Multigrid methods for pde optimization

Size: px
Start display at page:

Download "Multigrid methods for pde optimization"

Transcription

1 Multigrid methods for pde optimization Alfio Borzì Università degli Studi del Sannio Dipartimento e Facoltà di Ingegneria, Benevento, Italia Alfio Borzì (Università degli Studi del Sannio, Multigrid Italy) methods for pde optimization 1 / 64

2 Introduction Multigrid methods and optimization with partial differential equations are two modern fields of research in applied mathematics and engineering, both starting in the seventies with the works of A. Brandt and W. Hackbusch, and J.L. Lions. PDE-based optimization problems arise in application to medicine biology fluid dynamics mechanics chemical processes...inverse problems, control problems, design problems are large-sized problems many have nonlinear nondifferentiable structure pose new theoretical & scientific computing challenges Alfio Borzì (Università degli Studi del Sannio, Multigrid Italy) methods for pde optimization 2 / 64

3 Physiology: Control of cardiac arrhythmia y 1 y y 1 t y 2 t = ky 1 (y 1 a)(y 1 1) y 1 y 2 + σ y 1 + u = [ɛ 0 + µ 1y 2 µ 2 + y 1 ][ y 2 ky 1 (y 1 b 1)] y 1 - transmembrane potential and y 2 - conduttance Austrian Science Fund SFB MOBIS Fast Multigrid Methods for Inverse Problems Alfio Borzì (Università degli Studi del Sannio, Multigrid Italy) methods for pde optimization 3 / 64

4 Quantum computing: Control of Bose Einstein condensates The BEC is described by the Gross-Pitaevskii equation i ψ(x, t) = ( 12 ) 2 + V (x, u(t)) + g ψ(x, t) 2 ψ(x, t) Austrian Science Fund FWF Project Quantum optimal control of semiconductor nanostructures Alfio Borzì (Università degli Studi del Sannio, Multigrid Italy) methods for pde optimization 4 / 64

5 CFD Shape design optimization: From pipes to engines Navier-Stokes equations, RSM turbulence models, multi-phase, spray and combustion Alfio Borzì (Università degli Studi del Sannio, Multigrid Italy) methods for pde optimization 5 / 64

6 Outline of the talk A.B. and V. Schulz, Multigrid methods for PDE optimization, SIAM Review. Optimization with PDE constraints SQP multigrid Schur-complement-smoothing multigrid Collective-smoothing multigrid Multigrid for optimization Convergence theory Alfio Borzì (Università degli Studi del Sannio, Multigrid Italy) methods for pde optimization 6 / 64

7 Optimization with PDE constraints Alfio Borzì (Università degli Studi del Sannio, Multigrid Italy) methods for pde optimization 7 / 64

8 The formulation of PDE-based optimization problems A model of the governing system A description of the optimization mechanism A criterion that models the purpose of the optimization and its cost We have an infinite-dimensional constrained minimization problem minimize J(y, u) under the constraint c(y, u) = 0 L(y, u, p) = J(y, u)+(c(y, u), p) Alfio Borzì (Università degli Studi del Sannio, Multigrid Italy) methods for pde optimization 8 / 64

9 Characterization of the optimizing solution min J(y, u) := h(y) + ν g(u) J : Y U R u U ad s.t. c(y, u) = 0 The existence of cy 1 enables a distinction between y, the state variable, and u U ad U, the optimization variable in the admissible set. So we have the mapping u J(y(u), u) in the form u IFT y(u) J(y(u), u) =: Ĵ(u) reduced objective The solution of min u Uad Ĵ(u) is characterized by the following optimality system c(y, u) = 0 c y (y, u) p = h (y) (ν g (u) + cu p, v u) 0 for all v U ad We have Ĵ(u) = ν g (u) + c u p(u), the reduced gradient. Alfio Borzì (Università degli Studi del Sannio, Multigrid Italy) methods for pde optimization 9 / 64

10 Elliptic optimization problems Consider the simplest objective where z L 2 is a target function. Linear elliptic optimal control problem J(y, u) = 1 2 y z 2 L 2 + ν 2 u 2 L 2 c(y, u) = y u f Bilinear elliptic parameter identification problem c(y, u) = y u y f we assume that c(y, u) = 0 provides the mapping u y(u). A. B. and M. Vallejos, Multigrid optimization methods for linear and bilinear elliptic optimal control problems, Computing, 82 (2008), pp Alfio Borzì (Università degli Studi del Sannio, Multigrid Italy) methods for pde optimization 10 / 64

11 Elliptic optimality systems Linear Bilinear y u = f in Ω p + y = z in Ω νu p = 0 in Ω y = 0 and p = 0 on Ω Ĵ(u) = νu p 2 Ĵ(u) = νi + 2 y uy = f in Ω p + y up = z in Ω νu yp = 0 in Ω y = 0 and p = 0 on Ω Ĵ(u) = νu yp 2 Ĵ(u) = νi + y( + u) 2 y + p( + u) 1 y + y( + u) 1 p Alfio Borzì (Università degli Studi del Sannio, Multigrid Italy) methods for pde optimization 11 / 64

12 Quantum control problems Control of Bose Einstein condensates in magnetic microtraps min J(ψ, u) := 1 ( u U 2 1 ψ d ψ(t ) 2 ) + γ T 2 0 ( u(t))2 dt i ψ t (x, t) = ( V (x, u(t)) + g ψ(x, t) 2) ψ(x, t) A. B. and U. Hohenester, Multigrid optimization schemes for solving Bose Einstein condensates control problems, SIAM J. Sci. Comp., 30 (2008), pp Alfio Borzì (Università degli Studi del Sannio, Multigrid Italy) methods for pde optimization 12 / 64

13 Optimality system for BEC control The optimal solution is characterized by the optimality system i ψ ( t = 12 ) 2 + V u + g ψ 2 ψ i p ( t = 12 ) 2 + V u + 2g ψ 2 p + g ψ 2 p γü = Re ψ V u u p, with the initial and terminal conditions ψ(0) = ψ 0 and ip(t ) = ψ d ψ(t ) ψ d u(0) = 0, u(t ) = 1. Alfio Borzì (Università degli Studi del Sannio, Multigrid Italy) methods for pde optimization 13 / 64

14 Optical flow The optical flow (u, v) determines the transformation from an image frame to the next. Find w and I such that { It + w I = 0, in Q = Ω (0, T ), and minimize I (, 0) = Y 1, J(I, w) = 1 N I (x, y, t k ) Y k 2 dω + α Φ( w 2 k=1 Ω 2 Q t 2 )dq + β Ψ( u v 2 )dq + γ Q 2 w 2 dq, Q where α, β, and γ are given optimization weights. A. B., K. Ito, and K. Kunisch, Optimal control formulation for determining optical flow, SIAM J. Sci. Comput., 24(3) (2002), pp Alfio Borzì (Università degli Studi del Sannio, Multigrid Italy) methods for pde optimization 14 / 64

15 Optimality system The state equation evolving forward I t + w I = 0. The adjoint equation evolving backwards p t + ( wp) = 0, on t (t k 1, t k ), p(, t + k ) p(, t k ) = I (, t k) Y k, t = t k, for k = 2,... N 1. Two (space-time) elliptic control equations α 2 u t 2 + β [Ψ ( w 2 ) u] + γ ( w) x = I p x, α 2 v t 2 + β [Ψ ( w 2 ) v] + γ ( w) y = I p y, where w 2 = u 2 + v 2. Alfio Borzì (Università degli Studi del Sannio, Multigrid Italy) methods for pde optimization 15 / 64

16 Multigrid schemes in the SQP approach Alfio Borzì (Università degli Studi del Sannio, Multigrid Italy) methods for pde optimization 16 / 64

17 Multigrid SQP schemes These schemes are recommended for u U = R nu (and no further multigrid structure within U). An SQP method iterates over the following steps (0) initialize l = 0, y 0, u 0 (1) solve the adjoint problem cy (y l, u l )p l = J y (y l, u l ) and build the reduced gradient Ĵ(u) l = Ju + cu (y l, u l )p l (2) build some approximation B l H(y l, u l, p l ) of the reduced Hessian, e.g., by Quasi-Newton update formulae 1 (3) solve u = arg min u LU(u l ) 2 u B l u + Ĵ(u) l u, where LU(u l) denotes the linearization of U in u l (4) solve the linear problem c y (y l, u l ) y = (c u (y l, u l ) u + c(y l, u l )) (5) update (y l+1, u l+1 ) = (y l, u l ) + τ ( y, u), where τ is some line-search updating factor in the early iterations. A multigrid scheme is applied in steps (1) and (4). Alfio Borzì (Università degli Studi del Sannio, Multigrid Italy) methods for pde optimization 17 / 64

18 Consistency condition for multigrid SQP schemes SQP convergence theory requires that the reduced gradient can be interpreted as a derivative, i.e. we need the consistency condition Ĵ(u) l = u J(y l Ac u (y l, u l )u, u l + u) where A c y (y l, u l ) 1 is the approximation to c y (y l, u l ) 1 defined by the multigrid algorithm for the forward problem. This fact results in the following requirements for the construction of the multigrid components ( ( AI k 1 k = FIk 1) k, AS = ( F S), AI k k 1 = FI k 1 k where A and F label the operators for the adjoint and forward problems. V. Schulz, Solving discretized optimization problems by partially reduced SQP methods, Comput. Vis. Sci. 1 (1998), pp ) Alfio Borzì (Università degli Studi del Sannio, Multigrid Italy) methods for pde optimization 18 / 64

19 Schur-complement multigrid approach Alfio Borzì (Università degli Studi del Sannio, Multigrid Italy) methods for pde optimization 19 / 64

