Improved Liquefaction Hazard Evaluation through PLHA. Steven L. Kramer University of Washington

Size: px
Start display at page:

Download "Improved Liquefaction Hazard Evaluation through PLHA. Steven L. Kramer University of Washington"

Transcription

1 Improved Liquefaction Hazard Evaluation through PLHA Steven L. Kramer University of Washington

2 il Liquefaction hree primary questions to answer: Is the soil susceptible to liquefaction? If so, is the anticipated loading strong enough to initiate liquefaction? If so, what will be the effects of liquefaction? Yes Yes Susceptibility Initiation Effects No No hazard No No hazard Lateral spreading Flow sliding Settlement

3 il Liquefaction hree primary questions to answer: Is the soil susceptible to liquefaction? If so, is the anticipated loading strong enough to initiate liquefaction? If so, what will be the effects of liquefaction? Yes Yes Susceptibility Initiation Effects No No hazard No No hazard Evaluation of liquefaction potential

4 Using mapped parameters, engineers can obtain benefits of fully probabilistic approach using conventional calculations uefaction Potential urrent procedures produce inconsistent liquefaction potential Inferred damage levels are inconsistent Inferred loss levels are inconsistent Inferred risk is inconsistent robabilistic performance-based approach can solve this problem Full-blown probabilistic analyses (PLHA) are time-consuming Approximate procedures are available

5 aluation of Liquefaction Potential Simplified Method SPT CPT V s FS CRR CSR Resistance Loading Capacity Demand Youd et al. Cetin-Seed

6 aluation of Liquefaction Potential Simplified Method SPT CPT V s FS CRR CSR Resistance Loading Capacity Demand Peak acceleration Magnitude PGA vo 1 = 0.65 r g d MSF vo Intensity Measure (IM): PGA Measure of amplitude of motion M Measure of duration (number of loading cycles)

7 onventional Evaluation of Liquefaction Potential 1. Determine 475-yr (or 2,475-yr) PGA One PGA 2. Determine corresponding M w from deaggregation 3. Compute CSR PGA vo 1 = 0.65 r g d MSF vo One M w One CSR 4. Based on (N 1 ) 60, compute CRR Probabilistic representation of 5. Compute FS L = CRR / CSR ground motion hazard is combined with deterministic representation of liquefaction resistance Conventional criterion: FS min =

8 tball Defense 11 players Different sizes Different speeds Different consequences

9 tball Defense Free safety Small Really fast Makes tackles all over field

10 tball Defense Middle linebacker Big Fast Makes tackles in middle of field

11 tball Defense Defensive tackle Huge Slow Little range, but hits really hard

12 ent Liquefaction Procedures Smaller, more frequent quefaction proach to lay calling Bigger, more rare Only block one player

13 proved Liquefaction Procedure Probabilistic Liquefaction Hazard Analysis (PLHA) Coupled probabilistic liquefaction potential procedure with PSHA

14 proved Liquefaction Procedure Probabilistic Liquefaction Hazard Analysis (PLHA) Coupled probabilistic liquefaction potential procedure with PSHA Application of PEER PBEE framework Mean annual rate of non-exceedance of FS* L Sum over all peak accelerations Sum over all magnitudes

15 proved Liquefaction Procedure Probabilistic Liquefaction Hazard Analysis (PLHA) Coupled probabilistic liquefaction potential procedure with PSHA Application of PEER PBEE framework Short T R Weak motions High FS L log FS Long T R Strong motions Low FS L

16 proved Liquefaction Procedure Probabilistic Liquefaction Hazard Analysis (PLHA) Coupled probabilistic liquefaction potential procedure with PSHA Application of PEER PBEE framework log FS T R,L Return period of liquefaction

17 Illustration of procedure Idealized soil profile Liquefiable in weak motions Liquefiable in strong motions Element at 6 m depth: (N 1 ) 60 = 18

18 Seismic environments Mean annual rate of exceedance, amax (yr -1 ) USGS National Hazard Mapping Program But we also need M w to evaluate liquefaction potential

19 Selection of magnitude Multiple magnitudes contribute to PGA at a given return period

20 Selection of magnitude Multiple magnitudes contribute to PGA at a given return period Contributions are different at different return periods 108 yrs 975 yrs USGS Seattle Deaggregation 224 yrs 2475 yrs 475 yrs 4975 yrs

21 Selection of magnitude Multiple magnitudes contribute to PGA at a given return period Contributions are different at different return periods k down hazard curve into ponents associated with different nitudes sum is equal to Total

22 ssume idealized site is located in 10 different U.S. cities Location Lat. (N) Long. (W) 475-yr a max 2,475-yr a max Butte, MT Charleston, SC Eureka, CA Memphis, TN Portland, OR Salt Lake City, UT Annual rate of exceedance, San Francisco, CA San Jose, CA Santa Monica, CA Seattle, WA Butte Charleston Eureka Memphis Portland Salt Lake City San Francisco San Jose Santa Monica Seattle

23 eterministic analysis using mean magnitudes Higher PGA 475 leads to: Lower FS L Higher N

24 erformance-based analysis Hazard curves for FS L, N req for element at 6 m depth

25 erformance-based analysis Hazard curves for FS L, N req for element at 6 m depth 0021

26 erformance-based analysis Hazard curves for FS L, N req for element at 6 m depth 0021

27 erformance-based analysis Hazard curves for FS L, N req for element at 6 m depth

28 erformance-based analysis Hazard curves for FS L, N req for element at 6 m depth compute deterministic N req es associated with ventional criterion for adequate efaction resistance (FS L > 1.2 g PGA 475 and mean magnitude then use liquefaction hazard ves for N req to compute return iod for liquefaction (N < N req ) el of agreement will provide ght into consistency of efaction hazards as evaluated g conventional approach

29 erformance-based analysis compute deterministic N req es associated with ventional criterion for adequate efaction resistance (FS L > 1.2 g PGA 475 and mean magnitude then use liquefaction hazard ves for N req to compute return iod for liquefaction (N < N req ) el of agreement will provide ght into consistency of efaction hazards as evaluated g conventional approach nsistent application of conventional procedures for evaluation of liquefaction

30 ssume idealized site is located in 10 different U.S. cities Location Lat. (N) Long. (W) 475-yr a max 2,475-yr a max Butte, MT Charleston, SC Eureka, CA Memphis, TN Portland, OR Salt Lake City, UT Annual rate of exceedance, San Francisco, CA San Jose, CA Santa Monica, CA Seattle, WA Butte Charleston Eureka Memphis Portland Salt Lake City San Francisco San Jose Santa Monica Seattle Equal PGA

31 ssume idealized site is located in 10 different U.S. cities Deterministic analysis using mean magnitudes Similar FS L Similar N req

32 compute deterministic N req es associated with ventional criterion for adequate efaction resistance (FS L > 1.2 g PGA 475 and mean magnitude then use liquefaction hazard ves for N req to compute return iod for liquefaction (N < N req ) el of agreement will provide ght into consistency of efaction hazards as evaluated g conventional approach nsistent application of conventional procedures for evaluation of liquefaction

33 Relative factors of safety det N req N PB CRR N Location req CRR N Butte, MT Charleston, SC Eureka, CA Memphis, TN Portland, OR Salt Lk. City, UT San Fran., CA San Jose, CA Santa Mon., CA Seattle, WA det req PB req

