1999 by CRC Press LLC

Size: px
Start display at page:

Download "1999 by CRC Press LLC"

Transcription

1 Poulri A. D. The Melli Trform The Hdboo of Formul d Tble for Sigl Proceig. Ed. Alexder D. Poulri Boc Rto: CRC Pre LLC, by CRC Pre LLC

2 8 The Melli Trform 8. The Melli Trform 8. Propertie of Melli Trform 8.3 Exmple of Melli Trform 8.4 Specil Fuctio Frequecy Occurig i Melli Trform 8.5 Tble of Melli Trform Referece 8. The Melli Trform 8.. Defiitio Exmple M{ f( t); } = F( ) = f( t) t dt 8.. Reltio to Lplce Trform By lettig the trform become 8..3 Reltio to Fourier Trform By ettig which implie tht t t M{ e u( t)} = e t dt = Γ( ) x x t = e, dt = e dx, = σ+ M{ f( t)} F( ) f( e x ) e x = = dx = L { f( e x )} β i 8.. we obti x x βx F () = fe ( ) e e dx M{ f( t); } { f( e x x = σ+ β = F ) e ; β} 999 by CRC Pre LLC

3 where βx F{ f( x); β} = f( x) e dx = Fourier Trform 8..4 Iverio Formul c+ f() t = Ft () c d where c i withi the trip of lyticity < Re < b. 8. Propertie of Melli Trform 8.. Sclig Property 8.. Multiplictio by t M{ f ( t); } f ( t) t dt f ( x) x = = dx = F( ) 8..3 Riig the Idepedet Vrible to Rel Power ( + ) M{ t f( t); } = f( t) t dt = F( + ) M{ f ( t ); } f ( t ) t dt f ( x) x, x dx F = = = > 8..4 Ivere of Idepedet Vrible M{ t f( t ); } = F( ) 8..5 Multiplictio by l t M{l tf( t); } = d ( ) d F 8..6 Multiplictio by Power of l t d M{(l t) f( t); } = ( ) d F 999 by CRC Pre LLC

4 8..7 Derivtive M d d f(); t = ( )( ) F( ) ( )! Γ() ( ) ( )( + ) L( ) = = ( )! Γ( ) 8..8 Derivtive Multiplied by Idepedet Vrible M t d d ( ) f(); t ( )() F() ( ) F (),() ( ) ( ) = = Γ + = + L + Γ() Exmple M t 8..9 Covolutio d f() t t df () t + ; F ( ) dt dt = c+ M{ f( t) g( t); } = FzG ( ) ( zdz ) c 8.. Multiplictive Covolutio Propertie of the Multiplictive Covolutio t du M{ f g} = M f gu ( ) ; ( ) ( ) u u = F G M t du { FG ( ) ( )} = f gu ( ) u u. f g= g f commuttive. ( f g) h= f ( g h) ocitive 3. f δ( t ) = f uit elemet t f u du gu ( ) u t d f g t d f g f t d = g dt dt = ( ) dt (l t)( f g) = [(l t) f] g+ f [(l t) g] δ( t) f = f( t) 999 by CRC Pre LLC

5 δ( t p) δ( t p ) = δ( t pp ), p, p > d δ( t) d f = ( t f) dt d 8.. Prevl Formul c+ f() t g() t = M{ f ;} M{; gd } c r+ f() t g () t t dt = M{}( f ) M {}( g ) d β β β where β + r M{ f}() β = f() t t dt 8.3 Exmple of Melli Trform 8.3. Exmple 8.3. Exmple + to M{ tut ( t)} = t + dt=, Re{ } < t + M. + = t + t t ; dt t dt Settig t + = we obti: x =, dx = Hece, x t + ( + t). x dx M{ f ; }= ( x) = x ( x) dx = B(, ) = Γ( ) Γ( ) = ( x ) ( x ) i < Re{ } < Exmple m Γ( m) Γ( ) From ( u) u du =, Re{ } >, Re{ m} >, with the ettig u = x/( + x), we obti o Γ( m+ ) Hece, x m+ ( + x) Γ( m) Γ( ) dx =. Γ( m+ ) Γ() Γ( ) M{( + t) ; } =, < Re{ } < Re{ }. Γ( ) Exmple Uig 8..3 d we obti 999 by CRC Pre LLC

6 ( / ) Γ Γ b b M{( + t ) ; } =, < Re{ } < Re{ b}. Γ( b) Exmple M{ δ( t t ); } = δ( t t ) t dt = t o (ee 5.3.) Exmple From 8.3. d t M{ tut ( t)} = + d hece, 8.4 Specil Fuctio Frequecy Occurrig i Melli Trform 8.4. Defiitio + df t M F t + ; ( ) ( ) ( ) t dt = = + = = M{ u( t t ) t ; } + M{ t δ( t t ); } + The gmm fuctio Γ() i defied o the complex hlf-ple Re() > by the itegrl t Γ( ) = e t dt 8.4. Alytic Cotiutio The lyticl cotiued gmm fuctio i holomorphic i the whole ple except t the poit =, = L,,,, where it h imple pole Reidue t the Pole ( ) Re = ( ( )) = Γ! Reltio to the Fctoril Γ( + ) =! Fuctiol Reltio Γ( + ) = Γ( ) Γ() Γ( ) = i( ) 999 by CRC Pre LLC

7 Γ = / Γ( ) = Γ( ) Γ( + / ) (Legedre duplictio formul) m = m/ ( m)/ Γ( m) = m ( ) Γ( + / m), m =, 3, L, (Gu-Legedre multiplictio formul) Γ( ) ~ / exp + + O ( ),, rg( ) < (Stirlig ymptotic formul) The Bet Fuctio Defiitio: x y Bxy (, ) t ( t) dt Γ( x) Γ( y) Reltio to the gmm fuctio: Bxy (, ) = Γ( x + y) The pi Fuctio (logrithmic derivtive of the gmm fuctio) d Defiitio: ψ( ) l Γ() d = γ + = + + Euler cott γ, lo clled C, i defied by γ Γ ()/ Γ() d h vlue γ Riem Zet Fuctio ζ(, zq) = ( ), Re( z ) > q, q,,, L z + = ζ( z), Re( z) > z The fuctio ζ(z) i lytic i the whole complex z-ple except i z = where it h imple pole with reidue equl to by CRC Pre LLC

