Introductions to Floor

Size: px
Start display at page:

Download "Introductions to Floor"

Transcription

1 Itroductios to Floor Itroductio to the roudig d cogruece fuctios Geerl The roudig d cogruece fuctios hve log history tht is closely relted to the history of umber theory. My clcultios use roudig of the flotig-poit d rtiol umbers to the closest smller or lrger itegers. J. Nemorrius (37) ws oe of the first mthemticis to use the quotiet of two umbers m d i moder sese, but the word quotiet ppered for the first time roud 50 i the writigs of Meister Gerdus. Specil ottios for roudig d cogruece fuctios were itroduced much lter. C. F. Guss (80) suggested the symbol mod ( m mod ) for the ottio of the property tht the rtio m is iteger. He observed tht d m re the cogruet modulo. The umber is clled modulus. C. F. Guss (808) d J. Liouville (838) widely used the floor d roud fuctios i their ivestigtios. They d other mthemticis used differet d sometimes cofusig ottios for those fuctios. The moder ottios of z d z for floor d ceilig fuctios, respectively, were suggested by K. E. Iverso (96). The ottio z for the roudig fuctio ws proposed by J. Hstd (988). Defiitios of the roudig d cogruece fuctios The roudig d cogruece fuctios iclude seve bsic fuctios. They ll del with the seprtio of iteger or frctiol prts from rel d complex umbers: the floor fuctio (etire prt fuctio) z, the erest iteger fuctio (roud) z, the ceilig fuctio (lest iteger) z, the iteger prt itz, the frctiol prt frcz, the modulo fuctio (cogruece) m mod, d the iteger prt of the quotiet (quotiet or iteger divisio) quotietm,. The floor fuctio (etire fuctio) z c be cosidered s the bsic fuctio of this group. The other six fuctios c be uiquely defied through the floor fuctio. Floor For rel z, the floor fuctio z is the gretest iteger less th or equl to z. For rbitrry complex z, the fuctio z c be described (or defied) by the followig formuls: x ; x x z Rez Imz. Exmples: 3. 3, 3 3, 0.,.3 3, 3 0, Π, 5, 3 5, 7 3. Roud

2 For rel z, the roudig fuctio z is the iteger closest to z (if z ±, ± 3, ). For rbitrry z, the roud fuctio z c be described (or defied) by the followig formuls: x ; x x z Rez Imz ; ;. Exmples: 3. 3, 3 3, 0. 0,.3, 3, Π 3, 5 3, 5, 7. Ceilig For rel z, the ceilig fuctio z is the smllest iteger greter th or equl to z. For rbitrry z, the fuctio z c be described (or defied) by the followig formuls: x ; x x z Rez Imz. Exmples: 3., 3 3, 0. 0,.3, 3, Π 3, 5 3, 5 3, 7. Iteger prt For rel z, the fuctio iteger prt itz is the iteger prt of z. For rbitrry z, the fuctio itz c be described (or defied) by the followig formuls: itx ; x 0 sgx x x 0 itz itrez itimz. Exmples: it3. 3, it3 3, it0. 0, it.3, it 0, 3 itπ 3, it 5 3, it 5, it 7 3. Frctiol prt For rel z, the fuctio frctiol prt frcz is the frctiol prt of z. For rbitrry z, the fuctio frcz c be described (or defied) by the followig formuls: frcx x ; x 0 sgx x x 0

3 3 frcz frcrez frcimz. Exmples: frc3. 0., frc3 0, frc0. 0., frc.3 0.3, frc 3 3, frcπ 3 Π, frc 5 3 3, frc 5, frc 7. Mod For complex d m, the mod fuctio m mod is the remider of the divisio of m by. The sig of m mod for rel m, is lwys the sme s the sig of. The mod fuctio m mod c be described (or defied) by the followig formul: m mod m m. The fuctiol property m mod m mod m m mes the behvior of m mod similr to the behvior of m. Exmples: 5 mod, 8 mod 3, 5 mod 3, 7 Π mod 3 7 Π, 7 3 mod 3, frcπ 3 Π,.7 3 mod 5.7. Quotiet For complex d m, the iteger prt of the quotiet (quotiet) fuctio quotietm, is the iteger quotiet of m d. The quotiet fuctio quotietm, c be described (or defied) by the followig formul: quotietm, m. Exmples: quotiet5,, quotiet3, 3, quotiet, 3, quotietπ,, quotiet7 3, 5 5, quotietπ,, quotiet.7 3, 5. Coectios withi the group of roudig d cogruece fuctios d with other fuctio groups Represettios through relted fuctios The roudig d cogruece fuctios z, z, z, itz, frcz, m mod, d quotietm, hve umerous represettios through relted fuctios, which re show i the followig tbles, where the symbol Χ mes the chrcteristic fuctio of set (hvig the vlue whe its rgumet is elemet of the specified set, d vlue of 0 otherwise):

4 x ; x or m, ; m Floor Roud Floor x x x ; x x x ; x x Χ x Roud x x x ; x x x ; x x Χ x Ceilig x x ; x x x ; x x x ΘΧ x x x x ; x x x ; x x Χ x ItegerPrt FrctiolPrt itx x ; x 0 x itx x ; x 0 x itx x sgχ x Θx frcx x x ; x 0 x frcx x x ; x 0 x frcx x x sgχ x Θx itx x x ; x 0 itx x x ; x 0 itx x Χ x sgχ x Θx frcx x x x ; x 0 frcx x x x ; x 0 frcx x x Χ x sgχ x Θx Mod m mod m m m mod m m m ; m mod m m m ; m mod m Χ m m Quotiet quotietm, m quotietm, m m ; quotietm, m m ; quotietm, m Χ m

5 5 x ; x or m, ; m Mod Quotiet Floor x x x mod x quotietx, Roud x x frcx x x frcx ; x ; x x x x mod Χ x x quotietx x, ; x quotietx x, ; x quotietx, Χ x Ceilig x x x mod x quotietx, ItegerPrt itx x x mod ; x 0 x itx x x mod ; x 0 x itx x x mod sgχ x Θx itx quotietx, ; x 0 x itx quotietx, ; x 0 x itx quotietx, sgχ x Θx FrctiolPrt Mod Quotiet frcx x mod ; x 0 x frcx x mod ; x 0 x frcx x mod sgχ x Θx quotietm, mm mod frcx x quotietx, ; x 0 x frcx x quotietx, ; x 0 x frcx x quotietx, sgχ x Θx m mod m quotietm,

6 6 z or m, Floor Roud Ceilig Floor z Χ Rez Χ Imz z z ΘΧ Rez Θ Χ Imz z z Roud z z z z Χ Rez Χ Imz Χ Imz Χ Rez Ceilig z z ΘΧ Rez Θ Χ Imz z z z z Χ Rez Χ Imz ItegerPrt itz z sgχ Rez ΘRez sgχ Imz ΘImz itz z Χ Rez Χ Imz sgχ Rez ΘRez sgχ Imz ΘImz itz z sgχ Rez ΘRez sgχ Imz ΘImz Θ Χ Imz ΘΧ Rez FrctiolPrt frcz z z sgχ Rez ΘRez sgχ Imz ΘImz frcz z z Χ Rez Χ Imz sgχ Rez ΘRez sgχ Imz ΘImz frcz z z sgχ Rez ΘRez sgχ Imz ΘImz Θ Χ Imz ΘΧ Rez Mod m mod m m m mod m m Quotiet quotietm, m quotietm, m Χ Re m Χ Im m Χ Re m Χ Im m m mod m m ΘΧ Re m Θ Χ Im m m mod m m quotietm, m ΘΧ Re m Θ Χ Im m quotietm, m z or m, Mod Quotiet Floor z z z mod z quotietz, Roud z z z mod Χ Imz Χ Rez Ceilig z z z mod z quotietz, ItegerPrt itz z z mod sgχ Imz ΘImz sgχ Rez ΘRez z quotietz, Χ Rez Χ itz quotietz, sgχ Imz ΘImz sgχ Rez ΘRez FrctiolPrt Mod Quotiet frcz z mod sgχ Imz ΘImz sgχ Rez ΘRez quotietm, mm mod frcz z quotietz, sgχ Im sgχ Rez ΘRez m mod m quotietm, The roudig d cogruece fuctios z, z, itz, frcz, m mod, d quotietm, c lso be represeted through elemetry fuctios by the followig formuls:

7 7 z z t cotπ z ; z z Π z z t cotπ z ; z z Π itz z t cotπ z sgθz ; z z Π frcz t cotπ z sgθz ; z z Π m mod Π t cot Π m ; m m quotietm, m Π t cot Π m ; m m. The best-ow properties d formuls of the umber theory fuctios Simple vlues t zero The roudig d cogruece fuctios z, z, z, itz, d frcz hve zero vlues t zero: it0 0 frc0 0. Specific vlues for specilized vribles The vlues of five roudig d cogruece fuctios z, z, z, itz, d frcz t some fixed poits or for specilized vribles d ifiities re show i the followig tble:

8 8 z z z z itz frcz Π Π , frc 0, frc, 0 frc 0, frc, 0 frc 0, ; it frc 0 ; it frc 0 x y ; x y x y x y x y x y x y x y itx y itx ity 3 0 frcx y frcx frcy frc 0, frc, 0 frc 0, frc, 0 frc 0, The vlues of mod fuctio m mod, d quotietm, t some fixed poits or for specilized vribles re show here:

9 9 m \ mod 0 ; 0 0 mod ; mod ; 0 0 mod ; mod 3 ; mod ; mod 5 ; mod 6 ; mod 7 ; mod 8 ; mod 9 ; mod 0 ; 0 m m mod 0 ; m mod 0 m mod 0 m \ quotiet0, 0 ; quotiet, ; 0 quotiet, 0 ; quotiet, 0 ; quotiet3, 0 ; quotiet, 0 ; quotiet5, 0 ; quotiet6, 0 ; quotiet7, 0 ; quotiet8, 0 ; quotiet9, 0 ; quotiet0, 0 ; 0 m quotietm, m ; m quotiet, m quotiet, m mod m ; m m m mod m ; m m m mod m ; m m p mod p p ; p p p mod p 3 ; p p 3 B mod mod,0 3 Χ Χ mod quotietm, 0 ; m m

10 0 quotietm, ; m m quotietm, ; m m p p quotietp, p ; p p quotiet p p, p 3 p 3 p p ; p p 3. Alyticity All seve roudig d cogruece fuctios (floor fuctio z, roud fuctio z, ceilig fuctio z, iteger prt itz, frctiol prt frcz, mod fuctio m mod, d the quotiet fuctio quotietm, ) re ot lyticl fuctios. They re defied for ll complex vlues of their rgumets z d m,. The fuctios z, z, z, d itz re piecewise costt fuctios d the fuctios frcz, m mod, d quotietm, re piecewise cotiuous fuctios. Periodicity The roudig d cogruece fuctios z, z, z, itz, frcz, d quotietm, re ot periodic fuctios. m mod is periodic fuctio with respect to m with period : m mod m mod m mod m mod ;. Prity d symmetry Four roudig d cogruece fuctios (roud fuctio z, iteger prt itz, frctiol prt frcz, d mod fuctio m mod ) re odd fuctios. The quotiet fuctio quotietm, is eve fuctio: z z itz itz frcz frcz m mod m mod quotietm, quotietm,. The roudig d cogruece fuctios z, z, z, itz, d frcz hve the followig mirror symmetry: z z Χ Imz z z z z Χ Imz itz itz frcz frcz.

11 Sets of discotiuity The floor d ceilig fuctios z d z re piecewise costt fuctios with uit jumps o the lies Rez Imz l ;, l. The fuctios z (d z) re cotiuous from the right (from the left) o the itervls,,, d from bove (from below) o the itervls,,. The fuctio z is piecewise costt fuctio with uit jumps o the lies Rez Imz l ;, l. The fuctio z is cotiuous from the right o the itervls,,, d from the left o the itervls,,. The fuctio z is cotiuous from bove o the itervls,,, d from below o the itervls,,. The fuctio itz (d frcz) is piecewise costt (cotiuous) fuctio with uit jumps o the lies Rez Imz l ;, l, 0, l 0. The fuctios itz d frcz re cotiuous from the right o the itervls,,, d from the left o the itervls,,. The fuctios itz d frcz re cotiuous from bove o the itervls,,, d from below o the itervls,,. The fuctios m mod d quotietm, re piecewise cotiuous fuctios with jumps o the curves Re m Im m l ;, l. The fuctiol properties m mod m mod m m d quotietm, quotiet m, m me the behvior of tht fuctios similr to the behvior of floor fuctio m. The previous described properties c be described i more detil by the formuls from the followig tble:

12 Floor Roud z±ε or m ± Ε ; Ε 0 lim Ε0 z ± Ε z Rez lim Ε0 z ± Ε z ; Rez ± lim lim Ε0 z ± Ε z ± ; Re z Ceilig lim Ε0 z ± Ε z ± Rez ItegerPrt FrctiolPrt Mod Quotiet lim Ε0 itz ± Ε itz ; ±Rez lim Ε0 itz ± Ε itz ± ; Rez lim Ε0 frcz ± Ε frcz ; ±Rez lim Ε0 frcz ± Ε frcz ; Rez lim Ε0 m ± Ε mod m mod lim Re m 0 lim Ε0 quotietm ± Ε, quotietm, lim Re m 0 ; ; ; ; z± Ε or m ± Ε ; Ε 0 lim Ε0 z ± Ε z ; Imz Ε0 z ± Ε z ; Imz ± lim Ε0 z ± Ε z ± ; Imz lim Ε0 z ± Ε z ± ; Imz lim Ε0 itz ± Ε itz ; ±Imz lim Ε0 itz ± Ε itz ± ; Imz lim Ε0 frcz ± Ε frcz ; ±Imz lim Ε0 frcz ± Ε frcz ; Imz Ε0 m ± Ε mod m mod ; Im m 0 Ε0 quotietm ± Ε, quotietm, ; Im m 0 Series represettios The roudig d cogruece fuctios z, z, z, itz, frcz, m mod, d quotietm, hve the followig series represettios: Floor Roud Ceilig ItegerPrt FrctiolPrt Mod Quotiet x x x Π x x Π x x Π itx x Π frcx Π si Π x si Π x si Π x si Π x si Π x ; x x m m m si Π m ; x x m m ; x x m m si Π m si Π m Θx ; x x it m m sg m Θx ; x x frc m sg m m mod Π m mod cot Π ; m cot Π ; m cot Π ; m si Π m si Π m si Π m si Π m quotietm, m Π quotietm, m cot Π cot Π ; m ; m m cot Π ; m si Π m si Π m ; m cot Π Trsformtios d rgumet simplifictios (rgumets ivolvig bsic rithmetic opertios) The vlues of roudig d cogruece fuctios z, z, z, itz, d frcz t the poits z, ± z, z ; c lso be represeted by the followig formuls:

13 3 z z z z z z z z ; Rez Imz z z sgrez sgimz ; Rez Imz z z Χ z ; z z z Χ ImzsgImz Χ RezsgRez z z Χ Imz z Imz Rez z z Χ Rez z Imz Rez z z z z z z z z z z z ; Rez Imz z z sgimz sgrez ; Rez Imz z z Χ Imz sgimz Χ Rez sgrez z z Χ Imz z Imz Rez z z Χ Rez z Imz Rez itz itz itz it z itz it z itz it z Re z frcz frcz frcz frc z frcz frc z frcz frc The vlues of the fuctios m mod d quotietm, t the poits ±m,, m,, m,, ± m,, m, ±, d m, hve the followig represettios: m, m mod quotietm, m, m mod m mod quotietm, quotietm, m, m, m mod m mod Χ m ; m m mod m mod Χ Re m sgre m Χ Im m sgim m m mod m mod ; m m m mod Χ m m mod ; m m mod m mod Χ Re m sgre m Χ Im m sgim m quotietm, quotietm, Χ m ; m quotietm, quotietm, Χ Re m Χ Im m sgim m quotietm, Χ m quotietm, ; m quotietm, quotietm, Χ Re m Χ Im m sgim m m, m mod m mod quotiet m, quotietm, m, m mod Χ Im m m mod quotiet m, quotietm, Χ Im m m, m mod Χ Re m m mod quotiet m, quotietm, Χ Re m m, m mod m mod Χ Re m quotietm, quotietm, Χ Re m m, m mod m mod Χ Im m quotietm, Χ Im m quotietm, m, m m mod mod quotiet m, quotietm, Trsformtios d rgumet simplifictios (rgumets ivolvig relted fuctios)