34 Relative factors of safety < 1.0 = unconservative > 1.0 = conservative det N req N PB CRR N Location req CRR N Butte, MT Charleston, SC Eureka, CA Memphis, TN Portland, OR Salt Lk. City, UT San Fran., CA San Jose, CA Santa Mon., CA Seattle, WA nsistent application of conventional procedures for evaluation of liquefaction det req PB req Relative FS in Charleston is 45% higher than in San Jose

35 Relative factors of safety These are big differences Geotechs spend a lot of time tweaking various components Magnitude scaling factor, MSF Depth reduction factor, r d Overburden stress factor, K Fines content correction Effects of tweaks have much smaller effect than those shown here

36 So what can we do to improve consistency? Base liquefaction criteria on return period of liquefaction Consistent return period will lead to consistent probability of liquefaction Can handle liquefaction potential in different ways 0.22g M w = g M w = g M w = g M w = g M w = g M w = g M w = g M w = g 0.08g M w =5.9

37 So what can we do to improve consistency? Base liquefaction criteria on return period Consistent return period will lead to consistent probability of liquefaction Can be expressed in terms of N req for a specified return period lations performed on cross state (247 pts) ch point, PB calcs dered 100 PGA levels 0 magnitudes f 247 deterministic 94,000 probabilistic

38 Contours of N req for FS L = 1.2 in 6-m-deep element based on conventional analysis with 475-yr PGA and mean M w N req ~ 22 for Seattle

39 Contours of N req for FS L = 1.2 in 6-m-deep element based on conventional analysis with 475-yr PGA and mean M w N req ~ 22 for Seattle From N req hazard curve, corresponding return period is 400 yrs.

40 Contours of N req for FS L = 1.2 in 6-m-deep element based on conventional analysis with 475-yr PGA and mean M w N req ~ 22 for Seattle From N req hazard curve, corresponding return period is 400 yrs To obtain uniform hazard across state, use hazard curves to determine 400- yr N req values everywhere

41 Contours of N req based on performance-based analysis with 400-yr return period N req ~ 22 for Seattle

42 Contours of N req based on performance-based analysis with 400-yr return period N req ~ 22 for Seattle N req values east of Seattle are very nearly the same as deterministic values

43 Contours of N req based on performance-based analysis with 400-yr return period N req ~ 22 for Seattle N req values east of Seattle are very nearly the same as deterministic values N req values west of Seattle are lower

44 Contours of difference in N req for conventional and performance-based analyses

45 Contours of relative factor of safety inherent in use of conventional analyses Coastal sites are effectively being required to design for 40% - 50% higher FS than required to obtain same hazard as Seattle

46 Contours of relative factor of safety inherent in use of conventional analyses Coastal sites are effectively being required to design for 40% - 50% higher FS than required to obtain same hazard as Seattle Risk-consistent design using

47 Contours of N req based on performance-based analysis with 400-yr return period Results correspond to 6 m deep element in reference profile. How can they be used for different depths in different profiles,

48 The image part with relationship ID rid6 was not found in the file. rformance-based Liquefaction Evaluation ite-specific correction Cetin equation CRR N exp ( FC) 29.53ln M 3.70 ln( ' ) 0.05FC ,60 w vo a L / p ( P ) Letting we can write N 13.32lnCSR 29.53ln M 3.70ln( ' / ) ,60, cs w vo a L Substituting for CSR and using P L = 0.6 (equivalent to standard curve) a max vo N1,60, 13.32ln ln 3.70ln( ' / ) ' cs rd M w vo pa g vo p ( P ) 0.253

49 ite-specific correction Defining these terms for a reference site condition, ln amax vo N1,60,, 0.65 ' cs ref d ref w vo a ref g vo ref r 29.53ln M 3.70 ln( ' / p ) Then the site-specific required penetration resistance can be defined as N 1,60,cs,req = N 1,60,cs,ref + N Site- and profile-specific blowcount adjustment So N = N 1,60,cs,req - N 1,60,cs,ref a max vo 13.32ln 0.65 r 29.53ln 3.70 ln( ' / ) ' d M w vo pa g Initial stress-related terms vo ' ln max 0.65 vo - r Response-related 29.53ln M 3.70 term ln( ' a g vo ref d ref w vo / p a ) ref vo / ' r ' / vo d vo p a

50 Then N vo / ' vo ln ( vo / ' vo ) ref ' vo 3.70 ln ( ' vo ) ref rd ln ( rd ) ref N N r d = N + N rd Function of: density groundwater level depth Function of: depth shear wave velocity peak acceleration earthquake magnitude

51 Then N vo / ' vo ln ( vo / ' vo ) ref ' vo 3.70 ln ( ' vo ) ref rd ln ( rd ) ref N N r d = N + N rd Function of: density groundwater level depth Function of: depth shear wave velocity peak acceleration earthquake magnitude

52 Correction of stress-related terms

53 Correction of r d -related terms

54 parison of N req values chart-based approximate procedure vs. full PB analysis Site-specific FS L

55 parison of N req values chart-based approximate procedure vs. full PB analysis Approximated N req Site-specific FS L Site-specific N req

56 parison of N req values chart-based approximate procedure vs. full PB analysis Approximated N req ple, chart-based adjustment procedure appears to be useful Site-specific FS L Site-specific N req

57 parison of N req values chart-based approximate procedure vs. full PB analysis Approximated N req ple, chart-based adjustment procedure appears to be useful efits of performance-based calculations embodied in mapped N req value for rence element Site-specific in reference FS profile. L Site-specific N req

58 parison of N req values chart-based approximate procedure vs. full PB analysis Approximated N req ple, chart-based adjustment procedure is useful agrees with full PLHA efits of performance-based calculations embodied in mapped N req value for rence element Site-specific in reference FS profile. L Site-specific N req r accounts for site-specific conditions through adjustment procedure.

59 475-yr N req Can map N req values for reference element in reference soil profile 2,475-yr N req

60 rnative approaches Map reference CSR value for given return period Use CSR-based adjustments

61 rnative approaches Map reference CSR value for given return period Use CSR-based adjustments Kevin Franke, BYU Approximated N req

62 rnative approaches Map reference CSR value for given return period Use CSR-based adjustments T R = 475 yrs

63 rnative approaches Map reference CSR value for given return period Use CSR-based adjustments T R = 1,033 yrs

64 rnative approaches Map reference CSR value for given return period Use CSR-based adjustments T R = 2,475 yrs

65 rnative approaches Map magnitude-corrected PGA value CSR 0.65 PGA g ' vo vo rd MSF 0.65 PGA MSF ' vo vo r d 0.65PGA M ' vo vo r d PGA M PGA MSF Could create program to run USGS PSHA analysis, extract hazard curve and deaggregation data, and compute PGA M at different return periods.

