ti:Sapphire Laser Cavities by Using Nonlinear ABCD Matrices Journal of the Korean Physical Society, Vol. 46, No. 5, May 2005, pp. 1131 1136 Numerical Analysis of Soft-Aperture Kerr-Lens Mode Locking in Ti:Sapphire Laser Cavities by Using Nonlinear ABCD Matrices

More information

Self-Phase Modulation in Optical Fiber Communications: Good or Bad?

Self-Phase Modulation in Optical Fiber Communications: Good or Bad? 1/100 Self-Phase Modulation in Optical Fiber Communications: Good or Bad? Govind P. Agrawal Institute of Optics University of Rochester Rochester, NY 14627 c 2007 G. P. Agrawal Outline Historical Introduction

More information

Lukas Gallmann. ETH Zurich, Physics Department, Switzerland Chapter 4b: χ (2) -nonlinearities with ultrashort pulses.

Lukas Gallmann. ETH Zurich, Physics Department, Switzerland  Chapter 4b: χ (2) -nonlinearities with ultrashort pulses. Ultrafast Laser Physics Lukas Gallmann ETH Zurich, Physics Department, Switzerland www.ulp.ethz.ch Chapter 4b: χ (2) -nonlinearities with ultrashort pulses Ultrafast Laser Physics ETH Zurich Contents Second

More information

Generation of high-energy, few-cycle optical pulses

Generation of high-energy, few-cycle optical pulses Generation of high-energy, few-cycle optical pulses PART II : Methods for generation Günter Steinmeyer Max-Born-Institut, Berlin, Germany steinmey@mbi-berlin.de MARIE CURIE CHAIR AND ESF SUMMER SCHOOL

More information

Saturable absorbers incorporating carbon nanotubes directly synthesized onto substrates/fibers and their application to mode-locked fiber lasers

Saturable absorbers incorporating carbon nanotubes directly synthesized onto substrates/fibers and their application to mode-locked fiber lasers Saturable absorbers incorporating carbon nanotubes directly synthesized onto substrates/fibers and their application to mode-locked fiber lasers S. Yamashita (1), S. Maruyama (2), Y. Murakami (2), Y. Inoue

More information

Optical Self-Organization in Semiconductor Lasers Spatio-temporal Dynamics for All-Optical Processing

Optical Self-Organization in Semiconductor Lasers Spatio-temporal Dynamics for All-Optical Processing Optical Self-Organization in Semiconductor Lasers Spatio-temporal Dynamics for All-Optical Processing Self-Organization for all-optical processing What is at stake? Cavity solitons have a double concern

More information

Computational Study of Amplitude-to-Phase Conversion in a Modified Unitraveling Carrier Photodetector

Computational Study of Amplitude-to-Phase Conversion in a Modified Unitraveling Carrier Photodetector Computational Study of Amplitude-to-Phase Conversion in a Modified Unitraveling Carrier Photodetector Volume 9, Number 2, April 2017 Open Access Yue Hu, Student Member, IEEE Curtis R. Menyuk, Fellow, IEEE

More information

Mid-IR Photothermal Imaging with a Compact Ultrafast Fiber Probe Laser

Mid-IR Photothermal Imaging with a Compact Ultrafast Fiber Probe Laser Invited Paper Mid-IR Photothermal Imaging with a Compact Ultrafast Fiber Probe Laser Hui Liu 1,2, Atcha Totachawattana 1,2, Alket Mërtiri 3,2, Mi K. Hong 4, Tim Gardner 6, Shyamsunder Erramilli 2,4,5 and

More information

Multi-cycle THz pulse generation in poled lithium niobate crystals

Multi-cycle THz pulse generation in poled lithium niobate crystals Laser Focus World April 2005 issue (pp. 67-72). Multi-cycle THz pulse generation in poled lithium niobate crystals Yun-Shik Lee and Theodore B. Norris Yun-Shik Lee is an assistant professor of physics

More information

Self-Mode-Locked Vertical-External-Cavity Surface-Emitting Laser

Self-Mode-Locked Vertical-External-Cavity Surface-Emitting Laser Invited Paper Self-Mode-Locked Vertical-External-Cavity Surface-Emitting Laser Arash Rahimi-Iman* a, Mahmoud Gaafar a, Christoph Möller a, Max Vaupel a, Fan Zhang a, Dalia Al-Nakdali a, Ksenia A. Fedorova