14 Compositios of roudig d cogruece fuctios z, z, z, itz, frcz, m mod, d quotietm, with the roudig d cogruece fuctios i my cses led to very simple zero results: z Floor Roud Ceilig ItegerPrt Floor z z z z 0 Roud z z z z z z 0 z z z z itz itz z z Ceilig z z z z z z z z 0 itz itz itz itz ItegerPrt itz z itz z itz z ititz itz itz itz 0 FrctiolPrt frcz 0 frcz 0 frcz 0 frcitz 0 Mod Quotiet m mod m m m mod 0 quotietm, m quotietm, m m mod m m m mod 0 quotietm, m quotietm, m m mod m m m mod 0 quotietm, m quotietm, m itm mod itm itm mod 0 quotietitm, it quotietitm, itm x x x ; x x ; x. m, Mod Quotiet Floor m mod m m m mod 0 quotietm, m m quotietm, 0 Roud m mod m m quotietm, m Ceilig m mod m m quotietm, m ItegerPrt itm mod itm m itquotietm, m FrctiolPrt frcm mod frcm m frcquotietm, 0 Mod Quotiet m mod mod m mod m mod mod m m quotietm mod, m mod quotietm mod, 0 m quotietm, mod m quotietm, mod 0 quotietquotietm,, m quotietquotietm,, m Additio formuls The roudig d cogruece fuctios z, z, z, itz, d frcz stisfy the followig dditio formuls:

15 5 z z z Floor z z ; z z z z z z z z Roud z z ; Rez Imz Ceilig z z ; z z z z z z z z ItegerPrt itz itz Θz Θz ; z FrctiolPrt frcz frcz Θz Θz ; z m mod m mod ; quotietm, quotietm, ;. Multiple rgumets The roudig d cogruece fuctios z, z, itz, frcz, m mod, d quotietm, hve the followig reltios for multiple rgumets: Floor Roud Ceilig ItegerPrt FrctiolPrt Mod Quotiet z or m z z 0 Θz mod Θz mod ; z z z 0 Θ z mod Θ z mod ; z it z itz sgχ z Θz sgχ z Θz 0 Θz mod Θz mod ; z frc z frcz sgχ z Θz sgχ z Θz 0 Θz mod Θz mod ; z m mod m mod j 0 j Θ m j quotietm, Θ m j quotietm, ; m quotiet m, quotietm, j 0 j Θ m mod j Θ m j mod ; m Sums of the direct fuctio Sums of the floor d ceilig fuctios z d z stisfy the followig reltios: z z z z z z z z 0 m x m 0 x m ; x m z z z z z z z z 0 x m m 0 x m ; x m. Idetities All roudig d cogruece fuctios stisfy umerous idetities, for exmple:

16 ; ; ; c mod b d mod ; mod b mod c mod d mod b c d. Complex chrcteristics Complex chrcteristics (rel d imgiry prts Rez d Imz, bsolute vlue z, rgumet Argz, complex cojugte z, d sigum sgz) of the roudig d cogruece fuctios c be represeted i the forms show i the followig tbles: z Floor Roud Ceilig ItegerPrt Re Rez Rez Rez Rez Rez Rez Reitz itrez Im Imz Imz Imz Imz Imz Imz Imitz itimz Abs z Imz Rez z z itz Rez Imz Imz Rez itimz itrez Arg Argz Argz Argz Argitz t Rez, Imz t Rez, Imz t Rez, Imz t itrez, itimz Cojugte z Rez Imz z Rez Imz z Rez Imz itz itrez itimz Sig sgz z z sgz z z sgz z z sgitz itz itz x y ; x y Floor Roud Ceilig ItegerPrt Re Rex y x Rex y x Rex y x Reitx y itx Im Imx y y Imx y y Imx y y Imitx y ity Abs x y x y x y x y x y x y itx y itx Arg Argx y Argx y Argx y Argitx y t x, y t x, y t x, y t itx, ity Cojugte x y x y x y x y x y x y itx y itx Sig sgx y x y x y sgx y x y x y sgx y x y x y sgitx y it i

17 7 m, Mod Quotiet Re Im Abs Rem mod Rem Imm ImRem Re Im Re Imm mod Imm Imm ReIm Rem Im Re m mod Imm Imm ReIm Rem Re Im Re Imm ImRem Re Re Im Re Imm ImRem Re Im Re Im Im Im Requotietm, Rem ReImm Im Im Re Imquotietm, Imm ReIm Rem Im Re quotietm, Arg Cojugte Sig Imm ReIm Rem Rem Im Re Re Imm ImRem Re Im Re Argm mod t Rem Imm ImRem Re Im Re Imm ReIm Rem Im Re m mod Rem Imm sgm mod Imm Imm Imm ReIm Rem Re Imm ReIm Rem Im Re Re, Imm Re Imm ReIm Rem Im Re Imm ImRem Re Im Re Imm ReIm Rem Im Re Imm ImRem Re Im Re Imm ImRem Re Im Re Imm ReIm Rem Im Re Im sgm mod sg ; m Im Re Im Imm ImRem Re Im Im Re Im Im Imm ImRem Re Im Re Imm ReIm Rem Im Re Im Rem Im Im Im Rem Re Re Imm ImRem Re Im Re Imm ReIm Rem Im Re Imm ReIm Rem Im Re Imm ImRem Re Im Re Re Re Re Re Rem ReImm Im Im Re Argquotietm, t quotietm, Imm ImRem Re Im Re Imm ImRem Re Im Re sgquotietm, I Im Im sgquotietm, sg m Differetitio Derivtives of the roudig d cogruece fuctios z, z, z, itz, frcz, m mod, d quotietm, c be evluted i the clssicl d distributiol sese. I the lst cse, ll vribles should be rel d results iclude the Dirc delt fuctio. All roudig d cogruece fuctios lso hve frctiol derivtives. All these derivtives c be represeted s show i the followig tbles: i clssicl sese z i distributiol sese for rel x x Α z Α i frctiol sese Floor z z 0 x x x Α z z Α z zα Α Roud z z 0 x x x Α z z Α zzα Α Ceilig z z 0 x x x Α z z Α z zα Α ItegerPrt itz z 0 itx x,0 x Α itz z Α itz zα Α FrctiolPrt frcx x frcx x x,0 x Α frcz z Α Α zα frcz zα Α Α

18 8 m i clssicl sese i clssicl sese m i distributiol sese for rel m, i distributiol sese for rel m, Α m Α i frctiol sese Mod Quotiet m mod m quotietm, m 0 m mod m quotietm, 0 m mod m quotietm, m m m sg m m mod quotietm, sgm m sg it m m,0 m,0 m Α m mod m Α Α m Α m mod m Α Α Α quotietm, m Α quotietm, m Α Α Idefiite itegrtio Simple idefiite itegrls of the roudig d cogruece fuctios z, z, z, itz, frcz, m mod, d quotietm, hve the followig represettios: Floor Roud Ceilig ItegerPrt f z z z z z z z z z z z z z z itz z z itz FrctiolPrt frcz z z frcz z Mod z mod z z z mod z Quotiet m mod z z z m m mod z quotietz, z z quotietz, quotietm, z z z quotietm, z Defiite itegrtio Some defiite itegrls of the roudig d cogruece fuctios z, z, z, itz, frcz, m mod, d quotietm, c be evluted d re show i the followig tble:

19 9 0 f t t ; 0 f t t 0 t Α f t t Floor 0 tt 0 tt 0 t Α tt Α Α ΖΑ ΖΑ, Roud 0 tt 0 tt 0 t Α tt Α Α Α ΖΑ Ζ Ceilig 0 tt 0 tt 0 t Α tt Α ΖΑΖΑ Α ItegerPrt 0 ittt ; 0 itt t it it 0 t Α ittt it Α ΖΑΑ FrctiolPrt 0 frctt ; 0 frct t frc frc 0 t Α frctt Α Α Α ΖΑ ΖΑ, ReΑ Mod 0 t mod t mod mod 0 m mod tt Ψ mm mod m m m mod Quotiet 0 quotiett, t quotiet, quotiet, 0 t Α t mod t Α Α Α ReΑ Α ΖΑ Α 0 t Α m mod tt Α Α m m Α Α ΖΑ, m 0 t Α quotiett, t Α q Α ΖΑ, quotiet, 0 t Α quotietm, tt quotietm, Α m Α ΖΑ,quotietm ReΑ Α Itegrl trsforms All Fourier trsforms of the roudig d cogruece fuctios z, z, z, itz, frcz, m mod, d quotietm, c be evluted i distributiol sese d iclude the Dirc delt fuctio:

20 0 F t f tz Fc t f tz Fs t f tz Floor Π z Π Π z Roud t tz Π Π z Ceilig t tz Π Π ItegerPrt t ittz Π FrctiolPrt t frctz Mod Π t t mod z Π z Πz Π z Π z Πz Π z Πz Π z Πz Π z Π z Πz Π z Π z Π z Π z Π z Π z c t tz c t tz Π z Π z cot z Π csc z c t tz Π z c t ittz Π z Π z Π z cot z z s ttz cot z c t frctz z cot z Π z Π z c t t mod z z cot z Π z Π z Π s ttz s ttz Π s t ittz Π s t frctz Π s t t mod Π Quotiet t quotiett, z Π z Π Π z Π z Π z c t quotiett, z Π z Π z cot z s t quotiet Π Lplce d Melli itegrl trsforms of the roudig d cogruece fuctios z, z, z, itz, frcz, m mod, d quotietm, c be evluted i the clssicl sese: L t f tz Floor t tz ; Rez 0 z z Roud t tz z ; Rez 0 z z Ceilig t tz z ; Rez 0 z z ItegerPrt t ittz ; Rez 0 z z M t f tz ttz Ζz z ; Rez ttz z Ζz, 3 z ; Rez tittz Ζz z ; Rez FrctiolPrt t frctz z ; Rez 0 z z tfrctz z ; Rez 0 z z Mod t t mod z z ; Re z 0 z z Quotiet t quotiett, z ; Re z 0 z z tt mod z z Ζz z t m mod tz mz Ζz z tquotiett, z z Ζz z t quotietm, tz mz Ζz z ; Rez 0 ; Rez 0 ; Rez ; Rez

21 Summtio Sometimes fiite d ifiite sums icludig roudig d cogruece fuctios hve rther simple represettios, for exmple: y 0 x x y y y x ; x y y 0 y p q p p q ; p q gcdp, q m m cot Π cot m Π ; m gcdm, p p l l p p p ; p p q p q p q p q ; p q gcdp, q y 0 x y x y x y y ; x y 0 x 0 y 0 p m p m m m p m p m ; m p m m ; m. Zeros Zeros of roudig d cogruece fuctios re give s follows: z 0 ; 0 Rez 0 Imz z 0 ; Rez Imz z 0 ; Rez 0 Imz 0 itz 0 ; Rez Imz frcz 0 ; Rez Imz m mod 0 ; m 0 0 quotietm, 0 ; 0 Re m 0 Im m.

22 Applictios of the roudig d cogruece fuctios All roudig d cogruece fuctios re used throughout mthemtics, the exct scieces, d egieerig.

23 3 Copyright This documet ws dowloded from fuctios.wolfrm.com, comprehesive olie compedium of formuls ivolvig the specil fuctios of mthemtics. For ey to the ottios used here, see Plese cite this documet by referrig to the fuctios.wolfrm.com pge from which it ws dowloded, for exmple: To refer to prticulr formul, cite fuctios.wolfrm.com followed by the cittio umber. e.g.: This documet is curretly i prelimiry form. If you hve commets or suggestios, plese emil commets@fuctios.wolfrm.com , Wolfrm Reserch, Ic.

Introductions to PartitionsP

Introductions to PartitionsP Itroductios to PartitiosP Itroductio to partitios Geeral Iterest i partitios appeared i the 7th cetury whe G. W. Leibiz (669) ivestigated the umber of ways a give positive iteger ca be decomposed ito a

More information

FOURIER SERIES PART I: DEFINITIONS AND EXAMPLES. To a 2π-periodic function f(x) we will associate a trigonometric series. a n cos(nx) + b n sin(nx),

FOURIER SERIES PART I: DEFINITIONS AND EXAMPLES. To a 2π-periodic function f(x) we will associate a trigonometric series. a n cos(nx) + b n sin(nx), FOURIER SERIES PART I: DEFINITIONS AND EXAMPLES To -periodic fuctio f() we will ssocite trigoometric series + cos() + b si(), or i terms of the epoetil e i, series of the form c e i. Z For most of the

More information

Infinite Series Sequences: terms nth term Listing Terms of a Sequence 2 n recursively defined n+1 Pattern Recognition for Sequences Ex:

Infinite Series Sequences: terms nth term Listing Terms of a Sequence 2 n recursively defined n+1 Pattern Recognition for Sequences Ex: Ifiite Series Sequeces: A sequece i defied s fuctio whose domi is the set of positive itegers. Usully it s esier to deote sequece i subscript form rther th fuctio ottio.,, 3, re the terms of the sequece

More information

( ) dx ; f ( x ) is height and Δx is

( ) dx ; f ( x ) is height and Δx is Mth : 6.3 Defiite Itegrls from Riem Sums We just sw tht the exct re ouded y cotiuous fuctio f d the x xis o the itervl x, ws give s A = lim A exct RAM, where is the umer of rectgles i the Rectgulr Approximtio

More information

Week 13 Notes: 1) Riemann Sum. Aim: Compute Area Under a Graph. Suppose we want to find out the area of a graph, like the one on the right:

Week 13 Notes: 1) Riemann Sum. Aim: Compute Area Under a Graph. Suppose we want to find out the area of a graph, like the one on the right: Week 1 Notes: 1) Riem Sum Aim: Compute Are Uder Grph Suppose we wt to fid out the re of grph, like the oe o the right: We wt to kow the re of the red re. Here re some wys to pproximte the re: We cut the

More information

POWER SERIES R. E. SHOWALTER

POWER SERIES R. E. SHOWALTER POWER SERIES R. E. SHOWALTER. sequeces We deote by lim = tht the limit of the sequece { } is the umber. By this we me tht for y ε > 0 there is iteger N such tht < ε for ll itegers N. This mkes precise

More information

Chapter Real Numbers

Chapter Real Numbers Chpter. - Rel Numbers Itegers: coutig umbers, zero, d the egtive of the coutig umbers. ex: {,-3, -, -,,,, 3, } Rtiol Numbers: quotiets of two itegers with ozero deomitor; termitig or repetig decimls. ex:

More information

DEPARTMENT OF ELECTRICAL &ELECTRONICS ENGINEERING SIGNALS AND SYSTEMS. Assoc. Prof. Dr. Burak Kelleci. Spring 2018

DEPARTMENT OF ELECTRICAL &ELECTRONICS ENGINEERING SIGNALS AND SYSTEMS. Assoc. Prof. Dr. Burak Kelleci. Spring 2018 DEPARTMENT OF ELECTRICAL &ELECTRONICS ENGINEERING SIGNALS AND SYSTEMS Assoc. Prof. Dr. Bur Kelleci Sprig 8 OUTLINE The Z-Trsform The Regio of covergece for the Z-trsform The Iverse Z-Trsform Geometric

More information

Review of the Riemann Integral

Review of the Riemann Integral Chpter 1 Review of the Riem Itegrl This chpter provides quick review of the bsic properties of the Riem itegrl. 1.0 Itegrls d Riem Sums Defiitio 1.0.1. Let [, b] be fiite, closed itervl. A prtitio P of

More information

Mathematical Notations and Symbols xi. Contents: 1. Symbols. 2. Functions. 3. Set Notations. 4. Vectors and Matrices. 5. Constants and Numbers

Mathematical Notations and Symbols xi. Contents: 1. Symbols. 2. Functions. 3. Set Notations. 4. Vectors and Matrices. 5. Constants and Numbers Mthemticl Nottios d Symbols i MATHEMATICAL NOTATIONS AND SYMBOLS Cotets:. Symbols. Fuctios 3. Set Nottios 4. Vectors d Mtrices 5. Costts d Numbers ii Mthemticl Nottios d Symbols SYMBOLS = {,,3,... } set

More information

Chapter 7 Infinite Series

Chapter 7 Infinite Series MA Ifiite Series Asst.Prof.Dr.Supree Liswdi Chpter 7 Ifiite Series Sectio 7. Sequece A sequece c be thought of s list of umbers writte i defiite order:,,...,,... 2 The umber is clled the first term, 2

More information

Linear Programming. Preliminaries

Linear Programming. Preliminaries Lier Progrmmig Prelimiries Optimiztio ethods: 3L Objectives To itroduce lier progrmmig problems (LPP To discuss the stdrd d coicl form of LPP To discuss elemetry opertio for lier set of equtios Optimiztio

More information

Remarks: (a) The Dirac delta is the function zero on the domain R {0}.