20 The KKT-matrix Many multigrid optimization approaches use a smoothing concept based on a Schur-complement splitting of the KKT-matrix. Let w = ( y, u, p) be the solution to the equation Aw = y L(y, u, p) u L(y, u, p) c(y, u) =: f. (3) where L(y, u, p) is the Lagrangian of the optimization problem and the operator matrix L yy L yu cy A = L uy L uu cu (4) c y c u 0 is the Karush-Kuhn-Tucker matrix, i.e. matrix of second order derivatives of the Lagrangian of the optimization problem. All variants of SQP methods consider approximations of the matrix A above. Alfio Borzì (Università degli Studi del Sannio, Multigrid Italy) methods for pde optimization 20 / 64

21 Schur-complement-based smoothing Use the iterative scheme w l = w l 1 + R(f A w l 1 ) For a linear elliptic optimal control problem A = 0 ν I I I 0 I 0 where we can use a multigrid Poisson-solver for inverting. This is the starting point of the early multigrid optimization methods. W. Hackbusch, Fast solution of elliptic control problems, J. Optim. Theory and Appl., 31(1980), pp Alfio Borzì (Università degli Studi del Sannio, Multigrid Italy) methods for pde optimization 21 / 64

22 Schur decomposition and Schur complement Consider [ ] A B A = B D with symmetric blocks A and D, and A invertible, is an explicit reformulation of a block-gauss-decomposition, i.e. [ ] [ ] I A A 1 B A 0 = 0 I B S where S = D BA 1 B is the Schur-complement. Iterative Schur-complement solvers are based on the scheme [ w l = w l 1 I à + 1 B 0 I ] [ à 0 B S ] 1 (f A w l 1 ). (5) where à and S are approximations to A and S. Alfio Borzì (Università degli Studi del Sannio, Multigrid Italy) methods for pde optimization 22 / 64

23 Choice of the blocks, different strategies First tentative choice (range space factorization) [ ] Lyy L A = yu L uy The A-block may not be invertible. This arrangement is not well suited for PDE constrained optimization problems, unlike to variational problems like Stokes or Navier-Stokes [Braess-Sarazin 97, Wittum 88] Interchanging the 2nd and 3rd row and column in the matrix A and identifying [ ] Lyy cy A =, B = [ ] L c y 0 uy cu, D = Luu leads to a nullspace decomposition. L uu Alfio Borzì (Università degli Studi del Sannio, Multigrid Italy) methods for pde optimization 23 / 64

24 Choice of the blocks, different strategies With nullspace decomposition the Schur-complement reads S = L uu L uy cy 1 c u cu cy 1 L yu + cu cy 1 L yy cy 1 c u that is the reduced Hessian that characterizes the optimization problem. Coercivity of the reduced Hessian guarantees well-posedness of the overall optimization problem. In the case of a linear control problem one obtains S = ν I 0 1 I I I 1 I 1 I = ν I + ( 1 ) 2 With the choice à = [ Lyy c y c y 0 ] and S = ν I one obtains a transforming smoothing iteration. Th. Dreyer, B. Maar, V. Schulz, Multigrid optimization in applications, J. Comput. Appl. Math., 120 (2000), pp Alfio Borzì (Università degli Studi del Sannio, Multigrid Italy) methods for pde optimization 24 / 64

25 Collective smoothing multigrid approach Alfio Borzì (Università degli Studi del Sannio, Multigrid Italy) methods for pde optimization 25 / 64

26 CSMG scheme A collective smoothing multigrid (CSMG) approach means solving the optimality system for the state, the adjoint, and the control variables simultaneously in the multigrid process by using collective smoothers for the optimizations variables. A CSMG based scheme aims at realizing the tight coupling in the optimality system along the hierarchy of grids in space and time. The smoothing process: The basic idea is to solve the optimality system at grid or block-grid point level, within the admissible set and consistently with the differential structure of the problem. The CSMG multigrid schemes result robust with respect to opimization parameters and provide mesh-independent convergence. Alfio Borzì (Università degli Studi del Sannio, Multigrid Italy) methods for pde optimization 26 / 64

27 CSMG smoothing for a linear elliptic control problem y u = f p + y = z (νu p, v u) 0 for all v U ad where U ad := {u L 2 (Ω) u L (x) u(x) u H (x) a.e. in Ω} Let A = y i 1,j y i+1,j y i,j 1 y i,j+1 h 2 f i,j, B = p i 1,j p i+1,j p i,j 1 p i,j+1 h 2 z i,j. Then A + 4y i,j h 2 u i,j = 0, B + 4p i,j + h 2 y i,j = 0, νu i,j p i,j = 0. y i,j (u i,j ) = 1 4 (h2 u i,j A) p i,j (u i,j ) = 1 16 ( h2 u i,j + h 2 A 4B) Setting Ĵ(u) = νu p(u) = 0, we obtain the auxiliary variable ũ i,j = 1 16ν + h 4 (h2 A 4B). Alfio Borzì (Università degli Studi del Sannio, Multigrid Italy) methods for pde optimization 27 / 64

28 Collective Smoothing: Projection The new value for u i,j resulting from the smoothing step is given by u H i,j if ũ i,j u H i,j u i,j = ũ i,j if u Li,j < ũ i,j < u H i,j. u Li,j if ũ i,j u Li,j This collective Gauss-Seidel step satisfies the inequality constraint. Example: ũ > u H ; then u = u H. Therefore (v u) 0 for any v U ad, and νu p = νu (4 B h 2 A h 4 u ij )/16 = [(16ν + h 4 )u (4 B h 2 A)]/16 < [(16ν + h 4 )ũ (4 B h 2 A)]/16 = 0. Therefore (νu p) (v u) 0 for all v U ad. Alfio Borzì (Università degli Studi del Sannio, Multigrid Italy) methods for pde optimization 28 / 64

29 A discovery: Bang-bang control phenomenon Consider ul = 30 and uh = 30, ν = 0, z(x, y ) = sin(4πx) sin(2πy ). mesh ρ(y ), 0.12, 0.12, 0.12, y z ρ(p) r (y ) 0, r (p) , , , The state (left) and the control (right). A. B. and K. Kunisch, A multigrid scheme for elliptic constrained optimal control problems, Comput. Optim. Appl., 31 (2005), pp Alfio Borzı (Universita degli Studi del Sannio, Multigrid Italy) methods for pde optimization 29 / 64

30 Multigrid collective smoothing with FEM Optimality system Define Q Y M U = F, Q P + M Y = Z, (νu P, Φ U) 0, Φ U. n k n k n k n k C 1 = q i,j Y j, C 2 = q i,j P j, C 3 = m i,j Y j, and C 4 = m i,j U j. j=1 j i j=1 j i Y i (U i ) = 1 q i,i (F i C 1 + C 4 + m i,i U i ), P i (U i ) = 1 [q qi,i 2 i,i (Z i C 2 C 3 ) m i,i (F i C 1 + C 4 + m i,i U i )]. Define the auxiliary variable as j=1 j i 1 Ũ i = νqi,i 2 + [q i,i (Z i C 2 C 3 ) m i,i (F i C 1 + C 4 )]. m2 i,i j=1 j i Alfio Borzì (Università degli Studi del Sannio, Multigrid Italy) methods for pde optimization 30 / 64

31 Numerical results - CSMG-FEM Control-constrained linear problem Figure: Numerical solutions y (left) and u (right) for the control- constrained linear elliptic optimal control problem with ν = Alfio Borzì (Università degli Studi del Sannio, Multigrid Italy) methods for pde optimization 31 / 64

32 CSMG smoothing for bilinear optimization problems Let A = y i 1,j y i+1,j y i,j 1 y i,j+1 h 2 f i,j, B = p i 1,j p i+1,j p i,j 1 p i,j+1 h 2 z i,j. Then A + 4y i,j h 2 u i,j y i,j = 0, B + 4p i,j + h 2 y i,j h 2 u i,j p i,j = 0, νu i,j y i,j p i,j = 0. y i,j (u i,j ) = 1 4 h 2 u i,j A p i,j (u i,j ) = 1 (4 h 2 u i,j ) (h 2 A + h 2 u 2 i,j 4B) Assume (4 h 2 u i,j ) 0 at any ij. Setting Ĵ(u) = νu y(u)p(u) = 0, we obtain u i,j as solution of the quartic polynomial equation νh 6 ui,j 4 12νh4 ui,j νh2 ui,j 2 (64ν + h2 AB)u i,j (h 2 A 2 4AB) = 0. Let the auxiliary variable ũ i,j be the solution of the quartic polynomial νh 6 ui,j 4 12νh4 ui,j νh2 ui,j 2 (64ν + h2 AB)u i,j (h 2 A 2 4AB) = 0. Alfio Borzì (Università degli Studi del Sannio, Multigrid Italy) methods for pde optimization 32 / 64

33 Bilinear control problem / parameter identification problem min u U J(y, u) := 1 2 y z 2 L 2 + ν 2 u 2 L 2 y u y = f in Ω y = 0 on Ω The (non attainable) target function z is given by { 2, on (0.25, 0.75) (0.25, 0.75) z(x 1, x 2 ) = 1, otherwise. Alfio Borzì (Università degli Studi del Sannio, Multigrid Italy) methods for pde optimization 33 / 64

34 Numerical results Bilinear control problem / parameter identification problem Figure: Numerical solutions y (left) and u (right) for the control- unconstrained bilinear elliptic optimal control problem with ν = (CSMG, FDM) ν = 10 2 ν = 10 4 mesh CSMG NCG CSMG NCG Alfio Borzì (Università degli Studi del Sannio, Multigrid Italy) methods for pde optimization 34 / 64

