Address for Correspondence

Size: px
Start display at page:

Download "Address for Correspondence"

Transcription

1 Research Paper DYNAMIC ANALYSIS OF KASWATI EARTH DAM 1 Patel Samir K., 2 Prof. C.S.Sanghavi Address for Correspondence 1 Applied Mechanics Department, 2 Professor, L. D. College of Engineering, Gujarat Technological University, Ahmedabad, Gujarat (India) ABSTRACT A large number of water-retaining earthen dams were affected by the earthquake. This paper examines dynamic analysis with time history methods of kaswati dam are located in Bhuj region by using of geo-studio The consequences of these problems were the dams performed reasonably in spite of being shaken by free-field horizontal peak ground acceleration (PGA) as high as 0.28g. The liquefaction occurred in upstream slope, downstream slope and foundation of dam due to cohesion-less soil in foundation. The procedure for assessing liquefaction potential uses the Cyclic Stress Ratio (CSR) as the measure for earthquake load. The procedure for assessing liquefaction potential typically uses the Cyclic Resistance Ratio (CRR) as a measure of the liquefaction resistance of soils and the Cyclic Stress Ratio (CSR) as a measure of earthquake load. For cohesion-less soils, CRR has been related to normalized SPT blow count, (N1)60, through correlations that depend on the fines content of the soil from field performance observations from past earthquakes. Factor of safety is obtained by ratio of Cyclic stress ratio to the critical stress ratio. For prevention of liquefaction replace liquefied soil with well graded soil in foundation and get factor of safety above 1 which indicate non liquefied soil. KEYWORDS Dynamic analysis, Time history method, Kaswati dam, Cyclic stress ratio, Critical stress ratio, Factor of safety, Liquefaction potential INTRODUCTION A Magnitude 7.6 (Mw 7.6) earthquake occurred in Gujarat state, India on 26 January 2001.The epicenter of the main shock of the event was near Bachau at N and E with a focal depth of about 23.6 km. The event, commonly referred to as the Bhuj Earthquake, was among the most destructive earthquakes that affected India. A large number of small-to moderate-size earthen dams and reservoirs, constructed to fulfill the water demand of the area, were affected by Bhuj Earthquake. Most of these dams are embankment dams constructed across discontinuous ephemeral streams. Although many of these dams were within 150 km of the epicenter (Figure 1), the consequences of the damage caused by the earthquake to these facilities were relatively light primarily because the reservoirs were nearly empty during the earthquake. Fig1. Location of kaswati dam KASWATI DAM Kaswati Dam, constructed in 1973, is an earth dam with a maximum height of 8.8 m and crest length of 1455 m. The dam is underlain by loose to mediumdense, alluvial, silt-sand mixtures. Limited amount of subsurface exploration data indicate that the site is underlain by 2 to 5 m thick granular soils characterized with an SPT blow count between 13 and 19, below which relatively dense granular soils with an SPT blow count typically above 25 is found (Krinitzsky and Hynes 2002). Like the other impoundments, Kaswati Reservoir was nearly empty during Bhuj Earthquake. However the alluvium soils underneath the upstream portion of the dam was saturated during the earthquake. Bhuj Earthquake triggered shallow sliding near the bottom portion of upstream slope, and bulging of ground surface near the upstream toe. Such distress may have been due to localized liquefaction near the upstream toe of the dam. EERI also report relatively narrow, longitudinal cracks along the crest of the dam running the length of the dam over which the lower portion of the upstream slope exhibited distress. It appears that the problem of development of longitudinal cracks along the crest was indirectly due to localized liquefaction of upstream foundation soils. The downstream slope, on the other hand, remained largely unaffected. ASSESSMENT OF LIQUEFACTION POTENTIAL The procedure for assessing liquefaction potential typically uses the Cyclic Resistance Ratio (CRR) as a measure of the liquefaction resistance of soils and the Critical Stress Ratio (CSR) as a measure of earthquake load. For cohesion-less soils, CRR has been related to normalized SPT blow count, (N1)60, through correlations that depend on the fines content of the soil from field performance observations from past earthquakes. The normalized SPT blow count is given by (N 1 ) 60 = N (P a / σ vo ) 0.5 ER where N is the raw SPT blow count, Pa is the atmospheric pressure ( 100 kp a), σ vo is the effective vertical stress at the depth of testing, and ER is the energy ratio ( 0.92 in a typical Indian SPT setup). Fig2. CRR - (N1)60 Correlations (from Youd et al. 2001)

2 Available SPT data from Kaswati Dam however indicates that the shallow foundation soils underneath the dam body were characterized with a blow count between 13 and 19. For assessing liquefaction potential of foundation soils we assumed that the fines content of these shallow alluvium layers were 15% or less. The procedure for assessing liquefaction potential uses the Cyclic Stress Ratio (CSR) as the measure for earthquake load, where CSR = 0.65 (a max / g) ( σ vo / σ vo ) r d K -1 m K -1 α K -1 σ CRR = CRR 7.5 K m K α Kσ σ is the total vertical stress, rd is a correction factor to account for the flexibility of the soil column, and Km, Kα and Kσ are correction factors to account for the Magnitude of the earthquake, the presence of initial static shear (i.e., whether the layers are in a slope) and the depth of the layer (i.e., the level of initial overburden pressure), respectively. We estimated the value of rd for a given depth from Seed et al. (2003) median relationship. Correction factors Km, Kα and Kσ were obtained from the relationships recommended by Youd et al. (2001) using estimates of relative density obtained from (Olson and Stark 2003b): D r = ( ( N 1 ) 60 / 44) 1/2 Fig6: Relationship between CRR and (N1)60 for sand for Mw, 7.5 earthquakes Factor of safety against liquefaction FS = CRR/ CSR Table 1 Soil property of kaswati dam Fig3: Magnitude Correction factor Km Cross-section of kaswati dam with material property Fig4: Stress correction factor Fig5: Correction for initial static shear Definition of liquefaction of soil Liquefaction is a phenomenon wherein a mass of soil losses a large percentage of its shear resistance when subjected to monotonic, cyclic or shock loading and flows in a manner resembling a liquid until the shear stresses acting on the mass are as low as the reduced shear resistance.