66 Result: User goes to map or website, computes PGA M for return period of interest User computes liquefaction potential (FS L ) in same way he/she does now Issues: Requires selection of liquefaction potential model(s) In short term (next 5 yrs), Idriss and Boulanger procedure most common In longer term, NGL relationships will be available Multiple relationships by different modelers Epistemic uncertainty characterized

67 Benefits: More complete evaluation of liquefaction potential Considers all levels of shaking All PGAs All magnitudes Provides consistent actual liquefaction hazards at sites in different seismo-tectonic environments Equal hazards across U.S. Equal retrofit / soil improvement requirements across U.S. Would allow realization of full benefits of NGL models

PERFORMANCE-BASED LIQUEFACTION POTENTIAL: A STEP TOWARD MORE UNIFORM DESIGN REQUIREMENTS

PERFORMANCE-BASED LIQUEFACTION POTENTIAL: A STEP TOWARD MORE UNIFORM DESIGN REQUIREMENTS PERFORMANCE-BASED LIQUEFACTION POTENTIAL: A STEP TOWARD MORE UNIFORM DESIGN REQUIREMENTS Steven L. Kramer 1, Roy T. Mayfield 2 and Yi-Min Huang 2 Abstract This paper describes a procedure for performance-based

More information

THE OVERPREDICTION OF LIQUEFACTION HAZARD IN CERTAIN AREAS OF LOW TO MODERATE SEISMICITY

THE OVERPREDICTION OF LIQUEFACTION HAZARD IN CERTAIN AREAS OF LOW TO MODERATE SEISMICITY THE OVERPREDICTION OF LIQUEFACTION HAZARD IN CERTAIN AREAS OF LOW TO MODERATE SEISMICITY Dr. Kevin Franke, Ph.D., P.E., M.ASCE Dept. of Civil and Environmental Engineering Brigham Young University April

More information

Sensitivity of Liquefaction Triggering Analysis to Earthquake Magnitude

Sensitivity of Liquefaction Triggering Analysis to Earthquake Magnitude Australian Earthquake Engineering Society 2013 Conference, Nov 15-17, Hobart, Tasmania Sensitivity of Liquefaction Triggering Analysis to Earthquake Magnitude Dr Timothy I Mote 1 and Minly M. L. So 2 1.

More information

Development of U. S. National Seismic Hazard Maps and Implementation in the International Building Code

Development of U. S. National Seismic Hazard Maps and Implementation in the International Building Code Development of U. S. National Seismic Hazard Maps and Implementation in the International Building Code Mark D. Petersen (U.S. Geological Survey) http://earthquake.usgs.gov/hazmaps/ Seismic hazard analysis

More information

Probabilistic evaluation of liquefaction-induced settlement mapping through multiscale random field models

Probabilistic evaluation of liquefaction-induced settlement mapping through multiscale random field models 6 th Asian-Pacific Symposium on Structural Reliability and its Applications (APSSRA6) Probabilistic evaluation of liquefaction-induced settlement mapping through multiscale random field models Qiushi Chen

More information

Liquefaction Potential Post-Earthquake in Yogyakarta

Liquefaction Potential Post-Earthquake in Yogyakarta The 17 th Southeast Asian Geotechnical Conference Taipei, Taiwan, May 10~13, 2010 Liquefaction Potential Post-Earthquake in Yogyakarta AGUS SETYO MUNTOHAR 1 and S.P.R. WARDANI 2 1 Department of Civil Engineering,

More information

Evaluation of Geotechnical Hazards

Evaluation of Geotechnical Hazards Evaluation of Geotechnical Hazards by Geoffrey R. Martin Appendix B: Evaluation of Geotechnical Hazards Describes Evaluation Procedures Soil Liquefaction Soil Settlement Surface Fault Rupture Flooding

More information

Liquefaction assessments of tailings facilities in low-seismic areas

Liquefaction assessments of tailings facilities in low-seismic areas Page 1 Liquefaction assessments of tailings facilities in low-seismic areas Holly Rourke SRK Consulting, Perth, WA, Australia Caroline Holmes SRK Consulting, Perth, WA, Australia This paper was first presented

More information

Development of a Performance-Based Procedure to Predict Liquefaction-Induced Free-Field Settlements for the Cone Penetration Test

Development of a Performance-Based Procedure to Predict Liquefaction-Induced Free-Field Settlements for the Cone Penetration Test Brigham Young University BYU ScholarsArchive All Theses and Dissertations 2017-06-01 Development of a Performance-Based Procedure to Predict Liquefaction-Induced Free-Field Settlements for the Cone Penetration

More information

1.1 Calculation methods of the liquefaction hazard.

1.1 Calculation methods of the liquefaction hazard. 1 Theoretical basis 1.1 Calculation methods of the liquefaction hazard. 1.1.1 Empirical methods. Empirical methods are generally used to get a rough estimate of the liquefaction hazard in saturated sandy

More information

LIQUEFACTION POTENTIAL & POST EARTHQUAKE STABILITY ASSESSMENT. H2J Engineering

LIQUEFACTION POTENTIAL & POST EARTHQUAKE STABILITY ASSESSMENT. H2J Engineering LIQUEFACTION POTENTIAL & POST EARTHQUAKE STABILITY ASSESSMENT Project ID: CEEn_16CPST_13 by H2J Engineering Project Mentor: Tyler Coutu Team Lead: Heidi Decayanan Equipment Specialist: Joshua Peterson

More information

Liquefaction Hazard Mapping. Keith L. Knudsen Senior Engineering Geologist California Geological Survey Seismic Hazard Mapping Program

Liquefaction Hazard Mapping. Keith L. Knudsen Senior Engineering Geologist California Geological Survey Seismic Hazard Mapping Program Liquefaction Hazard Mapping Keith L. Knudsen Senior Engineering Geologist California Geological Survey Seismic Hazard Mapping Program April 20, 2006 Topics Liquefaction hazard mapping (regional) CGS approach

More information

Evaluation of soil liquefaction using the CPT Part 1

Evaluation of soil liquefaction using the CPT Part 1 Evaluation of soil liquefaction using the CPT Part 1 Dr. Peter K. Robertson Webinar #7 2013 CPT Guide 5 th Edition Download FREE copy from: Robertson & Cabal (Robertson) 5 th Edition 2012 www.greggdrilling.com

More information

Long-Period Transition Maps Location of Deterministic Areas

Long-Period Transition Maps Location of Deterministic Areas Seismic Ground Motions GROUND MOTION MAPS How To Obtain the Basic Values 1 Determine basic values from maps for bedrock conditions 2, 3 Classify soil conditions at site and determine site coefficients

More information

2-D Liquefaction Evaluation with Q4Mesh

2-D Liquefaction Evaluation with Q4Mesh 2005 Tri-Service Infrastructure Systems Conference and Exhibition 2-D Liquefaction Evaluation with Q4Mesh -David C. Serafini, M.S., P.E. US Army Corps, Sacramento, CA 3 August 2005 2005 Tri-Service ISC

More information

Paleoseismic Investigations for Determining the Design Ground Motions for Nuclear Power Plants

Paleoseismic Investigations for Determining the Design Ground Motions for Nuclear Power Plants Paleoseismic Investigations for Determining the Design Ground Motions for Nuclear Power Plants Russell A. Green Department of Civil and Environmental Engineering Purdue Geotechnical Society Workshop May

More information

Liquefaction induced ground damage in the Canterbury earthquakes: predictions vs. reality

Liquefaction induced ground damage in the Canterbury earthquakes: predictions vs. reality Bowen, H. J. & Jacka, M. E. () Proc. th NZGS Geotechnical Symposium. Ed. CY Chin, Queenstown Liquefaction induced ground damage in the Canterbury earthquakes: predictions vs. reality H J Bowen & M E Jacka