35 Other developments for elliptic optimization problems CSMG scheme for state-constrained elliptic control problems. Collective smoothing AMG for convection-diffusion optimality systems with jumping coefficients. CSMG schemes for optimality systems and higher-order discretization. Globalization techniques within CSMG schemes applied to non convex optimization problems. CSMG methods for singular control problems. CSMG methods for boundary control problems. CSMG convergence theory in the LFA and BPX frameworks. Alfio Borzì (Università degli Studi del Sannio, Multigrid Italy) methods for pde optimization 35 / 64

36 CSMG schemes for time-dependent problems Alfio Borzì (Università degli Studi del Sannio, Multigrid Italy) methods for pde optimization 36 / 64

37 Reaction diffusion process control through source terms Consider a reaction-diffusion model min u L 2 (Q) J(y, u) t y + G(y) + σ y = u in Q = Ω (0, T ) y = y 0 in Ω {t = 0} y = 0 on Σ = Ω (0, T ) Control required to track a desired trajectory y d (x, t) reach a desired terminal state y T (x) For this purpose, the following objective can be considered J(y, u) = α 2 y y d 2 L 2 (Q) + β 2 y(, T ) y T 2 L 2 (Ω) + ν 2 u 2 L 2 (Q) Alfio Borzì (Università degli Studi del Sannio, Multigrid Italy) methods for pde optimization 37 / 64

38 Reaction diffusion process control through boundary terms min u L 2 (Σ) J(y, u) t y + G(y) + σ y = 0 in Q = Ω (0, T ) y = y 0 in Ω {t = 0} y n = u on Σ = Ω (0, T ) Control required to track a desired trajectory y d (x, t) reach a desired terminal state y T (x) For this purpose, the following objective can be considered J(y, u) = α 2 y y d 2 L 2 (Q) + β 2 y(, T ) y T 2 L 2 (Ω) + ν 2 u 2 L 2 (Σ) Alfio Borzì (Università degli Studi del Sannio, Multigrid Italy) methods for pde optimization 38 / 64

39 Optimality systems Distributed source control: The solution is characterized by t y + G(y) + σ y = u in Q t p + G (y)p + σ p + α(y y d ) = 0 in Q νu p = 0 in Q y = 0, p = 0 on Σ Neumann boundary control: The optimal solution satisfies t y + G(y) + σ y = 0 in Q t p + G (y)p + σ p + α(y y d ) = 0 in Q νu p = 0 on Σ y = u, p n n = 0 on Σ With initial condition y(x, 0) = y 0 (x) for the state variable (evolving forward in time). And the terminal condition for the adjoint variable (evolving backward in time) p(x, T ) = β(y(x, T ) y T (x)). Alfio Borzì (Università degli Studi del Sannio, Multigrid Italy) methods for pde optimization 39 / 64

40 Discretization The optimality systems are discretized by, e.g., finite differences and backward Euler scheme. Ω h defines the set of interior mesh-points, (x i, y j ), 2 i, j N x. The space-time grid is defined by Q h,δt = {(x, t m ) : x Ω h, t m = (m 1)δt, 1 m N t + 1, δt = T /N t } Time difference operators t yh m = y h m y m 1 h δt Example distributed control: and t + ph m = pm+1 h ph m δt t yh m + G(yh m ) + σ h yh m = uh m t + ph m + G (yh m )ph m + σ h ph m + α(yh m ydh) m = 0 νu m h p m h = 0 Boundary control: Consider the optimality system on the boundary and discretize the boundary derivative using a second-order centered scheme. Alfio Borzì (Università degli Studi del Sannio, Multigrid Italy) methods for pde optimization 40 / 64

41 Coarsening strategies in space-time domains Coarsening strategy Consider L levels, k = 1,..., L. Coarsening in the space directions: h = h k = h 1 /2 k 1. Coarsening in time direction: δt = δt k = δt 1 /s k 1, s = 1 semicoarsening in space; s = 2 standard time coarsening; s = 4 double time coarsening. Transfer operators I k 1 k denotes the injection or FW operator for restriction. Ik 1 k denotes bilinear interpolation in space and If s = 1 no interpolation in time is needed, if s {2, 4} then Ik 1 k corresponds to bilinear interpolation in space and in time. Alfio Borzì (Università degli Studi del Sannio, Multigrid Italy) methods for pde optimization 41 / 64

42 Collective smoothing: Two essential requirements Coupling between state and control variables. Preserve opposite orientation of state and adjoint equations. Backward Euler discretization t = 0 y 0 y t = T p p 0 Alfio Borzì (Università degli Studi del Sannio, Multigrid Italy) methods for pde optimization 42 / 64

43 Time-Splitted Collective Gauss-Seidel Iteration (TS-CGS) y p «(1) i j m y = p «(0)» (1 + 4σγ) + δt G δt/ν + i j m δt(α + G p) (1 + 4σγ) + δt G 1 ry rp «i j m 1 Set the starting approximation. 2 For m = 2,..., N t do 3 For ij in, e.g., lexicographic order do y (1) i j m = y (0) i j m + [ (1 + 4σγ) + δtg ] r y (w) + δt ν r p(w) [ (1 + 4σγ) + δtg ] 2 + δt2 ν (α + G p) (0) i j m p (1) i j N t m+2 = p (0) i j N t m+2 4 end. + [ (1 + 4σγ) + δtg ] r p (w) δt(α + G p) r y (w) [ (1 + 4σγ) + δtg ] 2 + δt2 ν (α + G (0) i j N p) t m+2 Alfio Borzì (Università degli Studi del Sannio, Multigrid Italy) methods for pde optimization 43 / 64

44 Time-Line Collective Gauss-Seidel Iteration (TL-CGS) Consider the discrete optimality system at i, j and for all time steps and solve the resulting block-tridiagonal system. ( y p ) (1) i j ( y = p ) (0) i j + M 1 ( ry r p ) The block-tridiagonal system has the following form M = A 2 C 2 B 3 A 3 C 3 B 4 A 4 C 4 C N t B N t +1 A N t +1 B m =» ,A m = [ and C m = i j (1 + 4σγ) + δtg δt ν δt(α + G p) (1 + 4σγ) + δtg» Centered at t m, the entries B m, A m, C m refer to the variables (y, p) at t m 1, t m, and t m+1, respectively. ] Alfio Borzì (Università degli Studi del Sannio, Multigrid Italy) methods for pde optimization 44 / 64

45 Smoothing factors by local Fourier analysis -2-4 Log nu gamma Log nu gamma Convergence factors of TL-CGS scheme (left) and TS-CGS scheme η TL-CGS TS-CGS γ \ ν The estimated convergence factors η for TL-CGS and TS-CGS multigrid schemes Alfio(ν Borzì 1 = (Università ν 2 = 1); degli δt Studi = 1/64, del Sannio, α = Multigrid Italy) 1. methods for pde optimization 45 / 64

46 u u Long time intervals: CSMG - Receding horizon techniques Consider the optimal control problem of tracking y d for t 0. Define time windows of size t. In each time window, an optimal control problem with tracking (α = 1) and terminal observation (β = 1) is solved. Multigrid Receding Horizon Scheme (CSMG-RH) Applied to the control of a solid fuel ignition model t y + σ y + δe y = f y y d y y d Time evolution of the state y and the desired trajectory y d (left) and the optimal control u (right) at (x 1, x 2 ) = (0.5, 0.5). Alfio Borzì (Università degli Studi del Sannio, Multigrid Italy) methods for pde optimization 46 / 64

47 Other developments for parabolic optimization problems A.B., Multigrid methods for parabolic distributed optimal control problems, J. Comp. Appl. Math, 157 (2003), A.B. and R. Griesse, Distributed optimal control of lambda-omega systems, Journal of Numerical Mathematics, 14 (2006), A.B. and R. Griesse, Experiences with a space-time multigrid method for the optimal control of a chemical turbulence model, Int. J. Numer. Meth. Fluids., 47 (2005), A.B., Space-time multigrid methods for solving unsteady optimal control problems, (Chapter 5) in L.T. Biegler, O. Ghattas, M. Heinkenschloss, D. Keyes and B. van Bloemen Waanders (Eds.), Real-Time PDE-Constrained Optimization, Computational Science and Engineering, Vol. 3, SIAM, Philadelphia, A.B., Solution of lambda-omega systems: Theta-schemes and multigrid methods, Numerische Mathematik, 98(4) (2004), Alfio Borzì (Università degli Studi del Sannio, Multigrid Italy) methods for pde optimization 47 / 64

48 MGOPT multigrid for optimization Alfio Borzì (Università degli Studi del Sannio, Multigrid Italy) methods for pde optimization 48 / 64

49 MGOPT framework The MGOPT solution to the optimization problem min u Ĵ(u) requires to define a hierarchy of minimization problems min u k Ĵ k (u k ) k = 1, 2,..., L where u k V k and Ĵk( ) is the reduced cost functional. Among spaces V k, restriction operators I k 1 k : V k V k 1 and prolongation operators Ik 1 k : V k 1 V k are defined. Require that (I k 1 k u, v) k 1 = (u, Ik 1 k v) k for all u V k and v V k 1. We also choose an optimization scheme as smoother That provides sufficient reduction for some η (0, 1). Ĵ k (O k (u (l) k u (l) k = O k (u (l 1) k ) )) < Ĵ k (u (l) ) η Ĵ k (u (l) ) 2 Alfio Borzì (Università degli Studi del Sannio, Multigrid Italy) methods for pde optimization 49 / 64 k k