Remarks: (a) The Dirac delta is the function zero on the domain R {0}. Sectio Objective(s): The Dirc s Delt. Mi Properties. Applictios. The Impulse Respose Fuctio. 4.4.. The Dirc Delt. 4.4. Geerlized Sources Defiitio 4.4.. The Dirc delt geerlized fuctio is the limit δ(t)

More information

Chapter 5. The Riemann Integral. 5.1 The Riemann integral Partitions and lower and upper integrals. Note: 1.5 lectures

Chapter 5. The Riemann Integral. 5.1 The Riemann integral Partitions and lower and upper integrals. Note: 1.5 lectures Chpter 5 The Riem Itegrl 5.1 The Riem itegrl Note: 1.5 lectures We ow get to the fudmetl cocept of itegrtio. There is ofte cofusio mog studets of clculus betwee itegrl d tiderivtive. The itegrl is (iformlly)

More information

Notations. Primary definition. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation. Specialized values

Notations. Primary definition. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation. Specialized values EulerPhi Notatios Traditioal ame Euler totiet fuctio Traditioal otatio Φ Mathematica StadardForm otatio EulerPhi Primary defiitio 3.06.02.000.0 Φ gcd,k, ; For oegative iteger, the Euler totiet fuctio Φ

More information

Round. Notations. Primary definition. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation. Specialized values

Round. Notations. Primary definition. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation. Specialized values Round Notations Traditional name Nearest integer function Traditional notation z Mathematica StandardForm notation Roundz Primary definition 0.03.0.0001.01 x n ; x n x n 1 0.03.0.000.01 z Rez Imz 0.03.0.0003.01

More information

UNIVERSITY OF CALICUT SCHOOL OF DISTANCE EDUCATION

UNIVERSITY OF CALICUT SCHOOL OF DISTANCE EDUCATION School Of Distce Eductio Questio Bk UNIVERSITY OF ALIUT SHOOL OF DISTANE EDUATION B.Sc MATHEMATIS (ORE OURSE SIXTH SEMESTER ( Admissio OMPLEX ANALYSIS Module- I ( A lytic fuctio with costt modulus is :

More information

Basic Limit Theorems

Basic Limit Theorems Bsic Limit Theorems The very "cle" proof of L9 usig L8 ws provided to me by Joh Gci d it ws this result which ispired me to write up these otes. Absolute Vlue Properties: For rel umbers x, d y x x if x

More information

The Elementary Arithmetic Operators of Continued Fraction

The Elementary Arithmetic Operators of Continued Fraction Americ-Eursi Jourl of Scietific Reserch 0 (5: 5-63, 05 ISSN 88-6785 IDOSI Pulictios, 05 DOI: 0.589/idosi.ejsr.05.0.5.697 The Elemetry Arithmetic Opertors of Cotiued Frctio S. Mugssi d F. Mistiri Deprtmet

More information

INFINITE SERIES. ,... having infinite number of terms is called infinite sequence and its indicated sum, i.e., a 1

INFINITE SERIES. ,... having infinite number of terms is called infinite sequence and its indicated sum, i.e., a 1 Appedix A.. Itroductio As discussed i the Chpter 9 o Sequeces d Series, sequece,,...,,... hvig ifiite umber of terms is clled ifiite sequece d its idicted sum, i.e., + + +... + +... is clled ifite series

More information

Content: Essential Calculus, Early Transcendentals, James Stewart, 2007 Chapter 1: Functions and Limits., in a set B.

Content: Essential Calculus, Early Transcendentals, James Stewart, 2007 Chapter 1: Functions and Limits., in a set B. Review Sheet: Chpter Cotet: Essetil Clculus, Erly Trscedetls, Jmes Stewrt, 007 Chpter : Fuctios d Limits Cocepts, Defiitios, Lws, Theorems: A fuctio, f, is rule tht ssigs to ech elemet i set A ectly oe

More information

0 otherwise. sin( nx)sin( kx) 0 otherwise. cos( nx) sin( kx) dx 0 for all integers n, k.

0 otherwise. sin( nx)sin( kx) 0 otherwise. cos( nx) sin( kx) dx 0 for all integers n, k. . Computtio of Fourier Series I this sectio, we compute the Fourier coefficiets, f ( x) cos( x) b si( x) d b, i the Fourier series To do this, we eed the followig result o the orthogolity of the trigoometric

More information

General properties of definite integrals

General properties of definite integrals Roerto s Notes o Itegrl Clculus Chpter 4: Defiite itegrls d the FTC Sectio Geerl properties of defiite itegrls Wht you eed to kow lredy: Wht defiite Riem itegrl is. Wht you c ler here: Some key properties

More information

1.3 Continuous Functions and Riemann Sums

1.3 Continuous Functions and Riemann Sums mth riem sums, prt 0 Cotiuous Fuctios d Riem Sums I Exmple we sw tht lim Lower() = lim Upper() for the fuctio!! f (x) = + x o [0, ] This is o ccidet It is exmple of the followig theorem THEOREM Let f be

More information

INTEGRATION TECHNIQUES (TRIG, LOG, EXP FUNCTIONS)

INTEGRATION TECHNIQUES (TRIG, LOG, EXP FUNCTIONS) Mthemtics Revisio Guides Itegrtig Trig, Log d Ep Fuctios Pge of MK HOME TUITION Mthemtics Revisio Guides Level: AS / A Level AQA : C Edecel: C OCR: C OCR MEI: C INTEGRATION TECHNIQUES (TRIG, LOG, EXP FUNCTIONS)

More information

Double Sums of Binomial Coefficients

Double Sums of Binomial Coefficients Itertiol Mthemticl Forum, 3, 008, o. 3, 50-5 Double Sums of Biomil Coefficiets Athoy Sofo School of Computer Sciece d Mthemtics Victori Uiversity, PO Box 448 Melboure, VIC 800, Austrli thoy.sofo@vu.edu.u

More information

1. (25 points) Use the limit definition of the definite integral and the sum formulas to compute. [1 x + x2

1. (25 points) Use the limit definition of the definite integral and the sum formulas to compute. [1 x + x2 Mth 3, Clculus II Fil Exm Solutios. (5 poits) Use the limit defiitio of the defiite itegrl d the sum formuls to compute 3 x + x. Check your swer by usig the Fudmetl Theorem of Clculus. Solutio: The limit

More information

lecture 16: Introduction to Least Squares Approximation

lecture 16: Introduction to Least Squares Approximation 97 lecture 16: Itroductio to Lest Squres Approximtio.4 Lest squres pproximtio The miimx criterio is ituitive objective for pproximtig fuctio. However, i my cses it is more ppelig (for both computtio d

More information

FACULTY OF MATHEMATICAL STUDIES MATHEMATICS FOR PART I ENGINEERING. Lectures

FACULTY OF MATHEMATICAL STUDIES MATHEMATICS FOR PART I ENGINEERING. Lectures FACULTY OF MATHEMATICAL STUDIES MATHEMATICS FOR PART I ENGINEERING Lectures MODULE 0 FURTHER CALCULUS II. Sequeces d series. Rolle s theorem d me vlue theorems 3. Tlor s d Mcluri s theorems 4. L Hopitl

More information

We will begin by supplying the proof to (a).

We will begin by supplying the proof to (a). (The solutios of problem re mostly from Jeffrey Mudrock s HWs) Problem 1. There re three sttemet from Exmple 5.4 i the textbook for which we will supply proofs. The sttemets re the followig: () The spce

More information

Linford 1. Kyle Linford. Math 211. Honors Project. Theorems to Analyze: Theorem 2.4 The Limit of a Function Involving a Radical (A4)

Linford 1. Kyle Linford. Math 211. Honors Project. Theorems to Analyze: Theorem 2.4 The Limit of a Function Involving a Radical (A4) Liford 1 Kyle Liford Mth 211 Hoors Project Theorems to Alyze: Theorem 2.4 The Limit of Fuctio Ivolvig Rdicl (A4) Theorem 2.8 The Squeeze Theorem (A5) Theorem 2.9 The Limit of Si(x)/x = 1 (p. 85) Theorem

More information

RADICALS. Upon completion, you should be able to. define the principal root of numbers. simplify radicals

RADICALS. Upon completion, you should be able to. define the principal root of numbers. simplify radicals RADICALS m 1 RADICALS Upo completio, you should be ble to defie the pricipl root of umbers simplify rdicls perform dditio, subtrctio, multiplictio, d divisio of rdicls Mthemtics Divisio, IMSP, UPLB Defiitio:

More information

Sequence and Series of Functions

Sequence and Series of Functions 6 Sequece d Series of Fuctios 6. Sequece of Fuctios 6.. Poitwise Covergece d Uiform Covergece Let J be itervl i R. Defiitio 6. For ech N, suppose fuctio f : J R is give. The we sy tht sequece (f ) of fuctios

More information

Ceiling. Notations. Primary definition. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation. Specialized values

Ceiling. Notations. Primary definition. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation. Specialized values Ceiling Notations Traditional name Ceiling function Traditional notation z Mathematica StandardForm notation Ceilingz Primary definition 04.0.0.0001.01 x n ; x n n 1 x n 04.0.0.000.01 z Rez Imz For real

More information

Test Info. Test may change slightly.