More information

Microjoule mode-locked oscillators: issues of stability and noise

Microjoule mode-locked oscillators: issues of stability and noise Microjoule mode-locked oscillators: issues of stability and noise Vladimir L. Kalashnikov Institut für Photonik, TU Wien, Gusshausstr. 7/387, A-14 Vienna, Austria Alexander Apolonski Department für Physik

More information

CW and mode-locked operation of Yb 3+ -doped Lu 3 Al 5 O 12 ceramic laser

CW and mode-locked operation of Yb 3+ -doped Lu 3 Al 5 O 12 ceramic laser CW and mode-locked operation of Yb 3+ -doped Lu 3 Al 5 O 12 ceramic laser Hiroaki Nakao, 1,* Akira Shirakawa, 1 Ken-ichi Ueda, 1 Hideki Yagi, 2 and Takagimi Yanagitani 2 1 Institute for Laser Science,

More information

Intraband emission of GaN quantum dots at λ =1.5 μm via resonant Raman scattering

Intraband emission of GaN quantum dots at λ =1.5 μm via resonant Raman scattering Intraband emission of GaN quantum dots at λ =1.5 μm via resonant Raman scattering L. Nevou, F. H. Julien, M. Tchernycheva, J. Mangeney Institut d Electronique Fondamentale, UMR CNRS 8622, University Paris-Sud

More information

Optical solitons and its applications

Optical solitons and its applications Physics 568 (Nonlinear optics) 04/30/007 Final report Optical solitons and its applications 04/30/007 1 1 Introduction to optical soliton. (temporal soliton) The optical pulses which propagate in the lossless

More information

High Power Diode Lasers

High Power Diode Lasers Lecture 10/1 High Power Diode Lasers Low Power Lasers (below tenth of mw) - Laser as a telecom transmitter; - Laser as a spectroscopic sensor; - Laser as a medical diagnostic tool; - Laser as a write-read

More information

Engineering Medical Optics BME136/251 Winter 2017

Engineering Medical Optics BME136/251 Winter 2017 Engineering Medical Optics BME136/251 Winter 2017 Monday/Wednesday 2:00-3:20 p.m. Beckman Laser Institute Library, MSTB 214 (lab) Teaching Assistants (Office hours: Every Tuesday at 2pm outside of the

More information

3.5 Cavities Cavity modes and ABCD-matrix analysis 206 CHAPTER 3. ULTRASHORT SOURCES I - FUNDAMENTALS

3.5 Cavities Cavity modes and ABCD-matrix analysis 206 CHAPTER 3. ULTRASHORT SOURCES I - FUNDAMENTALS 206 CHAPTER 3. ULTRASHORT SOURCES I - FUNDAMENTALS which is a special case of Eq. (3.30. Note that this treatment of dispersion is equivalent to solving the differential equation (1.94 for an incremental

More information

3.5x10 8 s/cm (c axis, 22 C, 1KHz) α x =11x10-6 / C, α y =9x10-6 / C, α z =0.6x10-6 / C

3.5x10 8 s/cm (c axis, 22 C, 1KHz) α x =11x10-6 / C, α y =9x10-6 / C, α z =0.6x10-6 / C Potassium Titanyl Phosphate (KTiOPO 4 or KTP) KTP (or KTiOPO 4 ) crystal is a nonlinear optical crystal, which possesses excellent nonlinear and electro-optic properties. It has large nonlinear optical

More information

Nonlinear effects and pulse propagation in PCFs

Nonlinear effects and pulse propagation in PCFs Nonlinear effects and pulse propagation in PCFs --Examples of nonlinear effects in small glass core photonic crystal fibers --Physics of nonlinear effects in fibers --Theoretical framework --Solitons and

More information

Consistent characterization of semiconductor saturable absorber mirrors with single-pulse and pump-probe spectroscopy

Consistent characterization of semiconductor saturable absorber mirrors with single-pulse and pump-probe spectroscopy Consistent characterization of semiconductor saturable absorber mirrors with single-pulse and pump-probe spectroscopy R. Fleischhaker, N. Krauß, F. Schättiger, and T. Dekorsy Center for Applied Photonics

More information

Fiber Gratings p. 1 Basic Concepts p. 1 Bragg Diffraction p. 2 Photosensitivity p. 3 Fabrication Techniques p. 4 Single-Beam Internal Technique p.

