AN M/M/1 QUEUEING SYSTEM WITH INTERRUPTED ARRIVAL STREAM K.C. Madan, Department of Statistics, College of Science, Yarmouk University, Irbid, Jordan

Size: px
Start display at page:

Download "AN M/M/1 QUEUEING SYSTEM WITH INTERRUPTED ARRIVAL STREAM K.C. Madan, Department of Statistics, College of Science, Yarmouk University, Irbid, Jordan"

Transcription

1 REVISTA INVESTIGACION OPERACIONAL Vol., No., AN M/M/ QUEUEING SYSTEM WITH INTERRUPTED ARRIVAL STREAM K.C. Maan, Department of Statistics, College of Science, Yarmouk University, Irbi, Joran ABSTRACT We stuy an M/M/ queueing system in which the arrival stream is 'shut off' from time to time. The timeepenent probability generating functions of the number in the system have been foun. The corresponing steay state results have been erive. The mean number in the system as well as server's utilization time an ile time have been obtaine explicity. In a particular case, some wellknown results have been erive. Key Wors: interrupte arrival stream, variable batch arrivals, exponential service, probability generating function, steay state, utilization time, ile time, mean number in the system. RESUMEN Estuiaremos un sistema e colas M/M/ en el que la corriente e arribos se esembaraza e vez en vez. Han sio hallaas las funciones generatrices e probabiliaes epenientes el tiempo. Los resultaos corresponientes para el estao previo han sio erivaos. El número promeio en el sistema así como el tiempo e la utilización el servior y el tiempo ocioso son obtenios explícítamente. Algunos resultaos bien conocios son erivaos para un caso particular. MSC 6K5.. INTRODUCTION Queueing systems with vacations or service interruptions or breakowns have been stuie by numerous authors incluing Keilson an Servi [986], Scholl an Kleinrock [983], Cramer [989], Shanthikumar [988], Doshi [986] an Maan [99, 995]. In this paper we investigate a queueing system in which there are no server vacations or breakowns. Instea, the arrivals into the system are interrupte in the sense that the arrival stream gets 'shut off' from time to time. Such a situation coul have efinite effect on queue characteristics incluing queue length an server's utilization time. Some examples where such a situation coul be encountere are the following. Aircrafts may stop laning at an airport for some time ue to ba weather conitions. Branches of an assembly line coul stop from time to time thereby blocking the input to the next branch. Flow of oil into or out of a refinery or flow of water into or out of a reservoir coul experience ranom stoppages ue to some reasons. Similarly flow of vehicles in a large network of a traffic system coul stop for some time an then may become normal again an so on.. THE MATHEMATICAL MODEL Customers arrive at the system in batches of variable size. Given that the arrival stream (input source) is 'on' at time t, let λc i t (λ > ) be the first orer probability that a batch size i customers arrives uring the time interval (t, t+t) where < c i < an =. c i Customers are serve one by one by the server with their service times having negative exponential istribution function B(x) = - e- μt, t >, where μ (μ > ) is the mean service time. Given that the arrival stream is 'on' at time t, let ξt (ξ > ) be the first orer probability that the arrival stream will be 'off' uring the short interval of time (t, t+t). 35

2 Given that the arrival stream is 'on' at time t, let t ( > ) be the first orer probability that the arrival stream will be 'on' uring the short interval of time (t, t+t). Further, we assume that the various stochastic processes involve in the system are inepenent of each other. 3. DEFINITIONS AND SYSTEM EQUATIONS Let p n (t), ( n ) be the probability that at time t there are n units in the system incluing one in service, if any, an the input source is 'on' an let q n (t), (n ) be the probability that at time t there are n units in the system incluing one in service, if any an the input source is 'off'. The system is governe by the following set of forwar ifferential-ifference equations n pn (t) + (λ + μ + ξ)p n (t) = t λcip n-i (t) + μp n+ (t) + q n (t) (n ) () p (t) + (λ + ξ)p (t) = μp (t) + q (t) () t qn (t) + (μ + )q n (t) = μq n+ (t) +ξp n (t) (n ) (3) t q (t) + q (t) = μq (t) +ξp (t) (4) t 4. THE GENERATING FUNCTIONS OF THE NUMBER IN THE SYSTEM We efine p(z,t) = pn(t)z n an q(z,t) = qn(t)z n as the probability generating functions of the numbers in the system when the input source is 'on' an 'off' respectively. Let c(z) = probability generating function for the sequence ci of arrivals. i c z enote the i Let us assume that the system starts when the input source is 'on' an there are j units in the system, so that the initial conition is p n () = δ n,j where δ nj is the Kronecker's elta. (5) Taking Laplace transform of equations () through (4) an using initial conition (5), we have n (s + λ + μ + ξ)p n (s) = δ n,j + λcip n-i (s) + μp n+ (s) + q n (s) (n ) (6) (s + λ +ξ)p (s) = μp (s) + q (s) (7) (s + μ + )q n (s) = μq n+ (s) + ξp n (s) (n ) (8) (s + )q (s) = μq (s) + ξp (s) (9) Multiplying equations (6) through (9) by suitable powers of z yiels 36

3 [(s + λ + μ + ξ)z - μ - λc(z)z]p(z,s) = z j+ + z - )p + zq(z,s) () [(s + μ + )z - μ]q(z) = ξzp(z,s) + z - )q (s) () Using equation () in (), we obtain p(z,s) = [z j+ + z )p (s)][s + μ + )z μ] + μz(z )q (s) [(s + μ + )z μ][(s + λ + μ + ξ)z μ λc(z)z] ξz () Further, equation () can be written as ξzp(z, s) + z )q (s) (z,s) = (s + μ + )z μ q (3) Now for z =, equations () an (3) respectively yiel s + s + p(,s) = = (s + )(s + ξ) ξ s(s + (4) ξp(,s) ξ q(,s) = = (s + ) s(s + (5) We note that p(,s) + q(,s) = s as it shoul be. Inverting the transforms (4) an (5), we obtain the respective probabilities that at time t the input source is 'on' an 'off' as follows ξ ( ξ+)t p(t) = = e (6) ξ + ξ + ξ ξ ( ξ+)t q(t) = = e (7) ξ + ξ + Obviously, p(t) + q(t) = as it shoul be. The enominator of the right han sie of equation () has zeroes insie the unit circle z =. (For a proof, one can use Rouche's theorem, see Maan [4]). Let these two zeroes be esignate as z an z. Then since p(z,s) is regular insie z =, the numerator of the right han sie of equation () must vanish for each of these zeroes, thus yieling the following two equations j [ z + + z - )p (s)] [(s + μ + )z - μ] + μz (z - )q (s) = (8) j [ z + + z - )p (s)] [(s + μ + )z - μ] + μz (z - )q (s) = (9) The unknowns p (s) an q (s) can be etermine by solving equations (8) an (9) simultaneously. Thus p(z) an q(z) can be completely etermine. 37