50 FAS MGOPT The MGOPT scheme is a FAS scheme applied to the gradient problem Ĵ k (u k ) = 0 where smoothing is replaced by any optimization scheme and a linesearch (damping) is applied to the coarse-grid correction step. FAS Coarse Grid Problem A k (u k ) = f k A k 1 (u k 1 ) = I k 1 k f k + A k 1 (u k 1 ) I k 1 k A k (u k ) }{{} τ MGOPT Coarse Grid Problem Ĵ k (u k ) = 0 Ĵ k 1 (u k 1 ) = Ĵ k 1 (u k 1 ) I k 1 k Ĵ k (u k ) }{{} τ R.M. Lewis and S.G. Nash, Model problems for the multigrid optimization of systems governed by differential equations, SIAM J. Sci. Comp., 26 (2005), pp Alfio Borzì (Università degli Studi del Sannio, Multigrid Italy) methods for pde optimization 50 / 64

51 MGOPT Smoothing In the context of MGOPT, the smoother is any standard one-grid optimization scheme. MGOPT Steepest descent method Nonlinear conjugate gradient method Newton-type schemes u k+1 = u k + α k p k where p k = B 1 k Ĵ k can be applied to any optimization problem given the reduced gradient independent of discretization independent of structure of the problem Alfio Borzì (Università degli Studi del Sannio, Multigrid Italy) methods for pde optimization 51 / 64

52 MGOPT scheme Initialize u 0 k. If k = 1, solve min Ĵ k (u k ) (f k, u k ) k and return. Else, u k 1 Pre-optimization: u l k = O k(u l k, f k), l = 1, 2,..., γ 1 2 Coarse grid problem Restrict the solution of (1): u γ1 k 1 = Ik 1 k u γ1 k Fine-to-coarse correction: τ k 1 = Ĵ k 1 (u γ1 k 1 ) Ik 1 k Ĵ k (u γ1 f k 1 = I k 1 k f k + τ k 1 Apply MGOPT to the Coarse grid problem: min u k 1 Ĵ k 1 (u k 1 ) (f k 1, u k 1 ) k 1 3 Coarse grid correction Prolongate the error: d = I k k 1 (u k 1 u γ1 k 1 ) Perform a line search in the direction d to obtain a step length α k. Coarse grid correction: u γ1+1 k = u γ1 k + α kd 4 Post-optimization: u l k = O k(u l k, f k), l = γ 1 + 2,..., γ 1 + γ k ) Alfio Borzì (Università degli Studi del Sannio, Multigrid Italy) methods for pde optimization 52 / 64

53 Control of Bose Einstein condensates in magnetic microtraps We consider transport of Bose-Einstein condensates in magnetic microtraps, controllable by external parameters such as wire currents or radio-frequency fields. The mean-field dynamics of the condensate is described by the Gross-Pitaevskii equation (GPE) i ψ(x, t) = ( 12 ) 2 + V (x, u(t)) + g ψ(x, t) 2 ψ(x, t) V (x, u(t)) is a three-dimensional potential produced by a magnetic microtrap. u(t) is a control parameter that describes the variation of the confining potential. Alfio Borzì (Università degli Studi del Sannio, Multigrid Italy) methods for pde optimization 53 / 64

54 Computational performance of CNCG and MGOPT Transport of Bose Einstein condensates in magnetic microtraps CNCG MGOPT ( 1 g 2 1 ψd, ψ(t ) 2 ) ( CPU ψd, ψ(t ) 2 ) CPU Table: Computational performance of the CNCG and MGOPT schemes for different values of g; T = 7.5, γ = 10 4, mesh Alfio Borzì (Università degli Studi del Sannio, Multigrid Italy) methods for pde optimization 54 / 64

55 Multigrid convergence theory Alfio Borzì (Università degli Studi del Sannio, Multigrid Italy) methods for pde optimization 55 / 64

56 CSMG convergence theory step-by-step: Scalar problem 1. Multigrid convergence theory for scalar elliptic equation y = f in Ω, and y = 0 on Ω. discrete matrix form A k y k = f k Theorem 1: Let M k := I k B k A k. Then there exists a positive constant δ < 1 such that (A k M k y, y) k δ (A k y, y) k, for all y V k. Alfio Borzì (Università degli Studi del Sannio, Multigrid Italy) methods for pde optimization 56 / 64

57 CSMG convergence theory step-by-step: Vector problem 2. Multigrid convergence theory for decoupled symmetric system ν y = νf in Ω, and y = 0 on Ω, p = z in Ω, and p = 0 on Ω. ( ) νak 0 discrete matrix form Ā k w k = g k, Ā k = 0 A k This system is exactly two copies of Poisson problem. Hence the multigrid convergence theory for this system inherits the properties of the scalar case. Theorem 2: Let M k := Īk B k Ā k. Then there exists a positive constant δ < 1 such that where δ = δ. (Ā k M k w, w) k δ(ā k w, w) k, for all w = (y, p) V k V k, Alfio Borzì (Università degli Studi del Sannio, Multigrid Italy) methods for pde optimization 57 / 64

58 CSMG convergence theory step-by-step: Coupling 3. Multigrid convergence theory for optimality systems ν y p = νf in Ω, and y = 0 on Ω, p + y = z in Ω, and p = 0 on Ω. Consider A k = Ā k + D k, D k = ( 0 Ik I k 0 ). Theorem 3: Let M k := I k B k A k. Then there exist positive constants h 0 and ˆδ < 1 such that h 1 < h 0 (Ā k M k w, w) k ˆδ(Ā k w, w) k, for all w = (y, p) V k V k, where ˆδ = δ + Ch 1. Alfio Borzì (Università degli Studi del Sannio, Multigrid Italy) methods for pde optimization 58 / 64

59 Theoretical analysis of MGOPT We assume that for each k, Ĵ k is twice Fréchet differentiable and 2 Ĵ k is (locally) positive definite and satisfies the conditions ( 2 Ĵ k (u)v, v) k β v 2 k and 2 Ĵ k (u) 2 Ĵ k (v) λ u v k uniformly for some positive constants β and λ. We remark that ) (Ĵk 1 (u k 1 ) (f k 1, u k 1 ) k 1 = I uk 1=I k 1 k 1 k k u k We use the expansion ( Ĵ k (u k ) f k ), Ĵ k (u + z) = Ĵk(u) + ( Ĵk(u), z) k ( 2 Ĵ k (u + tz)z, z) k dt. Alfio Borzì (Università degli Studi del Sannio, Multigrid Italy) methods for pde optimization 59 / 64

60 Lemma 1: For u, v V k assume ( Ĵk(u) f k, v) k 0 and let γ be such that [ 1 0 γ 2δ( Ĵk(u) f k, v) k ( 2 Ĵ k (u + tγv)v, v) k dt 0 ] 1 δ [0, 1]. Then (1 δ)γ( Ĵk(u) f k, v) k Ĵk(u) Ĵk(u + γv) + γ(f k, v) k γ( Ĵk(u) f k, v) k. We can find an explicit estimate for α such that a sufficient decrease is satisfied. Lemma 2: For u, v V k assume ( Ĵk(u) f k, v) k 0 and let { } ( Ĵ k (u) f k, v) k α(u, v) = min 2, λ v 3 k + ( 2Ĵ, λ > 0.Then k(u)v, v) k Ĵ k (u + α(u, v)v) Ĵk(u) + α(u, v)(f k, v) α(u, v)( Ĵk(u) f k, v) k. Alfio Borzì (Università degli Studi del Sannio, Multigrid Italy) methods for pde optimization 60 / 64

61 The coarse-grid correction provides a descending direction The following lemma states that the coarse-to-fine minimization step with step-length α is a minimizing step. Lemma 3: Let u V k and define ũ = I k 1 k u. Let ṽ V k 1 and define v = I k k 1 (ṽ ũ). Assume Ĵ k 1 (ṽ) (f k 1, ṽ) k 1 Ĵk 1(ũ) (f k 1, ũ) k 1, where Then ( (f k 1, ṽ) k 1 = I k 1 k ( (f k 1, ũ) k 1 = ) f k + Ĵk 1(ṽ) I k 1 k Ĵk(v), ṽ, and k 1 ) I k 1 k f k + Ĵk 1(ũ) I k 1 Ĵk(u), ũ k k 1. Ĵ k (u + α(u, v)v) Ĵk(u) α(u, v)(f k, v) k 1 2 α(u, v)( Ĵk(u) f k, v) k. Alfio Borzì (Università degli Studi del Sannio, Multigrid Italy) methods for pde optimization 61 / 64

62 Convergence of MGOPT Theorem 4: Let Ĵ k (u k ) (f k, u k ) k be twice Fréchet differentiable and let 2 Ĵ k be locally Lipschitz continuous and satisfies the Hessian conditions in a neighborhood Vk ɛ of u k = argmin uk (Ĵ k (u k ) (f k, u k ) k ). Then the MGOPT method provides a minimizing iteration. Alfio Borzì (Università degli Studi del Sannio, Multigrid Italy) methods for pde optimization 62 / 64

63 References on CSMG and MGOPT convergence theory A.B., K. Kunisch, and Do Y. Kwak, Accuracy and Convergence Properties of the Finite Difference Multigrid Solution of an Optimal Control Optimality System, SIAM J. Control Opt., 41(5) (2003), A.B. and M. Vallejos, Multigrid optimization methods for linear and bilinear elliptic optimal control problems, Computing, 82 (2008), pp W. Hackbusch and A. Reusken, Analysis of a damped nonlinear multilevel method, Numer. Math., 55 (1989), pp S.G. Nash, A multigrid approach to discretized optimization problems, Optimization Methods and Software, 14 (2000), pp J. Schoeberl and W. Zulehner, Symmetric Indefinite Preconditioners for Saddle Point Problems with Applications to PDE-Constrained Optimization Problems, SIAM J. Matrix Analysis and Applications, 29(2007), pp Alfio Borzì (Università degli Studi del Sannio, Multigrid Italy) methods for pde optimization 63 / 64