Fiber Gratings p. 1 Basic Concepts p. 1 Bragg Diffraction p. 2 Photosensitivity p. 3 Fabrication Techniques p. 4 Single-Beam Internal Technique p. Preface p. xiii Fiber Gratings p. 1 Basic Concepts p. 1 Bragg Diffraction p. 2 Photosensitivity p. 3 Fabrication Techniques p. 4 Single-Beam Internal Technique p. 4 Dual-Beam Holographic Technique p. 5

More information

ULTRA-SHORT OPTICAL PULSE GENERATION WITH SINGLE-LAYER GRAPHENE

ULTRA-SHORT OPTICAL PULSE GENERATION WITH SINGLE-LAYER GRAPHENE Journal of Nonlinear Optical Physics & Materials Vol. 19, No. 4 (2010) 767 771 c World Scientific Publishing Company DOI: 10.1142/S021886351000573X ULTRA-SHORT OPTICAL PULSE GENERATION WITH SINGLE-LAYER

More information

Nanocomposite photonic crystal devices

Nanocomposite photonic crystal devices Nanocomposite photonic crystal devices Xiaoyong Hu, Cuicui Lu, Yulan Fu, Yu Zhu, Yingbo Zhang, Hong Yang, Qihuang Gong Department of Physics, Peking University, Beijing, P. R. China Contents Motivation

More information

Bound-soliton fiber laser

Bound-soliton fiber laser PHYSICAL REVIEW A, 66, 033806 2002 Bound-soliton fiber laser D. Y. Tang, B. Zhao, D. Y. Shen, and C. Lu School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore W. S.

More information

1 Mathematical description of ultrashort laser pulses

1 Mathematical description of ultrashort laser pulses 1 Mathematical description of ultrashort laser pulses 1.1 We first perform the Fourier transform directly on the Gaussian electric field: E(ω) = F[E(t)] = A 0 e 4 ln ( t T FWHM ) e i(ω 0t+ϕ CE ) e iωt

More information

Passively Q-switched microlaser performance in the presence of pump-induced bleaching of the saturable absorber

Passively Q-switched microlaser performance in the presence of pump-induced bleaching of the saturable absorber Passively Q-switched microlaser performance in the presence of pump-induced bleaching of the saturable absorber Martin A. Jaspan, David Welford, and Jeffrey A. Russell Unabsorbed pump light in passively

More information

Dissipative soliton resonance in an all-normaldispersion erbium-doped fiber laser

Dissipative soliton resonance in an all-normaldispersion erbium-doped fiber laser Dissipative soliton resonance in an all-normaldispersion erbium-doped fiber laser X. Wu, D. Y. Tang*, H. Zhang and L. M. Zhao School of Electrical and Electronic Engineering, Nanyang Technological University,

More information

Fiber-Optics Group Highlights of Micronova Department of Electrical and Communications Engineering Helsinki University of Technology

Fiber-Optics Group Highlights of Micronova Department of Electrical and Communications Engineering Helsinki University of Technology Highlights of 2004 Micronova Department of Electrical and Communications Engineering Micronova Seminar 3 December 2004 Group Leader: Hanne Ludvigsen Postdoctoral researcher: Goëry Genty Postgraduate students:

More information

SECOND HARMONIC GENERATION IN PERIODICALLY POLED NONLINEAR CRYSTALS WITH 1064 nm GAUSSIAN LASER PULSES

SECOND HARMONIC GENERATION IN PERIODICALLY POLED NONLINEAR CRYSTALS WITH 1064 nm GAUSSIAN LASER PULSES SECOND HARMONIC GENERATION IN PERIODICALLY POLED NONLINEAR CRYSTALS WITH 1064 nm GAUSSIAN LASER PULSES LIVIU NEAGU National Institute for Laser, Plasma and Radiation Physics, P.O. Box MG-36, 077125, Bucharest,