3 Behavior of saturated, cohesion-less soils in undrained shear During earthquake, the upward propagation of shear waves through the ground generates shear stresses and strains that are cyclic in nature. If cohesion-less soil is saturated, excess pore pressure may accumulate during seismic shearing and lead to liquefaction. The behaviour of a saturated soil under both monotonic and cyclic shear is depicted in fig. The response of the same soil loose (contractive) and dense (dilative) states is indicates part(a) and part(b) respectively of this fig. A loose soil tends to compact when sheared and without drainage, pore water pressure increases As indicate fig (a), a contractive soil sheared monotonically reaches a peak shear strength and then soften, eventually achieving a residual shear resistance. If the residual shear strength is less than the static driving shear, a liquefaction flow failure results. If the same soil sheared cyclically, also depicted in fig (a), excess pore pressures are generated with each cycle of load without drainage, pore pressure accumulate and effective stress path moves towards failures. If the shear strength falls below the static driving stresses a flow failure results and deformation continue after cyclic loading stops. Shearing of dense, dilative soils will also produce some excess pore pressure at small strains. However at larger strains, the pore pressure decrease and can become negative as the soil grains, moving up and over one another, tend to cause an increase in soil volume (dilation). Consequently as shown in fig (b). monotonic shearing of a dilative soil results in an increasing effective stress and shear resistance. Fig (b) also shows the response of the same dilative soils to dynamic loading. In this case pore pressures are generated in each shear cycle resulting in an accumulation of excess pore pressure and deformation. However beyond some points the tendency to dilate and develop negative pore pressure limits further straining in additional load cycles. As indicated in the bottom of fig (b), the effective stress path moves to the left but never reaches the failure surface. Liquefaction is most commonly observed in shallow, loose, saturated deposits of cohesion-less soils subjected to strong ground motions in large magnitudes earthquakes. Unsaturated soils are not subjected to liquefaction because volume compression dose not generate excess pore pressure. Liquefaction and contractive soils while cyclic softening and limited deformation are associated with dilative soils. Flow liquefaction Flow liquefaction can occur when the static shear stresses in a liquefiable soil deposit is grater the steady-state strength of the soil. In can produce devastating flow slide failures during and after an earthquake shaking. Flow liquefaction can occur only in loose soil. Cyclic mobility Cyclic mobility can occur when the static shear stress is less than the steady-state(residual) shear strength and the cyclic shear stress large enough that the steady-state strength is exceeded momentarily. Deformations produced by cyclic mobility develop incrementally but become substantial at the end of a strong and/ or long-duration earthquake. Cyclic mobility can occur in both loose and dense soils but deformation decreases markedly with increased density. In the contractive region, an un-drained stress path will tend to move to the left as the tendency for contraction causes pore pressure to increase and p to decrease. As the stress path approaches the PTL(Phase transformation line), the tendency for contraction reduces and the stress path become more vertical. When the stress path reaches the PTL, there is no tendency for contraction or dilation, hence p is constant and the stress path is vertical. After the stress path crosses the PTL, the tendency for dilation causes the pore pressure to decrease and p to increase, and the stress path moves to the right. Note that, because the stiffness of soil depends on p, the stiffness decreases (While the stress path is below the PTL) but then increases (when the stress path moves above the PTL). q/p stress ratio under earthquake shaking Figure shows contours of q/p stress ratios under the initial static stresses. A point of significance is the high q/p ratios in the central part of the hydraulic fill. This means that there is a zone where the initial q/p points are above the collapse surface. The soil strength in this zone could easily fall down to the steady-state strength with a small amount of shaking. The yellow shaded area in Figure is the zone where the stress ratios are initially above or on the collapse surface. In QUAKE/W this is flagged as a liquefied zone. Fig 7 : Response of (a) contdractive and (b) dilative saturated sand to undrained shear Susceptibility of soils to liquefaction in earthquakes Fig 8. Zone of liquefaction based at the end of shaking cohesion-less soil in foundation

4 Fig 9. Zone of liquefaction based at the end of shaking well graded compacted soil in foundation Fig 10. Excess pore water pressure contour

5 5. Olson, S.M. and Stark, T.D. 2003b. Use of laboratory data to confirm yield and liquefied strength ratio concepts. Canadian Geotechnical Journal, 40, Youd, T.L., Idriss, I.M., Andrus, R.D., Arango, I., Castro, G., Christian, J.T., Dobry, R., Finn,W.D.L., Harder, L.F., Jr., Hynes, M.E., Ishihara, K., Koester, J.P., Liao, S.S.C.,Marcuson, W.F., III, Martin G.R., Mitchell, J.K., Moriwaki, Y., Power, M.S., Robertson,P.K., Seed, R.B. and Stokoe, K.H., II Liquefaction resistance of soils CONCLUSION:- Damaging effects of Bhuj Earthquake on embankment dams have been considered in this paper. This paper present dynamic analysis by time history method of Kaswati Dam. Under earthquake shaking earthen dam subjected cyclic motion. Due to Saturated cohesion-less soil under oscillatory motion during earthquake, loses all its shear strength due to pore water pressure increased and q/p ratio increased and cyclic stress ratio increased so that soil behave as a liquid. In this analysis factor of safety below 1, which indicate liquefaction occur in given earthen dam. For prevention of liquefaction potential replace liquefied soil with well graded compacted soil so that pore water pressure, q/p ratio and cyclic stress ratio decreased while mean effective stress increased and get factor of safety above 1 which indicate non-liquefied soil in earthen. REFERENCES:- 1. Adalier, K., and Sharp, M. K. (2002b). Embankment dam on liquefiablefoundation Dynamic behavior and ensification remediation. J.Geotech. Eng., in press. 2. Beaty, M.H. (2003). A Synthesized Approach for imating Liquefaction-Induced Displacements of Geotechnical Structures. Ph.D. Dissertation. University of British Columbia, Vancouver, Canada. 3. Idriss I.M Response of soft soil sites during earthquakes. Proceedings, H. Bolton Seed Memorial Symposium, BiTech Publishers, Vancouver, 2, Lee, K.L., Idriss, I.M. and Makadisi, F.I. (1975). The Slides in the San Fernando Damsduring the Earthquake of February 9, 1971 ASCE, J of the Geotechnical Engineering Division, GT7, pp Lee, K.L.,

Investigation of Liquefaction Failure in Earthen Dams during Bhuj Earthquake

Investigation of Liquefaction Failure in Earthen Dams during Bhuj Earthquake Investigation of Liquefaction Failure in Earthen Dams during Bhuj Earthquake Raghvendra Singh QIP Scholar, Department of Civil Engineering, Indian Institute of Technology, Kharagpur 721302, WB. Email:

More information

Seismic Stability of Tailings Dams, an Overview

Seismic Stability of Tailings Dams, an Overview Seismic Stability of Tailings Dams, an Overview BY Gonzalo Castro, Ph.D., P.E. Principal International Workshop on Seismic Stability of Tailings Dams Case Western Reserve University, November 2003 Small

More information

Numerical analysis of effect of mitigation measures on seismic performance of a liquefiable tailings dam foundation

Numerical analysis of effect of mitigation measures on seismic performance of a liquefiable tailings dam foundation Numerical analysis of effect of mitigation measures on seismic performance of a liquefiable tailings dam foundation Yong-Beom Lee, Jorge Castillo Ausenco, USA Aurelian C. Trandafir Fugro GeoConsulting

More information

LATERAL CAPACITY OF PILES IN LIQUEFIABLE SOILS

LATERAL CAPACITY OF PILES IN LIQUEFIABLE SOILS IGC 9, Guntur, INDIA LATERAL CAPACITY OF PILES IN LIQUEFIABLE SOILS A.S. Kiran M. Tech. (Geotech), Dept. of Civil Engineering, IIT Roorkee, Roorkee 77, India. E-mail: kiran.nta@gmail.com G. Ramasamy Professor,

More information

Use of Numerical Simulation in the Development of Empirical Predictions of Liquefaction Behavior

Use of Numerical Simulation in the Development of Empirical Predictions of Liquefaction Behavior Use of Numerical Simulation in the Development of Empirical Predictions of Liquefaction Behavior Steven L. Kramer and David A. Baska University of Washington ABSTRACT Soil liquefaction has been an interesting