8 8.5 Tble of Melli Trform 8.5. Tble of Melli Trform TABLE 8. Some Stdrd Melli Trform Pir Origil Fuctio Melli Trform f (), t t > M f f t t [ ; ] ( ) dt Strip of holomorphy Algebric Fuctio b ut ( t ), > b+ b + Re( ) <Re( b) (( ut) ut ()) t b b+ b + Re( ) >Re( b) ( + t) i( ) < Re( ) < ( + t), rg < < Re( ) < Γ() Γ( ) ( + t) Γ( ) < Re( ) < Re( ) ( t) cot( ) < Re( ) < ( t), > < Re( ) < b u( t)( t), Re( b) > Γ() Γ() b Γ( + b) Re( ) > ut ( )( t) ( t + ), Re( ) > b Γ( b) Γ( b) Γ( ) Re( ) < Re( b) < cc < Re( ) < ( t + ), rg < ( / )cc( / ) / < Re( ) < ν t < t < t > h ν ( t ) < t < t h > Re( ν) > ( + ν) Re( ) >Re( ν) h Γ( ν) Γ h Γ ν + h Re( ) > ( t )( t ) + i cc cc < Re( ) < ( ) Expoetil Fuctio pt e, p > p Γ( ) Re( ) > ( e t ) Γ() ζ() Re( ) > (() ζ = zet fuctio) t ( e + ), Re( ) > Γ( )( ) ζ() Re( ) > t ( e ), Re( ) > Γ() ζ() Re( ) > ( e t )( e ), Re( ) > Γ( ) ζ(, ) Re( ) > ( e t ) Γ()[( ζ ) ζ()] Re( ) > 999 by CRC Pre LLC

9 TABLE 8. Some Stdrd Melli Trform Pir (cotiued) Origil Fuctio Melli Trform f(), t t > M[ f; ] f( t) t dt Strip of holomorphy t e h, Re( ) >, h > h / h Γ( / h) Re( ) > t e t e t e t Γ() e Logrithmic Fuctio Trigoometric Fuctio Γ( ) < Re( ) < Γ( / ) < Re( ) < t e h, Re( ) >, h > h / h Γ( / h) h < Re( ) < l( + t) ( / ) i( ) < Re( ) < < Re( ) < l( + t), rg < cc( ) < Re( ) < up ( )l( pt) p [ ψ( + ) + p l γ] Re( ) > t l( + t) l + t t lt < t < t > t ν l t < t < < t < e t (l t) ut ( )i( l t) u( t)i( l t) ( ut ( ) ut ( p))l( p/ t), p> ( )i( ) < Re( ) < ( / )t( / ) < Re( ) < (l ) Re( ) > ( + ν) Re( ) >Re( ν) d Γ( ) d + + Re( ) > Re( ) <Im( ) Re( ) > Im( ) p Re( ) > i( t), > Γ( )i( / ) < Re( ) < t / β e i( pt), Re( ) > Imβ ( + β ) Γ( )i t Re( ) > i ( t), > Γ( )co( / ) < Re( ) < co( t), > Γ( )co( / ) < Re( ) < t ( t) co t ( t) co( / ) co( / ) < Re( ) < < Re( ) < 999 by CRC Pre LLC

10 TABLE 8. Some Stdrd Melli Trform Pir (cotiued) Origil Fuctio Melli Trform f(), t t > M[ f; ] f( t) t dt Other Fuctio ν Γ + J ( ν t ), > ν Γ + i t Jν ( t), > δ( t p), p > p v ν Γ Γ v ν Γ( ) Γ Strip of holomorphy Re( ν) < Re( ) < 3/ < Re( ν) < Re( ) < / whole ple δ( t p), p > = p J () ν t Γ( + ν)/ Γ[( / )( ν ) + ] ζ( ) Re( ) < ν < Re( ) < 3/ r p δ( t p ),, l p δβ = r+ β l p = = p >, r = rel β=im( ) t b δ( b+ ) oe (lytic fuctiol) Referece Bertrd, Jcquelie, Pierre Bertrd, d Je-Philippe Ovrlez, The Melli Trform, i Trform d Applictio Hdboo, ed. Alexder Poulri, CRC Pre, Boc Rto, Florid, 996. Dvie, G., Itegrl Trform d Their Applictio, d ed., Spriger-Verlg, New Yor, NY, 984. Erdelyi, A., W. Mgu, F. Oberhettiger, d F. G. Tricomi, Tble of Itegrl Trfer, McGrw-Hill Boo Co., New Yor, NY, 954. Oberhettiger, F., Tble of Melli Trform, d ed., Spriger-Verlg, New Yor, NY, 974. Seddo, I N., The Ue of Itegrl Trform, McGrw-Hill Boo Co., New Yor, NY, by CRC Pre LLC

11

Chapter #2 EEE Subsea Control and Communication Systems

Chapter #2 EEE Subsea Control and Communication Systems EEE 87 Chpter # EEE 87 Sube Cotrol d Commuictio Sytem Trfer fuctio Pole loctio d -ple Time domi chrcteritic Extr pole d zero Chpter /8 EEE 87 Trfer fuctio Lplce Trform Ued oly o LTI ytem Differetil expreio

More information

UNIVERSITY OF CALICUT SCHOOL OF DISTANCE EDUCATION

UNIVERSITY OF CALICUT SCHOOL OF DISTANCE EDUCATION School Of Distce Eductio Questio Bk UNIVERSITY OF ALIUT SHOOL OF DISTANE EDUATION B.Sc MATHEMATIS (ORE OURSE SIXTH SEMESTER ( Admissio OMPLEX ANALYSIS Module- I ( A lytic fuctio with costt modulus is :

More information

Available at Appl. Appl. Math. ISSN: Vol. 4, Issue 1 (June 2009) pp (Previously, Vol. 4, No.

Available at   Appl. Appl. Math. ISSN: Vol. 4, Issue 1 (June 2009) pp (Previously, Vol. 4, No. Aville t http://pvmu.edu/m Appl. Appl. Mth. ISSN: 1932-9466 Vol. 4, Iue 1 (Jue 29) pp. 26 39 (Previouly, Vol. 4, No. 1) Applictio d Applied Mthemtic: A Itertiol Jourl (AAM) O Geerlized Hurwitz-Lerch Zet

More information

Chap8 - Freq 1. Frequency Response

Chap8 - Freq 1. Frequency Response Chp8 - Freq Frequecy Repoe Chp8 - Freq Aged Prelimirie Firt order ytem Frequecy repoe Low-p filter Secod order ytem Clicl olutio Frequecy repoe Higher order ytem Chp8 - Freq 3 Frequecy repoe Stedy-tte

More information

2.1.1 Definition The Z-transform of a sequence x [n] is simply defined as (2.1) X re x k re x k r

2.1.1 Definition The Z-transform of a sequence x [n] is simply defined as (2.1) X re x k re x k r Z-Trsforms. INTRODUCTION TO Z-TRANSFORM The Z-trsform is coveiet d vluble tool for represetig, lyig d desigig discrete-time sigls d systems. It plys similr role i discrete-time systems to tht which Lplce

More information

THE GAMMA FUNCTION. z w dz.