Test Info. Test may change slightly. 9. 9.6 Test Ifo Test my chge slightly. Short swer (0 questios 6 poits ech) o Must choose your ow test o Tests my oly be used oce o Tests/types you re resposible for: Geometric (kow sum) Telescopig (kow

More information

( ) k ( ) 1 T n 1 x = xk. Geometric series obtained directly from the definition. = 1 1 x. See also Scalars 9.1 ADV-1: lim n.

( ) k ( ) 1 T n 1 x = xk. Geometric series obtained directly from the definition. = 1 1 x. See also Scalars 9.1 ADV-1: lim n. Sclrs-9.0-ADV- Algebric Tricks d Where Tylor Polyomils Come From 207.04.07 A.docx Pge of Algebric tricks ivolvig x. You c use lgebric tricks to simplify workig with the Tylor polyomils of certi fuctios..

More information

Taylor Polynomials. The Tangent Line. (a, f (a)) and has the same slope as the curve y = f (x) at that point. It is the best

Taylor Polynomials. The Tangent Line. (a, f (a)) and has the same slope as the curve y = f (x) at that point. It is the best Tylor Polyomils Let f () = e d let p() = 1 + + 1 + 1 6 3 Without usig clcultor, evlute f (1) d p(1) Ok, I m still witig With little effort it is possible to evlute p(1) = 1 + 1 + 1 (144) + 6 1 (178) =

More information

2. Infinite Series 3. Power Series 4. Taylor Series 5. Review Questions and Exercises 6. Sequences and Series with Maple

2. Infinite Series 3. Power Series 4. Taylor Series 5. Review Questions and Exercises 6. Sequences and Series with Maple Chpter II CALCULUS II.4 Sequeces d Series II.4 SEQUENCES AND SERIES Objectives: After the completio of this sectio the studet - should recll the defiitios of the covergece of sequece, d some limits; -

More information

EXERCISE a a a 5. + a 15 NEETIIT.COM

EXERCISE a a a 5. + a 15 NEETIIT.COM - Dowlod our droid App. Sigle choice Type Questios EXERCISE -. The first term of A.P. of cosecutive iteger is p +. The sum of (p + ) terms of this series c be expressed s () (p + ) () (p + ) (p + ) ()

More information

MTH 146 Class 16 Notes

MTH 146 Class 16 Notes MTH 46 Clss 6 Notes 0.4- Cotiued Motivtio: We ow cosider the rc legth of polr curve. Suppose we wish to fid the legth of polr curve curve i terms of prmetric equtios s: r f where b. We c view the cos si

More information

 n. A Very Interesting Example + + = d. + x3. + 5x4. math 131 power series, part ii 7. One of the first power series we examined was. 2!

 n. A Very Interesting Example + + = d. + x3. + 5x4. math 131 power series, part ii 7. One of the first power series we examined was. 2! mth power series, prt ii 7 A Very Iterestig Emple Oe of the first power series we emied ws! + +! + + +!! + I Emple 58 we used the rtio test to show tht the itervl of covergece ws (, ) Sice the series coverges

More information

Indices and Logarithms

Indices and Logarithms the Further Mthemtics etwork www.fmetwork.org.uk V 7 SUMMARY SHEET AS Core Idices d Logrithms The mi ides re AQA Ed MEI OCR Surds C C C C Lws of idices C C C C Zero, egtive d frctiol idices C C C C Bsic

More information

B. Examples 1. Finite Sums finite sums are an example of Riemann Sums in which each subinterval has the same length and the same x i

B. Examples 1. Finite Sums finite sums are an example of Riemann Sums in which each subinterval has the same length and the same x i Mth 06 Clculus Sec. 5.: The Defiite Itegrl I. Riem Sums A. Def : Give y=f(x):. Let f e defied o closed itervl[,].. Prtitio [,] ito suitervls[x (i-),x i ] of legth Δx i = x i -x (i-). Let P deote the prtitio

More information

Unit 1. Extending the Number System. 2 Jordan School District

Unit 1. Extending the Number System. 2 Jordan School District Uit Etedig the Number System Jord School District Uit Cluster (N.RN. & N.RN.): Etedig Properties of Epoets Cluster : Etedig properties of epoets.. Defie rtiol epoets d eted the properties of iteger epoets

More information

Approximate Integration

Approximate Integration Study Sheet (7.7) Approimte Itegrtio I this sectio, we will ler: How to fid pproimte vlues of defiite itegrls. There re two situtios i which it is impossile to fid the ect vlue of defiite itegrl. Situtio:

More information

UNIVERSITY OF BRISTOL. Examination for the Degrees of B.Sc. and M.Sci. (Level C/4) ANALYSIS 1B, SOLUTIONS MATH (Paper Code MATH-10006)

UNIVERSITY OF BRISTOL. Examination for the Degrees of B.Sc. and M.Sci. (Level C/4) ANALYSIS 1B, SOLUTIONS MATH (Paper Code MATH-10006) UNIVERSITY OF BRISTOL Exmitio for the Degrees of B.Sc. d M.Sci. (Level C/4) ANALYSIS B, SOLUTIONS MATH 6 (Pper Code MATH-6) My/Jue 25, hours 3 miutes This pper cotis two sectios, A d B. Plese use seprte

More information

n 2 + 3n + 1 4n = n2 + 3n + 1 n n 2 = n + 1

n 2 + 3n + 1 4n = n2 + 3n + 1 n n 2 = n + 1 Ifiite Series Some Tests for Divergece d Covergece Divergece Test: If lim u or if the limit does ot exist, the series diverget. + 3 + 4 + 3 EXAMPLE: Show tht the series diverges. = u = + 3 + 4 + 3 + 3

More information

A GENERAL METHOD FOR SOLVING ORDINARY DIFFERENTIAL EQUATIONS: THE FROBENIUS (OR SERIES) METHOD

A GENERAL METHOD FOR SOLVING ORDINARY DIFFERENTIAL EQUATIONS: THE FROBENIUS (OR SERIES) METHOD Diol Bgoo () A GENERAL METHOD FOR SOLVING ORDINARY DIFFERENTIAL EQUATIONS: THE FROBENIUS (OR SERIES) METHOD I. Itroductio The first seprtio of vribles (see pplictios to Newto s equtios) is ver useful method

More information

Crushed Notes on MATH132: Calculus

Crushed Notes on MATH132: Calculus Mth 13, Fll 011 Siyg Yg s Outlie Crushed Notes o MATH13: Clculus The otes elow re crushed d my ot e ect This is oly my ow cocise overview of the clss mterils The otes I put elow should ot e used to justify

More information

Introductions to HarmonicNumber2

Introductions to HarmonicNumber2 Itroductios to HarmoicNumber2 Itroductio to the differetiated gamma fuctios Geeral Almost simultaeously with the developmet of the mathematical theory of factorials, biomials, ad gamma fuctios i the 8th

More information

MA123, Chapter 9: Computing some integrals (pp )

MA123, Chapter 9: Computing some integrals (pp ) MA13, Chpter 9: Computig some itegrls (pp. 189-05) Dte: Chpter Gols: Uderstd how to use bsic summtio formuls to evlute more complex sums. Uderstd how to compute its of rtiol fuctios t ifiity. Uderstd how

More information

Schrödinger Equation Via Laplace-Beltrami Operator

Schrödinger Equation Via Laplace-Beltrami Operator IOSR Jourl of Mthemtics (IOSR-JM) e-issn: 78-578, p-issn: 39-765X. Volume 3, Issue 6 Ver. III (Nov. - Dec. 7), PP 9-95 www.iosrjourls.org Schrödiger Equtio Vi Lplce-Beltrmi Opertor Esi İ Eskitşçioğlu,

More information

Limit of a function:

Limit of a function: - Limit of fuctio: We sy tht f ( ) eists d is equl with (rel) umer L if f( ) gets s close s we wt to L if is close eough to (This defiitio c e geerlized for L y syig tht f( ) ecomes s lrge (or s lrge egtive

More information

Important Facts You Need To Know/Review:

Important Facts You Need To Know/Review: Importt Fcts You Need To Kow/Review: Clculus: If fuctio is cotiuous o itervl I, the its grph is coected o I If f is cotiuous, d lim g Emple: lim eists, the lim lim f g f g d lim cos cos lim 3 si lim, t

More information

The Reimann Integral is a formal limit definition of a definite integral

The Reimann Integral is a formal limit definition of a definite integral MATH 136 The Reim Itegrl The Reim Itegrl is forml limit defiitio of defiite itegrl cotiuous fuctio f. The costructio is s follows: f ( x) dx for Reim Itegrl: Prtitio [, ] ito suitervls ech hvig the equl

More information

MATH 104 FINAL SOLUTIONS. 1. (2 points each) Mark each of the following as True or False. No justification is required. y n = x 1 + x x n n

MATH 104 FINAL SOLUTIONS. 1. (2 points each) Mark each of the following as True or False. No justification is required. y n = x 1 + x x n n MATH 04 FINAL SOLUTIONS. ( poits ech) Mrk ech of the followig s True or Flse. No justifictio is required. ) A ubouded sequece c hve o Cuchy subsequece. Flse b) A ifiite uio of Dedekid cuts is Dedekid cut.