More information

Liquefaction and Foundations

Liquefaction and Foundations Liquefaction and Foundations Amit Prashant Indian Institute of Technology Gandhinagar Short Course on Seismic Design of Reinforced Concrete Buildings 26 30 November, 2012 What is Liquefaction? Liquefaction

More information

Liquefaction Potential Variations Influenced by Building Constructions

Liquefaction Potential Variations Influenced by Building Constructions Earth Science Research; Vol. 1, No. 2; 2012 ISSN 1927-0542 E-ISSN 1927-0550 Published by Canadian Center of Science and Education Liquefaction Potential Variations Influenced by Building Constructions

More information

LIQUEFACTION OF EARTH EMBANKMENT DAMS TWO CASE HISTORIES: (1) LIQUEFACTION OF THE EMBANKMENT SOILS, AND (2) LIQUEFACTION OF THE FOUNDATIONS SOILS

LIQUEFACTION OF EARTH EMBANKMENT DAMS TWO CASE HISTORIES: (1) LIQUEFACTION OF THE EMBANKMENT SOILS, AND (2) LIQUEFACTION OF THE FOUNDATIONS SOILS LIQUEFACTION OF EARTH EMBANKMENT DAMS TWO CASE HISTORIES: (1) LIQUEFACTION OF THE EMBANKMENT SOILS, AND (2) LIQUEFACTION OF THE FOUNDATIONS SOILS Antonio Fernandez, Ph.D. 1 ABSTRACT Paul C. Rizzo Associates,

More information

CPT Applications - Liquefaction 2

CPT Applications - Liquefaction 2 CPT Applications - Liquefaction 2 Peter K. Robertson CPT in Geotechnical Practice Santiago, Chile July, 2014 Definitions of Liquefaction Cyclic (seismic) Liquefaction Zero effective stress (during cyclic

More information

SOME OBSERVATIONS RELATED TO LIQUEFACTION SUSCEPTIBILITY OF SILTY SOILS

SOME OBSERVATIONS RELATED TO LIQUEFACTION SUSCEPTIBILITY OF SILTY SOILS SOME OBSERVATIONS RELATED TO LIQUEFACTION SUSCEPTIBILITY OF SILTY SOILS Upul ATUKORALA 1, Dharma WIJEWICKREME 2 And Norman MCCAMMON 3 SUMMARY The liquefaction susceptibility of silty soils has not received

More information

Evaluation of soil liquefaction using the CPT Part 2

Evaluation of soil liquefaction using the CPT Part 2 Evaluation of soil liquefaction using the CPT Part 2 P.K. Robertson 2013 Definitions of Liquefaction Cyclic (seismic) Liquefaction Zero effective stress (during cyclic loading) Flow (static) Liquefaction

More information

Numerical model comparison on deformation behavior of a TSF embankment subjected to earthquake loading

Numerical model comparison on deformation behavior of a TSF embankment subjected to earthquake loading Numerical model comparison on deformation behavior of a TSF embankment subjected to earthquake loading Jorge Castillo, Yong-Beom Lee Ausenco, USA Aurelian C. Trandafir Fugro GeoConsulting Inc., USA ABSTRACT

More information

Evaluating the Seismic Coefficient for Slope Stability Analyses

Evaluating the Seismic Coefficient for Slope Stability Analyses Evaluating the Seismic Coefficient for Slope Stability Analyses by Edward Kavazanjian, Jr., Ph.D., P.E.,D.GE., NAE Ira A. Fulton Professor of Geotechnical Engineering School of Sustainable Engineering

More information

A comparison between two field methods of evaluation of liquefaction potential in the Bandar Abbas City

A comparison between two field methods of evaluation of liquefaction potential in the Bandar Abbas City American Journal of Civil Engineering 2015; 3(2-2): 1-5 Published online January 16, 2015 (http://www.sciencepublishinggroup.com/j/ajce) doi: 10.11648/j.ajce.s.2015030202.11 ISSN: 2330-8729 (Print); ISSN:

More information

EARTHQUAKE-INDUCED SETTLEMENTS IN SATURATED SANDY SOILS

EARTHQUAKE-INDUCED SETTLEMENTS IN SATURATED SANDY SOILS VOL., NO., AUGUST 7 ISSN 119- -7 Asian Research Publishing Network (ARPN). All rights reserved. EARTHQUAKE-INDUCED SETTLEMENTS IN SATURATED SANDY SOILS C. Y. Lee Department of Civil Engineering, College

More information

Liquefaction Evaluation

Liquefaction Evaluation Liquefaction Evaluation Ahmed Elgamal and Zhaohui Yang University of California, San Diego Acknowledgements The Liquefaction Evaluation section is prepared mainly following: Kramer, S. L. (1996). Geotechnical

More information

CHARACTERISTICS OF LIQUEFIED SILTY SANDS FROM MEIZOSEISMAL REGION OF SHILLONG PLATEAU, ASSAM AND BHUJ IN INDIA

CHARACTERISTICS OF LIQUEFIED SILTY SANDS FROM MEIZOSEISMAL REGION OF SHILLONG PLATEAU, ASSAM AND BHUJ IN INDIA 13 th World Conference on Earthquake Engineering Vancouver, B.C., Canada August 1-6, 24 Paper No. 2375 CHARACTERISTICS OF LIQUEFIED SILTY SANDS FROM MEIZOSEISMAL REGION OF SHILLONG PLATEAU, ASSAM AND BHUJ

More information

Determination of Liquefaction Potential By Sub-Surface Exploration Using Standard Penetration Test

Determination of Liquefaction Potential By Sub-Surface Exploration Using Standard Penetration Test Determination of Liquefaction Potential By Sub-Surface Exploration Using Standard Penetration Test 1 Sabih Ahmad, 2 M.Z.Khan, 3 Abdullah Anwar and 4 Syed Mohd. Ashraf Husain 1 Associate Professor and Head,

More information

Seismic Evaluation of Tailing Storage Facility

Seismic Evaluation of Tailing Storage Facility Australian Earthquake Engineering Society 2010 Conference, Perth, Western Australia Seismic Evaluation of Tailing Storage Facility Jonathan Z. Liang 1, David Elias 2 1 Senior Geotechnical Engineer, GHD

More information

EFFECT OF SILT CONTENT ON THE UNDRAINED ANISOTROPIC BEHAVIOUR OF SAND IN CYCLIC LOADING

EFFECT OF SILT CONTENT ON THE UNDRAINED ANISOTROPIC BEHAVIOUR OF SAND IN CYCLIC LOADING 4 th International Conference on Earthquake Geotechnical Engineering June 25-28, 2007 Paper No. 1506 EFFECT OF SILT CONTENT ON THE UNDRAINED ANISOTROPIC BEHAVIOUR OF SAND IN CYCLIC LOADING Hadi BAHADORI

More information

CYCLIC AND MONOTONIC UNDRAINED SHEAR RESPONSE OF SILTY SAND FROM BHUJ REGION IN INDIA

CYCLIC AND MONOTONIC UNDRAINED SHEAR RESPONSE OF SILTY SAND FROM BHUJ REGION IN INDIA ISET Journal of Earthquake Technology, Paper No. 45, Vol. 41, No. 2-4, June-December 24, pp. 249-26 CYCLIC AND MONOTONIC UNDRAINED SHEAR RESPONSE OF SILTY SAND FROM BHUJ REGION IN INDIA T.G. Sitharam,