64 Best regards and many thanks for your interest!! See you in Benevento Alfio Borzì (Università degli Studi del Sannio, Multigrid Italy) methods for pde optimization 64 / 64

Multilevel methods for PDE control problems

Multilevel methods for PDE control problems Multilevel methods for PDE control problems Alfio Borzì Università degli Studi del Sannio Dipartimento e Facoltà di Ingegneria, Benevento, Italia Alfio Borzì (Università degli Studi del Sannio, Multilevel

More information

Multigrid and stochastic sparse-grids techniques for PDE control problems with random coefficients

Multigrid and stochastic sparse-grids techniques for PDE control problems with random coefficients Multigrid and stochastic sparse-grids techniques for PDE control problems with random coefficients Università degli Studi del Sannio Dipartimento e Facoltà di Ingegneria, Benevento, Italia Random fields

More information

Theoretical and numerical aspects of quantum control problems

Theoretical and numerical aspects of quantum control problems Theoretical and numerical aspects of quantum control problems Dipartimento e Facoltà di Ingegneria, Università degli Studi del Sannio, Italy Institute for Mathematics and Scientific Computing Karl-Franzens-University,

More information

Bang bang control of elliptic and parabolic PDEs

Bang bang control of elliptic and parabolic PDEs 1/26 Bang bang control of elliptic and parabolic PDEs Michael Hinze (joint work with Nikolaus von Daniels & Klaus Deckelnick) Jackson, July 24, 2018 2/26 Model problem (P) min J(y, u) = 1 u U ad,y Y ad

More information

Constrained Minimization and Multigrid

Constrained Minimization and Multigrid Constrained Minimization and Multigrid C. Gräser (FU Berlin), R. Kornhuber (FU Berlin), and O. Sander (FU Berlin) Workshop on PDE Constrained Optimization Hamburg, March 27-29, 2008 Matheon Outline Successive

More information

Adaptive methods for control problems with finite-dimensional control space

Adaptive methods for control problems with finite-dimensional control space Adaptive methods for control problems with finite-dimensional control space Saheed Akindeinde and Daniel Wachsmuth Johann Radon Institute for Computational and Applied Mathematics (RICAM) Austrian Academy

More information

Advances in the Accurate and Efficient Solution of Quantum O. of Quantum Optimal Control Problems

Advances in the Accurate and Efficient Solution of Quantum O. of Quantum Optimal Control Problems Advances in the Accurate and Efficient Solution of Quantum Optimal Control Problems Dipartimento e Facoltà di Ingegneria, Università degli Studi del Sannio, Italy Institute for Mathematics and Scientific

More information

Efficient smoothers for all-at-once multigrid methods for Poisson and Stokes control problems

Efficient smoothers for all-at-once multigrid methods for Poisson and Stokes control problems Efficient smoothers for all-at-once multigrid methods for Poisson and Stoes control problems Stefan Taacs stefan.taacs@numa.uni-linz.ac.at, WWW home page: http://www.numa.uni-linz.ac.at/~stefant/j3362/

More information

Aspects of Multigrid

Aspects of Multigrid Aspects of Multigrid Kees Oosterlee 1,2 1 Delft University of Technology, Delft. 2 CWI, Center for Mathematics and Computer Science, Amsterdam, SIAM Chapter Workshop Day, May 30th 2018 C.W.Oosterlee (CWI)

More information

Solving Distributed Optimal Control Problems for the Unsteady Burgers Equation in COMSOL Multiphysics

Solving Distributed Optimal Control Problems for the Unsteady Burgers Equation in COMSOL Multiphysics Excerpt from the Proceedings of the COMSOL Conference 2009 Milan Solving Distributed Optimal Control Problems for the Unsteady Burgers Equation in COMSOL Multiphysics Fikriye Yılmaz 1, Bülent Karasözen

More information

Multigrid Methods and their application in CFD

Multigrid Methods and their application in CFD Multigrid Methods and their application in CFD Michael Wurst TU München 16.06.2009 1 Multigrid Methods Definition Multigrid (MG) methods in numerical analysis are a group of algorithms for solving differential

More information

Fast algorithms for the inverse medium problem. George Biros University of Pennsylvania

Fast algorithms for the inverse medium problem. George Biros University of Pennsylvania Fast algorithms for the inverse medium problem George Biros University of Pennsylvania Acknowledgments S. Adavani, H. Sundar, S. Rahul (grad students) C. Davatzikos, D. Shen, H. Litt (heart project) Akcelic,

More information

OUTLINE ffl CFD: elliptic pde's! Ax = b ffl Basic iterative methods ffl Krylov subspace methods ffl Preconditioning techniques: Iterative methods ILU

OUTLINE ffl CFD: elliptic pde's! Ax = b ffl Basic iterative methods ffl Krylov subspace methods ffl Preconditioning techniques: Iterative methods ILU Preconditioning Techniques for Solving Large Sparse Linear Systems Arnold Reusken Institut für Geometrie und Praktische Mathematik RWTH-Aachen OUTLINE ffl CFD: elliptic pde's! Ax = b ffl Basic iterative

More information

SUPERCONVERGENCE PROPERTIES FOR OPTIMAL CONTROL PROBLEMS DISCRETIZED BY PIECEWISE LINEAR AND DISCONTINUOUS FUNCTIONS

SUPERCONVERGENCE PROPERTIES FOR OPTIMAL CONTROL PROBLEMS DISCRETIZED BY PIECEWISE LINEAR AND DISCONTINUOUS FUNCTIONS SUPERCONVERGENCE PROPERTIES FOR OPTIMAL CONTROL PROBLEMS DISCRETIZED BY PIECEWISE LINEAR AND DISCONTINUOUS FUNCTIONS A. RÖSCH AND R. SIMON Abstract. An optimal control problem for an elliptic equation

More information

A Line search Multigrid Method for Large-Scale Nonlinear Optimization

A Line search Multigrid Method for Large-Scale Nonlinear Optimization A Line search Multigrid Method for Large-Scale Nonlinear Optimization Zaiwen Wen Donald Goldfarb Department of Industrial Engineering and Operations Research Columbia University 2008 Siam Conference on

More information

On Multigrid for Phase Field

On Multigrid for Phase Field On Multigrid for Phase Field Carsten Gräser (FU Berlin), Ralf Kornhuber (FU Berlin), Rolf Krause (Uni Bonn), and Vanessa Styles (University of Sussex) Interphase 04 Rome, September, 13-16, 2004 Synopsis

More information

A multilevel algorithm for inverse problems with elliptic PDE constraints

A multilevel algorithm for inverse problems with elliptic PDE constraints A multilevel algorithm for inverse problems with elliptic PDE constraints George Biros and Günay Doǧan School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104 E-mail:

More information

ITERATIVE METHODS FOR NONLINEAR ELLIPTIC EQUATIONS

ITERATIVE METHODS FOR NONLINEAR ELLIPTIC EQUATIONS ITERATIVE METHODS FOR NONLINEAR ELLIPTIC EQUATIONS LONG CHEN In this chapter we discuss iterative methods for solving the finite element discretization of semi-linear elliptic equations of the form: find

More information

Fast Iterative Solution of Saddle Point Problems

Fast Iterative Solution of Saddle Point Problems Michele Benzi Department of Mathematics and Computer Science Emory University Atlanta, GA Acknowledgments NSF (Computational Mathematics) Maxim Olshanskii (Mech-Math, Moscow State U.) Zhen Wang (PhD student,

More information

A Recursive Trust-Region Method for Non-Convex Constrained Minimization

A Recursive Trust-Region Method for Non-Convex Constrained Minimization A Recursive Trust-Region Method for Non-Convex Constrained Minimization Christian Groß 1 and Rolf Krause 1 Institute for Numerical Simulation, University of Bonn. {gross,krause}@ins.uni-bonn.de 1 Introduction

More information

On preconditioned Uzawa-type iterations for a saddle point problem with inequality constraints

On preconditioned Uzawa-type iterations for a saddle point problem with inequality constraints On preconditioned Uzawa-type iterations for a saddle point problem with inequality constraints Carsten Gräser and Ralf Kornhuber FU Berlin, FB Mathematik und Informatik (http://www.math.fu-berlin.de/rd/we-02/numerik/)

More information

An introduction to PDE-constrained optimization

An introduction to PDE-constrained optimization An introduction to PDE-constrained optimization Wolfgang Bangerth Department of Mathematics Texas A&M University 1 Overview Why partial differential equations? Why optimization? Examples of PDE optimization

More information

Model order reduction & PDE constrained optimization

Model order reduction & PDE constrained optimization 1 Model order reduction & PDE constrained optimization Fachbereich Mathematik Optimierung und Approximation, Universität Hamburg Leuven, January 8, 01 Names Afanasiev, Attwell, Burns, Cordier,Fahl, Farrell,

More information

New Multigrid Solver Advances in TOPS

New Multigrid Solver Advances in TOPS New Multigrid Solver Advances in TOPS R D Falgout 1, J Brannick 2, M Brezina 2, T Manteuffel 2 and S McCormick 2 1 Center for Applied Scientific Computing, Lawrence Livermore National Laboratory, P.O.