4 5. STEADY STATE SOLUTION Let p n an q n efine the steay state probabilities corresponing to the time epenent probabilities p n (t) an q n (t) efine above an let p(z) an q(z) enote the respective steay state probability generating functions for the number in the system. Then to erive the steay state results we apply the well-known Tauberian property Lim sf(s) = Lim f(t) to equations () through (5) an obtain s t p(z) = q(z) = z )[ z ) + z]p [ z ) + z][ λ + μ + ξ)z μ λc(z)z] ξz ξzp(z) + z )q z ) + z + μz(z )q () () At z = equations () is ineterminate of the / form. Therefore, we use L'Hopital's rule to fin limit of p(z) as z. Thus we have p() = μ( p + q ) λe(i) () q() = μξ( p + q ) λe(i) μ ( with λe(i) < (3) where c'() = ic i = E(I) is the mean batch size of arriving customers. Equations () an (3) respectively give the probabilities that the arrival stream is 'on' or 'off '. Since p() + q() =, aing () an (3), we obtain p + q = λe(i) μ ( with λe(i) < (4) Since equation (4) gives the probability that the server is ile, no matter whether the arrival steam is 'on' or 'off ', we can fin its complement to get the system's utilization factor as λe(i) ρ = (5) We will continue the analysis for the case of single arrivals. In that case c = an c i = for i. Consequently c(z) = z. Then the enominator of the right sie of equation () can be written as [-λ(μ + )z 3 + (μ + λμ + λ + μ + μξ)z - λ + ξ + + μ)z + μ ] which can be factore as (z-) [-λ(μ + ) z + λ + μ + z - μ ] so that now the factor (z - ) can be cancele out with that of the numerator. Therefore, the expression in () can be re-written as p(z) = μ[ z ) + z]p λ( μ + )z + μzq + λ + μ + z u (6) 38

5 Now, the enominator of the right han sie of equation (6) has two zeroes given by λ + μ + m μ ( λ + μ + 4λ( μ + ). One of these zeroes is insie the unit circle z =. Let this λ( μ + ) zero be enotes as z*. The enominator of the right han sie of (6) must vanish for this zero, giving [ μ ( μ + )z*]p = (7) z * q Since in the case of single arrivals E(I) =, equation (4) becomes λ + q = where λ < p μ ( (8) p Solving (7) an (8), we obtain [ λ] z * = (9) μ ( ( z*) which is the steay state probability that the server is ile, even though the arrival stream is 'on'. λ] μ ( μ + )z * q = (3) z*) which is the probability that the server is ile when the arrival stream is 'off '. 6. THE MEAN NUMBER IN THE SYSTEM Let r(z) = p(z) + q(z) be the probability generating function of the number in the system no matter whether the arrival stream is 'on' or 'off ', where p(z) an q(z) are given by equations (6) an () respectively. Then the mean number, L, in the system is given by L = r(z) at z =. Carrying out the computations an z simplifying, we have ( λ( μ + ) μ ) μq + ξμ + λ )p ξ ξμ L = + (3) ( λ) ( 7. A PARTICULAR CASE If we assume ξ =, which means that there are no interrumptions in the arrival stream, then the enominator of the right sie of (6) becomes - λ(μ + )z + λ + μ +) - μ. It is easy to see that one zero of μ μ this polynomial which is insie the unit circle z = is. Setting z* = in equation (3) we get q = μ + μ + λ as it shoul be an the (9) gives p = - which is a well-known result of the queueing system M/M/. μ Further, with ξ =, q = an p = - μ λ, equation (6) becomes 39

6 λ μ[ z ) z] p(z) μ = (3) λ ( μ + )z + λ + μ + )z μ In we ivie the numerator an the enominator of the right sie of equation (3) by an take limit as an simplify, we obtain λ μ p(z) μ = (33) μ λz which is again a well-known result giving the probability generating function of the number in the M/M/ queueing system. Again, letting ξ = an using q = an p = - μ λ in equation (3), we have the mean queue length in this particular case as L = λ μ λ which is also a well-known result. (34) REFERENCES CRAMER, M. (989): "Stationary istributions in a queueing system with vacation times an limite service", Queueing Systems Theory Appli. 4(), DOSHI, B.T. (986): "Queueing systems with vacation - a survey", Queueing Systems, KEILSON, J. an L.D. SERVI (986): "Oscillating ranom walk moels for GI/G/ vacation systems with Bernoulli Scheules", Journal of Applie Probability, 3, MADAN, K.C. (99): "An M/G/ queueing system with compulsory server vacations", Trabajos e Investigación Operativa 7(), 5-5. (995): "A bulk input queue with a stan by", South African Statistical Journal 9(), -7. SHANTHIKUMAR, G.J. (988): "On stochastic ecomposition in the M/G/ queue with generalize vacation", Oper. Res. 36, SCHOLL, M. an L. KLEINROCK (983): "On the M/G/ queue with rest perios an certain service inepenent queueing systems", Operations Research 36,

Balking and Re-service in a Vacation Queue with Batch Arrival and Two Types of Heterogeneous Service

Balking and Re-service in a Vacation Queue with Batch Arrival and Two Types of Heterogeneous Service Journal of Mathematics Research; Vol. 4, No. 4; 212 ISSN 1916-9795 E-ISSN 1916-989 Publishe by Canaian Center of Science an Eucation Balking an Re-service in a Vacation Queue with Batch Arrival an Two