THE GAMMA FUNCTION. z w dz. THE GAMMA FUNCTION. Some results from lysis Lemm. Suppose f is sequece of fuctios lytic o ope subset D of C. If f coverges uiformly o every compct closed d bouded subset of D to the limit fuctio f the

More information

All the Laplace Transform you will encounter has the following form: Rational function X(s)

All the Laplace Transform you will encounter has the following form: Rational function X(s) EE G Note: Chpter Itructor: Cheug Pge - - Iverio of Rtiol Fuctio All the Lplce Trform you will ecouter h the followig form: m m m m e τ 0...... Rtiol fuctio Dely Why? Rtiol fuctio come out turlly from

More information

Abel Resummation, Regularization, Renormalization & Infinite Series

Abel Resummation, Regularization, Renormalization & Infinite Series Prespcetime Jourl August 3 Volume 4 Issue 7 pp. 68-689 Moret, J. J. G., Abel Resummtio, Regulriztio, Reormliztio & Ifiite Series Abel Resummtio, Regulriztio, Reormliztio & Ifiite Series 68 Article Jose

More information

ELEG 5173L Digital Signal Processing Ch. 2 The Z-Transform

ELEG 5173L Digital Signal Processing Ch. 2 The Z-Transform Deprtmet of Electricl Egieerig Uiversity of Arkss ELEG 573L Digitl Sigl Processig Ch. The Z-Trsform Dr. Jigxi Wu wuj@urk.edu OUTLINE The Z-Trsform Properties Iverse Z-Trsform Z-Trsform of LTI system Z-TRANSFORM

More information

Notes on Dirichlet L-functions

Notes on Dirichlet L-functions Notes o Dirichlet L-fuctios Joth Siegel Mrch 29, 24 Cotets Beroulli Numbers d Beroulli Polyomils 2 L-fuctios 5 2. Chrcters............................... 5 2.2 Diriclet Series.............................

More information

0 otherwise. sin( nx)sin( kx) 0 otherwise. cos( nx) sin( kx) dx 0 for all integers n, k.

0 otherwise. sin( nx)sin( kx) 0 otherwise. cos( nx) sin( kx) dx 0 for all integers n, k. . Computtio of Fourier Series I this sectio, we compute the Fourier coefficiets, f ( x) cos( x) b si( x) d b, i the Fourier series To do this, we eed the followig result o the orthogolity of the trigoometric

More information

2. The Laplace Transform

2. The Laplace Transform . The Lplce Trnform. Review of Lplce Trnform Theory Pierre Simon Mrqui de Lplce (749-87 French tronomer, mthemticin nd politicin, Miniter of Interior for 6 wee under Npoleon, Preident of Acdemie Frncie

More information

DIGITAL SIGNAL PROCESSING LECTURE 5

DIGITAL SIGNAL PROCESSING LECTURE 5 DIGITAL SIGNAL PROCESSING LECTURE 5 Fll K8-5 th Semester Thir Muhmmd tmuhmmd_7@yhoo.com Cotet d Figures re from Discrete-Time Sigl Processig, e by Oppeheim, Shfer, d Buck, 999- Pretice Hll Ic. The -Trsform

More information

82A Engineering Mathematics

82A Engineering Mathematics Clss Notes 9: Power Series /) 8A Egieerig Mthetics Secod Order Differetil Equtios Series Solutio Solutio Ato Differetil Equtio =, Hoogeeous =gt), No-hoogeeous Solutio: = c + p Hoogeeous No-hoogeeous Fudetl

More information

Double Sums of Binomial Coefficients

Double Sums of Binomial Coefficients Itertiol Mthemticl Forum, 3, 008, o. 3, 50-5 Double Sums of Biomil Coefficiets Athoy Sofo School of Computer Sciece d Mthemtics Victori Uiversity, PO Box 448 Melboure, VIC 800, Austrli thoy.sofo@vu.edu.u

More information

Course 121, , Test III (JF Hilary Term)

Course 121, , Test III (JF Hilary Term) Course 2, 989 9, Test III (JF Hilry Term) Fridy 2d Februry 99, 3. 4.3pm Aswer y THREE questios. Let f: R R d g: R R be differetible fuctios o R. Stte the Product Rule d the Quotiet Rule for differetitig

More information

Remarks: (a) The Dirac delta is the function zero on the domain R {0}.

Remarks: (a) The Dirac delta is the function zero on the domain R {0}. Sectio Objective(s): The Dirc s Delt. Mi Properties. Applictios. The Impulse Respose Fuctio. 4.4.. The Dirc Delt. 4.4. Geerlized Sources Defiitio 4.4.. The Dirc delt geerlized fuctio is the limit δ(t)

More information

Integral Operator Defined by k th Hadamard Product

Integral Operator Defined by k th Hadamard Product ITB Sci Vol 4 A No 35-5 35 Itegrl Opertor Deied by th Hdmrd Product Msli Drus & Rbh W Ibrhim School o Mthemticl Scieces Fculty o sciece d Techology Uiversiti Kebgs Mlysi Bgi 436 Selgor Drul Ehs Mlysi Emil:

More information

UNIVERSITY OF BRISTOL. Examination for the Degrees of B.Sc. and M.Sci. (Level C/4) ANALYSIS 1B, SOLUTIONS MATH (Paper Code MATH-10006)

UNIVERSITY OF BRISTOL. Examination for the Degrees of B.Sc. and M.Sci. (Level C/4) ANALYSIS 1B, SOLUTIONS MATH (Paper Code MATH-10006) UNIVERSITY OF BRISTOL Exmitio for the Degrees of B.Sc. d M.Sci. (Level C/4) ANALYSIS B, SOLUTIONS MATH 6 (Pper Code MATH-6) My/Jue 25, hours 3 miutes This pper cotis two sectios, A d B. Plese use seprte

More information

ELEC 372 LECTURE NOTES, WEEK 6 Dr. Amir G. Aghdam Concordia University

ELEC 372 LECTURE NOTES, WEEK 6 Dr. Amir G. Aghdam Concordia University ELEC 37 LECTURE NOTES, WEE 6 Dr mir G ghdm Cocordi Uiverity Prt of thee ote re dpted from the mteril i the followig referece: Moder Cotrol Sytem by Richrd C Dorf d Robert H Bihop, Pretice Hll Feedbck Cotrol

More information

UNIT V: Z-TRANSFORMS AND DIFFERENCE EQUATIONS. Dr. V. Valliammal Department of Applied Mathematics Sri Venkateswara College of Engineering

UNIT V: Z-TRANSFORMS AND DIFFERENCE EQUATIONS. Dr. V. Valliammal Department of Applied Mathematics Sri Venkateswara College of Engineering UNIT V: -TRANSFORMS AND DIFFERENCE EQUATIONS D. V. Vllimml Deptmet of Applied Mthemtics Si Vektesw College of Egieeig TOPICS:. -Tsfoms Elemet popeties.. Ivese -Tsfom usig ptil fctios d esidues. Covolutio

More information

Content: Essential Calculus, Early Transcendentals, James Stewart, 2007 Chapter 1: Functions and Limits., in a set B.