More information

Nonsmooth Schur Newton Methods and Applications

Nonsmooth Schur Newton Methods and Applications Nonsmooth Schur Newton Methods and Applications C. Gräser, R. Kornhuber, and U. Sack IMA Annual Program Year Workshop Numerical Solutions of Partial Differential Equations: Fast Solution Techniques November

More information

Partial Differential Equations

Partial Differential Equations Partial Differential Equations Introduction Deng Li Discretization Methods Chunfang Chen, Danny Thorne, Adam Zornes CS521 Feb.,7, 2006 What do You Stand For? A PDE is a Partial Differential Equation This

More information

A Robust Preconditioner for the Hessian System in Elliptic Optimal Control Problems

A Robust Preconditioner for the Hessian System in Elliptic Optimal Control Problems A Robust Preconditioner for the Hessian System in Elliptic Optimal Control Problems Etereldes Gonçalves 1, Tarek P. Mathew 1, Markus Sarkis 1,2, and Christian E. Schaerer 1 1 Instituto de Matemática Pura

More information

Multigrid Based Optimal Shape and Topology Design in Magnetostatics

Multigrid Based Optimal Shape and Topology Design in Magnetostatics Multigrid Based Optimal Shape and Topology Design in Magnetostatics Dalibor Lukáš 1 Department of Applied Mathematics, VŠB Technical University of Ostrava, 17. listopadu 15, 708 33 Ostrava Poruba, Czech

More information

Kasetsart University Workshop. Multigrid methods: An introduction

Kasetsart University Workshop. Multigrid methods: An introduction Kasetsart University Workshop Multigrid methods: An introduction Dr. Anand Pardhanani Mathematics Department Earlham College Richmond, Indiana USA pardhan@earlham.edu A copy of these slides is available

More information

An optimal control problem for a parabolic PDE with control constraints

An optimal control problem for a parabolic PDE with control constraints An optimal control problem for a parabolic PDE with control constraints PhD Summer School on Reduced Basis Methods, Ulm Martin Gubisch University of Konstanz October 7 Martin Gubisch (University of Konstanz)

More information

Numerical Solution of Elliptic Optimal Control Problems

Numerical Solution of Elliptic Optimal Control Problems Department of Mathematics, University of Houston Numerical Solution of Elliptic Optimal Control Problems Ronald H.W. Hoppe 1,2 1 Department of Mathematics, University of Houston 2 Institute of Mathematics,

More information

Adaptive algebraic multigrid methods in lattice computations

Adaptive algebraic multigrid methods in lattice computations Adaptive algebraic multigrid methods in lattice computations Karsten Kahl Bergische Universität Wuppertal January 8, 2009 Acknowledgements Matthias Bolten, University of Wuppertal Achi Brandt, Weizmann

More information

Robust error estimates for regularization and discretization of bang-bang control problems

Robust error estimates for regularization and discretization of bang-bang control problems Robust error estimates for regularization and discretization of bang-bang control problems Daniel Wachsmuth September 2, 205 Abstract We investigate the simultaneous regularization and discretization of

More information

The HJB-POD approach for infinite dimensional control problems

The HJB-POD approach for infinite dimensional control problems The HJB-POD approach for infinite dimensional control problems M. Falcone works in collaboration with A. Alla, D. Kalise and S. Volkwein Università di Roma La Sapienza OCERTO Workshop Cortona, June 22,

More information

On Some Variational Optimization Problems in Classical Fluids and Superfluids

On Some Variational Optimization Problems in Classical Fluids and Superfluids On Some Variational Optimization Problems in Classical Fluids and Superfluids Bartosz Protas Department of Mathematics & Statistics McMaster University, Hamilton, Ontario, Canada URL: http://www.math.mcmaster.ca/bprotas

More information

Simulation based optimization

Simulation based optimization SimBOpt p.1/52 Simulation based optimization Feb 2005 Eldad Haber haber@mathcs.emory.edu Emory University SimBOpt p.2/52 Outline Introduction A few words about discretization The unconstrained framework

More information

K. Krumbiegel I. Neitzel A. Rösch

K. Krumbiegel I. Neitzel A. Rösch SUFFICIENT OPTIMALITY CONDITIONS FOR THE MOREAU-YOSIDA-TYPE REGULARIZATION CONCEPT APPLIED TO SEMILINEAR ELLIPTIC OPTIMAL CONTROL PROBLEMS WITH POINTWISE STATE CONSTRAINTS K. Krumbiegel I. Neitzel A. Rösch

More information

Multilevel Preconditioning of Graph-Laplacians: Polynomial Approximation of the Pivot Blocks Inverses

Multilevel Preconditioning of Graph-Laplacians: Polynomial Approximation of the Pivot Blocks Inverses Multilevel Preconditioning of Graph-Laplacians: Polynomial Approximation of the Pivot Blocks Inverses P. Boyanova 1, I. Georgiev 34, S. Margenov, L. Zikatanov 5 1 Uppsala University, Box 337, 751 05 Uppsala,

More information

Multigrid and Iterative Strategies for Optimal Control Problems

Multigrid and Iterative Strategies for Optimal Control Problems Multigrid and Iterative Strategies for Optimal Control Problems John Pearson 1, Stefan Takacs 1 1 Mathematical Institute, 24 29 St. Giles, Oxford, OX1 3LB e-mail: john.pearson@worc.ox.ac.uk, takacs@maths.ox.ac.uk

More information

Computational Techniques for Optimal Control of Quantum System

Computational Techniques for Optimal Control of Quantum System University of New Mexico UNM Digital Repository Mathematics & Statistics ETDs Electronic Theses and Dissertations 9-16-2014 Computational Techniques for Optimal Control of Quantum System Gregory von Winckel

More information

AMG for a Peta-scale Navier Stokes Code

AMG for a Peta-scale Navier Stokes Code AMG for a Peta-scale Navier Stokes Code James Lottes Argonne National Laboratory October 18, 2007 The Challenge Develop an AMG iterative method to solve Poisson 2 u = f discretized on highly irregular

More information

Solving PDEs with freefem++

Solving PDEs with freefem++ Solving PDEs with freefem++ Tutorials at Basque Center BCA Olivier Pironneau 1 with Frederic Hecht, LJLL-University of Paris VI 1 March 13, 2011 Do not forget That everything about freefem++ is at www.freefem.org

More information

Hamburger Beiträge zur Angewandten Mathematik

Hamburger Beiträge zur Angewandten Mathematik Hamburger Beiträge zur Angewandten Mathematik Numerical analysis of a control and state constrained elliptic control problem with piecewise constant control approximations Klaus Deckelnick and Michael

More information

An Introduction to Algebraic Multigrid (AMG) Algorithms Derrick Cerwinsky and Craig C. Douglas 1/84

An Introduction to Algebraic Multigrid (AMG) Algorithms Derrick Cerwinsky and Craig C. Douglas 1/84 An Introduction to Algebraic Multigrid (AMG) Algorithms Derrick Cerwinsky and Craig C. Douglas 1/84 Introduction Almost all numerical methods for solving PDEs will at some point be reduced to solving A

More information

Multigrid finite element methods on semi-structured triangular grids

Multigrid finite element methods on semi-structured triangular grids XXI Congreso de Ecuaciones Diferenciales y Aplicaciones XI Congreso de Matemática Aplicada Ciudad Real, -5 septiembre 009 (pp. 8) Multigrid finite element methods on semi-structured triangular grids F.J.

More information

Nonlinear Multigrid and Domain Decomposition Methods

Nonlinear Multigrid and Domain Decomposition Methods Nonlinear Multigrid and Domain Decomposition Methods Rolf Krause Institute of Computational Science Universit`a della Svizzera italiana 1 Stepping Stone Symposium, Geneva, 2017 Non-linear problems Non-linear

More information

Semismooth Newton Methods for an Optimal Boundary Control Problem of Wave Equations

Semismooth Newton Methods for an Optimal Boundary Control Problem of Wave Equations Semismooth Newton Methods for an Optimal Boundary Control Problem of Wave Equations Axel Kröner 1 Karl Kunisch 2 and Boris Vexler 3 1 Lehrstuhl für Mathematische Optimierung Technische Universität München

More information

Numerical Optimization of Partial Differential Equations

Numerical Optimization of Partial Differential Equations Numerical Optimization of Partial Differential Equations Part I: basic optimization concepts in R n Bartosz Protas Department of Mathematics & Statistics McMaster University, Hamilton, Ontario, Canada

More information

A Space-Time Multigrid Solver Methodology for the Optimal Control of Time-Dependent Fluid Flow

A Space-Time Multigrid Solver Methodology for the Optimal Control of Time-Dependent Fluid Flow A Space-Time Multigrid Solver Methodology for the Optimal Control of Time-Dependent Fluid Flow Michael Köster, Michael Hinze, Stefan Turek Michael Köster Institute for Applied Mathematics TU Dortmund Trier,

More information

Optimal control problems with PDE constraints

Optimal control problems with PDE constraints Optimal control problems with PDE constraints Maya Neytcheva CIM, October 2017 General framework Unconstrained optimization problems min f (q) q x R n (real vector) and f : R n R is a smooth function.