More information

GEOTECHNICAL SEISMIC HAZARDS

GEOTECHNICAL SEISMIC HAZARDS Chapter 13 GEOTECHNICAL SEISMIC HAZARDS FINAL SCDOT GEOTECHNICAL DESIGN MANUAL June 2010 Table of Contents Section Page 13.1 Introduction... 13-1 13.2 Geotechnical Seismic Hazard Failure Modes... 13-2

More information

Liquefaction and Foundations

Liquefaction and Foundations Liquefaction and Foundations Amit Prashant Indian Institute of Technology Gandhinagar Short Course on Seismic Design of Reinforced Concrete Buildings 26 30 November, 2012 What is Liquefaction? Liquefaction

More information

EARTHQUAKE-INDUCED SETTLEMENTS IN SATURATED SANDY SOILS

EARTHQUAKE-INDUCED SETTLEMENTS IN SATURATED SANDY SOILS VOL., NO., AUGUST 7 ISSN 119- -7 Asian Research Publishing Network (ARPN). All rights reserved. EARTHQUAKE-INDUCED SETTLEMENTS IN SATURATED SANDY SOILS C. Y. Lee Department of Civil Engineering, College

More information

Use of CPT in Geotechnical Earthquake Engineering

Use of CPT in Geotechnical Earthquake Engineering Use of CPT in Geotechnical Earthquake Engineering Prof. Scott M. Olson, PhD, PE Use of Cone Penetration Test for Foundation Analysis and Design 2006 Annual Meeting Transportation Research Board Geotechnical

More information

LSN a new methodology for characterising the effects of liquefaction in terms of relative land damage severity

LSN a new methodology for characterising the effects of liquefaction in terms of relative land damage severity van Ballegooy, S., Lacrosse, V., Jacka, M. & Malan, P. (2013) Proc. 19 th NZGS Geotechnical Symposium. Ed. CY Chin, Queenstown LSN a new methodology for characterising the effects of liquefaction in terms

More information

Unique Site Conditions and Response Analysis Challenges in the Central and Eastern U.S.

Unique Site Conditions and Response Analysis Challenges in the Central and Eastern U.S. Unique Site Conditions and Response Analysis Challenges in the Central and Eastern U.S. James R. Martin, C. Guney Olgun, & Morgan Eddy Civil and Environmental Engineering World Institute for Disaster Risk

More information

The LSN Calculation and Interpolation Process

The LSN Calculation and Interpolation Process Appendix I : The LSN Calculation and Interpolation Process I1. Introduction Cone Penetration Tests (CPTs) can be used in the assessment of the liquefaction vulnerability. The CPTs available from the Canterbury

More information

SEISMIC SOIL LIQUEFACTION BASED ON IN SITU TEST DATA

SEISMIC SOIL LIQUEFACTION BASED ON IN SITU TEST DATA IGC 2009, Guntur, INDIA Seismic Soil iquefaction Based on in situ Test Data SEISMIC SOI IQUEFACTION BASED ON IN SITU TEST DATA T.G. Sitharam Professor, Dept. of Civil Engg., IISc, Bangalore 560 012, India.

More information

Presentation Outline. 1. Seismic Soil Liquefaction Explained 2. Presentation of the Software SOILLIQ 3. Illustrative Applications using SOILLIQ

Presentation Outline. 1. Seismic Soil Liquefaction Explained 2. Presentation of the Software SOILLIQ 3. Illustrative Applications using SOILLIQ Presentation Outline 1. Seismic Soil Liquefaction Explained 2. Presentation of the Software SOILLIQ 3. Illustrative Applications using SOILLIQ Foundation Failures in Residential Buildings (1964 Niigata,

More information

Assessment of the Potential for Earthquake- Induced Liquefaction in Granular Soils

Assessment of the Potential for Earthquake- Induced Liquefaction in Granular Soils Spreadsheets in Education (ejsie) Volume 7 Issue Article 4 March 014 Assessment of the Potential for Earthquake- Induced Liquefaction in Granular Soils Salah Sadek American University of Beirut, salah@aub.edu.lb

More information

SEISMIC HAZARD ANALYSIS. Instructional Material Complementing FEMA 451, Design Examples Seismic Hazard Analysis 5a - 1

SEISMIC HAZARD ANALYSIS. Instructional Material Complementing FEMA 451, Design Examples Seismic Hazard Analysis 5a - 1 SEISMIC HAZARD ANALYSIS Instructional Material Complementing FEMA 451, Design Examples Seismic Hazard Analysis 5a - 1 Seismic Hazard Analysis Deterministic procedures Probabilistic procedures USGS hazard

More information

AGMU Memo Liquefaction Analysis

AGMU Memo Liquefaction Analysis LRFD Liquefaction Analysis This design guide illustrates the Department s recommended procedures for analyzing the liquefaction potential of soil during a seismic event considering Article 0.5.4.2 of the

More information

The Travails of the Average Geotechnical Engineer Using the National Seismic Hazard Maps

The Travails of the Average Geotechnical Engineer Using the National Seismic Hazard Maps The Travails of the Average Geotechnical Engineer Using the National Seismic Hazard Maps Marshall Lew Amec Foster Wheeler Environment & Infrastructure Los Angeles, California Amec Foster Wheeler 2015.

More information

(THIS IS ONLY A SAMPLE REPORT OR APPENDIX OFFERED TO THE USERS OF THE COMPUTER PROGRAM

(THIS IS ONLY A SAMPLE REPORT OR APPENDIX OFFERED TO THE USERS OF THE COMPUTER PROGRAM C A U T I O N!! (THIS IS ONLY A SAMPLE REPORT OR APPENDIX OFFERED TO THE USERS OF THE COMPUTER PROGRAM EQLique&Settle2. THE AUTHOR IS HEREBY RELEASED OF ANY LIABILITY FOR ANY INCORRECT USE OF THIS SAMPLE

More information

Evaluating the Seismic Coefficient for Slope Stability Analyses

Evaluating the Seismic Coefficient for Slope Stability Analyses Evaluating the Seismic Coefficient for Slope Stability Analyses by Edward Kavazanjian, Jr., Ph.D., P.E.,D.GE., NAE Ira A. Fulton Professor of Geotechnical Engineering School of Sustainable Engineering

More information

Comparison of different methods for evaluating the liquefaction potential of sandy soils in Bandar Abbas

Comparison of different methods for evaluating the liquefaction potential of sandy soils in Bandar Abbas Comparison of different methods for evaluating the liquefaction potential of sandy soils in Bandar Abbas M. Mosaffa¹ & M. Rafiee² 1.Geotechnical M.S. student Hormozgan University, Bandar Abbas, Iran(Email:Amestris@gmail.com).Geotechnical

More information

Liquefaction Hazard Maps for Australia

Liquefaction Hazard Maps for Australia Liquefaction Hazard Maps for Australia T.I. Mote J.N. Dismuke Arup, Sydney Australia SUMMARY: Screening-level liquefaction hazard maps for Australia are developed corresponding to ground motions for annual