More information

LIQUEFACTION ASSESSMENT OF INDUS SANDS USING SHEAR WAVE VELOCITY

LIQUEFACTION ASSESSMENT OF INDUS SANDS USING SHEAR WAVE VELOCITY Pakistan Engineering Congress, 69th Annual Session Proceedings 219 LIQUEFACTION ASSESSMENT OF INDUS SANDS USING SHEAR WAVE VELOCITY Sohail Kibria 1, M. Javed 2, Muhammad Ali 3 ABSTRACT A host of procedures

More information

Liquefaction: Additional issues. This presentation consists of two parts: Section 1

Liquefaction: Additional issues. This presentation consists of two parts: Section 1 Liquefaction: Additional issues Ahmed Elgamal This presentation consists of two parts: Section 1 Liquefaction of fine grained soils and cyclic softening in silts and clays Section 2 Empirical relationship

More information

Liquefaction. Ajanta Sachan. Assistant Professor Civil Engineering IIT Gandhinagar. Why does the Liquefaction occur?

Liquefaction. Ajanta Sachan. Assistant Professor Civil Engineering IIT Gandhinagar. Why does the Liquefaction occur? Liquefaction Ajanta Sachan Assistant Professor Civil Engineering IIT Gandhinagar Liquefaction What is Liquefaction? Why does the Liquefaction occur? When has Liquefaction occurred in the past? Where does

More information

STUDY OF THE BEHAVIOR OF PILE GROUPS IN LIQUEFIED SOILS

STUDY OF THE BEHAVIOR OF PILE GROUPS IN LIQUEFIED SOILS STUDY OF THE BEHAVIOR OF PILE GROUPS IN LIQUEFIED SOILS Shin-Tower Wang 1, Luis Vasquez 2, and Lymon C. Reese 3, Honorary Member,, ASCE ABSTRACT : 1&2 President & Project Manager, Ensoft, Inc. Email: ensoft@ensoftinc.com

More information

Dynamic Analysis of Stability and Liquefaction in Dams in Unsaturated Soil Mode

Dynamic Analysis of Stability and Liquefaction in Dams in Unsaturated Soil Mode Dynamic Analysis of Stability and Liquefaction in Dams in Unsaturated Soil Mode Samad Nazari Ph.D. Student, Department of Civil Engineering Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan,

More information

Cyclic Behavior of Soils

Cyclic Behavior of Soils Cyclic Behavior of Soils Antonios Vytiniotis Cyclic Shearing of Sands Dry Sand 1 Triaxial Undrained Monotonic Shearing CIUC tests Ishihara Critical State Toyoura Sand Ishihara 2 Critical State Ishihara

More information

EARTHQUAKE-INDUCED SETTLEMENT AS A RESULT OF DENSIFICATION, MEASURED IN LABORATORY TESTS

EARTHQUAKE-INDUCED SETTLEMENT AS A RESULT OF DENSIFICATION, MEASURED IN LABORATORY TESTS 13 th World Conference on Earthquake Engineering Vancouver, B.C., Canada August 1-6, 2004 Paper No. 3291 EARTHQUAKE-INDUCED SETTLEMENT AS A RESULT OF DENSIFICATION, MEASURED IN LABORATORY TESTS Constantine

More information

Evaluation of Earthquake Liquefaction Hazard of Kutch Region

Evaluation of Earthquake Liquefaction Hazard of Kutch Region Journal of Geotechnical and Transportation Engineering Volume 3 Issue 2 Evaluation of Earthquake Liquefaction Hazard of Kutch Region Hussain and Sachan Received 6/7/2017 Accepted 10/4/2017 Published 12/1/2017

More information

Liquefaction assessments of tailings facilities in low-seismic areas

Liquefaction assessments of tailings facilities in low-seismic areas Page 1 Liquefaction assessments of tailings facilities in low-seismic areas Holly Rourke SRK Consulting, Perth, WA, Australia Caroline Holmes SRK Consulting, Perth, WA, Australia This paper was first presented

More information

Micro Seismic Hazard Analysis

Micro Seismic Hazard Analysis Micro Seismic Hazard Analysis Mark van der Meijde INTERNATIONAL INSTITUTE FOR GEO-INFORMATION SCIENCE AND EARTH OBSERVATION Overview Site effects Soft ground effect Topographic effect Liquefaction Methods

More information

Cyclic Behavior of Sand and Cyclic Triaxial Tests. Hsin-yu Shan Dept. of Civil Engineering National Chiao Tung University

Cyclic Behavior of Sand and Cyclic Triaxial Tests. Hsin-yu Shan Dept. of Civil Engineering National Chiao Tung University Cyclic Behavior of Sand and Cyclic Triaxial Tests Hsin-yu Shan Dept. of Civil Engineering National Chiao Tung University Causes of Pore Pressure Buildup due to Cyclic Stress Application Stress are due

More information

Geo-Seismic Environmental Aspects Affecting Tailings Dams Failures

Geo-Seismic Environmental Aspects Affecting Tailings Dams Failures American Journal of Environmental Sciences 4 (3): 212-222, 28 ISSN 1553-345X 28 Science Publications Geo-Seismic Environmental Aspects Affecting Tailings Dams Failures Juan M. Mayoral and Miguel P. Romo

More information

SEEPAGE ANALYSIS AND SEISMIC BEHAVIOUR OF EARTH FILL DAM USING GEO-STUDIO

SEEPAGE ANALYSIS AND SEISMIC BEHAVIOUR OF EARTH FILL DAM USING GEO-STUDIO SEEPAGE ANALYSIS AND SEISMIC BEHAVIOUR OF EARTH FILL DAM USING GEO-STUDIO Mr. PAVAN N¹, Mrs. BARNALI GHOSH², Dr.S.K.PRASAD³ 1 P.G STUDENT, East Point College Of Engineering & Technology 2 ASSOCIATE PROFESSOR,

More information

Dynamic Analysis Contents - 1

Dynamic Analysis Contents - 1 Dynamic Analysis Contents - 1 TABLE OF CONTENTS 1 DYNAMIC ANALYSIS 1.1 Overview... 1-1 1.2 Relation to Equivalent-Linear Methods... 1-2 1.2.1 Characteristics of the Equivalent-Linear Method... 1-2 1.2.2

More information

(THIS IS ONLY A SAMPLE REPORT OR APPENDIX OFFERED TO THE USERS OF THE COMPUTER PROGRAM

(THIS IS ONLY A SAMPLE REPORT OR APPENDIX OFFERED TO THE USERS OF THE COMPUTER PROGRAM C A U T I O N!! (THIS IS ONLY A SAMPLE REPORT OR APPENDIX OFFERED TO THE USERS OF THE COMPUTER PROGRAM EQLique&Settle2. THE AUTHOR IS HEREBY RELEASED OF ANY LIABILITY FOR ANY INCORRECT USE OF THIS SAMPLE