More information

Nonlinear Optics (WiSe 2016/17) Lecture 9: December 16, 2016 Continue 9 Optical Parametric Amplifiers and Oscillators

Nonlinear Optics (WiSe 2016/17) Lecture 9: December 16, 2016 Continue 9 Optical Parametric Amplifiers and Oscillators Nonlinear Optics (WiSe 2016/17) Lecture 9: December 16, 2016 Continue 9 Optical Parametric Amplifiers and Oscillators 9.10 Passive CEP-stabilization in parametric amplifiers 9.10.1 Active versus passive

More information

Introduction/Motivation/Overview

Introduction/Motivation/Overview Ultrafast Laser Physics Ursula Keller / Lukas Gallmann ETH Zurich, Physics Department, Switzerland www.ulp.ethz.ch Introduction/Motivation/Overview Ultrafast Laser Physics ETH Zurich Ultrafast Laser Physics

More information

Development of a table top TW laser accelerator for medical imaging isotope production

Development of a table top TW laser accelerator for medical imaging isotope production Development of a table top TW laser accelerator for medical imaging isotope production R U I Z, A L E X A N D R O 1 ; L E R A, R O B E R T O 1 ; T O R R E S - P E I R Ó, S A LVA D O R 1 ; B E L L I D O,

More information

Final Report for AOARD grant FA Measurement of the third-order nonlinear susceptibility of graphene and its derivatives

Final Report for AOARD grant FA Measurement of the third-order nonlinear susceptibility of graphene and its derivatives Final Report for AOARD grant FA2386-12-1-4095 Measurement of the third-order nonlinear susceptibility of graphene and its derivatives Principal investigator: A/Prof. Tang Dingyuan Division of Microelectronics

More information

Vector dark domain wall solitons in a fiber ring laser

Vector dark domain wall solitons in a fiber ring laser Vector dark domain wall solitons in a fiber ring laser H. Zhang, D. Y. Tang*, L. M. Zhao and R. J. Knize 1 School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798

More information

ULTRAFAST COMPONENTS

ULTRAFAST COMPONENTS ULTRAFAST COMPONENTS Mirrors CVI Laser Optics offers both the PulseLine family of optical components and other existing product lines that are ideal for use with femtosecond lasers and associated applications.

More information

Low-Noise Modelocked Lasers: Pulse Dynamics, Feedback Control, and Novel Actuators

Low-Noise Modelocked Lasers: Pulse Dynamics, Feedback Control, and Novel Actuators University of Colorado, Boulder CU Scholar Physics Graduate Theses & Dissertations Physics Spring 1-1-2015 Low-Noise Modelocked Lasers: Pulse Dynamics, Feedback Control, and Novel Actuators Chien-Chung

More information

Effects of resonator input power on Kerr lens mode-locked lasers

Effects of resonator input power on Kerr lens mode-locked lasers PRAMANA c Indian Academy of Sciences Vol. 85, No. 1 journal of July 2015 physics pp. 115 124 Effects of resonator input power on Kerr lens mode-locked lasers S KAZEMPOUR, A KESHAVARZ and G HONARASA Department

More information

IN RECENT YEARS, Cr -doped crystals have attracted a

IN RECENT YEARS, Cr -doped crystals have attracted a 2286 IEEE JOURNAL OF QUANTUM ELECTRONICS, VOL. 33, NO. 12, DECEMBER 1997 Optimization of Cr -Doped Saturable-Absorber -Switched Lasers Xingyu Zhang, Shengzhi Zhao, Qingpu Wang, Qidi Zhang, Lianke Sun,

More information

Noise Correlations in Dual Frequency VECSEL

Noise Correlations in Dual Frequency VECSEL Noise Correlations in Dual Frequency VECSEL S. De, A. El Amili, F. Bretenaker Laboratoire Aimé Cotton, CNRS, Orsay, France V. Pal, R. Ghosh Jawaharlal Nehru University, Delhi, India M. Alouini Institut