Content: Essential Calculus, Early Transcendentals, James Stewart, 2007 Chapter 1: Functions and Limits., in a set B. Review Sheet: Chpter Cotet: Essetil Clculus, Erly Trscedetls, Jmes Stewrt, 007 Chpter : Fuctios d Limits Cocepts, Defiitios, Lws, Theorems: A fuctio, f, is rule tht ssigs to ech elemet i set A ectly oe

More information

BRAIN TEASURES INDEFINITE INTEGRATION+DEFINITE INTEGRATION EXERCISE I

BRAIN TEASURES INDEFINITE INTEGRATION+DEFINITE INTEGRATION EXERCISE I EXERCISE I t Q. d Q. 6 6 cos si Q. Q.6 d d Q. d Q. Itegrte cos t d by the substitutio z = + e d e Q.7 cos. l cos si d d Q. cos si si si si b cos Q.9 d Q. si b cos Q. si( ) si( ) d ( ) Q. d cot d d Q. (si

More information

INTEGRATION TECHNIQUES (TRIG, LOG, EXP FUNCTIONS)

INTEGRATION TECHNIQUES (TRIG, LOG, EXP FUNCTIONS) Mthemtics Revisio Guides Itegrtig Trig, Log d Ep Fuctios Pge of MK HOME TUITION Mthemtics Revisio Guides Level: AS / A Level AQA : C Edecel: C OCR: C OCR MEI: C INTEGRATION TECHNIQUES (TRIG, LOG, EXP FUNCTIONS)

More information

( ) k ( ) 1 T n 1 x = xk. Geometric series obtained directly from the definition. = 1 1 x. See also Scalars 9.1 ADV-1: lim n.

( ) k ( ) 1 T n 1 x = xk. Geometric series obtained directly from the definition. = 1 1 x. See also Scalars 9.1 ADV-1: lim n. Sclrs-9.0-ADV- Algebric Tricks d Where Tylor Polyomils Come From 207.04.07 A.docx Pge of Algebric tricks ivolvig x. You c use lgebric tricks to simplify workig with the Tylor polyomils of certi fuctios..

More information

Probability for mathematicians INDEPENDENCE TAU

Probability for mathematicians INDEPENDENCE TAU Probbility for mthemticis INDEPENDENCE TAU 2013 21 Cotets 2 Cetrl limit theorem 21 2 Itroductio............................ 21 2b Covolutio............................ 22 2c The iitil distributio does

More information

1. (25 points) Use the limit definition of the definite integral and the sum formulas to compute. [1 x + x2

1. (25 points) Use the limit definition of the definite integral and the sum formulas to compute. [1 x + x2 Mth 3, Clculus II Fil Exm Solutios. (5 poits) Use the limit defiitio of the defiite itegrl d the sum formuls to compute 3 x + x. Check your swer by usig the Fudmetl Theorem of Clculus. Solutio: The limit

More information

Introductions to Floor

Introductions to Floor Itroductios to Floor Itroductio to the roudig d cogruece fuctios Geerl The roudig d cogruece fuctios hve log history tht is closely relted to the history of umber theory. My clcultios use roudig of the

More information

ABEL RESUMMATION, REGULARIZATION, RENORMALIZATION AND INFINITE SERIES

ABEL RESUMMATION, REGULARIZATION, RENORMALIZATION AND INFINITE SERIES ABEL RESUMMATION, REGULARIZATION, RENORMALIZATION AND INFINITE SERIES Jose Jvier Grci Moret Grdute studet of Physics t the UPV/EHU (Uiversity of Bsque coutry) I Solid Stte Physics Addres: Prctictes Ad

More information

The Definite Integral

The Definite Integral The Defiite Itegrl A Riem sum R S (f) is pproximtio to the re uder fuctio f. The true re uder the fuctio is obtied by tkig the it of better d better pproximtios to the re uder f. Here is the forml defiitio,

More information

Sequence and Series of Functions

Sequence and Series of Functions 6 Sequece d Series of Fuctios 6. Sequece of Fuctios 6.. Poitwise Covergece d Uiform Covergece Let J be itervl i R. Defiitio 6. For ech N, suppose fuctio f : J R is give. The we sy tht sequece (f ) of fuctios

More information

Chapter #3 EEE Subsea Control and Communication Systems

Chapter #3 EEE Subsea Control and Communication Systems EEE 87 Chter #3 EEE 87 Sube Cotrol d Commuictio Sytem Cloed loo ytem Stedy tte error PID cotrol Other cotroller Chter 3 /3 EEE 87 Itroductio The geerl form for CL ytem: C R ', where ' c ' H or Oe Loo (OL)

More information

Power Series Solutions to Generalized Abel Integral Equations

Power Series Solutions to Generalized Abel Integral Equations Itertiol Jourl of Mthemtics d Computtiol Sciece Vol., No. 5, 5, pp. 5-54 http://www.isciece.org/jourl/ijmcs Power Series Solutios to Geerlized Abel Itegrl Equtios Rufi Abdulli * Deprtmet of Physics d Mthemtics,

More information

Discrete-Time Signals & Systems

Discrete-Time Signals & Systems Chpter 2 Discrete-Time Sigls & Systems 清大電機系林嘉文 cwli@ee.thu.edu.tw 03-57352 Discrete-Time Sigls Sigls re represeted s sequeces of umbers, clled smples Smple vlue of typicl sigl or sequece deoted s x =

More information

Statistics for Financial Engineering Session 1: Linear Algebra Review March 18 th, 2006

Statistics for Financial Engineering Session 1: Linear Algebra Review March 18 th, 2006 Sttistics for Ficil Egieerig Sessio : Lier Algebr Review rch 8 th, 6 Topics Itroductio to trices trix opertios Determits d Crmer s rule Eigevlues d Eigevectors Quiz The cotet of Sessio my be fmilir to

More information

MAS221 Analysis, Semester 2 Exercises

MAS221 Analysis, Semester 2 Exercises MAS22 Alysis, Semester 2 Exercises Srh Whitehouse (Exercises lbelled * my be more demdig.) Chpter Problems: Revisio Questio () Stte the defiitio of covergece of sequece of rel umbers, ( ), to limit. (b)

More information

Chapter #5 EEE Control Systems

Chapter #5 EEE Control Systems Sprig EEE Chpter #5 EEE Cotrol Sytem Deig Bed o Root Locu Chpter / Sprig EEE Deig Bed Root Locu Led Cotrol (equivlet to PD cotrol) Ued whe the tedy tte propertie of the ytem re ok but there i poor performce,

More information

Euler-Maclaurin Summation Formula 1

Euler-Maclaurin Summation Formula 1 Jnury 9, Euler-Mclurin Summtion Formul Suppose tht f nd its derivtive re continuous functions on the closed intervl [, b]. Let ψ(x) {x}, where {x} x [x] is the frctionl prt of x. Lemm : If < b nd, b Z,

More information

Students must always use correct mathematical notation, not calculator notation. the set of positive integers and zero, {0,1, 2, 3,...