More information

AM 205: lecture 19. Last time: Conditions for optimality Today: Newton s method for optimization, survey of optimization methods

AM 205: lecture 19. Last time: Conditions for optimality Today: Newton s method for optimization, survey of optimization methods AM 205: lecture 19 Last time: Conditions for optimality Today: Newton s method for optimization, survey of optimization methods Optimality Conditions: Equality Constrained Case As another example of equality

More information

Proper Orthogonal Decomposition (POD) for Nonlinear Dynamical Systems. Stefan Volkwein

Proper Orthogonal Decomposition (POD) for Nonlinear Dynamical Systems. Stefan Volkwein Proper Orthogonal Decomposition (POD) for Nonlinear Dynamical Systems Institute for Mathematics and Scientific Computing, Austria DISC Summerschool 5 Outline of the talk POD and singular value decomposition

More information

Solving PDEs with Multigrid Methods p.1

Solving PDEs with Multigrid Methods p.1 Solving PDEs with Multigrid Methods Scott MacLachlan maclachl@colorado.edu Department of Applied Mathematics, University of Colorado at Boulder Solving PDEs with Multigrid Methods p.1 Support and Collaboration

More information

Preface to the Second Edition. Preface to the First Edition

Preface to the Second Edition. Preface to the First Edition n page v Preface to the Second Edition Preface to the First Edition xiii xvii 1 Background in Linear Algebra 1 1.1 Matrices................................. 1 1.2 Square Matrices and Eigenvalues....................

More information

Geometric Multigrid Methods

Geometric Multigrid Methods Geometric Multigrid Methods Susanne C. Brenner Department of Mathematics and Center for Computation & Technology Louisiana State University IMA Tutorial: Fast Solution Techniques November 28, 2010 Ideas

More information

Algorithms for PDE-Constrained Optimization

Algorithms for PDE-Constrained Optimization GAMM-Mitteilungen, 31 January 2014 Algorithms for PDE-Constrained Optimization Roland Herzog 1 and Karl Kunisch 2 1 Chemnitz University of Technology, Faculty of Mathematics, Reichenhainer Straße 41, D

More information

Lecture 9 Approximations of Laplace s Equation, Finite Element Method. Mathématiques appliquées (MATH0504-1) B. Dewals, C.

Lecture 9 Approximations of Laplace s Equation, Finite Element Method. Mathématiques appliquées (MATH0504-1) B. Dewals, C. Lecture 9 Approximations of Laplace s Equation, Finite Element Method Mathématiques appliquées (MATH54-1) B. Dewals, C. Geuzaine V1.2 23/11/218 1 Learning objectives of this lecture Apply the finite difference

More information

An Inexact Newton Method for Optimization

An Inexact Newton Method for Optimization New York University Brown Applied Mathematics Seminar, February 10, 2009 Brief biography New York State College of William and Mary (B.S.) Northwestern University (M.S. & Ph.D.) Courant Institute (Postdoc)

More information

Parallel-in-Time Optimization with the General-Purpose XBraid Package

Parallel-in-Time Optimization with the General-Purpose XBraid Package Parallel-in-Time Optimization with the General-Purpose XBraid Package Stefanie Günther, Jacob Schroder, Robert Falgout, Nicolas Gauger 7th Workshop on Parallel-in-Time methods Wednesday, May 3 rd, 2018

More information

Overlapping Schwarz preconditioners for Fekete spectral elements

Overlapping Schwarz preconditioners for Fekete spectral elements Overlapping Schwarz preconditioners for Fekete spectral elements R. Pasquetti 1, L. F. Pavarino 2, F. Rapetti 1, and E. Zampieri 2 1 Laboratoire J.-A. Dieudonné, CNRS & Université de Nice et Sophia-Antipolis,

More information

A STOKES INTERFACE PROBLEM: STABILITY, FINITE ELEMENT ANALYSIS AND A ROBUST SOLVER

A STOKES INTERFACE PROBLEM: STABILITY, FINITE ELEMENT ANALYSIS AND A ROBUST SOLVER European Congress on Computational Methods in Applied Sciences and Engineering ECCOMAS 2004 P. Neittaanmäki, T. Rossi, K. Majava, and O. Pironneau (eds.) O. Nevanlinna and R. Rannacher (assoc. eds.) Jyväskylä,

More information

NECESSARY OPTIMALITY CONDITIONS FOR AN OPTIMAL CONTROL PROBLEM OF 2D

NECESSARY OPTIMALITY CONDITIONS FOR AN OPTIMAL CONTROL PROBLEM OF 2D NECESSARY OPTIMALITY CONDITIONS FOR AN OPTIMAL CONTROL PROBLEM OF 2D g-navier-stokes EQUATIONS Nguyen Duc Loc 1 Abstract Considered here is the optimal control problem of 2D g-navier-stokes equations.

More information

Algebraic Multigrid Methods for the Oseen Problem

Algebraic Multigrid Methods for the Oseen Problem Algebraic Multigrid Methods for the Oseen Problem Markus Wabro Joint work with: Walter Zulehner, Linz www.numa.uni-linz.ac.at This work has been supported by the Austrian Science Foundation Fonds zur Förderung

More information

arxiv: v1 [math.oc] 21 Jan 2019

arxiv: v1 [math.oc] 21 Jan 2019 An Efficient Parallel-in-Time Method for Optimization with Parabolic PDEs Sebastian Götschel Michael L. Minion arxiv:1901.06850v1 [math.oc] 21 Jan 2019 January 17, 2019 Abstract To solve optimization problems

More information

AM 205: lecture 19. Last time: Conditions for optimality, Newton s method for optimization Today: survey of optimization methods

AM 205: lecture 19. Last time: Conditions for optimality, Newton s method for optimization Today: survey of optimization methods AM 205: lecture 19 Last time: Conditions for optimality, Newton s method for optimization Today: survey of optimization methods Quasi-Newton Methods General form of quasi-newton methods: x k+1 = x k α

More information

Optimization. Escuela de Ingeniería Informática de Oviedo. (Dpto. de Matemáticas-UniOvi) Numerical Computation Optimization 1 / 30

Optimization. Escuela de Ingeniería Informática de Oviedo. (Dpto. de Matemáticas-UniOvi) Numerical Computation Optimization 1 / 30 Optimization Escuela de Ingeniería Informática de Oviedo (Dpto. de Matemáticas-UniOvi) Numerical Computation Optimization 1 / 30 Unconstrained optimization Outline 1 Unconstrained optimization 2 Constrained

More information

1. Fast Iterative Solvers of SLE

1. Fast Iterative Solvers of SLE 1. Fast Iterative Solvers of crucial drawback of solvers discussed so far: they become slower if we discretize more accurate! now: look for possible remedies relaxation: explicit application of the multigrid

More information

TOWARD THE SOLUTION OF KKT SYSTEMS IN AERODYNAMICAL SHAPE OPTIMISATION

TOWARD THE SOLUTION OF KKT SYSTEMS IN AERODYNAMICAL SHAPE OPTIMISATION CIRM, Marseille, 7-10 juillet 2003 1 TOWARD THE SOLUTION OF KKT SYSTEMS IN AERODYNAMICAL SHAPE OPTIMISATION Alain Dervieux, François Courty, INRIA, Sophia-Antipolis e-mail: alain.dervieux@sophia.inria.fr

More information

On nonlinear adaptivity with heterogeneity

On nonlinear adaptivity with heterogeneity On nonlinear adaptivity with heterogeneity Jed Brown jed@jedbrown.org (CU Boulder) Collaborators: Mark Adams (LBL), Matt Knepley (UChicago), Dave May (ETH), Laetitia Le Pourhiet (UPMC), Ravi Samtaney (KAUST)

More information

2.29 Numerical Fluid Mechanics Spring 2015 Lecture 9

2.29 Numerical Fluid Mechanics Spring 2015 Lecture 9 Spring 2015 Lecture 9 REVIEW Lecture 8: Direct Methods for solving (linear) algebraic equations Gauss Elimination LU decomposition/factorization Error Analysis for Linear Systems and Condition Numbers

More information

Multigrid Acceleration of the Horn-Schunck Algorithm for the Optical Flow Problem

Multigrid Acceleration of the Horn-Schunck Algorithm for the Optical Flow Problem Multigrid Acceleration of the Horn-Schunck Algorithm for the Optical Flow Problem El Mostafa Kalmoun kalmoun@cs.fau.de Ulrich Ruede ruede@cs.fau.de Institute of Computer Science 10 Friedrich Alexander

More information

A multigrid method for large scale inverse problems

A multigrid method for large scale inverse problems A multigrid method for large scale inverse problems Eldad Haber Dept. of Computer Science, Dept. of Earth and Ocean Science University of British Columbia haber@cs.ubc.ca July 4, 2003 E.Haber: Multigrid

More information

Numerical approximation for optimal control problems via MPC and HJB. Giulia Fabrini

Numerical approximation for optimal control problems via MPC and HJB. Giulia Fabrini Numerical approximation for optimal control problems via MPC and HJB Giulia Fabrini Konstanz Women In Mathematics 15 May, 2018 G. Fabrini (University of Konstanz) Numerical approximation for OCP 1 / 33

More information

minimize x subject to (x 2)(x 4) u,

minimize x subject to (x 2)(x 4) u, Math 6366/6367: Optimization and Variational Methods Sample Preliminary Exam Questions 1. Suppose that f : [, L] R is a C 2 -function with f () on (, L) and that you have explicit formulae for

More information

Suboptimal feedback control of PDEs by solving Hamilton-Jacobi Bellman equations on sparse grids

Suboptimal feedback control of PDEs by solving Hamilton-Jacobi Bellman equations on sparse grids Suboptimal feedback control of PDEs by solving Hamilton-Jacobi Bellman equations on sparse grids Jochen Garcke joint work with Axel Kröner, INRIA Saclay and CMAP, Ecole Polytechnique Ilja Kalmykov, Universität

More information

Key words. preconditioned conjugate gradient method, saddle point problems, optimal control of PDEs, control and state constraints, multigrid method