More information

An M/G/1 Retrial Queue with Priority, Balking and Feedback Customers

An M/G/1 Retrial Queue with Priority, Balking and Feedback Customers Journal of Convergence Information Technology Volume 5 Number April 1 An M/G/1 Retrial Queue with Priority Balking an Feeback Customers Peishu Chen * 1 Yiuan Zhu 1 * 1 Faculty of Science Jiangsu University

More information

Single Server Retrial Bulk Queue With Two Phases Of Essential Server And Vacation Policy

Single Server Retrial Bulk Queue With Two Phases Of Essential Server And Vacation Policy Single Server Retrial Bul Queue With Two Phases Of Essential Server An Vacation Policy Dr. S.Anan Gnana Selvam, 2 Dr.. Reni Sagayara, 3 S. Janci Rani Department of athematics, A.E.T Arts an Science College,

More information

A New Measure for M/M/1 Queueing System with Non Preemptive Service Priorities

A New Measure for M/M/1 Queueing System with Non Preemptive Service Priorities International Journal of IT, Engineering an Applie Sciences Research (IJIEASR) ISSN: 239-443 Volume, No., October 202 36 A New Measure for M/M/ Queueing System with Non Preemptive Service Priorities Inu

More information

Lectures - Week 10 Introduction to Ordinary Differential Equations (ODES) First Order Linear ODEs

Lectures - Week 10 Introduction to Ordinary Differential Equations (ODES) First Order Linear ODEs Lectures - Week 10 Introuction to Orinary Differential Equations (ODES) First Orer Linear ODEs When stuying ODEs we are consiering functions of one inepenent variable, e.g., f(x), where x is the inepenent

More information

NOTES ON EULER-BOOLE SUMMATION (1) f (l 1) (n) f (l 1) (m) + ( 1)k 1 k! B k (y) f (k) (y) dy,

NOTES ON EULER-BOOLE SUMMATION (1) f (l 1) (n) f (l 1) (m) + ( 1)k 1 k! B k (y) f (k) (y) dy, NOTES ON EULER-BOOLE SUMMATION JONATHAN M BORWEIN, NEIL J CALKIN, AND DANTE MANNA Abstract We stuy a connection between Euler-MacLaurin Summation an Boole Summation suggeste in an AMM note from 196, which

More information

The derivative of a function f(x) is another function, defined in terms of a limiting expression: f(x + δx) f(x)

The derivative of a function f(x) is another function, defined in terms of a limiting expression: f(x + δx) f(x) Y. D. Chong (2016) MH2801: Complex Methos for the Sciences 1. Derivatives The erivative of a function f(x) is another function, efine in terms of a limiting expression: f (x) f (x) lim x δx 0 f(x + δx)

More information

6.003 Homework #7 Solutions

6.003 Homework #7 Solutions 6.003 Homework #7 Solutions Problems. Secon-orer systems The impulse response of a secon-orer CT system has the form h(t) = e σt cos(ω t + φ)u(t) where the parameters σ, ω, an φ are relate to the parameters

More information

Math 597/697: Solution 5

Math 597/697: Solution 5 Math 597/697: Solution 5 The transition between the the ifferent states is governe by the transition matrix 0 6 3 6 0 2 2 P = 4 0 5, () 5 4 0 an v 0 = /4, v = 5, v 2 = /3, v 3 = /5 Hence the generator

More information

Make graph of g by adding c to the y-values. on the graph of f by c. multiplying the y-values. even-degree polynomial. graph goes up on both sides

Make graph of g by adding c to the y-values. on the graph of f by c. multiplying the y-values. even-degree polynomial. graph goes up on both sides Reference 1: Transformations of Graphs an En Behavior of Polynomial Graphs Transformations of graphs aitive constant constant on the outsie g(x) = + c Make graph of g by aing c to the y-values on the graph

More information

THE VAN KAMPEN EXPANSION FOR LINKED DUFFING LINEAR OSCILLATORS EXCITED BY COLORED NOISE

THE VAN KAMPEN EXPANSION FOR LINKED DUFFING LINEAR OSCILLATORS EXCITED BY COLORED NOISE Journal of Soun an Vibration (1996) 191(3), 397 414 THE VAN KAMPEN EXPANSION FOR LINKED DUFFING LINEAR OSCILLATORS EXCITED BY COLORED NOISE E. M. WEINSTEIN Galaxy Scientific Corporation, 2500 English Creek

More information

LINEAR DIFFERENTIAL EQUATIONS OF ORDER 1. where a(x) and b(x) are functions. Observe that this class of equations includes equations of the form

LINEAR DIFFERENTIAL EQUATIONS OF ORDER 1. where a(x) and b(x) are functions. Observe that this class of equations includes equations of the form LINEAR DIFFERENTIAL EQUATIONS OF ORDER 1 We consier ifferential equations of the form y + a()y = b(), (1) y( 0 ) = y 0, where a() an b() are functions. Observe that this class of equations inclues equations

More information

Implicit Differentiation

Implicit Differentiation Implicit Differentiation Implicit Differentiation Using the Chain Rule In the previous section we focuse on the erivatives of composites an saw that THEOREM 20 (Chain Rule) Suppose that u = g(x) is ifferentiable

More information

Laplace s Equation in Cylindrical Coordinates and Bessel s Equation (II)

Laplace s Equation in Cylindrical Coordinates and Bessel s Equation (II) Laplace s Equation in Cylinrical Coorinates an Bessel s Equation (II Qualitative properties of Bessel functions of first an secon kin In the last lecture we foun the expression for the general solution

More information

Markov Chains in Continuous Time

Markov Chains in Continuous Time Chapter 23 Markov Chains in Continuous Time Previously we looke at Markov chains, where the transitions betweenstatesoccurreatspecifietime- steps. That it, we mae time (a continuous variable) avance in

More information

On Characterizing the Delay-Performance of Wireless Scheduling Algorithms

On Characterizing the Delay-Performance of Wireless Scheduling Algorithms On Characterizing the Delay-Performance of Wireless Scheuling Algorithms Xiaojun Lin Center for Wireless Systems an Applications School of Electrical an Computer Engineering, Purue University West Lafayette,