More information

Back Analysis of the Lower San Fernando Dam Slide Using a Multi-block Model

Back Analysis of the Lower San Fernando Dam Slide Using a Multi-block Model Proceedings Geohazards Engineering Conferences International Year 2006 Back Analysis of the Lower San Fernando Dam Slide Using a Multi-block Model C. A. Stamatopoulos P. Petridis Stamatopoulos and Associates

More information

Evaluation of soil liquefaction using the CPT Part 1

Evaluation of soil liquefaction using the CPT Part 1 Evaluation of soil liquefaction using the CPT Part 1 Dr. Peter K. Robertson Webinar #7 2013 CPT Guide 5 th Edition Download FREE copy from: Robertson & Cabal (Robertson) 5 th Edition 2012 www.greggdrilling.com

More information

Effect of Fines on Liquefaction Resistance in Fine Sand and Silty Sand

Effect of Fines on Liquefaction Resistance in Fine Sand and Silty Sand RESEARCH ARTICLE OPEN ACCESS Effect of Fines on Liquefaction Resistance in Fine Sand and Silty Sand Meraj Ahmad Khan 1, Dr M. Z. Khan 2 Mohd Bilal Khan 3 1 Research Scholar, Civil Engg Department, integral

More information

A CASE STUDY OF LIQUEFACTION ASSESSMENT USING SWEDISH WEIGHT SOUNDING

A CASE STUDY OF LIQUEFACTION ASSESSMENT USING SWEDISH WEIGHT SOUNDING 4th International Conference on Earthquake Engineering Taipei, Taiwan October 12-13, 2006 Paper No. 038 A CASE STUDY OF LIQUEFACTION ASSESSMENT USING SWEDISH WEIGHT SOUNDING Mahdi Habibi 1, Akbar Cheshomi

More information

Evaluation of the Liquefaction Potential by In-situ Tests and Laboratory Experiments In Complex Geological Conditions

Evaluation of the Liquefaction Potential by In-situ Tests and Laboratory Experiments In Complex Geological Conditions Evaluation of the Liquefaction Potential by In-situ Tests and Laboratory Experiments In Complex Geological Conditions V. Sesov, K. Edip & J. Cvetanovska University Ss. Cyril and Methodius, Institute of

More information

The Role of Slope Geometry on Flowslide Occurrence

The Role of Slope Geometry on Flowslide Occurrence American Journal of Environmental Sciences 3 (3): 93-97, 27 ISSN 1553-345X 27 Science Publications Corresponding Author: The Role of Slope Geometry on Flowslide Occurrence Chiara Deangeli DITAG, Politecnico

More information

Evaluation of Flow Liquefaction: influence of high stresses

Evaluation of Flow Liquefaction: influence of high stresses Evaluation of Flow Liquefaction: influence of high stresses P.K. Robertson Gregg Drilling & Testing Inc., California, USA ABSTRACT Flow liquefaction can be triggered by either cyclic or static loading

More information

Investigation of Liquefaction Behaviour for Cohesive Soils

Investigation of Liquefaction Behaviour for Cohesive Soils Proceedings of the 3 rd World Congress on Civil, Structural, and Environmental Engineering (CSEE 18) Budapest, Hungary April 8-10, 2018 Paper No. ICGRE 134 DOI: 10.11159/icgre18.134 Investigation of Liquefaction

More information

Assessing effects of Liquefaction. Peter K. Robertson 2016

Assessing effects of Liquefaction. Peter K. Robertson 2016 Assessing effects of Liquefaction Peter K. Robertson 2016 1964 1995 2010 Flow (static) Liquefaction After Olson & Stark, 2003 Case histories flow liquefaction Common soil features: Very young age Non-plastic

More information

Effect of Plastic Fines on Liquefaction Characteristics of Gravelly Soil

Effect of Plastic Fines on Liquefaction Characteristics of Gravelly Soil 6 th International Conference on Earthquake Geotechnical Engineering 1-4 November 2015 Christchurch, New Zealand Effect of Plastic Fines on Liquefaction Characteristics of Gravelly Soil W. Qi 1, C. Guoxing

More information

Liquefaction Induced Ground Deformation of Slopes using Geostudio2007 Software Program Baydaa Hussain Maula a, Ling Zhang b

Liquefaction Induced Ground Deformation of Slopes using Geostudio2007 Software Program Baydaa Hussain Maula a, Ling Zhang b dvanced Materials Research Online: 2-5-3 ISSN: 662-8985, Vols. 26-263, pp 33-38 doi:28/www.scientific.net/mr.26-263.33 2 Trans Tech Publications, Switzerland Liquefaction Induced Ground Deformation of

More information

Sensitivity of predicted liquefaction-induced lateral displacements from the 2010 Darfield and 2011 Christchurch Earthquakes

Sensitivity of predicted liquefaction-induced lateral displacements from the 2010 Darfield and 2011 Christchurch Earthquakes Sensitivity of predicted liquefaction-induced lateral displacements from the 2010 Darfield and 2011 Christchurch Earthquakes K. Robinson, M. Cubrinovski, B.A. Bradley Department of Civil and Natural Resources

More information

DYNAMIC RESPONSE APPROACH AND METHODOLOGY

DYNAMIC RESPONSE APPROACH AND METHODOLOGY DYNAMIC RESPONSE APPROACH AND METHODOLOGY Traditional seismic stability procedures vs coupled effective-stress approach. Traditional seismic stability procedures: Empirical and laboratory corrections and

More information

Seismic Design of a Hydraulic Fill Dam by Nonlinear Time History Method

Seismic Design of a Hydraulic Fill Dam by Nonlinear Time History Method Seismic Design of a Hydraulic Fill Dam by Nonlinear Time History Method E. Yıldız & A.F. Gürdil Temelsu International Engineering Services Inc., Ankara, Turkey SUMMARY: Time history analyses conducted

More information

Some Observations on the Effect of Initial Static Shear Stress on Cyclic Response of Natural Silt from Lower Mainland of British Columbia

Some Observations on the Effect of Initial Static Shear Stress on Cyclic Response of Natural Silt from Lower Mainland of British Columbia 6 th International Conference on Earthquake Geotechnical Engineering 1-4 November 215 Christchurch, New Zealand Some Observations on the Effect of Initial Static Shear Stress on Cyclic Response of Natural

More information

Transactions on the Built Environment vol 3, 1993 WIT Press, ISSN

Transactions on the Built Environment vol 3, 1993 WIT Press,  ISSN Resonant column and cyclic triaxial testing of tailing dam material S.A. Savidis*, C. Vrettos", T. Richter^ "Technical University of Berlin, Geotechnical Engineering Institute, 1000 Berlin 12, Germany

More information

Evaluation of the Effective Components in the Survey of Types of Liquefaction

Evaluation of the Effective Components in the Survey of Types of Liquefaction Current World Environment Vol. 10(Special Issue 1), 326-332 (2015) Evaluation of the Effective Components in the Survey of Types of Liquefaction Hadi Shahrokhifard 1 * and Seyed Jamal Poursalehan 2 1 Master