More information

LIQUEFACTION ASSESSMENT OF INDUS SANDS USING SHEAR WAVE VELOCITY

LIQUEFACTION ASSESSMENT OF INDUS SANDS USING SHEAR WAVE VELOCITY Pakistan Engineering Congress, 69th Annual Session Proceedings 219 LIQUEFACTION ASSESSMENT OF INDUS SANDS USING SHEAR WAVE VELOCITY Sohail Kibria 1, M. Javed 2, Muhammad Ali 3 ABSTRACT A host of procedures

More information

LIQUEFACTION OF EARTH EMBANKMENT DAMS TWO CASE HISTORIES: (1) LIQUEFACTION OF THE EMBANKMENT SOILS, AND (2) LIQUEFACTION OF THE FOUNDATIONS SOILS

LIQUEFACTION OF EARTH EMBANKMENT DAMS TWO CASE HISTORIES: (1) LIQUEFACTION OF THE EMBANKMENT SOILS, AND (2) LIQUEFACTION OF THE FOUNDATIONS SOILS LIQUEFACTION OF EARTH EMBANKMENT DAMS TWO CASE HISTORIES: (1) LIQUEFACTION OF THE EMBANKMENT SOILS, AND (2) LIQUEFACTION OF THE FOUNDATIONS SOILS Antonio Fernandez, Ph.D. 1 ABSTRACT Paul C. Rizzo Associates,

More information

Evaluation of soil liquefaction using the CPT Part 2

Evaluation of soil liquefaction using the CPT Part 2 Evaluation of soil liquefaction using the CPT Part 2 P.K. Robertson 2013 Definitions of Liquefaction Cyclic (seismic) Liquefaction Zero effective stress (during cyclic loading) Flow (static) Liquefaction

More information

5. Probabilistic Seismic Hazard Analysis

5. Probabilistic Seismic Hazard Analysis Probabilistic Seismic Hazard Analysis (PSHA) proposed by C.A. Cornell (1968) used to determine the design earthquake for all locations in USA. PSHA gives a relative quantification i of the design earthquake,

More information

Liquefaction-Induced Ground Deformations Evaluation Based on Cone Penetration Tests (CPT)

Liquefaction-Induced Ground Deformations Evaluation Based on Cone Penetration Tests (CPT) World Journal of Engineering and Technology, 2014, 2, 249-259 Published Online November 2014 in SciRes. http://www.scirp.org/journal/wjet http://dx.doi.org/10.4236/wjet.2014.24026 Liquefaction-Induced

More information

Session 2: Triggering of Liquefaction

Session 2: Triggering of Liquefaction Session 2: Triggering of Liquefaction Plenary Speaker: Geoff Martin Professor Emeritus University of Southern California What are the primary deficiencies in the simplified method for evaluation of liquefaction

More information

Guidance for the CPT-Based Assessment of Earthquakeinduced Liquefaction Potential in Australia, with a Focus on the Queensland Coast

Guidance for the CPT-Based Assessment of Earthquakeinduced Liquefaction Potential in Australia, with a Focus on the Queensland Coast Guidance for the CPT-Based Assessment of Earthquakeinduced Liquefaction Potential in Australia, with a Focus on the Queensland Coast Tim Thompson CPEng RPEQ PE Senior Engineer Arup 108 Wickham Street,

More information

Optimum Grid Spacing for Simplified Performance-based Liquefaction and Lateral Spread Displacement Parameter Maps

Optimum Grid Spacing for Simplified Performance-based Liquefaction and Lateral Spread Displacement Parameter Maps 6 th International Conference on Earthquake Geotechnical Engineering 1-4 November 2015 Christchurch, New Zealand Optimum Grid Spacing for Simplified Performance-based Liquefaction and Lateral Spread Displacement

More information

NEW METHOD FOR LIQUEFACTION ASSESSMENT BASED ON SOIL GRADATION AND RELATIVE DENSITY

NEW METHOD FOR LIQUEFACTION ASSESSMENT BASED ON SOIL GRADATION AND RELATIVE DENSITY NEW METHOD FOR LIQUEFACTION ASSESSMENT BASED ON SOIL GRADATION AND RELATIVE DENSITY Bambang Istijono 1, Abdul Hakam 2 1,2 Civil Dept. of Engineering Faculty, University of Andalas, Padang, Indonesia ABSTRACT

More information

ASSESSMENT OF SEISMIC RISK FOR THE DESIGN OF OFFSHORE STRUCTURES IN LIQUEFIABLE SOIL

ASSESSMENT OF SEISMIC RISK FOR THE DESIGN OF OFFSHORE STRUCTURES IN LIQUEFIABLE SOIL th International Conference on Earthquake Geotechnical Engineering June 5-, 7 Paper No. 3 ASSESSMENT OF SEISMIC RISK FOR THE DESIGN OF OFFSHORE STRUCTURES IN LIQUEFIABLE SOIL Barnali GHOSH 1, Navin PEIRIS,

More information

Comparison of CPTu and SDMT after 2012 Samara Earthquake, Costa Rica: liquefaction case studies

Comparison of CPTu and SDMT after 2012 Samara Earthquake, Costa Rica: liquefaction case studies Comparison of CPTu and SDMT after 2012 Samara Earthquake, Costa Rica: liquefaction case studies S. Amoroso INGV Istituto Nazionale di Geofisica e Vulcanologia, L'Aquila, Italy P. Monaco University of L'Aquila,

More information

Supplemental Report 3

Supplemental Report 3 Supplemental Report 3 Geology Geotechnical Engineering 14428 Hamlin St., #200 Van Nuys, CA 91401 Office (818) 994-8895 Fax (818) 994-8599 www.geoconceptsinc.com November 5, 2010 Whole Foods c/o Goldman

More information

Assessment of Risk of Liquefaction - A Case Study

Assessment of Risk of Liquefaction - A Case Study Assessment of Risk of Liquefaction - A Case Study ASHWAI JAI Deptt. of Civil Engineering ational Institute Technology Kurukshetra-136119 IDIA ashwani.jain66@yahoo.com Abstract: - Catastrophic failures

More information

Date: April 2, 2014 Project No.: Prepared For: Mr. Adam Kates CLASSIC COMMUNITIES 1068 E. Meadow Circle Palo Alto, California 94303

Date: April 2, 2014 Project No.: Prepared For: Mr. Adam Kates CLASSIC COMMUNITIES 1068 E. Meadow Circle Palo Alto, California 94303 City of Newark - 36120 Ruschin Drive Project Draft Initial Study/Mitigated Negative Declaration Appendix C: Geologic Information FirstCarbon Solutions H:\Client (PN-JN)\4554\45540001\ISMND\45540001 36120

More information

FRIENDS OF THE EEL RIVER

FRIENDS OF THE EEL RIVER FRIENDS OF THE EEL RIVER Working for the recovery of our Wild & Scenic River, its fisheries and communities. Frank Blackett, Regional Engineer Office of Energy Projects Division of Dam Safety and Inspections

More information

Soil Dynamics Prof. Deepankar Choudhury Department of Civil Engineering Indian Institute of Technology, Bombay

Soil Dynamics Prof. Deepankar Choudhury Department of Civil Engineering Indian Institute of Technology, Bombay Soil Dynamics Prof. Deepankar Choudhury Department of Civil Engineering Indian Institute of Technology, Bombay Module - 4 Dynamic Soil Properties Lecture - 23 Cyclic Stress Ratio, Evaluation of CRR, Correction