More information

12.11 Laplace s Equation in Cylindrical and

12.11 Laplace s Equation in Cylindrical and SEC. 2. Laplace s Equation in Cylinrical an Spherical Coorinates. Potential 593 2. Laplace s Equation in Cylinrical an Spherical Coorinates. Potential One of the most important PDEs in physics an engineering

More information

JUST THE MATHS UNIT NUMBER DIFFERENTIATION 2 (Rates of change) A.J.Hobson

JUST THE MATHS UNIT NUMBER DIFFERENTIATION 2 (Rates of change) A.J.Hobson JUST THE MATHS UNIT NUMBER 10.2 DIFFERENTIATION 2 (Rates of change) by A.J.Hobson 10.2.1 Introuction 10.2.2 Average rates of change 10.2.3 Instantaneous rates of change 10.2.4 Derivatives 10.2.5 Exercises

More information

Markovian N-Server Queues (Birth & Death Models)

Markovian N-Server Queues (Birth & Death Models) Markovian -Server Queues (Birth & Death Moels) - Busy Perio Arrivals Poisson (λ) ; Services exp(µ) (E(S) = /µ) Servers statistically ientical, serving FCFS. Offere loa R = λ E(S) = λ/µ Erlangs Q(t) = number

More information

Introduction to the Vlasov-Poisson system

Introduction to the Vlasov-Poisson system Introuction to the Vlasov-Poisson system Simone Calogero 1 The Vlasov equation Consier a particle with mass m > 0. Let x(t) R 3 enote the position of the particle at time t R an v(t) = ẋ(t) = x(t)/t its

More information

Math 115 Section 018 Course Note

Math 115 Section 018 Course Note Course Note 1 General Functions Definition 1.1. A function is a rule that takes certain numbers as inputs an assigns to each a efinite output number. The set of all input numbers is calle the omain of

More information

Students need encouragement. So if a student gets an answer right, tell them it was a lucky guess. That way, they develop a good, lucky feeling.

Students need encouragement. So if a student gets an answer right, tell them it was a lucky guess. That way, they develop a good, lucky feeling. Chapter 8 Analytic Functions Stuents nee encouragement. So if a stuent gets an answer right, tell them it was a lucky guess. That way, they evelop a goo, lucky feeling. 1 8.1 Complex Derivatives -Jack

More information

θ x = f ( x,t) could be written as

θ x = f ( x,t) could be written as 9. Higher orer PDEs as systems of first-orer PDEs. Hyperbolic systems. For PDEs, as for ODEs, we may reuce the orer by efining new epenent variables. For example, in the case of the wave equation, (1)

More information

Fluid Models with Jumps

Fluid Models with Jumps Flui Moels with Jumps Elena I. Tzenova, Ivo J.B.F. Aan, Viyahar G. Kulkarni August 2, 2004 Abstract In this paper we stuy a general stochastic flui moel with a single infinite capacity buffer, where the

More information

Stationary Analysis of a Multiserver queue with multiple working vacation and impatient customers

Stationary Analysis of a Multiserver queue with multiple working vacation and impatient customers Available at http://pvamu.edu/aam Appl. Appl. Math. ISSN: 932-9466 Vol. 2, Issue 2 (December 207), pp. 658 670 Applications and Applied Mathematics: An International Journal (AAM) Stationary Analysis of

More information

Calculus of Variations

Calculus of Variations 16.323 Lecture 5 Calculus of Variations Calculus of Variations Most books cover this material well, but Kirk Chapter 4 oes a particularly nice job. x(t) x* x*+ αδx (1) x*- αδx (1) αδx (1) αδx (1) t f t

More information

Lecture XII. where Φ is called the potential function. Let us introduce spherical coordinates defined through the relations

Lecture XII. where Φ is called the potential function. Let us introduce spherical coordinates defined through the relations Lecture XII Abstract We introuce the Laplace equation in spherical coorinates an apply the metho of separation of variables to solve it. This will generate three linear orinary secon orer ifferential equations:

More information

Lyapunov Functions. V. J. Venkataramanan and Xiaojun Lin. Center for Wireless Systems and Applications. School of Electrical and Computer Engineering,

Lyapunov Functions. V. J. Venkataramanan and Xiaojun Lin. Center for Wireless Systems and Applications. School of Electrical and Computer Engineering, On the Queue-Overflow Probability of Wireless Systems : A New Approach Combining Large Deviations with Lyapunov Functions V. J. Venkataramanan an Xiaojun Lin Center for Wireless Systems an Applications

More information

23 Implicit differentiation

23 Implicit differentiation 23 Implicit ifferentiation 23.1 Statement The equation y = x 2 + 3x + 1 expresses a relationship between the quantities x an y. If a value of x is given, then a corresponing value of y is etermine. For

More information

6 General properties of an autonomous system of two first order ODE

6 General properties of an autonomous system of two first order ODE 6 General properties of an autonomous system of two first orer ODE Here we embark on stuying the autonomous system of two first orer ifferential equations of the form ẋ 1 = f 1 (, x 2 ), ẋ 2 = f 2 (, x

More information

Blended Call Center with Idling Times during the Call Service

Blended Call Center with Idling Times during the Call Service Blene Call Center with Iling Times uring the Call Service Benjamin Legros a Ouali Jouini b Ger Koole c a EM Normanie, Laboratoire Métis, 64 Rue u Ranelagh, 7506, Paris, France b CentraleSupélec, Université

More information

Math 342 Partial Differential Equations «Viktor Grigoryan

Math 342 Partial Differential Equations «Viktor Grigoryan Math 342 Partial Differential Equations «Viktor Grigoryan 6 Wave equation: solution In this lecture we will solve the wave equation on the entire real line x R. This correspons to a string of infinite

More information

Closed and Open Loop Optimal Control of Buffer and Energy of a Wireless Device

Closed and Open Loop Optimal Control of Buffer and Energy of a Wireless Device Close an Open Loop Optimal Control of Buffer an Energy of a Wireless Device V. S. Borkar School of Technology an Computer Science TIFR, umbai, Inia. borkar@tifr.res.in A. A. Kherani B. J. Prabhu INRIA