Students must always use correct mathematical notation, not calculator notation. the set of positive integers and zero, {0,1, 2, 3,... Appedices Of the vrious ottios i use, the IB hs chose to dopt system of ottio bsed o the recommedtios of the Itertiol Orgiztio for Stdrdiztio (ISO). This ottio is used i the emitio ppers for this course

More information

AN INEQUALITY OF GRÜSS TYPE FOR RIEMANN-STIELTJES INTEGRAL AND APPLICATIONS FOR SPECIAL MEANS

AN INEQUALITY OF GRÜSS TYPE FOR RIEMANN-STIELTJES INTEGRAL AND APPLICATIONS FOR SPECIAL MEANS RGMIA Reserch Report Collectio, Vol., No., 998 http://sci.vut.edu.u/ rgmi/reports.html AN INEQUALITY OF GRÜSS TYPE FOR RIEMANN-STIELTJES INTEGRAL AND APPLICATIONS FOR SPECIAL MEANS S.S. DRAGOMIR AND I.

More information

Probability and Stochastic Processes: A Friendly Introduction for Electrical and Computer Engineers Roy D. Yates and David J.

Probability and Stochastic Processes: A Friendly Introduction for Electrical and Computer Engineers Roy D. Yates and David J. Probbility d Stochstic Processes: A Friedly Itroductio for Electricl d Computer Egieers Roy D. Ytes d Dvid J. Goodm Problem Solutios : Ytes d Goodm,4..4 4..4 4..7 4.4. 4.4. 4..6 4.6.8 4.6.9 4.7.4 4.7.

More information

MATRIX ALGEBRA, Systems Linear Equations

MATRIX ALGEBRA, Systems Linear Equations MATRIX ALGEBRA, Systes Lier Equtios Now we chge to the LINEAR ALGEBRA perspective o vectors d trices to reforulte systes of lier equtios. If you fid the discussio i ters of geerl d gets lost i geerlity,

More information

Approximations of Definite Integrals

Approximations of Definite Integrals Approximtios of Defiite Itegrls So fr we hve relied o tiderivtives to evlute res uder curves, work doe by vrible force, volumes of revolutio, etc. More precisely, wheever we hve hd to evlute defiite itegrl

More information

Frequency-domain Characteristics of Discrete-time LTI Systems

Frequency-domain Characteristics of Discrete-time LTI Systems requecy-domi Chrcteristics of Discrete-time LTI Systems Prof. Siripog Potisuk LTI System descriptio Previous bsis fuctio: uit smple or DT impulse The iput sequece is represeted s lier combitio of shifted

More information

Fast Fourier Transform 1) Legendre s Interpolation 2) Vandermonde Matrix 3) Roots of Unity 4) Polynomial Evaluation

Fast Fourier Transform 1) Legendre s Interpolation 2) Vandermonde Matrix 3) Roots of Unity 4) Polynomial Evaluation Algorithm Desig d Alsis Victor Admchi CS 5-45 Sprig 4 Lecture 3 J 7, 4 Cregie Mello Uiversit Outlie Fst Fourier Trsform ) Legedre s Iterpoltio ) Vdermode Mtri 3) Roots of Uit 4) Polomil Evlutio Guss (777

More information

RADICALS. Upon completion, you should be able to. define the principal root of numbers. simplify radicals

RADICALS. Upon completion, you should be able to. define the principal root of numbers. simplify radicals RADICALS m 1 RADICALS Upo completio, you should be ble to defie the pricipl root of umbers simplify rdicls perform dditio, subtrctio, multiplictio, d divisio of rdicls Mthemtics Divisio, IMSP, UPLB Defiitio:

More information

Week 13 Notes: 1) Riemann Sum. Aim: Compute Area Under a Graph. Suppose we want to find out the area of a graph, like the one on the right:

Week 13 Notes: 1) Riemann Sum. Aim: Compute Area Under a Graph. Suppose we want to find out the area of a graph, like the one on the right: Week 1 Notes: 1) Riem Sum Aim: Compute Are Uder Grph Suppose we wt to fid out the re of grph, like the oe o the right: We wt to kow the re of the red re. Here re some wys to pproximte the re: We cut the

More information

Why study large deviations? The problem of estimating buer overow frequency The performance of many systems is limited by events which have a small pr

Why study large deviations? The problem of estimating buer overow frequency The performance of many systems is limited by events which have a small pr Why study lrge devitios? The problem of estimtig buer overow frequecy The performce of my systems is ited by evets which hve smll probbility of occurrig, but which hve severe cosequeces whe they occur.

More information

Chapter 10: The Z-Transform Adapted from: Lecture notes from MIT, Binghamton University Dr. Hamid R. Rabiee Fall 2013

Chapter 10: The Z-Transform Adapted from: Lecture notes from MIT, Binghamton University Dr. Hamid R. Rabiee Fall 2013 Sigls & Systems Chpter 0: The Z-Trsform Adpted from: Lecture otes from MIT, Bighmto Uiversity Dr. Hmid R. Rbiee Fll 03 Lecture 5 Chpter 0 Lecture 6 Chpter 0 Outlie Itroductio to the -Trsform Properties

More information

DEPARTMENT OF ELECTRICAL &ELECTRONICS ENGINEERING SIGNALS AND SYSTEMS. Assoc. Prof. Dr. Burak Kelleci. Spring 2018

DEPARTMENT OF ELECTRICAL &ELECTRONICS ENGINEERING SIGNALS AND SYSTEMS. Assoc. Prof. Dr. Burak Kelleci. Spring 2018 DEPARTMENT OF ELECTRICAL &ELECTRONICS ENGINEERING SIGNALS AND SYSTEMS Assoc. Prof. Dr. Bur Kelleci Sprig 8 OUTLINE The Z-Trsform The Regio of covergece for the Z-trsform The Iverse Z-Trsform Geometric

More information

Chapter 10: The Z-Transform Adapted from: Lecture notes from MIT, Binghamton University Hamid R. Rabiee Arman Sepehr Fall 2010

Chapter 10: The Z-Transform Adapted from: Lecture notes from MIT, Binghamton University Hamid R. Rabiee Arman Sepehr Fall 2010 Sigls & Systems Chpter 0: The Z-Trsform Adpted from: Lecture otes from MIT, Bighmto Uiversity Hmid R. Riee Arm Sepehr Fll 00 Lecture 5 Chpter 0 Outlie Itroductio to the -Trsform Properties of the ROC of

More information

Unit 1. Extending the Number System. 2 Jordan School District

Unit 1. Extending the Number System. 2 Jordan School District Uit Etedig the Number System Jord School District Uit Cluster (N.RN. & N.RN.): Etedig Properties of Epoets Cluster : Etedig properties of epoets.. Defie rtiol epoets d eted the properties of iteger epoets

More information

( ) dx ; f ( x ) is height and Δx is

( ) dx ; f ( x ) is height and Δx is Mth : 6.3 Defiite Itegrls from Riem Sums We just sw tht the exct re ouded y cotiuous fuctio f d the x xis o the itervl x, ws give s A = lim A exct RAM, where is the umer of rectgles i the Rectgulr Approximtio

More information

MATH 104 FINAL SOLUTIONS. 1. (2 points each) Mark each of the following as True or False. No justification is required. y n = x 1 + x x n n

MATH 104 FINAL SOLUTIONS. 1. (2 points each) Mark each of the following as True or False. No justification is required. y n = x 1 + x x n n MATH 04 FINAL SOLUTIONS. ( poits ech) Mrk ech of the followig s True or Flse. No justifictio is required. ) A ubouded sequece c hve o Cuchy subsequece. Flse b) A ifiite uio of Dedekid cuts is Dedekid cut.