More information

Liquefaction Evaluation

Liquefaction Evaluation Liquefaction Evaluation Ahmed Elgamal and Zhaohui Yang University of California, San Diego Acknowledgements The Liquefaction Evaluation section is prepared mainly following: Kramer, S. L. (1996). Geotechnical

More information

Bayesian Methods and Liquefaction

Bayesian Methods and Liquefaction Bayesian Methods and Liquefaction John T. Christian Consulting Engineer, 36E Seven Springs Lane, Burlington, MA 01803, USA Gregory B. Baecher Prof., Dept. of Civil and Env. Engineering, University of Maryland,

More information

PROBABILISTIC LIQUEFACTION HAZARD ANALYSIS IN JAPAN

PROBABILISTIC LIQUEFACTION HAZARD ANALYSIS IN JAPAN SECED 2015 Conference: Earthquake Risk and Engineering towards a Resilient World 9-10 July 2015, Cambridge UK PROBABILISTIC LIQUEFACTION HAZARD ANALYSIS IN JAPAN Tetsushi KURITA 1 and Sei ichiro FUKUSHIMA

More information

Modifications to Risk-Targeted Seismic Design Maps for Subduction and Near-Fault Hazards

Modifications to Risk-Targeted Seismic Design Maps for Subduction and Near-Fault Hazards Modifications to Risk-Targeted Seismic Design Maps for Subduction and Near-Fault Hazards Abbie B. Liel Assistant Prof., Dept. of Civil, Environ. and Arch. Eng., University of Colorado, Boulder, CO, USA

More information

Liquefaction Hazards for Seismic Risk Analysis

Liquefaction Hazards for Seismic Risk Analysis Liquefaction Hazards for Seismic Risk Analysis S. Giovinazzi & M. Cubrinovski University of Canterbury, Christchurch, New Zealand. 2007 NZSEE Conference ABSTRACT: Seismic risk analysis is a helpful tool

More information

Micro Seismic Hazard Analysis

Micro Seismic Hazard Analysis Micro Seismic Hazard Analysis Mark van der Meijde INTERNATIONAL INSTITUTE FOR GEO-INFORMATION SCIENCE AND EARTH OBSERVATION Overview Site effects Soft ground effect Topographic effect Liquefaction Methods

More information

Liquefaction Risk Potential of Road Foundation in the Gold Coast Region, Australia

Liquefaction Risk Potential of Road Foundation in the Gold Coast Region, Australia Liquefaction Risk Potential of Road Foundation in the Gold Coast Region, Australia Author Mosavat, Nasim, Oh, Erwin, Chai, Gary Published 2013 Journal Title Electronic Journal of Geotechnical Engineering

More information

Liquefaction Evaluations at the Savannah River Site. A Case History

Liquefaction Evaluations at the Savannah River Site. A Case History Missouri University of Science and Technology Scholars' Mine International Conference on Case Histories in Geotechnical Engineering (2004) - Fifth International Conference on Case Histories in Geotechnical

More information

Determination of Liquefaction Potential By Sub-Surface Exploration Using Standard Penetration Test

Determination of Liquefaction Potential By Sub-Surface Exploration Using Standard Penetration Test Determination of Liquefaction Potential By Sub-Surface Exploration Using Standard Penetration Test 1 Sabih Ahmad, 2 M.Z.Khan, 3 Abdullah Anwar and 4 Syed Mohd. Ashraf Husain 1 Associate Professor and Head,

More information

Screening-Level Liquefaction Hazard Maps for Australia

Screening-Level Liquefaction Hazard Maps for Australia Australian Earthquake Engineering Society 2011 Conference, Nov 18-20, Barossa Valley, South Australia Screening-Level Liquefaction Hazard Maps for Australia Dr Timothy I Mote 1 and James N Dismuke 2 1.

More information

LATERAL CAPACITY OF PILES IN LIQUEFIABLE SOILS

LATERAL CAPACITY OF PILES IN LIQUEFIABLE SOILS IGC 9, Guntur, INDIA LATERAL CAPACITY OF PILES IN LIQUEFIABLE SOILS A.S. Kiran M. Tech. (Geotech), Dept. of Civil Engineering, IIT Roorkee, Roorkee 77, India. E-mail: kiran.nta@gmail.com G. Ramasamy Professor,

More information

Liquefaction Assessment using Site-Specific CSR

Liquefaction Assessment using Site-Specific CSR Liquefaction Assessment using Site-Specific CSR 1. Arup, Sydney 2. Arup Fellow, Adelaide M. M. L.SO 1, T. I. MOTE 1, & J. W. PAPPIN 2 E-Mail: minly.so@arup.com ABSTRACT: Liquefaction evaluation is often

More information

Development of a Simplified Performance-Based Procedure for Assessment of Liquefaction Triggering Using Liquefaction Loading Maps

Development of a Simplified Performance-Based Procedure for Assessment of Liquefaction Triggering Using Liquefaction Loading Maps Brigham Young University BYU ScholarsArchive All Theses and Dissertations 2015-07-01 Development of a Simplified Performance-Based Procedure for Assessment of Liquefaction Triggering Using Liquefaction

More information

Definition 11/29/2011. Liquefaction Hazard to Bridge Foundations. Question 1. Will liquefaction occur? Mechanism of Liquefaction

Definition 11/29/2011. Liquefaction Hazard to Bridge Foundations. Question 1. Will liquefaction occur? Mechanism of Liquefaction Liquefaction Hazard to Bridge Foundations T. Leslie Youd, PhD NAE, Dist Mem ASCE, Hon Mem EERI Professor Emeritus, Civil Engineering Brigham Young University Provo, Utah, USA Statically stable void Effective

More information

Assessment of seismic performance of soil-structure systems

Assessment of seismic performance of soil-structure systems Proc. 18 th NZGS Geotechnical Symposium on Soil-Structure Interaction. Ed. CY Chin, Auckland Misko Cubrinovski Department of Civil and Natural Resources Engineering, University of Canterbury, NZ Brendon

More information

CPT-BASED SIMPLIFIED LIQUEFACTION ASSESSMENT BY USING FUZZY-NEURAL NETWORK

CPT-BASED SIMPLIFIED LIQUEFACTION ASSESSMENT BY USING FUZZY-NEURAL NETWORK 326 Journal of Marine Science and Technology, Vol. 17, No. 4, pp. 326-331 (2009) CPT-BASED SIMPLIFIED LIQUEFACTION ASSESSMENT BY USING FUZZY-NEURAL NETWORK Shuh-Gi Chern* and Ching-Yinn Lee* Key words:

More information

PORE PRESSURE GENERATION UNDER DIFFERENT TRANSIENT LOADING HISTORIES

PORE PRESSURE GENERATION UNDER DIFFERENT TRANSIENT LOADING HISTORIES 10NCEE Tenth U.S. National Conference on Earthquake Engineering Frontiers of Earthquake Engineering July 21-25, 2014 Anchorage, Alaska PORE PRESSURE GENERATION UNDER DIFFERENT TRANSIENT LOADING HISTORIES

More information

United States Geological Survey Award No. 02HQGR0022

United States Geological Survey Award No. 02HQGR0022 United States Geological Survey Award No. 02HQGR0022 INCORPORATION OF EARTHQUAKE SOURCE, PROPAGATION PATH, AND SITE UNCERTAINTIES INTO ASSESSMENT OF LIQUEFACTION POTENTIAL; PHASE 1, VALIDATION Dr. Walter