More information

Approximations of Definite Integrals

Approximations of Definite Integrals Approximtios of Defiite Itegrls So fr we hve relied o tiderivtives to evlute res uder curves, work doe by vrible force, volumes of revolutio, etc. More precisely, wheever we hve hd to evlute defiite itegrl

More information

Riemann Integration. Chapter 1

Riemann Integration. Chapter 1 Mesure, Itegrtio & Rel Alysis. Prelimiry editio. 8 July 2018. 2018 Sheldo Axler 1 Chpter 1 Riem Itegrtio This chpter reviews Riem itegrtio. Riem itegrtio uses rectgles to pproximte res uder grphs. This

More information

BRAIN TEASURES INDEFINITE INTEGRATION+DEFINITE INTEGRATION EXERCISE I

BRAIN TEASURES INDEFINITE INTEGRATION+DEFINITE INTEGRATION EXERCISE I EXERCISE I t Q. d Q. 6 6 cos si Q. Q.6 d d Q. d Q. Itegrte cos t d by the substitutio z = + e d e Q.7 cos. l cos si d d Q. cos si si si si b cos Q.9 d Q. si b cos Q. si( ) si( ) d ( ) Q. d cot d d Q. (si

More information

Discrete-Time Signals & Systems

Discrete-Time Signals & Systems Chpter 2 Discrete-Time Sigls & Systems 清大電機系林嘉文 cwli@ee.thu.edu.tw 03-57352 Discrete-Time Sigls Sigls re represeted s sequeces of umbers, clled smples Smple vlue of typicl sigl or sequece deoted s x =

More information

Review of Sections

Review of Sections Review of Sectios.-.6 Mrch 24, 204 Abstrct This is the set of otes tht reviews the mi ides from Chpter coverig sequeces d series. The specific sectios tht we covered re s follows:.: Sequces..2: Series,

More information

A GENERALIZATION OF GAUSS THEOREM ON QUADRATIC FORMS

A GENERALIZATION OF GAUSS THEOREM ON QUADRATIC FORMS A GENERALIZATION OF GAU THEOREM ON QUADRATIC FORM Nicole I Brtu d Adi N Cret Deprtmet of Mth - Criov Uiversity, Romi ABTRACT A origil result cocerig the extesio of Guss s theorem from the theory of biry

More information

Chapter 2 Infinite Series Page 1 of 9

Chapter 2 Infinite Series Page 1 of 9 Chpter Ifiite eries Pge of 9 Chpter : Ifiite eries ectio A Itroductio to Ifiite eries By the ed of this sectio you will be ble to uderstd wht is met by covergece d divergece of ifiite series recogise geometric

More information

RULES FOR MANIPULATING SURDS b. This is the addition law of surds with the same radicals. (ii)

RULES FOR MANIPULATING SURDS b. This is the addition law of surds with the same radicals. (ii) SURDS Defiitio : Ay umer which c e expressed s quotiet m of two itegers ( 0 ), is clled rtiol umer. Ay rel umer which is ot rtiol is clled irrtiol. Irrtiol umers which re i the form of roots re clled surds.

More information

Notes on Dirichlet L-functions

Notes on Dirichlet L-functions Notes o Dirichlet L-fuctios Joth Siegel Mrch 29, 24 Cotets Beroulli Numbers d Beroulli Polyomils 2 L-fuctios 5 2. Chrcters............................... 5 2.2 Diriclet Series.............................

More information

The Definite Integral

The Definite Integral The Defiite Itegrl A Riem sum R S (f) is pproximtio to the re uder fuctio f. The true re uder the fuctio is obtied by tkig the it of better d better pproximtios to the re uder f. Here is the forml defiitio,

More information

Convergence rates of approximate sums of Riemann integrals

Convergence rates of approximate sums of Riemann integrals Jourl of Approximtio Theory 6 (9 477 49 www.elsevier.com/locte/jt Covergece rtes of pproximte sums of Riem itegrls Hiroyuki Tski Grdute School of Pure d Applied Sciece, Uiversity of Tsukub, Tsukub Ibrki

More information

Limits and an Introduction to Calculus

Limits and an Introduction to Calculus Nme Chpter Limits d Itroductio to Clculus Sectio. Itroductio to Limits Objective: I this lesso ou lered how to estimte limits d use properties d opertios of limits. I. The Limit Cocept d Defiitio of Limit

More information

Definite Integral. The Left and Right Sums

Definite Integral. The Left and Right Sums Clculus Li Vs Defiite Itegrl. The Left d Right Sums The defiite itegrl rises from the questio of fidig the re betwee give curve d x-xis o itervl. The re uder curve c be esily clculted if the curve is give

More information

INTEGRATION IN THEORY

INTEGRATION IN THEORY CHATER 5 INTEGRATION IN THEORY 5.1 AREA AROXIMATION 5.1.1 SUMMATION NOTATION Fibocci Sequece First, exmple of fmous sequece of umbers. This is commoly ttributed to the mthemtici Fibocci of is, lthough

More information

Students must always use correct mathematical notation, not calculator notation. the set of positive integers and zero, {0,1, 2, 3,...

Students must always use correct mathematical notation, not calculator notation. the set of positive integers and zero, {0,1, 2, 3,... Appedices Of the vrious ottios i use, the IB hs chose to dopt system of ottio bsed o the recommedtios of the Itertiol Orgiztio for Stdrdiztio (ISO). This ottio is used i the emitio ppers for this course

More information

10.5 Test Info. Test may change slightly.

10.5 Test Info. Test may change slightly. 0.5 Test Ifo Test my chge slightly. Short swer (0 questios 6 poits ech) o Must choose your ow test o Tests my oly be used oce o Tests/types you re resposible for: Geometric (kow sum) Telescopig (kow sum)

More information

The total number of permutations of S is n!. We denote the set of all permutations of S by

The total number of permutations of S is n!. We denote the set of all permutations of S by DETERMINNTS. DEFINITIONS Def: Let S {,,, } e the set of itegers from to, rrged i scedig order. rerrgemet jjj j of the elemets of S is clled permuttio of S. S. The totl umer of permuttios of S is!. We deote

More information

Probability for mathematicians INDEPENDENCE TAU

Probability for mathematicians INDEPENDENCE TAU Probbility for mthemticis INDEPENDENCE TAU 2013 21 Cotets 2 Cetrl limit theorem 21 2 Itroductio............................ 21 2b Covolutio............................ 22 2c The iitil distributio does

More information

( a n ) converges or diverges.

( a n ) converges or diverges. Chpter Ifiite Series Pge of Sectio E Rtio Test Chpter : Ifiite Series By the ed of this sectio you will be ble to uderstd the proof of the rtio test test series for covergece by pplyig the rtio test pprecite

More information

The Basic Properties of the Integral

The Basic Properties of the Integral The Bsic Properties of the Itegrl Whe we compute the derivtive of complicted fuctio, like x + six, we usully use differetitio rules, like d [f(x)+g(x)] d f(x)+ d g(x), to reduce the computtio dx dx dx

More information

9.1 Sequences & Series: Convergence & Divergence

9.1 Sequences & Series: Convergence & Divergence Notes 9.: Cov & Div of Seq & Ser 9. Sequeces & Series: Covergece & Divergece A sequece is simply list of thigs geerted by rule More formlly, sequece is fuctio whose domi is the set of positive itegers,

More information

is infinite. The converse is proved similarly, and the last statement of the theorem is clear too.

is infinite. The converse is proved similarly, and the last statement of the theorem is clear too. 12. No-stdrd lysis October 2, 2011 I this sectio we give brief itroductio to o-stdrd lysis. This is firly well-developed field of mthemtics bsed o model theory. It dels ot just with the rels, fuctios o

More information

GammaRegularized. Notations. Primary definition. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation

GammaRegularized. Notations. Primary definition. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation GmmRegulrized Nottions Trditionl nme Regulrized incomplete gmm function Trditionl nottion Q, z Mthemtic StndrdForm nottion GmmRegulrized, z Primry definition 06.08.0.000.0, z Q, z Specific vlues Specilized