More information

LIQUEFACTION ASSESSMENT BY THE ENERGY METHOD THROUGH CENTRIFUGE MODELING

LIQUEFACTION ASSESSMENT BY THE ENERGY METHOD THROUGH CENTRIFUGE MODELING LIQUEFACTION ASSESSMENT BY THE ENERGY METHOD THROUGH CENTRIFUGE MODELING Hesham M. Dief, Associate Professor, Civil Engineering Department, Zagazig University, Zagazig, Egypt J. Ludwig Figueroa, Professor

More information

Soil Properties - II

Soil Properties - II Soil Properties - II Amit Prashant Indian Institute of Technology andhinagar Short Course on eotechnical Aspects of Earthquake Engineering 04 08 March, 2013 Seismic Waves Earthquake Rock Near the ground

More information

EARTHQUAKE INDUCED EXCESS PORE WATER PRESSURES IN THE UPPER SAN FERNANDO DAM DURING THE 1971 SAN FERNANDO EARTHQUAKE

EARTHQUAKE INDUCED EXCESS PORE WATER PRESSURES IN THE UPPER SAN FERNANDO DAM DURING THE 1971 SAN FERNANDO EARTHQUAKE EARTHQUAKE INDUCED EXCESS PORE WATER PRESSURES IN THE UPPER SAN FERNANDO DAM DURING THE 1971 SAN FERNANDO EARTHQUAKE Abouzar Sadrekarimi Timothy D. Stark Golder Associates Ltd. University of Illinois at

More information

Evaluation of Pore Water Pressure Characteristics in Embankment Model.

Evaluation of Pore Water Pressure Characteristics in Embankment Model. Evaluation of Pore Water Pressure Characteristics in Embankment Model. Abdoullah Namdar and Mehdi Khodashenas Pelkoo Mysore University, Mysore, India. 76. Amirkabir University, Department of Mining Engineering,

More information

Module 6 LIQUEFACTION (Lectures 27 to 32)

Module 6 LIQUEFACTION (Lectures 27 to 32) Module 6 LIQUEFACTION (Lectures 27 to 32) Lecture 31 Topics 6.6 EFFECTS OF LIQUEFACTION 6.6.1 Alteration of Ground Motion 6.6.2 Development of Sand Boils 6.6.3 Settlement 6.6.4 Settlement of Dry Sands

More information

Earthquake Induced Excess Pore Water Pressures in the Upper San Fernando Dam During the 1971 San Fernando Earthquake

Earthquake Induced Excess Pore Water Pressures in the Upper San Fernando Dam During the 1971 San Fernando Earthquake Missouri University of Science and Technology Scholars' Mine International Conferences on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics 2010 - Fifth International Conference

More information

Ground Motions and Liquefaction Potential

Ground Motions and Liquefaction Potential Missouri University of Science and Technology Scholars' Mine International Conferences on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics 2010 - Fifth International Conference

More information

Short Review on Liquefaction Susceptibility

Short Review on Liquefaction Susceptibility Short Review on Liquefaction Susceptibility Aminaton Marto*, Tan Choy Soon** *Professor, Faculty of Civil Engineering, Universiti Teknologi Malaysi, Skudai, Johor, Malaysia ** PhD Candidate, Faculty of

More information

2-D Liquefaction Evaluation with Q4Mesh

2-D Liquefaction Evaluation with Q4Mesh 2005 Tri-Service Infrastructure Systems Conference and Exhibition 2-D Liquefaction Evaluation with Q4Mesh -David C. Serafini, M.S., P.E. US Army Corps, Sacramento, CA 3 August 2005 2005 Tri-Service ISC

More information

Evaluation of Geotechnical Hazards

Evaluation of Geotechnical Hazards Evaluation of Geotechnical Hazards by Geoffrey R. Martin Appendix B: Evaluation of Geotechnical Hazards Describes Evaluation Procedures Soil Liquefaction Soil Settlement Surface Fault Rupture Flooding

More information

LIQUEFACTION CHARACTERISTICS EVALUATION THROUGH DIFFERENT STRESS-BASED MODELS: A COMPARATIVE STUDY

LIQUEFACTION CHARACTERISTICS EVALUATION THROUGH DIFFERENT STRESS-BASED MODELS: A COMPARATIVE STUDY Journal of Engineering Research and Studies E-ISSN976-7916 Research Article LIQUEFACTION CHARACTERISTICS EVALUATION THROUGH DIFFERENT STRESS-BASED MODELS: A COMPARATIVE STUDY P. Raychowdhury 1* and P.

More information

LIQUEFACTION ANALYSIS OF ASH EMBANKMENTS USING SPT AND DATA

LIQUEFACTION ANALYSIS OF ASH EMBANKMENTS USING SPT AND DATA LIQUEFACTION ANALYSIS OF ASH EMBANKMENTS USING SPT AND CPT DATA A THESIS SUBMITTED IN PARTIAL FULLFILMENT OF THE REQUIREMENTS FOR THE DEGREEE OF Bachelors of Technology In CIVIL ENGINEERING By RAJ KUMAR

More information

Prediction of liquefaction potential and pore water pressure beneath machine foundations

Prediction of liquefaction potential and pore water pressure beneath machine foundations Cent. Eur. J. Eng. 4(3) 2014 226-249 DOI: 10.2478/s13531-013-0165-y Central European Journal of Engineering Prediction of liquefaction potential and pore water pressure beneath machine foundations Research

More information

Evaluation of Undrained Shear Strength of Loose Silty Sands Using CPT Results

Evaluation of Undrained Shear Strength of Loose Silty Sands Using CPT Results Evaluation of Undrained Shear Strength of Loose Silty Sands Using CPT Results Downloaded from ijce.iust.ac.ir at 3:55 IRST on Thursday October 18th 2018 S. A. Naeini 1, R. Ziaie_Moayed 2 1 Department of

More information

1.1 Calculation methods of the liquefaction hazard.

1.1 Calculation methods of the liquefaction hazard. 1 Theoretical basis 1.1 Calculation methods of the liquefaction hazard. 1.1.1 Empirical methods. Empirical methods are generally used to get a rough estimate of the liquefaction hazard in saturated sandy

More information

EFFECTIVE STRESS ANALYSES OF TWO SITES WITH DIFFERENT EXTENT OF LIQUEFACTION DURING EAST JAPAN EARTHQUAKE

EFFECTIVE STRESS ANALYSES OF TWO SITES WITH DIFFERENT EXTENT OF LIQUEFACTION DURING EAST JAPAN EARTHQUAKE Proceedings of the International Symposium on Engineering Lessons Learned from the 211 Great East Japan Earthquake, March 1-4, 212, Tokyo, Japan EFFECTIVE STRESS ANALYSES OF TWO SITES WITH DIFFERENT EXTENT

More information

Liquefaction-Induced Ground Deformations Evaluation Based on Cone Penetration Tests (CPT)

Liquefaction-Induced Ground Deformations Evaluation Based on Cone Penetration Tests (CPT) World Journal of Engineering and Technology, 2014, 2, 249-259 Published Online November 2014 in SciRes. http://www.scirp.org/journal/wjet http://dx.doi.org/10.4236/wjet.2014.24026 Liquefaction-Induced