More information

Evaluating Soil Liquefaction and Post-earthquake deformations using the CPT

Evaluating Soil Liquefaction and Post-earthquake deformations using the CPT Evaluating Soil Liquefaction and Post-earthquake deformations using the CPT P.K. Robertson University of Alberta, Dept. of Civil and Environmental Engineering, Edmonton, Canada Keywords: Soil liquefaction,

More information

Soil Liquefaction Potential Studies of Guwahati City A Critical Review

Soil Liquefaction Potential Studies of Guwahati City A Critical Review Soil Liquefaction Potential Studies of Guwahati City A Critical Review Rupam Saikia 1, Malaya Chetia 2 Undergraduate Student, Department of Civil Engineering, Assam Engineering College, Guwahati, Assam,

More information

LIQUEFACTION POTENTIAL ASSESSMENT BASED ON LABORATORY TEST

LIQUEFACTION POTENTIAL ASSESSMENT BASED ON LABORATORY TEST Geotec., Const. Mat. & Env., ISSN: 2186-2982(Print), 2186-299(Online), Japan LIQUEFACTION POTENTIAL ASSESSMENT BASED ON LABORATORY TEST Abdul Hakam 1, Febrin Anas Ismail 1 and Fauzan 1 1 CivilEngineering,

More information

Project 17 Development of Next-Generation Seismic Design Value Maps

Project 17 Development of Next-Generation Seismic Design Value Maps Project 17 Development of Next-Generation Seismic Design Value Maps Geo Structures 2016 16 February 2016 R.O. Hamburger, SE, SECB www.sgh.com Some History Prior to 1988 - maps provided broad seismic zones

More information

SIMPLIFIED METHOD IN EVALUATING LIQUEFACTION OCCURRENCE AGAINST HUGE OCEAN TRENCH EARTHQUAKE

SIMPLIFIED METHOD IN EVALUATING LIQUEFACTION OCCURRENCE AGAINST HUGE OCEAN TRENCH EARTHQUAKE October 12-17, 28, Beijing, China SIMPLIFIED METHOD IN EVALUATING LIQUEFACTION OCCURRENCE AGAINST HUGE OCEAN TRENCH EARTHQUAKE ABSTRACT : N. Yoshida 1, S. Sawada 2 and S. Nakamura 3 1 Professor, Dept.

More information

Occurrence of negative epsilon in seismic hazard analysis deaggregation, and its impact on target spectra computation

Occurrence of negative epsilon in seismic hazard analysis deaggregation, and its impact on target spectra computation Occurrence of negative epsilon in seismic hazard analysis deaggregation, and its impact on target spectra computation Lynne S. Burks 1 and Jack W. Baker Department of Civil and Environmental Engineering,

More information

A SPT BASED COMPARATIVE ANALYSIS OF LIQUEFACTION POTENTIAL OF RAPTI MAIN CANAL IN DISTRICT BALRAMPUR

A SPT BASED COMPARATIVE ANALYSIS OF LIQUEFACTION POTENTIAL OF RAPTI MAIN CANAL IN DISTRICT BALRAMPUR IMPACT: International Journal of Research in Engineering & Technology (IMPACT: IJRET) ISSN(E): 2347-4599; ISSN(P): 2321-8843 Vol. 3, Issue 11, Nov 2015, 11-22 Impact Journals A SPT BASED COMPARATIVE ANALYSIS

More information

SOME OBSERVATIONS RELATED TO LIQUEFACTION SUSCEPTIBILITY OF SILTY SOILS

SOME OBSERVATIONS RELATED TO LIQUEFACTION SUSCEPTIBILITY OF SILTY SOILS SOME OBSERVATIONS RELATED TO LIQUEFACTION SUSCEPTIBILITY OF SILTY SOILS Upul ATUKORALA 1, Dharma WIJEWICKREME 2 And Norman MCCAMMON 3 SUMMARY The liquefaction susceptibility of silty soils has not received

More information

A NEW SIMPLIFIED CRITERION FOR THE ASSESSMENT OF FIELD LIQUEFACTION POTENTIAL BASED ON DISSIPATED KINETIC ENERGY

A NEW SIMPLIFIED CRITERION FOR THE ASSESSMENT OF FIELD LIQUEFACTION POTENTIAL BASED ON DISSIPATED KINETIC ENERGY October -7, 008, Beijing, China A NEW SIMPLIFIED CRITERION FOR THE ASSESSMENT OF FIELD LIQUEFACTION POTENTIAL BASED ON DISSIPATED KINETIC ENERGY Y. Jafarian, R. Vakili, A. R. Sadeghi 3, H. Sharafi 4, and

More information

CPT Applications - Liquefaction 2

CPT Applications - Liquefaction 2 CPT Applications - Liquefaction 2 Peter K. Robertson CPT in Geotechnical Practice Santiago, Chile July, 2014 Definitions of Liquefaction Cyclic (seismic) Liquefaction Zero effective stress (during cyclic

More information

Evaluation of the Liquefaction Potential by In-situ Tests and Laboratory Experiments In Complex Geological Conditions

Evaluation of the Liquefaction Potential by In-situ Tests and Laboratory Experiments In Complex Geological Conditions Evaluation of the Liquefaction Potential by In-situ Tests and Laboratory Experiments In Complex Geological Conditions V. Sesov, K. Edip & J. Cvetanovska University Ss. Cyril and Methodius, Institute of

More information

Cyclic Softening of Low-plasticity Clay and its Effect on Seismic Foundation Performance

Cyclic Softening of Low-plasticity Clay and its Effect on Seismic Foundation Performance 4th International Conference on Earthquake Engineering Taipei, Taiwan October 12-13, 6 Paper No. 287 Cyclic Softening of Low-plasticity Clay and its Effect on Seismic Foundation Performance Daniel B. Chu

More information

Simplified Performance-Based Analysis for Seismic Slope Displacements

Simplified Performance-Based Analysis for Seismic Slope Displacements Brigham Young University BYU ScholarsArchive All Theses and Dissertations 2016-07-01 Simplified Performance-Based Analysis for Seismic Slope Displacements Marlem Lucia Astorga Mejia Brigham Young University

More information

Performance based earthquake design using the CPT

Performance based earthquake design using the CPT Performance based earthquake design using the CPT P.K. Robertson Gregg Drilling & Testing Inc., Signal Hill, California, USA Performance-Based Design in Earthquake Geotechnical Engineering Kokusho, Tsukamoto

More information

Dynamic Analyses of an Earthfill Dam on Over-Consolidated Silt with Cyclic Strain Softening

Dynamic Analyses of an Earthfill Dam on Over-Consolidated Silt with Cyclic Strain Softening Keynote Lecture: Dynamic Analyses of an Earthfill Dam on Over-Consolidated Silt with Cyclic Strain Softening W.D. Liam Finn University of British Columbia, BC, Canada Guoxi Wu BC Hydro, Burnaby, BC, Canada