More information

The Weierstrass Approximation Theorem

The Weierstrass Approximation Theorem The Weierstrss Approximtio Theorem Jmes K. Peterso Deprtmet of Biologicl Scieces d Deprtmet of Mthemticl Scieces Clemso Uiversity Februry 26, 2018 Outlie The Wierstrss Approximtio Theorem MtLb Implemettio

More information

Chapter 10: The Z-Transform Adapted from: Lecture notes from MIT, Binghamton University Dr. Hamid R. Rabiee Fall 2013

Chapter 10: The Z-Transform Adapted from: Lecture notes from MIT, Binghamton University Dr. Hamid R. Rabiee Fall 2013 Sigls & Systems Chpter 0: The Z-Trsform Adpted from: Lecture otes from MIT, Bighmto Uiversity Dr. Hmid R. Rbiee Fll 03 Lecture 5 Chpter 0 Lecture 6 Chpter 0 Outlie Itroductio to the -Trsform Properties

More information

CALCULATION OF CONVOLUTION PRODUCTS OF PIECEWISE DEFINED FUNCTIONS AND SOME APPLICATIONS

CALCULATION OF CONVOLUTION PRODUCTS OF PIECEWISE DEFINED FUNCTIONS AND SOME APPLICATIONS CALCULATION OF CONVOLUTION PRODUCTS OF PIECEWISE DEFINED FUNCTIONS AND SOME APPLICATIONS Abstrct Mirce I Cîru We preset elemetry proofs to some formuls ive without proofs by K A West d J McClell i 99 B

More information

4. When is the particle speeding up? Why? 5. When is the particle slowing down? Why?

4. When is the particle speeding up? Why? 5. When is the particle slowing down? Why? AB CALCULUS: 5.3 Positio vs Distce Velocity vs. Speed Accelertio All the questios which follow refer to the grph t the right.. Whe is the prticle movig t costt speed?. Whe is the prticle movig to the right?

More information

Fourier Series and Applications

Fourier Series and Applications 9/7/9 Fourier Series d Applictios Fuctios epsio is doe to uderstd the better i powers o etc. My iportt probles ivolvig prtil dieretil equtios c be solved provided give uctio c be epressed s iiite su o

More information

9.5. Alternating series. Absolute convergence and conditional convergence

9.5. Alternating series. Absolute convergence and conditional convergence Chpter 9: Ifiite Series I this Chpter we will be studyig ifiite series, which is just other me for ifiite sums. You hve studied some of these i the pst whe you looked t ifiite geometric sums of the form:

More information

ICS141: Discrete Mathematics for Computer Science I

ICS141: Discrete Mathematics for Computer Science I ICS4: Discrete Mthemtics for Computer Sciece I Dept. Iformtio & Computer Sci., J Stelovsky sed o slides y Dr. Bek d Dr. Still Origils y Dr. M. P. Frk d Dr. J.L. Gross Provided y McGrw-Hill 3- Quiz. gcd(84,96).

More information

EVALUATING DEFINITE INTEGRALS

EVALUATING DEFINITE INTEGRALS Chpter 4 EVALUATING DEFINITE INTEGRALS If the defiite itegrl represets re betwee curve d the x-xis, d if you c fid the re by recogizig the shpe of the regio, the you c evlute the defiite itegrl. Those

More information

Frequency-domain Characteristics of Discrete-time LTI Systems

Frequency-domain Characteristics of Discrete-time LTI Systems requecy-domi Chrcteristics of Discrete-time LTI Systems Prof. Siripog Potisuk LTI System descriptio Previous bsis fuctio: uit smple or DT impulse The iput sequece is represeted s lier combitio of shifted

More information

Options: Calculus. O C.1 PG #2, 3b, 4, 5ace O C.2 PG.24 #1 O D PG.28 #2, 3, 4, 5, 7 O E PG #1, 3, 4, 5 O F PG.

Options: Calculus. O C.1 PG #2, 3b, 4, 5ace O C.2 PG.24 #1 O D PG.28 #2, 3, 4, 5, 7 O E PG #1, 3, 4, 5 O F PG. O C. PG.-3 #, 3b, 4, 5ce O C. PG.4 # Optios: Clculus O D PG.8 #, 3, 4, 5, 7 O E PG.3-33 #, 3, 4, 5 O F PG.36-37 #, 3 O G. PG.4 #c, 3c O G. PG.43 #, O H PG.49 #, 4, 5, 6, 7, 8, 9, 0 O I. PG.53-54 #5, 8

More information

=> PARALLEL INTERCONNECTION. Basic Properties LTI Systems. The Commutative Property. Convolution. The Commutative Property. The Distributive Property

=> PARALLEL INTERCONNECTION. Basic Properties LTI Systems. The Commutative Property. Convolution. The Commutative Property. The Distributive Property Lier Time-Ivrit Bsic Properties LTI The Commuttive Property The Distributive Property The Associtive Property Ti -6.4 / Chpter Covolutio y ] x ] ] x ]* ] x ] ] y] y ( t ) + x( τ ) h( t τ ) dτ x( t) * h(

More information

The Definite Riemann Integral

The Definite Riemann Integral These otes closely follow the presettio of the mteril give i Jmes Stewrt s textook Clculus, Cocepts d Cotexts (d editio). These otes re iteded primrily for i-clss presettio d should ot e regrded s sustitute

More information

MAS221 Analysis, Semester 2 Exercises

MAS221 Analysis, Semester 2 Exercises MAS22 Alysis, Semester 2 Exercises Srh Whitehouse (Exercises lbelled * my be more demdig.) Chpter Problems: Revisio Questio () Stte the defiitio of covergece of sequece of rel umbers, ( ), to limit. (b)

More information

is an ordered list of numbers. Each number in a sequence is a term of a sequence. n-1 term

is an ordered list of numbers. Each number in a sequence is a term of a sequence. n-1 term Mthemticl Ptters. Arithmetic Sequeces. Arithmetic Series. To idetify mthemticl ptters foud sequece. To use formul to fid the th term of sequece. To defie, idetify, d pply rithmetic sequeces. To defie rithmetic

More information

2.1.1 Definition The Z-transform of a sequence x [n] is simply defined as (2.1) X re x k re x k r

2.1.1 Definition The Z-transform of a sequence x [n] is simply defined as (2.1) X re x k re x k r Z-Trsforms. INTRODUCTION TO Z-TRANSFORM The Z-trsform is coveiet d vluble tool for represetig, lyig d desigig discrete-time sigls d systems. It plys similr role i discrete-time systems to tht which Lplce

More information

Objective Mathematics

Objective Mathematics . o o o o {cos 4 cos 9 si cos 65 } si 7º () cos 6º si 8º. If x R oe of these, the mximum vlue of the expressio si x si x.cos x c cos x ( c) is : () c c c c c c. If ( cos )cos cos ; 0, the vlue of 4. The

More information

M3P14 EXAMPLE SHEET 1 SOLUTIONS

M3P14 EXAMPLE SHEET 1 SOLUTIONS M3P14 EXAMPLE SHEET 1 SOLUTIONS 1. Show tht for, b, d itegers, we hve (d, db) = d(, b). Sice (, b) divides both d b, d(, b) divides both d d db, d hece divides (d, db). O the other hd, there exist m d

More information

12.2 The Definite Integrals (5.2)

12.2 The Definite Integrals (5.2) Course: Aelerted Egieerig Clulus I Istrutor: Mihel Medvisky. The Defiite Itegrls 5. Def: Let fx e defied o itervl [,]. Divide [,] ito suitervls of equl width Δx, so x, x + Δx, x + jδx, x. Let x j j e ritrry

More information

PROGRESSIONS AND SERIES

PROGRESSIONS AND SERIES PROGRESSIONS AND SERIES A sequece is lso clled progressio. We ow study three importt types of sequeces: () The Arithmetic Progressio, () The Geometric Progressio, () The Hrmoic Progressio. Arithmetic Progressio.

More information

Certain sufficient conditions on N, p n, q n k summability of orthogonal series

Certain sufficient conditions on N, p n, q n k summability of orthogonal series Avilble olie t www.tjs.com J. Nolier Sci. Appl. 7 014, 7 77 Reserch Article Certi sufficiet coditios o N, p, k summbility of orthogol series Xhevt Z. Krsiqi Deprtmet of Mthemtics d Iformtics, Fculty of

More information

Convergence rates of approximate sums of Riemann integrals

Convergence rates of approximate sums of Riemann integrals Covergece rtes of pproximte sums of Riem itegrls Hiroyuki Tski Grdute School of Pure d Applied Sciece, Uiversity of Tsuku Tsuku Irki 5-857 Jp tski@mth.tsuku.c.jp Keywords : covergece rte; Riem sum; Riem

More information