More information

Vectors. Vectors in Plane ( 2

Vectors. Vectors in Plane ( 2 Vectors Vectors i Ple ( ) The ide bout vector is to represet directiol force Tht mes tht every vector should hve two compoets directio (directiol slope) d mgitude (the legth) I the ple we preset vector

More information

Review of the Riemann Integral

Review of the Riemann Integral Chpter 1 Review of the Riem Itegrl This chpter provides quick review of the bsic properties of the Riem itegrl. 1.0 Itegrls d Riem Sums Defiitio 1.0.1. Let [, b] be fiite, closed itervl. A prtitio P of

More information

Auto-correlation. Window Selection: Hamming. Hamming Filtered Power Spectrum. White Noise Auto-Covariance vs. Hamming Filtered Noise

Auto-correlation. Window Selection: Hamming. Hamming Filtered Power Spectrum. White Noise Auto-Covariance vs. Hamming Filtered Noise Correltio d Spectrl Alsis Applictio 4 Review of covrice idepedece cov cov with vrice : ew rdom vrile forms. d For idepedet rdom vriles - Autocorreltio Autocovrice cptures covrice where I geerl. for oise

More information

DISCRETE MELLIN CONVOLUTION AND ITS EXTENSIONS, PERRON FORMULA AND EXPLICIT FORMULAE

DISCRETE MELLIN CONVOLUTION AND ITS EXTENSIONS, PERRON FORMULA AND EXPLICIT FORMULAE DISCRETE MELLIN CONVOLUTION AND ITS EXTENSIONS, PERRON FORMULA AND EXPLICIT FORMULAE Joe Javier Garcia Moreta Graduate tudet of Phyic at the UPV/EHU (Uiverity of Baque coutry) I Solid State Phyic Addre:

More information

FOURIER SERIES PART I: DEFINITIONS AND EXAMPLES. To a 2π-periodic function f(x) we will associate a trigonometric series. a n cos(nx) + b n sin(nx),

FOURIER SERIES PART I: DEFINITIONS AND EXAMPLES. To a 2π-periodic function f(x) we will associate a trigonometric series. a n cos(nx) + b n sin(nx), FOURIER SERIES PART I: DEFINITIONS AND EXAMPLES To -periodic fuctio f() we will ssocite trigoometric series + cos() + b si(), or i terms of the epoetil e i, series of the form c e i. Z For most of the

More information

A GENERAL METHOD FOR SOLVING ORDINARY DIFFERENTIAL EQUATIONS: THE FROBENIUS (OR SERIES) METHOD

A GENERAL METHOD FOR SOLVING ORDINARY DIFFERENTIAL EQUATIONS: THE FROBENIUS (OR SERIES) METHOD Diol Bgoo () A GENERAL METHOD FOR SOLVING ORDINARY DIFFERENTIAL EQUATIONS: THE FROBENIUS (OR SERIES) METHOD I. Itroductio The first seprtio of vribles (see pplictios to Newto s equtios) is ver useful method

More information

The Definite Riemann Integral

The Definite Riemann Integral These otes closely follow the presettio of the mteril give i Jmes Stewrt s textook Clculus, Cocepts d Cotexts (d editio). These otes re iteded primrily for i-clss presettio d should ot e regrded s sustitute

More information

INSTRUCTOR: CEZAR LUPU. Problem 1. a) Let f(x) be a continuous function on [1, 2]. Prove that. nx 2 lim

INSTRUCTOR: CEZAR LUPU. Problem 1. a) Let f(x) be a continuous function on [1, 2]. Prove that. nx 2 lim WORKSHEET FOR THE PRELIMINARY EXAMINATION-REAL ANALYSIS (RIEMANN AND RIEMANN-STIELTJES INTEGRAL OF A SINGLE VARIABLE, INTEGRAL CALCULUS, FOURIER SERIES AND SPECIAL FUNCTIONS INSTRUCTOR: CEZAR LUPU Problem.

More information

CHAPTER 2: Boundary-Value Problems in Electrostatics: I. Applications of Green s theorem

CHAPTER 2: Boundary-Value Problems in Electrostatics: I. Applications of Green s theorem CHAPTER : Boudr-Vlue Problems i Electrosttics: I Applictios of Gree s theorem .6 Gree Fuctio for the Sphere; Geerl Solutio for the Potetil The geerl electrosttic problem (upper figure): ( ) ( ) with b.c.

More information

Linear Programming. Preliminaries

Linear Programming. Preliminaries Lier Progrmmig Prelimiries Optimiztio ethods: 3L Objectives To itroduce lier progrmmig problems (LPP To discuss the stdrd d coicl form of LPP To discuss elemetry opertio for lier set of equtios Optimiztio

More information

The z Transform. The Discrete LTI System Response to a Complex Exponential

The z Transform. The Discrete LTI System Response to a Complex Exponential The Trsform The trsform geerlies the Discrete-time Forier Trsform for the etire complex ple. For the complex vrible is sed the ottio: jω x+ j y r e ; x, y Ω rg r x + y {} The Discrete LTI System Respose

More information

=> PARALLEL INTERCONNECTION. Basic Properties LTI Systems. The Commutative Property. Convolution. The Commutative Property. The Distributive Property

=> PARALLEL INTERCONNECTION. Basic Properties LTI Systems. The Commutative Property. Convolution. The Commutative Property. The Distributive Property Lier Time-Ivrit Bsic Properties LTI The Commuttive Property The Distributive Property The Associtive Property Ti -6.4 / Chpter Covolutio y ] x ] ] x ]* ] x ] ] y] y ( t ) + x( τ ) h( t τ ) dτ x( t) * h(

More information

B. Examples 1. Finite Sums finite sums are an example of Riemann Sums in which each subinterval has the same length and the same x i

B. Examples 1. Finite Sums finite sums are an example of Riemann Sums in which each subinterval has the same length and the same x i Mth 06 Clculus Sec. 5.: The Defiite Itegrl I. Riem Sums A. Def : Give y=f(x):. Let f e defied o closed itervl[,].. Prtitio [,] ito suitervls[x (i-),x i ] of legth Δx i = x i -x (i-). Let P deote the prtitio

More information

PROGRESSIONS AND SERIES

PROGRESSIONS AND SERIES PROGRESSIONS AND SERIES A sequece is lso clled progressio. We ow study three importt types of sequeces: () The Arithmetic Progressio, () The Geometric Progressio, () The Hrmoic Progressio. Arithmetic Progressio.