More information

Sintec Optronics Pte Ltd

Sintec Optronics Pte Ltd Sintec Optronics Pte Ltd High-efficiency Nd:YVO 4 laser end-pumped with a diode laser bar Yihong Chen a, Zhengjun Xiong a, Gnian Cher Lim a, Hong Yu Zheng a, Xiaoyuan Peng b a Gintic Institute of Manufacturing

More information

Lasers and Electro-optics

Lasers and Electro-optics Lasers and Electro-optics Second Edition CHRISTOPHER C. DAVIS University of Maryland III ^0 CAMBRIDGE UNIVERSITY PRESS Preface to the Second Edition page xv 1 Electromagnetic waves, light, and lasers 1

More information

Potassium Titanyl Phosphate(KTiOPO 4, KTP)

Potassium Titanyl Phosphate(KTiOPO 4, KTP) Potassium Titanyl Phosphate(KTiOPO 4, KTP) Introduction Potassium Titanyl Phosphate (KTiOPO 4 or KTP) is widely used in both commercial and military lasers including laboratory and medical systems, range-finders,

More information

Controlling Graphene Ultrafast Hot Carrier Response from Metal-like. to Semiconductor-like by Electrostatic Gating

Controlling Graphene Ultrafast Hot Carrier Response from Metal-like. to Semiconductor-like by Electrostatic Gating Controlling Graphene Ultrafast Hot Carrier Response from Metal-like to Semiconductor-like by Electrostatic Gating S.-F. Shi, 1,2* T.-T. Tang, 1 B. Zeng, 1 L. Ju, 1 Q. Zhou, 1 A. Zettl, 1,2,3 F. Wang 1,2,3

More information

Segmented 1.55um Laser with 400% Differential Quantum Efficiency J. Getty, E. Skogen, L. Coldren, University of California, Santa Barbara, CA.

Segmented 1.55um Laser with 400% Differential Quantum Efficiency J. Getty, E. Skogen, L. Coldren, University of California, Santa Barbara, CA. Segmented 1.55um Laser with 400% Differential Quantum Efficiency J. Getty, E. Skogen, L. Coldren, University of California, Santa Barbara, CA. Abstract: By electrically segmenting, and series-connecting

More information

Construction of a 100-TW laser and its applications in EUV laser, wakefield accelerator, and nonlinear optics

Construction of a 100-TW laser and its applications in EUV laser, wakefield accelerator, and nonlinear optics Construction of a 100-TW laser and its applications in EUV laser, wakefield accelerator, and nonlinear optics Jyhpyng Wang ( ) Institute of Atomic and Molecular Sciences Academia Sinica, Taiwan National

More information

No. 9 Experimental study on the chirped structure of the construct the early time spectra. [14;15] The prevailing account of the chirped struct

No. 9 Experimental study on the chirped structure of the construct the early time spectra. [14;15] The prevailing account of the chirped struct Vol 12 No 9, September 2003 cfl 2003 Chin. Phys. Soc. 1009-1963/2003/12(09)/0986-06 Chinese Physics and IOP Publishing Ltd Experimental study on the chirped structure of the white-light continuum generation

More information

Performance Limits of Delay Lines Based on "Slow" Light. Robert W. Boyd

Performance Limits of Delay Lines Based on Slow Light. Robert W. Boyd Performance Limits of Delay Lines Based on "Slow" Light Robert W. Boyd Institute of Optics and Department of Physics and Astronomy University of Rochester Representing the DARPA Slow-Light-in-Fibers Team:

More information

APPLICATION NOTE. Supercontinuum Generation in SCG-800 Photonic Crystal Fiber. Technology and Applications Center Newport Corporation

APPLICATION NOTE. Supercontinuum Generation in SCG-800 Photonic Crystal Fiber. Technology and Applications Center Newport Corporation APPLICATION NOTE Supercontinuum Generation in SCG-800 Photonic Crystal Fiber 28 Technology and Applications Center Newport Corporation 1. Introduction Since the discovery of supercontinuum generation (white

More information

Assessment of Threshold for Nonlinear Effects in Ibsen Transmission Gratings

Assessment of Threshold for Nonlinear Effects in Ibsen Transmission Gratings Assessment of Threshold for Nonlinear Effects in Ibsen Transmission Gratings Temple University 13th & Norris Street Philadelphia, PA 19122 T: 1-215-204-1052 contact: johanan@temple.edu http://www.temple.edu/capr/