More information

Similar Operators and a Functional Calculus for the First-Order Linear Differential Operator

Similar Operators and a Functional Calculus for the First-Order Linear Differential Operator Avances in Applie Mathematics, 9 47 999 Article ID aama.998.067, available online at http: www.iealibrary.com on Similar Operators an a Functional Calculus for the First-Orer Linear Differential Operator

More information

The Principle of Least Action

The Principle of Least Action Chapter 7. The Principle of Least Action 7.1 Force Methos vs. Energy Methos We have so far stuie two istinct ways of analyzing physics problems: force methos, basically consisting of the application of

More information

d dx But have you ever seen a derivation of these results? We ll prove the first result below. cos h 1

d dx But have you ever seen a derivation of these results? We ll prove the first result below. cos h 1 Lecture 5 Some ifferentiation rules Trigonometric functions (Relevant section from Stewart, Seventh Eition: Section 3.3) You all know that sin = cos cos = sin. () But have you ever seen a erivation of

More information

Thermal conductivity of graded composites: Numerical simulations and an effective medium approximation

Thermal conductivity of graded composites: Numerical simulations and an effective medium approximation JOURNAL OF MATERIALS SCIENCE 34 (999)5497 5503 Thermal conuctivity of grae composites: Numerical simulations an an effective meium approximation P. M. HUI Department of Physics, The Chinese University

More information

Linear First-Order Equations

Linear First-Order Equations 5 Linear First-Orer Equations Linear first-orer ifferential equations make up another important class of ifferential equations that commonly arise in applications an are relatively easy to solve (in theory)

More information

Improved Rate-Based Pull and Push Strategies in Large Distributed Networks

Improved Rate-Based Pull and Push Strategies in Large Distributed Networks Improve Rate-Base Pull an Push Strategies in Large Distribute Networks Wouter Minnebo an Benny Van Hout Department of Mathematics an Computer Science University of Antwerp - imins Mielheimlaan, B-00 Antwerp,

More information

Equilibrium in Queues Under Unknown Service Times and Service Value

Equilibrium in Queues Under Unknown Service Times and Service Value University of Pennsylvania ScholarlyCommons Finance Papers Wharton Faculty Research 1-2014 Equilibrium in Queues Uner Unknown Service Times an Service Value Laurens Debo Senthil K. Veeraraghavan University

More information

1 Heisenberg Representation

1 Heisenberg Representation 1 Heisenberg Representation What we have been ealing with so far is calle the Schröinger representation. In this representation, operators are constants an all the time epenence is carrie by the states.

More information

Final Exam Study Guide and Practice Problems Solutions

Final Exam Study Guide and Practice Problems Solutions Final Exam Stuy Guie an Practice Problems Solutions Note: These problems are just some of the types of problems that might appear on the exam. However, to fully prepare for the exam, in aition to making

More information

PDE Notes, Lecture #11

PDE Notes, Lecture #11 PDE Notes, Lecture # from Professor Jalal Shatah s Lectures Febuary 9th, 2009 Sobolev Spaces Recall that for u L loc we can efine the weak erivative Du by Du, φ := udφ φ C0 If v L loc such that Du, φ =

More information

Generalization of the persistent random walk to dimensions greater than 1

Generalization of the persistent random walk to dimensions greater than 1 PHYSICAL REVIEW E VOLUME 58, NUMBER 6 DECEMBER 1998 Generalization of the persistent ranom walk to imensions greater than 1 Marián Boguñá, Josep M. Porrà, an Jaume Masoliver Departament e Física Fonamental,

More information

3.7 Implicit Differentiation -- A Brief Introduction -- Student Notes

3.7 Implicit Differentiation -- A Brief Introduction -- Student Notes Fin these erivatives of these functions: y.7 Implicit Differentiation -- A Brief Introuction -- Stuent Notes tan y sin tan = sin y e = e = Write the inverses of these functions: y tan y sin How woul we

More information

COUPLING REQUIREMENTS FOR WELL POSED AND STABLE MULTI-PHYSICS PROBLEMS

COUPLING REQUIREMENTS FOR WELL POSED AND STABLE MULTI-PHYSICS PROBLEMS VI International Conference on Computational Methos for Couple Problems in Science an Engineering COUPLED PROBLEMS 15 B. Schrefler, E. Oñate an M. Paparakakis(Es) COUPLING REQUIREMENTS FOR WELL POSED AND

More information

UNDERSTANDING INTEGRATION

UNDERSTANDING INTEGRATION UNDERSTANDING INTEGRATION Dear Reaer The concept of Integration, mathematically speaking, is the "Inverse" of the concept of result, the integration of, woul give us back the function f(). This, in a way,

More information

Priority Queueing System with a Single Server Serving Two Queues M [X 1], M [X 2] /G 1, G 2 /1 with Balking and Optional Server Vacation

Priority Queueing System with a Single Server Serving Two Queues M [X 1], M [X 2] /G 1, G 2 /1 with Balking and Optional Server Vacation Available at http://pvamu.edu/aam Appl. Appl. Math. ISSN: 1932-9466 Vol. 11, Issue 1 (June 216), pp. 61 82 Applications and Applied Mathematics: An International Journal (AAM) Priority Queueing System

More information

Unit #6 - Families of Functions, Taylor Polynomials, l Hopital s Rule

Unit #6 - Families of Functions, Taylor Polynomials, l Hopital s Rule Unit # - Families of Functions, Taylor Polynomials, l Hopital s Rule Some problems an solutions selecte or aapte from Hughes-Hallett Calculus. Critical Points. Consier the function f) = 54 +. b) a) Fin

More information

1.4.3 Elementary solutions to Laplace s equation in the spherical coordinates (Axially symmetric cases) (Griffiths 3.3.2)

1.4.3 Elementary solutions to Laplace s equation in the spherical coordinates (Axially symmetric cases) (Griffiths 3.3.2) 1.4.3 Elementary solutions to Laplace s equation in the spherical coorinates (Axially symmetric cases) (Griffiths 3.3.) In the spherical coorinates (r, θ, φ), the Laplace s equation takes the following