More information

CYCLIC SOFTENING OF LOW-PLASTICITY CLAY AND ITS EFFECT ON SEISMIC FOUNDATION PERFORMANCE

CYCLIC SOFTENING OF LOW-PLASTICITY CLAY AND ITS EFFECT ON SEISMIC FOUNDATION PERFORMANCE 4 th International Conference on Earthquake Geotechnical Engineering June 25-28, 27 Paper No. 149 CYCLIC SOFTENING OF LOW-PLASTICITY CLAY AND ITS EFFECT ON SEISMIC FOUNDATION PERFORMANCE Daniel B. Chu

More information

An Overview of Geotechnical Earthquake Engineering

An Overview of Geotechnical Earthquake Engineering An Overview of Geotechnical Earthquake Engineering Sudhir K Jain Slide 1 Outline Introduction to Seismic Design Principle Dynamic Soil Properties Site Effects Soil Structure Interaction Issues for Foundation

More information

PROCEDURE TO EVALUATE LIQUEFACTIO -I DUCED SETTLEME T BASED O SHEAR WAVE VELOCITY. Fred (Feng) Yi 1 ABSTRACT

PROCEDURE TO EVALUATE LIQUEFACTIO -I DUCED SETTLEME T BASED O SHEAR WAVE VELOCITY. Fred (Feng) Yi 1 ABSTRACT PROCEDURE TO EVALUATE LIQUEFACTIO -I DUCED SETTLEME T BASED O SHEAR WAVE VELOCITY Fred (Feng) Yi 1 ABSTRACT As a major geologic hazard, evaluation of liquefaction-induced settlement is very important for

More information

Verifying liquefaction remediation beneath an earth dam using SPT and CPT based methods $

Verifying liquefaction remediation beneath an earth dam using SPT and CPT based methods $ Verifying liquefaction remediation beneath an earth dam using SPT and CPT based methods $ Ikram Guettaya a,n, Mohamed Ridha El Ouni a, Robb Eric S. Moss b a Department of Rural Engineering, National Agronomic

More information

Forecasting Hazard from Induced Earthquakes. Ryan Schultz

Forecasting Hazard from Induced Earthquakes. Ryan Schultz Forecasting Hazard from Induced Earthquakes Ryan Schultz Overview 1) Probabilistic Seismic Hazard Analysis (PSHA). Ground Motions Parameters Earthquake Catalogues & Recurrence Relations GMPEs Hazard Calculation

More information

A CASE STUDY OF LIQUEFACTION ASSESSMENT USING SWEDISH WEIGHT SOUNDING

A CASE STUDY OF LIQUEFACTION ASSESSMENT USING SWEDISH WEIGHT SOUNDING 4th International Conference on Earthquake Engineering Taipei, Taiwan October 12-13, 2006 Paper No. 038 A CASE STUDY OF LIQUEFACTION ASSESSMENT USING SWEDISH WEIGHT SOUNDING Mahdi Habibi 1, Akbar Cheshomi

More information

Overview of National Seismic Hazard Maps for the next National Building Code

Overview of National Seismic Hazard Maps for the next National Building Code Overview of National Seismic Hazard Maps for the next National Building Code John Adams Earthquakes Canada Geological Survey of Canada Copyright. Her Majesty the Queen in Right of Canada, 2004 CSCE Workshop

More information

Study of the liquefaction phenomenon due to an earthquake: case study of Urayasu city

Study of the liquefaction phenomenon due to an earthquake: case study of Urayasu city Disaster Management and Human Health Risk III 311 Study of the liquefaction phenomenon due to an earthquake: case study of Urayasu city S. Kamao 1, M. Takezawa 1, K. Yamada 1, S. Jinno 1, T. Shinoda 1

More information

Case History of Observed Liquefaction-Induced Settlement Versus Predicted Settlement

Case History of Observed Liquefaction-Induced Settlement Versus Predicted Settlement Case History of Observed Liquefaction-Induced Settlement Versus Predicted Settlement M. Lew and L. Tran AMEC Environment & Infrastructure, Inc., Los Angeles, CA USA SUMMARY: A comparison of the predicted

More information

Chapter 6: Determination of Seismologic Parameters for Proposed Liquefaction Evaluation Procedure

Chapter 6: Determination of Seismologic Parameters for Proposed Liquefaction Evaluation Procedure Chapter 6: Determination of Seismologic Parameters for Proposed Liquefaction valuation Procedure 6.1 Introduction The motivation for developing the liquefaction evaluation procedure presented in Chapter

More information

IGC. 50 th. 50 th INDIAN GEOTECHNICAL CONFERENCE LIQUEFACTION ANALYSIS OF ALLUVIAL SOIL DEPOSIT

IGC. 50 th. 50 th INDIAN GEOTECHNICAL CONFERENCE LIQUEFACTION ANALYSIS OF ALLUVIAL SOIL DEPOSIT 5 th 5 th INDIAN GEOTECHNICAL CONFERENCE 17 th 19 th DECEMBER 215, Pune, Maharashtra, India LIQUEFACTION ANALYSIS OF ALLUVIAL SOIL DEPOSIT D. Das 1, A. Ghosh 2 ABSTRACT Kolkata, one of the oldest metropolitan

More information

Interpretive Map Series 24

Interpretive Map Series 24 Oregon Department of Geology and Mineral Industries Interpretive Map Series 24 Geologic Hazards, Earthquake and Landslide Hazard Maps, and Future Earthquake Damage Estimates for Six Counties in the Mid/Southern

More information

IN SITU TESTING TECHNOLOGY FOR FOUNDATION & EARTHQUAKE ENGINEERING. Wesley Spang, Ph.D., P.E. AGRA Earth & Environmental, Inc.

IN SITU TESTING TECHNOLOGY FOR FOUNDATION & EARTHQUAKE ENGINEERING. Wesley Spang, Ph.D., P.E. AGRA Earth & Environmental, Inc. IN SITU TESTING TECHNOLOGY FOR FOUNDATION & EARTHQUAKE ENGINEERING Wesley Spang, Ph.D., P.E. AGRA Earth & Environmental, Inc. Portland, Oregon In situ testing of soil, which essentially consists of evaluating

More information

Investigation of Liquefaction Behaviour for Cohesive Soils

Investigation of Liquefaction Behaviour for Cohesive Soils Proceedings of the 3 rd World Congress on Civil, Structural, and Environmental Engineering (CSEE 18) Budapest, Hungary April 8-10, 2018 Paper No. ICGRE 134 DOI: 10.11159/icgre18.134 Investigation of Liquefaction

More information

Address for Correspondence

Address for Correspondence Research Paper DYNAMIC ANALYSIS OF KASWATI EARTH DAM 1 Patel Samir K., 2 Prof. C.S.Sanghavi Address for Correspondence 1 Applied Mechanics Department, 2 Professor, L. D. College of Engineering, Gujarat

More information

PROBABILISTIC SEISMIC HAZARD ANALYSES AND DEAGGREGATION FOR MAPPING LIQUEFACTION AND EARTHQUAKE-INDUCED LANDSLIDE HAZARD ZONES

PROBABILISTIC SEISMIC HAZARD ANALYSES AND DEAGGREGATION FOR MAPPING LIQUEFACTION AND EARTHQUAKE-INDUCED LANDSLIDE HAZARD ZONES Eleventh U.S. National Conference on Earthquake Engineering Integrating Science, Engineering & Policy June 25-29, 2018 Los Angeles, California PROBABILISTIC SEISMIC HAZARD ANALYSES AND DEAGGREGATION FOR

More information