Key words. preconditioned conjugate gradient method, saddle point problems, optimal control of PDEs, control and state constraints, multigrid method PRECONDITIONED CONJUGATE GRADIENT METHOD FOR OPTIMAL CONTROL PROBLEMS WITH CONTROL AND STATE CONSTRAINTS ROLAND HERZOG AND EKKEHARD SACHS Abstract. Optimality systems and their linearizations arising in

More information

Indefinite and physics-based preconditioning

Indefinite and physics-based preconditioning Indefinite and physics-based preconditioning Jed Brown VAW, ETH Zürich 2009-01-29 Newton iteration Standard form of a nonlinear system F (u) 0 Iteration Solve: Update: J(ũ)u F (ũ) ũ + ũ + u Example (p-bratu)

More information

Discrete Projection Methods for Incompressible Fluid Flow Problems and Application to a Fluid-Structure Interaction

Discrete Projection Methods for Incompressible Fluid Flow Problems and Application to a Fluid-Structure Interaction Discrete Projection Methods for Incompressible Fluid Flow Problems and Application to a Fluid-Structure Interaction Problem Jörg-M. Sautter Mathematisches Institut, Universität Düsseldorf, Germany, sautter@am.uni-duesseldorf.de

More information

Inexact Newton Methods and Nonlinear Constrained Optimization

Inexact Newton Methods and Nonlinear Constrained Optimization Inexact Newton Methods and Nonlinear Constrained Optimization Frank E. Curtis EPSRC Symposium Capstone Conference Warwick Mathematics Institute July 2, 2009 Outline PDE-Constrained Optimization Newton

More information

A Review of Preconditioning Techniques for Steady Incompressible Flow

A Review of Preconditioning Techniques for Steady Incompressible Flow Zeist 2009 p. 1/43 A Review of Preconditioning Techniques for Steady Incompressible Flow David Silvester School of Mathematics University of Manchester Zeist 2009 p. 2/43 PDEs Review : 1984 2005 Update

More information

Numerical Optimization Algorithms

Numerical Optimization Algorithms Numerical Optimization Algorithms 1. Overview. Calculus of Variations 3. Linearized Supersonic Flow 4. Steepest Descent 5. Smoothed Steepest Descent Overview 1 Two Main Categories of Optimization Algorithms

More information

POD for Parametric PDEs and for Optimality Systems

POD for Parametric PDEs and for Optimality Systems POD for Parametric PDEs and for Optimality Systems M. Kahlbacher, K. Kunisch, H. Müller and S. Volkwein Institute for Mathematics and Scientific Computing University of Graz, Austria DMV-Jahrestagung 26,

More information

Integration of Sequential Quadratic Programming and Domain Decomposition Methods for Nonlinear Optimal Control Problems

Integration of Sequential Quadratic Programming and Domain Decomposition Methods for Nonlinear Optimal Control Problems Integration of Sequential Quadratic Programming and Domain Decomposition Methods for Nonlinear Optimal Control Problems Matthias Heinkenschloss 1 and Denis Ridzal 2 1 Department of Computational and Applied

More information

INTERGRID OPERATORS FOR THE CELL CENTERED FINITE DIFFERENCE MULTIGRID ALGORITHM ON RECTANGULAR GRIDS. 1. Introduction

INTERGRID OPERATORS FOR THE CELL CENTERED FINITE DIFFERENCE MULTIGRID ALGORITHM ON RECTANGULAR GRIDS. 1. Introduction Trends in Mathematics Information Center for Mathematical Sciences Volume 9 Number 2 December 2006 Pages 0 INTERGRID OPERATORS FOR THE CELL CENTERED FINITE DIFFERENCE MULTIGRID ALGORITHM ON RECTANGULAR

More information

Quasi-Newton methods for minimization

Quasi-Newton methods for minimization Quasi-Newton methods for minimization Lectures for PHD course on Numerical optimization Enrico Bertolazzi DIMS Universitá di Trento November 21 December 14, 2011 Quasi-Newton methods for minimization 1

More information

FDM for parabolic equations

FDM for parabolic equations FDM for parabolic equations Consider the heat equation where Well-posed problem Existence & Uniqueness Mass & Energy decreasing FDM for parabolic equations CNFD Crank-Nicolson + 2 nd order finite difference

More information

Spectral element agglomerate AMGe

Spectral element agglomerate AMGe Spectral element agglomerate AMGe T. Chartier 1, R. Falgout 2, V. E. Henson 2, J. E. Jones 4, T. A. Manteuffel 3, S. F. McCormick 3, J. W. Ruge 3, and P. S. Vassilevski 2 1 Department of Mathematics, Davidson

More information

Parallel-in-Time for Parabolic Optimal Control Problems Using PFASST

Parallel-in-Time for Parabolic Optimal Control Problems Using PFASST Zuse Institute Berlin Takustr. 7 14195 Berlin Germany SEBASTIAN GÖTSCHEL, MICHAEL L. MINION Parallel-in-Time for Parabolic Optimal Control Problems Using PFASST ZIB Report 17-51 (May 2017) Zuse Institute

More information

Elliptic Problems / Multigrid. PHY 604: Computational Methods for Physics and Astrophysics II

Elliptic Problems / Multigrid. PHY 604: Computational Methods for Physics and Astrophysics II Elliptic Problems / Multigrid Summary of Hyperbolic PDEs We looked at a simple linear and a nonlinear scalar hyperbolic PDE There is a speed associated with the change of the solution Explicit methods

More information

A note on accurate and efficient higher order Galerkin time stepping schemes for the nonstationary Stokes equations

A note on accurate and efficient higher order Galerkin time stepping schemes for the nonstationary Stokes equations A note on accurate and efficient higher order Galerkin time stepping schemes for the nonstationary Stokes equations S. Hussain, F. Schieweck, S. Turek Abstract In this note, we extend our recent work for

More information

Robust solution of Poisson-like problems with aggregation-based AMG

Robust solution of Poisson-like problems with aggregation-based AMG Robust solution of Poisson-like problems with aggregation-based AMG Yvan Notay Université Libre de Bruxelles Service de Métrologie Nucléaire Paris, January 26, 215 Supported by the Belgian FNRS http://homepages.ulb.ac.be/

More information

Introduction to Multigrid Methods

Introduction to Multigrid Methods Introduction to Multigrid Methods Chapter 9: Multigrid Methodology and Applications Gustaf Söderlind Numerical Analysis, Lund University Textbooks: A Multigrid Tutorial, by William L Briggs. SIAM 1988

More information

Using an Auction Algorithm in AMG based on Maximum Weighted Matching in Matrix Graphs

Using an Auction Algorithm in AMG based on Maximum Weighted Matching in Matrix Graphs Using an Auction Algorithm in AMG based on Maximum Weighted Matching in Matrix Graphs Pasqua D Ambra Institute for Applied Computing (IAC) National Research Council of Italy (CNR) pasqua.dambra@cnr.it

More information

Suboptimal Open-loop Control Using POD. Stefan Volkwein

Suboptimal Open-loop Control Using POD. Stefan Volkwein Institute for Mathematics and Scientific Computing University of Graz, Austria PhD program in Mathematics for Technology Catania, May 22, 2007 Motivation Optimal control of evolution problems: min J(y,

More information

A MULTILEVEL SUCCESSIVE ITERATION METHOD FOR NONLINEAR ELLIPTIC PROBLEMS

A MULTILEVEL SUCCESSIVE ITERATION METHOD FOR NONLINEAR ELLIPTIC PROBLEMS MATHEMATICS OF COMPUTATION Volume 73, Number 246, Pages 525 539 S 0025-5718(03)01566-7 Article electronically published on July 14, 2003 A MULTILEVEL SUCCESSIVE ITERATION METHOD FOR NONLINEAR ELLIPTIC

More information

Optimal Control of Partial Differential Equations I+II

Optimal Control of Partial Differential Equations I+II About the lecture: Optimal Control of Partial Differential Equations I+II Prof. Dr. H. J. Pesch Winter semester 2011/12, summer semester 2012 (seminar), winter semester 2012/13 University of Bayreuth Preliminary

More information

arxiv: v1 [math.na] 6 Nov 2017

arxiv: v1 [math.na] 6 Nov 2017 Efficient boundary corrected Strang splitting Lukas Einkemmer Martina Moccaldi Alexander Ostermann arxiv:1711.02193v1 [math.na] 6 Nov 2017 Version of November 6, 2017 Abstract Strang splitting is a well

More information

MULTIGRID METHODS FOR NONLINEAR PROBLEMS: AN OVERVIEW

MULTIGRID METHODS FOR NONLINEAR PROBLEMS: AN OVERVIEW MULTIGRID METHODS FOR NONLINEAR PROBLEMS: AN OVERVIEW VAN EMDEN HENSON CENTER FOR APPLIED SCIENTIFIC COMPUTING LAWRENCE LIVERMORE NATIONAL LABORATORY Abstract Since their early application to elliptic

More information

Approximation of fluid-structure interaction problems with Lagrange multiplier

Approximation of fluid-structure interaction problems with Lagrange multiplier Approximation of fluid-structure interaction problems with Lagrange multiplier Daniele Boffi Dipartimento di Matematica F. Casorati, Università di Pavia http://www-dimat.unipv.it/boffi May 30, 2016 Outline

More information

Construction of a New Domain Decomposition Method for the Stokes Equations

Construction of a New Domain Decomposition Method for the Stokes Equations Construction of a New Domain Decomposition Method for the Stokes Equations Frédéric Nataf 1 and Gerd Rapin 2 1 CMAP, CNRS; UMR7641, Ecole Polytechnique, 91128 Palaiseau Cedex, France 2 Math. Dep., NAM,

More information