More information

The total derivative. Chapter Lagrangian and Eulerian approaches

The total derivative. Chapter Lagrangian and Eulerian approaches Chapter 5 The total erivative 51 Lagrangian an Eulerian approaches The representation of a flui through scalar or vector fiels means that each physical quantity uner consieration is escribe as a function

More information

Time-of-Arrival Estimation in Non-Line-Of-Sight Environments

Time-of-Arrival Estimation in Non-Line-Of-Sight Environments 2 Conference on Information Sciences an Systems, The Johns Hopkins University, March 2, 2 Time-of-Arrival Estimation in Non-Line-Of-Sight Environments Sinan Gezici, Hisashi Kobayashi an H. Vincent Poor

More information

SYNCHRONOUS SEQUENTIAL CIRCUITS

SYNCHRONOUS SEQUENTIAL CIRCUITS CHAPTER SYNCHRONOUS SEUENTIAL CIRCUITS Registers an counters, two very common synchronous sequential circuits, are introuce in this chapter. Register is a igital circuit for storing information. Contents

More information

A Better Model for Job Redundancy: Decoupling Server Slowdown and Job Size

A Better Model for Job Redundancy: Decoupling Server Slowdown and Job Size A Better Moel for Job Reunancy: Decoupling Server Slowown an Job Size Kristen Garner 1 Mor Harchol-Balter 1 Alan Scheller-Wolf Benny Van Hout 3 October 1 CMU-CS-1-131 School of Computer Science Carnegie

More information

Quantum mechanical approaches to the virial

Quantum mechanical approaches to the virial Quantum mechanical approaches to the virial S.LeBohec Department of Physics an Astronomy, University of Utah, Salt Lae City, UT 84112, USA Date: June 30 th 2015 In this note, we approach the virial from

More information

Power Generation and Distribution via Distributed Coordination Control

Power Generation and Distribution via Distributed Coordination Control Power Generation an Distribution via Distribute Coorination Control Byeong-Yeon Kim, Kwang-Kyo Oh, an Hyo-Sung Ahn arxiv:407.4870v [math.oc] 8 Jul 204 Abstract This paper presents power coorination, power

More information

State-Space Model for a Multi-Machine System

State-Space Model for a Multi-Machine System State-Space Moel for a Multi-Machine System These notes parallel section.4 in the text. We are ealing with classically moele machines (IEEE Type.), constant impeance loas, an a network reuce to its internal

More information

TRACKING CONTROL OF MULTIPLE MOBILE ROBOTS: A CASE STUDY OF INTER-ROBOT COLLISION-FREE PROBLEM

TRACKING CONTROL OF MULTIPLE MOBILE ROBOTS: A CASE STUDY OF INTER-ROBOT COLLISION-FREE PROBLEM 265 Asian Journal of Control, Vol. 4, No. 3, pp. 265-273, September 22 TRACKING CONTROL OF MULTIPLE MOBILE ROBOTS: A CASE STUDY OF INTER-ROBOT COLLISION-FREE PROBLEM Jurachart Jongusuk an Tsutomu Mita

More information

Analysis of tandem fluid queues

Analysis of tandem fluid queues Analysis of tanem flui queues Małgorzata M. O Reilly School of Mathematics University of Tasmania Tas 7001, Australia malgorzata.oreilly@utas.eu.au Werner Scheinhart Department of Applie Mathematics University

More information

inflow outflow Part I. Regular tasks for MAE598/494 Task 1

inflow outflow Part I. Regular tasks for MAE598/494 Task 1 MAE 494/598, Fall 2016 Project #1 (Regular tasks = 20 points) Har copy of report is ue at the start of class on the ue ate. The rules on collaboration will be release separately. Please always follow the

More information

MA 2232 Lecture 08 - Review of Log and Exponential Functions and Exponential Growth

MA 2232 Lecture 08 - Review of Log and Exponential Functions and Exponential Growth MA 2232 Lecture 08 - Review of Log an Exponential Functions an Exponential Growth Friay, February 2, 2018. Objectives: Review log an exponential functions, their erivative an integration formulas. Exponential

More information

PHYS 414 Problem Set 2: Turtles all the way down

PHYS 414 Problem Set 2: Turtles all the way down PHYS 414 Problem Set 2: Turtles all the way own This problem set explores the common structure of ynamical theories in statistical physics as you pass from one length an time scale to another. Brownian

More information

A Study on M x /G/1 Queuing System with Essential, Optional Service, Modified Vacation and Setup time

A Study on M x /G/1 Queuing System with Essential, Optional Service, Modified Vacation and Setup time A Study on M x /G/1 Queuing System with Essential, Optional Service, Modified Vacation and Setup time E. Ramesh Kumar 1, L. Poornima 2 1 Associate Professor, Department of Mathematics, CMS College of Science

More information

SYDE 112, LECTURE 1: Review & Antidifferentiation

SYDE 112, LECTURE 1: Review & Antidifferentiation SYDE 112, LECTURE 1: Review & Antiifferentiation 1 Course Information For a etaile breakown of the course content an available resources, see the Course Outline. Other relevant information for this section

More information

Chapter 3 Definitions and Theorems

Chapter 3 Definitions and Theorems Chapter 3 Definitions an Theorems (from 3.1) Definition of Tangent Line with slope of m If f is efine on an open interval containing c an the limit Δy lim Δx 0 Δx = lim f (c + Δx) f (c) = m Δx 0 Δx exists,

More information

Table of Common Derivatives By David Abraham

Table of Common Derivatives By David Abraham Prouct an Quotient Rules: Table of Common Derivatives By Davi Abraham [ f ( g( ] = [ f ( ] g( + f ( [ g( ] f ( = g( [ f ( ] g( g( f ( [ g( ] Trigonometric Functions: sin( = cos( cos( = sin( tan( = sec

More information

A Better Model for Job Redundancy: Decoupling Server Slowdown and Job Size

A Better Model for Job Redundancy: Decoupling Server Slowdown and Job Size A Better Moel for Job Reunancy: Decoupling Server Slowown an Job Size Kristen Garner, Mor Harchol-Balter, Alan Scheller-Wolf, an Benny Van Hout 1 Abstract Recent computer systems research has propose using