More information

DEVELOPMENT OF HIGH-POWER PICOSECOND FIBER-BASED ULTRAVIOLET SOURCE

DEVELOPMENT OF HIGH-POWER PICOSECOND FIBER-BASED ULTRAVIOLET SOURCE MSc in Photonics Universitat Politècnica de Catalunya (UPC) Universitat Autònoma de Barcelona (UAB) Universitat de Barcelona (UB) Institut de Ciències Fotòniques (ICFO) PHOTONICSBCN http://www.photonicsbcn.eu

More information

OPTI510R: Photonics. Khanh Kieu College of Optical Sciences, University of Arizona Meinel building R.626

OPTI510R: Photonics. Khanh Kieu College of Optical Sciences, University of Arizona Meinel building R.626 OPTI510R: Photonics Khanh Kieu College of Optical Sciences, University of Arizona kkieu@optics.arizona.edu Meinel building R.626 Announcements HW #5 due today April 11 th class will be at 2PM instead of

More information

Optical characterization of semiconductor saturable absorbers

Optical characterization of semiconductor saturable absorbers Appl. Phys. B 79, 331 339 24) DOI: 1.17/s34-4-1535-1 Applied Physics B Lasers and Optics m. haiml r. grange u. keller Optical characterization of semiconductor saturable absorbers Swiss Federal Institute

More information

A Multipass Optics for Quantum-Well-Pumped Semiconductor Disk Lasers

A Multipass Optics for Quantum-Well-Pumped Semiconductor Disk Lasers Multipass-Pumped Semiconductor Disk Lasers 37 A Multipass Optics for Quantum-Well-Pumped Semiconductor Disk Lasers Markus Polanik The pump absorption of quantum-well-pumped semiconductor disk lasers can

More information

Highly Efficient and Anomalous Charge Transfer in van der Waals Trilayer Semiconductors

Highly Efficient and Anomalous Charge Transfer in van der Waals Trilayer Semiconductors Highly Efficient and Anomalous Charge Transfer in van der Waals Trilayer Semiconductors Frank Ceballos 1, Ming-Gang Ju 2 Samuel D. Lane 1, Xiao Cheng Zeng 2 & Hui Zhao 1 1 Department of Physics and Astronomy,

More information

Dispersion and how to control it

Dispersion and how to control it Dispersion and how to control it Group velocity versus phase velocity Angular dispersion Prism sequences Grating pairs Chirped mirrors Intracavity and extra-cavity examples 1 Pulse propagation and broadening

More information

Coherent control of light matter interaction

Coherent control of light matter interaction UNIVERSIDADE DE SÃO PAULO Instituto de Física de São Carlos Coherent control of light matter interaction Prof. Dr. Cleber Renato Mendonça Photonic Group University of São Paulo (USP), Institute of Physics

More information

Computer Modelling and Numerical Simulation of the Solid State Diode Pumped Nd 3+ :YAG Laser with Intracavity Saturable Absorber

Computer Modelling and Numerical Simulation of the Solid State Diode Pumped Nd 3+ :YAG Laser with Intracavity Saturable Absorber Copyright 2009 by YASHKIR CONSULTING LTD Computer Modelling and Numerical Simulation of the Solid State Diode Pumped Nd 3+ :YAG Laser with Intracavity Saturable Absorber Yuri Yashkir 1 Introduction The

More information

*Corresponding author:

*Corresponding author: Large-energy, narrow-bandwidth laser pulse at 1645 nm in a diode-pumped Er:YAG solid-state laser passively Q-switched by a monolayer graphene saturable absorber Rong Zhou, 1 Pinghua Tang, 1 Yu Chen, 1

More information

Ultrafast Laser Physics!