More information

Certain sufficient conditions on N, p n, q n k summability of orthogonal series

Certain sufficient conditions on N, p n, q n k summability of orthogonal series Avilble olie t www.tjs.com J. Nolier Sci. Appl. 7 014, 7 77 Reserch Article Certi sufficiet coditios o N, p, k summbility of orthogol series Xhevt Z. Krsiqi Deprtmet of Mthemtics d Iformtics, Fculty of

More information

Chapter 5. The Riemann Integral. 5.1 The Riemann integral Partitions and lower and upper integrals. Note: 1.5 lectures

Chapter 5. The Riemann Integral. 5.1 The Riemann integral Partitions and lower and upper integrals. Note: 1.5 lectures Chpter 5 The Riem Itegrl 5.1 The Riem itegrl Note: 1.5 lectures We ow get to the fudmetl cocept of itegrtio. There is ofte cofusio mog studets of clculus betwee itegrl d tiderivtive. The itegrl is (iformlly)

More information

The total number of permutations of S is n!. We denote the set of all permutations of S by

The total number of permutations of S is n!. We denote the set of all permutations of S by DETERMINNTS. DEFINITIONS Def: Let S {,,, } e the set of itegers from to, rrged i scedig order. rerrgemet jjj j of the elemets of S is clled permuttio of S. S. The totl umer of permuttios of S is!. We deote

More information

n 2 + 3n + 1 4n = n2 + 3n + 1 n n 2 = n + 1

n 2 + 3n + 1 4n = n2 + 3n + 1 n n 2 = n + 1 Ifiite Series Some Tests for Divergece d Covergece Divergece Test: If lim u or if the limit does ot exist, the series diverget. + 3 + 4 + 3 EXAMPLE: Show tht the series diverges. = u = + 3 + 4 + 3 + 3

More information

THE NATIONAL UNIVERSITY OF IRELAND, CORK COLÁISTE NA hollscoile, CORCAIGH UNIVERSITY COLLEGE, CORK SUMMER EXAMINATION 2005 FIRST ENGINEERING

THE NATIONAL UNIVERSITY OF IRELAND, CORK COLÁISTE NA hollscoile, CORCAIGH UNIVERSITY COLLEGE, CORK SUMMER EXAMINATION 2005 FIRST ENGINEERING OLLSCOIL NA héireann, CORCAIGH THE NATIONAL UNIVERSITY OF IRELAND, CORK COLÁISTE NA hollscoile, CORCAIGH UNIVERSITY COLLEGE, CORK SUMMER EXAMINATION 2005 FIRST ENGINEERING MATHEMATICS MA008 Clculus d Lier

More information

Riemann Paper (1859) Is False

Riemann Paper (1859) Is False Riema Paper (859) I Fale Chu-Xua Jiag P O Box94, Beijig 00854, Chia Jiagchuxua@vipohucom Abtract I 859 Riema defied the zeta fuctio ζ () From Gamma fuctio he derived the zeta fuctio with Gamma fuctio ζ

More information

Fourier Series and Applications

Fourier Series and Applications 9/7/9 Fourier Series d Applictios Fuctios epsio is doe to uderstd the better i powers o etc. My iportt probles ivolvig prtil dieretil equtios c be solved provided give uctio c be epressed s iiite su o

More information

Una nueva clase de polinomios q-apostol-bernoulli de orden α. A new class of q-apostol-bernoulli polynomials of order α.

Una nueva clase de polinomios q-apostol-bernoulli de orden α. A new class of q-apostol-bernoulli polynomials of order α. Revist Tecocietífic URU Uiversidd Rfel Urdet Fcultd de Igeierí Nº 6 Eero - Juio 24 Depósito legl: ppi 242ZU4464 ISSN: 2343-636 U uev clse de poliomios -Apostol-eroulli de orde α Mridul Grg d Subhsh Alh

More information

Linear Algebra. Lecture 1 September 19, 2011

Linear Algebra. Lecture 1 September 19, 2011 Lier Algebr Lecture September 9, Outlie Course iformtio Motivtio Outlie of the course Wht is lier lgebr? Chpter. Systems of Lier Equtios. Solvig Lier Systems. Vectors d Mtrices Course iformtio Istructor:

More information

Higher Checklist (Unit 3) Higher Checklist (Unit 3) Vectors

Higher Checklist (Unit 3) Higher Checklist (Unit 3) Vectors Vectors Skill Achieved? Know tht sclr is quntity tht hs only size (no direction) Identify rel-life exmples of sclrs such s, temperture, mss, distnce, time, speed, energy nd electric chrge Know tht vector

More information

DETERMINANT. = 0. The expression a 1. is called a determinant of the second order, and is denoted by : y + c 1

DETERMINANT. = 0. The expression a 1. is called a determinant of the second order, and is denoted by : y + c 1 NOD6 (\Dt\04\Kot\J-Advced\SMP\Mths\Uit#0\NG\Prt-\0.Determits\0.Theory.p65. INTRODUCTION : If the equtios x + b 0, x + b 0 re stisfied by the sme vlue of x, the b b 0. The expressio b b is clled determit

More information

On A Subclass of Harmonic Univalent Functions Defined By Generalized Derivative Operator

On A Subclass of Harmonic Univalent Functions Defined By Generalized Derivative Operator Itertiol Jourl of Moder Egieerig Reserch (IJMER) Vol., Issue.3, My-Jue 0-56-569 ISSN: 49-6645 N. D. Sgle Dertmet of Mthemtics, Asheb Dge College of Egieerig, Asht, Sgli, (M.S) Idi 4630. Y. P. Ydv Dertmet

More information

2. Infinite Series 3. Power Series 4. Taylor Series 5. Review Questions and Exercises 6. Sequences and Series with Maple

2. Infinite Series 3. Power Series 4. Taylor Series 5. Review Questions and Exercises 6. Sequences and Series with Maple Chpter II CALCULUS II.4 Sequeces d Series II.4 SEQUENCES AND SERIES Objectives: After the completio of this sectio the studet - should recll the defiitios of the covergece of sequece, d some limits; -

More information

MA123, Chapter 9: Computing some integrals (pp )

MA123, Chapter 9: Computing some integrals (pp ) MA13, Chpter 9: Computig some itegrls (pp. 189-05) Dte: Chpter Gols: Uderstd how to use bsic summtio formuls to evlute more complex sums. Uderstd how to compute its of rtiol fuctios t ifiity. Uderstd how

More information

REGULARIZATION OF CERTAIN DIVERGENT SERIES OF POLYNOMIALS

REGULARIZATION OF CERTAIN DIVERGENT SERIES OF POLYNOMIALS REGULARIZATION OF CERTAIN DIVERGENT SERIES OF POLYNOMIALS LIVIU I. NICOLAESCU ABSTRACT. We ivestigate the geeralized covergece ad sums of series of the form P at P (x, where P R[x], a R,, ad T : R[x] R[x]