More information

ON TAUBERIAN CONDITIONS FOR (C, 1) SUMMABILITY OF INTEGRALS

ON TAUBERIAN CONDITIONS FOR (C, 1) SUMMABILITY OF INTEGRALS REVISTA DE LA UNIÓN MATEMÁTICA ARGENTINA Vol. 54, No. 2, 213, Pages 59 65 Publishe online: December 8, 213 ON TAUBERIAN CONDITIONS FOR C, 1 SUMMABILITY OF INTEGRALS Abstract. We investigate some Tauberian

More information

EE 370L Controls Laboratory. Laboratory Exercise #7 Root Locus. Department of Electrical and Computer Engineering University of Nevada, at Las Vegas

EE 370L Controls Laboratory. Laboratory Exercise #7 Root Locus. Department of Electrical and Computer Engineering University of Nevada, at Las Vegas EE 370L Controls Laboratory Laboratory Exercise #7 Root Locus Department of Electrical an Computer Engineering University of Nevaa, at Las Vegas 1. Learning Objectives To emonstrate the concept of error

More information

Euler equations for multiple integrals

Euler equations for multiple integrals Euler equations for multiple integrals January 22, 2013 Contents 1 Reminer of multivariable calculus 2 1.1 Vector ifferentiation......................... 2 1.2 Matrix ifferentiation........................

More information

CHAPTER SEVEN. Solutions for Section x x t t4 4. ) + 4x = 7. 6( x4 3x4

CHAPTER SEVEN. Solutions for Section x x t t4 4. ) + 4x = 7. 6( x4 3x4 CHAPTER SEVEN 7. SOLUTIONS 6 Solutions for Section 7.. 5.. 4. 5 t t + t 5 5. 5. 6. t 8 8 + t4 4. 7. 6( 4 4 ) + 4 = 4 + 4. 5q 8.. 9. We break the antierivative into two terms. Since y is an antierivative

More information

IPA Derivatives for Make-to-Stock Production-Inventory Systems With Backorders Under the (R,r) Policy

IPA Derivatives for Make-to-Stock Production-Inventory Systems With Backorders Under the (R,r) Policy IPA Derivatives for Make-to-Stock Prouction-Inventory Systems With Backorers Uner the (Rr) Policy Yihong Fan a Benamin Melame b Yao Zhao c Yorai Wari Abstract This paper aresses Infinitesimal Perturbation

More information

Diagonalization of Matrices Dr. E. Jacobs

Diagonalization of Matrices Dr. E. Jacobs Diagonalization of Matrices Dr. E. Jacobs One of the very interesting lessons in this course is how certain algebraic techniques can be use to solve ifferential equations. The purpose of these notes is

More information

The Three-dimensional Schödinger Equation

The Three-dimensional Schödinger Equation The Three-imensional Schöinger Equation R. L. Herman November 7, 016 Schröinger Equation in Spherical Coorinates We seek to solve the Schröinger equation with spherical symmetry using the metho of separation

More information

Total Energy Shaping of a Class of Underactuated Port-Hamiltonian Systems using a New Set of Closed-Loop Potential Shape Variables*

Total Energy Shaping of a Class of Underactuated Port-Hamiltonian Systems using a New Set of Closed-Loop Potential Shape Variables* 51st IEEE Conference on Decision an Control December 1-13 212. Maui Hawaii USA Total Energy Shaping of a Class of Uneractuate Port-Hamiltonian Systems using a New Set of Close-Loop Potential Shape Variables*

More information

Differentiability, Computing Derivatives, Trig Review. Goals:

Differentiability, Computing Derivatives, Trig Review. Goals: Secants vs. Derivatives - Unit #3 : Goals: Differentiability, Computing Derivatives, Trig Review Determine when a function is ifferentiable at a point Relate the erivative graph to the the graph of an

More information

Diophantine Approximations: Examining the Farey Process and its Method on Producing Best Approximations

Diophantine Approximations: Examining the Farey Process and its Method on Producing Best Approximations Diophantine Approximations: Examining the Farey Process an its Metho on Proucing Best Approximations Kelly Bowen Introuction When a person hears the phrase irrational number, one oes not think of anything

More information

Interpolation of functional by integral continued C-fractions

Interpolation of functional by integral continued C-fractions Interpolation of functional by integral continue C-fractions Voloymyr L Makarov Institute of Mathematics of the NAS of Ukraine, Kiev, Ukraine E-mail: makarovimath@gmailcom an Mykhaylo M Pahirya State University

More information

A Tandem Queueing model for an appointment-based service system

A Tandem Queueing model for an appointment-based service system Queueing Syst (2015) 79:53 85 DOI 10.1007/s11134-014-9427-5 A Tanem Queueing moel for an appointment-base service system Jianzhe Luo Viyahar G. Kulkarni Serhan Ziya Receive: 3 April 2013 / Revise: 9 October

More information

Math 300 Winter 2011 Advanced Boundary Value Problems I. Bessel s Equation and Bessel Functions

Math 300 Winter 2011 Advanced Boundary Value Problems I. Bessel s Equation and Bessel Functions Math 3 Winter 2 Avance Bounary Value Problems I Bessel s Equation an Bessel Functions Department of Mathematical an Statistical Sciences University of Alberta Bessel s Equation an Bessel Functions We use

More information

A. Incorrect! The letter t does not appear in the expression of the given integral

A. Incorrect! The letter t does not appear in the expression of the given integral AP Physics C - Problem Drill 1: The Funamental Theorem of Calculus Question No. 1 of 1 Instruction: (1) Rea the problem statement an answer choices carefully () Work the problems on paper as neee (3) Question

More information

Quantum Mechanics in Three Dimensions

Quantum Mechanics in Three Dimensions Physics 342 Lecture 20 Quantum Mechanics in Three Dimensions Lecture 20 Physics 342 Quantum Mechanics I Monay, March 24th, 2008 We begin our spherical solutions with the simplest possible case zero potential.