Ultrafast Laser Physics! Ultrafast Laser Physics! Ursula Keller / Lukas Gallmann ETH Zurich, Physics Department, Switzerland www.ulp.ethz.ch Chapter 10: Ultrafast Measurements Ultrafast Laser Physics ETH Zurich Ultrafast laser

More information

Semiconductor Lasers II

Semiconductor Lasers II Semiconductor Lasers II Materials and Structures Edited by Eli Kapon Institute of Micro and Optoelectronics Department of Physics Swiss Federal Institute oftechnology, Lausanne OPTICS AND PHOTONICS ACADEMIC

More information

Phase-matching temperature shifts in blue generation by frequency doubling of femtosecond pulses in KNbO 3

Phase-matching temperature shifts in blue generation by frequency doubling of femtosecond pulses in KNbO 3 1300 J. Opt. Soc. Am. B/Vol. 16, No. 8/August 1999 S. Yu and A. M. Weiner Phase-matching temperature shifts in blue generation by frequency doubling of femtosecond pulses in KNbO 3 Sungkyu Yu* and A. M.

More information

THz Electron Gun Development. Emilio Nanni 3/30/2016

THz Electron Gun Development. Emilio Nanni 3/30/2016 THz Electron Gun Development Emilio Nanni 3/30/2016 Outline Motivation Experimental Demonstration of THz Acceleration THz Generation Accelerating Structure and Results Moving Forward Parametric THz Amplifiers

More information

Ho:YLF pumped HBr laser

Ho:YLF pumped HBr laser Ho:YLF pumped HBr laser L R Botha, 1,2,* C Bollig, 1 M J D Esser, 1 R N Campbell 4, C Jacobs 1,3 and D R Preussler 1 1 National Laser Centre, CSIR, Pretoria, South Africa 2 Laser Research Institute, Department

More information

LIST OF TOPICS BASIC LASER PHYSICS. Preface xiii Units and Notation xv List of Symbols xvii

LIST OF TOPICS BASIC LASER PHYSICS. Preface xiii Units and Notation xv List of Symbols xvii ate LIST OF TOPICS Preface xiii Units and Notation xv List of Symbols xvii BASIC LASER PHYSICS Chapter 1 An Introduction to Lasers 1.1 What Is a Laser? 2 1.2 Atomic Energy Levels and Spontaneous Emission

More information

Efficient Generation of Second Harmonic Wave with Periodically. Poled MgO:LiNbO 3

Efficient Generation of Second Harmonic Wave with Periodically. Poled MgO:LiNbO 3 ISSN 2186-6570 Efficient Generation of Second Harmonic Wave with Periodically Poled MgO:LiNbO 3 Genta Masada Quantum ICT Research Institute, Tamagawa University 6-1-1 Tamagawa-gakuen, Machida, Tokyo 194-8610,

More information

Ultrafast Wavelength Tuning and Scaling Properties of a Noncollinear Optical Parametric Oscillator (NOPO)

Ultrafast Wavelength Tuning and Scaling Properties of a Noncollinear Optical Parametric Oscillator (NOPO) Ultrafast Wavelength Tuning and Scaling Properties of a Noncollinear Optical Parametric Oscillator (NOPO) Thomas Binhammer 1, Yuliya Khanukaeva 2, Alexander Pape 1, Oliver Prochnow 1, Jan Ahrens 1, Andreas

More information

Recent progress on single-mode quantum cascade lasers

Recent progress on single-mode quantum cascade lasers Recent progress on single-mode quantum cascade lasers B. Hinkov 1,*, P. Jouy 1, A. Hugi 1, A. Bismuto 1,2, M. Beck 1, S. Blaser 2 and J. Faist 1 * bhinkov@phys.ethz.ch 1 Institute of Quantum Electronics,

More information

Simple strategy for enhancing terahertz emission from coherent longitudinal optical phonons using undoped GaAs/n-type GaAs epitaxial layer structures

Simple strategy for enhancing terahertz emission from coherent longitudinal optical phonons using undoped GaAs/n-type GaAs epitaxial layer structures Presented at ISCS21 June 4, 21 Session # FrP3 Simple strategy for enhancing terahertz emission from coherent longitudinal optical phonons using undoped GaAs/n-type GaAs epitaxial layer structures Hideo

More information

Vector dark domain wall solitons in a fiber ring laser

Vector dark domain wall solitons in a fiber ring laser Vector dark domain wall solitons in a fiber ring laser H. Zhang, D. Y. Tang*, L. M. Zhao and R. J. Knize School of Electrical and Electronic Engineering, Nanyang Technological University, 639798 Singapore

More information