More information

18.01 Calculus Jason Starr Fall 2005

18.01 Calculus Jason Starr Fall 2005 18.01 Clculus Jso Strr Lecture 14. October 14, 005 Homework. Problem Set 4 Prt II: Problem. Prctice Problems. Course Reder: 3B 1, 3B 3, 3B 4, 3B 5. 1. The problem of res. The ciet Greeks computed the res

More information

Section IV.6: The Master Method and Applications

Section IV.6: The Master Method and Applications Sectio IV.6: The Mster Method d Applictios Defiitio IV.6.1: A fuctio f is symptoticlly positive if d oly if there exists rel umer such tht f(x) > for ll x >. A cosequece of this defiitio is tht fuctio

More information

Crushed Notes on MATH132: Calculus

Crushed Notes on MATH132: Calculus Mth 13, Fll 011 Siyg Yg s Outlie Crushed Notes o MATH13: Clculus The otes elow re crushed d my ot e ect This is oly my ow cocise overview of the clss mterils The otes I put elow should ot e used to justify

More information

A New Estimator Using Auxiliary Information in Stratified Adaptive Cluster Sampling

A New Estimator Using Auxiliary Information in Stratified Adaptive Cluster Sampling Ope Jourl of ttitic, 03, 3, 78-8 ttp://d.doi.org/0.436/oj.03.3403 Publied Olie eptember 03 (ttp://www.cirp.org/jourl/oj) New Etimtor Uig uilir Iformtio i trtified dptive Cluter mplig Nippor Cutim *, Moc

More information

ROUTH-HURWITZ CRITERION

ROUTH-HURWITZ CRITERION Automti Cotrol Sytem, Deprtmet of Mehtroi Egieerig, Germ Jordi Uiverity Routh-Hurwitz Criterio ite.google.om/ite/ziydmoud 7 ROUTH-HURWITZ CRITERION The Routh-Hurwitz riterio i lytil proedure for determiig

More information

A GENERALIZATION OF GAUSS THEOREM ON QUADRATIC FORMS

A GENERALIZATION OF GAUSS THEOREM ON QUADRATIC FORMS A GENERALIZATION OF GAU THEOREM ON QUADRATIC FORM Nicole I Brtu d Adi N Cret Deprtmet of Mth - Criov Uiversity, Romi ABTRACT A origil result cocerig the extesio of Guss s theorem from the theory of biry

More information

Toeplitz and Translation Operators on the q-fock Spaces *

Toeplitz and Translation Operators on the q-fock Spaces * Advces i Pure Mthemtics 35-333 doi:436/pm659 Published Olie November (http://wwwscirporg/jourl/pm) Toeplit d Trsltio Opertors o the -Foc Spces * Abstrct Fethi Solti Higher College o Techology d Iormtics

More information

National Quali cations AHEXEMPLAR PAPER ONLY

National Quali cations AHEXEMPLAR PAPER ONLY Ntiol Quli ctios AHEXEMPLAR PAPER ONLY EP/AH/0 Mthemtics Dte Not pplicble Durtio hours Totl mrks 00 Attempt ALL questios. You my use clcultor. Full credit will be give oly to solutios which coti pproprite

More information

Mathematical modeling of dynamic systems: Chapter 3: Mathematical modeling of dynamic systems. Linearization of nonlinear systems:

Mathematical modeling of dynamic systems: Chapter 3: Mathematical modeling of dynamic systems. Linearization of nonlinear systems: hpter : themticl modelig of dymic ytem Itructor: S. Frhdi themticl modelig of dymic ytem: Simplicity veru ccurcy: it i poible to improve the ccurcy of mthemticl model by icreig it compleity. Lier ytem:

More information

Math 2142 Homework 2 Solutions. Problem 1. Prove the following formulas for Laplace transforms for s > 0. a s 2 + a 2 L{cos at} = e st.

Math 2142 Homework 2 Solutions. Problem 1. Prove the following formulas for Laplace transforms for s > 0. a s 2 + a 2 L{cos at} = e st. Mth 2142 Homework 2 Solution Problem 1. Prove the following formul for Lplce trnform for >. L{1} = 1 L{t} = 1 2 L{in t} = 2 + 2 L{co t} = 2 + 2 Solution. For the firt Lplce trnform, we need to clculte:

More information

The Basic Properties of the Integral

The Basic Properties of the Integral The Bsic Properties of the Itegrl Whe we compute the derivtive of complicted fuctio, like x + six, we usully use differetitio rules, like d [f(x)+g(x)] d f(x)+ d g(x), to reduce the computtio dx dx dx

More information

Limit of a function:

Limit of a function: - Limit of fuctio: We sy tht f ( ) eists d is equl with (rel) umer L if f( ) gets s close s we wt to L if is close eough to (This defiitio c e geerlized for L y syig tht f( ) ecomes s lrge (or s lrge egtive

More information

PhysicsAndMathsTutor.com

PhysicsAndMathsTutor.com PhysicsAdMthsTutor.com PhysicsAdMthsTutor.com Jue 009 4. Give tht y rsih ( ), > 0, () fid d y d, givig your swer s simplified frctio. () Leve lk () Hece, or otherwise, fid 4 d, 4 [ ( )] givig your swer

More information

Infinite Series Sequences: terms nth term Listing Terms of a Sequence 2 n recursively defined n+1 Pattern Recognition for Sequences Ex:

Infinite Series Sequences: terms nth term Listing Terms of a Sequence 2 n recursively defined n+1 Pattern Recognition for Sequences Ex: Ifiite Series Sequeces: A sequece i defied s fuctio whose domi is the set of positive itegers. Usully it s esier to deote sequece i subscript form rther th fuctio ottio.,, 3, re the terms of the sequece

More information

National Quali cations SPECIMEN ONLY

National Quali cations SPECIMEN ONLY AH Ntiol Quli ctios SPECIMEN ONLY SQ/AH/0 Mthemtics Dte Not pplicble Durtio hours Totl mrks 00 Attempt ALL questios. You my use clcultor. Full credit will be give oly to solutios which coti pproprite workig.

More information

INFINITE SERIES. ,... having infinite number of terms is called infinite sequence and its indicated sum, i.e., a 1

INFINITE SERIES. ,... having infinite number of terms is called infinite sequence and its indicated sum, i.e., a 1 Appedix A.. Itroductio As discussed i the Chpter 9 o Sequeces d Series, sequece,,...,,... hvig ifiite umber of terms is clled ifiite sequece d its idicted sum, i.e., + + +... + +... is clled ifite series

More information

1 Tangent Line Problem

1 Tangent Line Problem October 9, 018 MAT18 Week Justi Ko 1 Tget Lie Problem Questio: Give the grph of fuctio f, wht is the slope of the curve t the poit, f? Our strteg is to pproimte the slope b limit of sect lies betwee poits,

More information