More information

Evaluating Soil Liquefaction and Post-earthquake deformations using the CPT

Evaluating Soil Liquefaction and Post-earthquake deformations using the CPT Evaluating Soil Liquefaction and Post-earthquake deformations using the CPT P.K. Robertson University of Alberta, Dept. of Civil and Environmental Engineering, Edmonton, Canada Keywords: Soil liquefaction,

More information

Copyright. Wen-Jong Chang

Copyright. Wen-Jong Chang Copyright by Wen-Jong Chang 22 The Dissertation Committee for Wen-Jong Chang Certifies that this is the approved version of the following dissertation: Development of an In Situ Dynamic Liquefaction Test

More information

Finite Deformation Analysis of Dynamic Behavior of Embankment on Liquefiable Sand Deposit Considering Pore Water Flow and Migration

Finite Deformation Analysis of Dynamic Behavior of Embankment on Liquefiable Sand Deposit Considering Pore Water Flow and Migration 6 th International Conference on Earthquake Geotechnical Engineering 1-4 November 215 Christchurch, New Zealand Finite Deformation Analysis of Dynamic Behavior of Embankment on Liquefiable Sand Deposit

More information

Soil Dynamics Prof. Deepankar Choudhury Department of Civil Engineering Indian Institute of Technology, Bombay

Soil Dynamics Prof. Deepankar Choudhury Department of Civil Engineering Indian Institute of Technology, Bombay Soil Dynamics Prof. Deepankar Choudhury Department of Civil Engineering Indian Institute of Technology, Bombay Module - 4 Dynamic Soil Properties Lecture - 23 Cyclic Stress Ratio, Evaluation of CRR, Correction

More information

Module 6 LIQUEFACTION (Lectures 27 to 32)

Module 6 LIQUEFACTION (Lectures 27 to 32) Module 6 LIQUEFACTION (Lectures 27 to 32) Lecture 30 Topics 6.5.9 Cyclic-Stress Approach 6.5.10 Characterization of Earthquake Loading 6.5.11 Characterization of Liquefaction Resistance 6.5.12 Characterization

More information

Endochronic model applied to earthfill dams with impervious core: design recommendation at seismic sites

Endochronic model applied to earthfill dams with impervious core: design recommendation at seismic sites Proceedings of the 1st IASME / WSEAS International Conference on Geology and Seismology (GES'7), Portoroz, Slovenia, May 15-17, 27 51 Endochronic model applied to earthfill dams with impervious core: design

More information

Comparison of the post-liquefaction behaviour of hard-grained and crushable pumice sands

Comparison of the post-liquefaction behaviour of hard-grained and crushable pumice sands Orense R.P., Asadi, M.S., Rouholamin M., Bhattacharya, S. (17) Proc. th NZGS Geotechnical Symposium. Eds. GJ Alexander & CY Chin, Napier Comparison of the post-liquefaction behaviour of hard-grained and

More information

PORE PRESSURE GENERATION UNDER DIFFERENT TRANSIENT LOADING HISTORIES

PORE PRESSURE GENERATION UNDER DIFFERENT TRANSIENT LOADING HISTORIES 10NCEE Tenth U.S. National Conference on Earthquake Engineering Frontiers of Earthquake Engineering July 21-25, 2014 Anchorage, Alaska PORE PRESSURE GENERATION UNDER DIFFERENT TRANSIENT LOADING HISTORIES

More information

SEISMIC DEFORMATION ANALYSIS OF AN EARTH DAM - A COMPARISON STUDY BETWEEN EQUIVALENT-LINEAR AND NONLINEAR EFFECTIVE-STRESS APPROACHES

SEISMIC DEFORMATION ANALYSIS OF AN EARTH DAM - A COMPARISON STUDY BETWEEN EQUIVALENT-LINEAR AND NONLINEAR EFFECTIVE-STRESS APPROACHES 13 th World Conference on Earthquake Engineering Vancouver, B.C., Canada August 1-6, 24 Paper No. 3298 SEISMIC DEFORMATION ANALYSIS OF AN EARTH DAM - A COMPARISON STUDY BETWEEN EQUIVALENT-LINEAR AND NONLINEAR

More information

INTERNATIONAL JOURNAL OF CIVIL AND STRUCTURAL ENGINEERING Volume 1, No 4, 2011

INTERNATIONAL JOURNAL OF CIVIL AND STRUCTURAL ENGINEERING Volume 1, No 4, 2011 Undrained response of mining sand with fines contents Thian S. Y, Lee C.Y Associate Professor, Department of Civil Engineering, Universiti Tenaga Nasional, Malaysia siawyin_thian@yahoo.com ABSTRACT This

More information

GEOTECHNICAL SEISMIC HAZARDS

GEOTECHNICAL SEISMIC HAZARDS Chapter 13 GEOTECHNICAL SEISMIC HAZARDS FINAL SCDOT GEOTECHNICAL DESIGN MANUAL June 2010 Table of Contents Section Page 13.1 Introduction... 13-1 13.2 Geotechnical Seismic Hazard Failure Modes... 13-2

More information

Safety analyses of Srinagarind dam induced by earthquakes using dynamic response analysis method.

Safety analyses of Srinagarind dam induced by earthquakes using dynamic response analysis method. Safety analyses of Srinagarind dam induced by earthquakes using dynamic response analysis method. S. Soralump Assistance Professor, Faculty of Engineering, Kasetsart University, Thailand. K. Tansupo Ph.D.

More information

An Overview of Geotechnical Earthquake Engineering

An Overview of Geotechnical Earthquake Engineering An Overview of Geotechnical Earthquake Engineering Sudhir K Jain Slide 1 Outline Introduction to Seismic Design Principle Dynamic Soil Properties Site Effects Soil Structure Interaction Issues for Foundation

More information

NEW METHOD FOR LIQUEFACTION ASSESSMENT BASED ON SOIL GRADATION AND RELATIVE DENSITY

NEW METHOD FOR LIQUEFACTION ASSESSMENT BASED ON SOIL GRADATION AND RELATIVE DENSITY NEW METHOD FOR LIQUEFACTION ASSESSMENT BASED ON SOIL GRADATION AND RELATIVE DENSITY Bambang Istijono 1, Abdul Hakam 2 1,2 Civil Dept. of Engineering Faculty, University of Andalas, Padang, Indonesia ABSTRACT

More information

Use of CPT in Geotechnical Earthquake Engineering

Use of CPT in Geotechnical Earthquake Engineering Use of CPT in Geotechnical Earthquake Engineering Prof. Scott M. Olson, PhD, PE Use of Cone Penetration Test for Foundation Analysis and Design 2006 Annual Meeting Transportation Research Board Geotechnical

More information

SEISMIC RESPONSE OF A SANDY STRATUM WITH A SILT LAYER UNDER STRONG GROUND MOTIONS

SEISMIC RESPONSE OF A SANDY STRATUM WITH A SILT LAYER UNDER STRONG GROUND MOTIONS SEISMIC RESPONSE OF A SANDY STRATUM WITH A SILT LAYER UNDER STRONG GROUND MOTIONS Bakhtiar Cahyandi Ridla 1), Huei-Tsyr Chen 2), M. Ruslin Anwar 3) 1) Double Degree Program E-mail: bakhtiar.ridla@gmail.com

More information

Module 8 SEISMIC SLOPE STABILITY (Lectures 37 to 40)

Module 8 SEISMIC SLOPE STABILITY (Lectures 37 to 40) Lecture 40 Topics Module 8 SEISMIC SLOPE STABILITY Lectures 37 to 40) 8.6.15 Analysis of Weakening Instability 8.6.16 Flow Failure Analysis 8.6.17 Analysis of Stability 8.6.18 Analysis of Deformation 8.6.19

More information

Ground Motion Comparison of the 2011 Tohoku, Japan and Canterbury earthquakes: Implications for large events in New Zealand.