More information

BEYOND THE CONSTRUCTION OF OPTIMAL SWITCHING SURFACES FOR AUTONOMOUS HYBRID SYSTEMS. Mauro Boccadoro Magnus Egerstedt Paolo Valigi Yorai Wardi

BEYOND THE CONSTRUCTION OF OPTIMAL SWITCHING SURFACES FOR AUTONOMOUS HYBRID SYSTEMS. Mauro Boccadoro Magnus Egerstedt Paolo Valigi Yorai Wardi BEYOND THE CONSTRUCTION OF OPTIMAL SWITCHING SURFACES FOR AUTONOMOUS HYBRID SYSTEMS Mauro Boccaoro Magnus Egerstet Paolo Valigi Yorai Wari {boccaoro,valigi}@iei.unipg.it Dipartimento i Ingegneria Elettronica

More information

Exam 2 Review Solutions

Exam 2 Review Solutions Exam Review Solutions 1. True or False, an explain: (a) There exists a function f with continuous secon partial erivatives such that f x (x, y) = x + y f y = x y False. If the function has continuous secon

More information

Implicit Differentiation

Implicit Differentiation Implicit Differentiation Thus far, the functions we have been concerne with have been efine explicitly. A function is efine explicitly if the output is given irectly in terms of the input. For instance,

More information

II. First variation of functionals

II. First variation of functionals II. First variation of functionals The erivative of a function being zero is a necessary conition for the etremum of that function in orinary calculus. Let us now tackle the question of the equivalent

More information

19 Eigenvalues, Eigenvectors, Ordinary Differential Equations, and Control

19 Eigenvalues, Eigenvectors, Ordinary Differential Equations, and Control 19 Eigenvalues, Eigenvectors, Orinary Differential Equations, an Control This section introuces eigenvalues an eigenvectors of a matrix, an iscusses the role of the eigenvalues in etermining the behavior

More information

Applications of First Order Equations

Applications of First Order Equations Applications of First Orer Equations Viscous Friction Consier a small mass that has been roppe into a thin vertical tube of viscous flui lie oil. The mass falls, ue to the force of gravity, but falls more

More information

Lagrangian and Hamiltonian Mechanics

Lagrangian and Hamiltonian Mechanics Lagrangian an Hamiltonian Mechanics.G. Simpson, Ph.. epartment of Physical Sciences an Engineering Prince George s Community College ecember 5, 007 Introuction In this course we have been stuying classical

More information

Time Dependent Solution Of M [X] /G/1 Queueing Model With second optional service, Bernoulli k-optional Vacation And Balking

Time Dependent Solution Of M [X] /G/1 Queueing Model With second optional service, Bernoulli k-optional Vacation And Balking International Journal of Scientific and Research Publications,Volume 3,Issue 9, September 213 ISSN 225-3153 1 Time Dependent Solution Of M [X] /G/1 Queueing Model With second optional service, Bernoulli

More information

Math Notes on differentials, the Chain Rule, gradients, directional derivative, and normal vectors

Math Notes on differentials, the Chain Rule, gradients, directional derivative, and normal vectors Math 18.02 Notes on ifferentials, the Chain Rule, graients, irectional erivative, an normal vectors Tangent plane an linear approximation We efine the partial erivatives of f( xy, ) as follows: f f( x+

More information

ALGEBRAIC AND ANALYTIC PROPERTIES OF ARITHMETIC FUNCTIONS

ALGEBRAIC AND ANALYTIC PROPERTIES OF ARITHMETIC FUNCTIONS ALGEBRAIC AND ANALYTIC PROPERTIES OF ARITHMETIC FUNCTIONS MARK SCHACHNER Abstract. When consiere as an algebraic space, the set of arithmetic functions equippe with the operations of pointwise aition an

More information

P (L d k = n). P (L(t) = n),

P (L d k = n). P (L(t) = n), 4 M/G/1 queue In the M/G/1 queue customers arrive according to a Poisson process with rate λ and they are treated in order of arrival The service times are independent and identically distributed with

More information

Computing Derivatives

Computing Derivatives Chapter 2 Computing Derivatives 2.1 Elementary erivative rules Motivating Questions In this section, we strive to unerstan the ieas generate by the following important questions: What are alternate notations

More information

TEST 2 (PHY 250) Figure Figure P26.21

TEST 2 (PHY 250) Figure Figure P26.21 TEST 2 (PHY 250) 1. a) Write the efinition (in a full sentence) of electric potential. b) What is a capacitor? c) Relate the electric torque, exerte on a molecule in a uniform electric fiel, with the ipole

More information

Chapter 3 Notes, Applied Calculus, Tan

Chapter 3 Notes, Applied Calculus, Tan Contents 3.1 Basic Rules of Differentiation.............................. 2 3.2 The Prouct an Quotient Rules............................ 6 3.3 The Chain Rule...................................... 9 3.4

More information

Differentiability, Computing Derivatives, Trig Review

Differentiability, Computing Derivatives, Trig Review Unit #3 : Differentiability, Computing Derivatives, Trig Review Goals: Determine when a function is ifferentiable at a point Relate the erivative graph to the the graph of an original function Compute

More information

LATTICE-BASED D-OPTIMUM DESIGN FOR FOURIER REGRESSION

LATTICE-BASED D-OPTIMUM DESIGN FOR FOURIER REGRESSION The Annals of Statistics 1997, Vol. 25, No. 6, 2313 2327 LATTICE-BASED D-OPTIMUM DESIGN FOR FOURIER REGRESSION By Eva Riccomagno, 1 Rainer Schwabe 2 an Henry P. Wynn 1 University of Warwick, Technische

More information

MATH 56A: STOCHASTIC PROCESSES CHAPTER 3

MATH 56A: STOCHASTIC PROCESSES CHAPTER 3 MATH 56A: STOCHASTIC PROCESSES CHAPTER 3 Plan for rest of semester (1) st week (8/31, 9/6, 9/7) Chap 0: Diff eq s an linear recursion (2) n week (9/11...) Chap 1: Finite Markov chains (3) r week (9/18...)

More information

PES 1120 Spring 2014, Spendier Lecture 36/Page 1

PES 1120 Spring 2014, Spendier Lecture 36/Page 1 PES 0 Spring 04, Spenier ecture 36/Page Toay: chapter 3 - R circuits: Dampe Oscillation - Driven series R circuit - HW 9 ue Wenesay - FQs Wenesay ast time you stuie the circuit (no resistance) The total

More information