Ground Motion Comparison of the 2011 Tohoku, Japan and Canterbury earthquakes: Implications for large events in New Zealand. Ground Motion Comparison of the 211 Tohoku, Japan and 21-211 Canterbury earthquakes: Implications for large events in New Zealand. B. A. Bradley University of Canterbury, Christchurch, New Zealand. 212

More information

TASK FORCE REPORT GEOTECHNICAL DESIGN GUIDELINES FOR BUILDINGS ON LIQUEFIABLE SITES IN ACCORDANCE WITH NBC for GREATER VANCOUVER REGION

TASK FORCE REPORT GEOTECHNICAL DESIGN GUIDELINES FOR BUILDINGS ON LIQUEFIABLE SITES IN ACCORDANCE WITH NBC for GREATER VANCOUVER REGION TASK FORCE REPORT GEOTECHNICAL DESIGN GUIDELINES FOR BUILDINGS ON LIQUEFIABLE SITES IN ACCORDANCE WITH NBC 2005 for GREATER VANCOUVER REGION MAY 8, 2007 DISCLAIMER This report reflects the general consensus

More information

LIQUEFACTION POTENTIAL OF SABARMATI-RIVER SAND

LIQUEFACTION POTENTIAL OF SABARMATI-RIVER SAND ISET Journal of Earthquake Technology, Paper No. 516, Vol. 48, No. 2-4, June-Dec. 2011, pp. 61 71 LIQUEFACTION POTENTIAL OF SABARMATI-RIVER SAND S.V. Dinesh*, G. Mahesh Kumar*, Muttana S. Balreddy* and

More information

Sensitivity of predicted liquefaction-induced lateral spreading displacements from the 2010 Darfield and 2011 Christchurch earthquakes

Sensitivity of predicted liquefaction-induced lateral spreading displacements from the 2010 Darfield and 2011 Christchurch earthquakes Robinson, K., Cubrinovski, M. & Bradley, B.A. (2013) and 2011 Christchurch earthquakes Proc. 19 th NZGS Geotechnical Symposium. Ed. CY Chin, Queenstown Sensitivity of predicted liquefaction-induced lateral

More information

Assessment of Risk of Liquefaction - A Case Study

Assessment of Risk of Liquefaction - A Case Study Assessment of Risk of Liquefaction - A Case Study ASHWAI JAI Deptt. of Civil Engineering ational Institute Technology Kurukshetra-136119 IDIA ashwani.jain66@yahoo.com Abstract: - Catastrophic failures

More information

Increase in Cyclic Liquefaction Resistance of Sandy Soil Due to Installation of Drilled Displacement Piles

Increase in Cyclic Liquefaction Resistance of Sandy Soil Due to Installation of Drilled Displacement Piles Presented at the Earthquake Engineering and Soil Dynamics IV Conference, Sacramento CA Increase in Cyclic Liquefaction Resistance of Sandy Soil Due to Installation of Drilled Displacement Piles Timothy

More information

Comparison of different methods for evaluating the liquefaction potential of sandy soils in Bandar Abbas

Comparison of different methods for evaluating the liquefaction potential of sandy soils in Bandar Abbas Comparison of different methods for evaluating the liquefaction potential of sandy soils in Bandar Abbas M. Mosaffa¹ & M. Rafiee² 1.Geotechnical M.S. student Hormozgan University, Bandar Abbas, Iran(Email:Amestris@gmail.com).Geotechnical

More information

Presentation Outline. 1. Seismic Soil Liquefaction Explained 2. Presentation of the Software SOILLIQ 3. Illustrative Applications using SOILLIQ

Presentation Outline. 1. Seismic Soil Liquefaction Explained 2. Presentation of the Software SOILLIQ 3. Illustrative Applications using SOILLIQ Presentation Outline 1. Seismic Soil Liquefaction Explained 2. Presentation of the Software SOILLIQ 3. Illustrative Applications using SOILLIQ Foundation Failures in Residential Buildings (1964 Niigata,

More information

DEVELOPMENT OF A METHODOLOGY FOR ESTIMATING SIMPLIFIED SEISMIC SLOPE DEFORMATION OF LEVEES WITH SEEPAGE CONTROL MEASURES

DEVELOPMENT OF A METHODOLOGY FOR ESTIMATING SIMPLIFIED SEISMIC SLOPE DEFORMATION OF LEVEES WITH SEEPAGE CONTROL MEASURES Paper No. DOALI DEVELOPMENT OF A METHODOLOGY FOR ESTIMATING SIMPLIFIED SEISMIC SLOPE DEFORMATION OF LEVEES WITH SEEPAGE CONTROL MEASURES John Liao 1, Ph.D., P.E., Zia Zafir, Ph.D., P.E., G.E., Scott Anderson,

More information

OVERBURDEN CORRECTION FACTORS FOR PREDICTING LIQUEFACTION RESISTANCE UNDER EMBANKMENT DAMS

OVERBURDEN CORRECTION FACTORS FOR PREDICTING LIQUEFACTION RESISTANCE UNDER EMBANKMENT DAMS 33rd Annual United States Society on Dams Conference, Phoenix, AZ, 693-709. February 2013. OVERBURDEN CORRECTION FACTORS FOR PREDICTING LIQUEFACTION RESISTANCE UNDER EMBANKMENT DAMS Jack Montgomery 1 Ross

More information

Drained Against Undrained Behaviour of Sand

Drained Against Undrained Behaviour of Sand Archives of Hydro-Engineering and Environmental Mechanics Vol. 54 (2007), No. 3, pp. 207 222 IBW PAN, ISSN 1231 3726 Drained Against Undrained Behaviour of Sand Andrzej Sawicki, Waldemar Świdziński Institute

More information

Date: April 2, 2014 Project No.: Prepared For: Mr. Adam Kates CLASSIC COMMUNITIES 1068 E. Meadow Circle Palo Alto, California 94303

Date: April 2, 2014 Project No.: Prepared For: Mr. Adam Kates CLASSIC COMMUNITIES 1068 E. Meadow Circle Palo Alto, California 94303 City of Newark - 36120 Ruschin Drive Project Draft Initial Study/Mitigated Negative Declaration Appendix C: Geologic Information FirstCarbon Solutions H:\Client (PN-JN)\4554\45540001\ISMND\45540001 36120

More information

Liquefaction Assessment using Site-Specific CSR

Liquefaction Assessment using Site-Specific CSR Liquefaction Assessment using Site-Specific CSR 1. Arup, Sydney 2. Arup Fellow, Adelaide M. M. L.SO 1, T. I. MOTE 1, & J. W. PAPPIN 2 E-Mail: minly.so@arup.com ABSTRACT: Liquefaction evaluation is often

More information