LECTURE 30: Conservation of energy

Size: px
Start display at page:

Download "LECTURE 30: Conservation of energy"

Transcription

1 Lectures Page 1 LECTURE 30: Conservation of energy Select LEARNING OBJECTIVES: i. ii. iii. iv. Differentiate between the vector nature of momentum conservation and the scalar nature of energy conservation. Re-define the work energy equation to include the differentiation between conservative work and nonconservative work. Be able to identify and explain internal energy conversions relating to chemical potential energy. Demonstrate the ability to read a problem, and then reflect upon what information is given to be able to determine what type of physics is relevant to the problem. TEXTBOOK CHAPTERS: Giancoli (Physics Principles with Applications 7 th ) :: 6-6, 6-7, 6-8, 6-9 Knight (College Physics : A strategic approach 3 rd ) :: 10.1, 10.6 BoxSand :: Energy ( Conservation of Energy ) WARM UP: A book is dropped from rest some height above a table. What are all the energy transformations that occur within the system consisting of the book, the earth, and the table? Hint: break this into two parts: the book falling, and the book hitting the table. Believe it or not, we have covered everything we need to know about energy to be able to use an energy analysis to solve problems. For this lecture, I want to start off with a quick review of what we have done so far. Then we will look at what is known as the "energy model" and define conservation of energy. Finally we can do a few practice problems with your new found energy analysis skill. Basic review of work kinetic energy theorem We initially started off by looking at a system that was a single object, thus all the forces acting on the system were external forces. The figure below shows an example

2 The work kinetic energy theorem for the above single object system was stated as Next we looked at systems containing more than one object. We realized that unlike a FBD analysis, we needed to consider internal forces, which can come in two forms, conservative and non-conservative forces. If the internal force was conservative we can define a potential energy function which was related to the work done by the conservative force. This definition is If the internal force was non-conservative, then we defined new types of energy to deal with their physical meaning (e.g. thermal energy and chemical energy). For example, the work done by friction if it was internal to our system was defined as change in thermal energy of the system Energy model The energy model is really just a restatement of what we covered in the review from above. However, we will draw it in a nice little diagram to help illustrate our definitions. The system includes multiple objects. Conservation of energy The goal before using an energy analysis is to define a system such that conservative forces are internal to your system so that you can use the potential energy functions associated with the resulting conservative work. For example, if you see a spring or a change in height, include the spring and the Earth in your system so that you can directly write your energy equation as If there are no net external forces acting on our system, then we can get rid of the net external work term which means the energy of our system is constant (i.e. the change in energy of our system is zero). This scenario is known as conservation of energy. Lectures Page 2

3 Lectures Page 3 scenario is known as conservation of energy. The above equation is interpreted as: within our system energy can be transformed from one form to another, but the net energy is constant. While this is a nice and compact form, you must remember that it only holds true if you defined a system where there are no net external forces. I strongly suggest you always start out with the most general form as seen in the equation with big red stars and arrows around it. Why? Because this is how I mentally assess a problem; I mentally ask myself the following line of questions: Are there objects within my system that are translating (moving left right up or down), if so then include kinetic energy; are there objects within my system that are rotating, if so include rotational kinetic energy; are there objects changing height within my system, if so include gravitational potential energy; are there springs within my system, if so include spring potential energy; are there people that I defined to be within my system, if so include the work from these people as a change in chemical potential energy; are there any external forces (conservative or non-conservative), if so then include the work from those forces. I use this line of questioning to construct my left hand side of the work energy equation (the initial state), and if is on the left hand side, you must include it on the right hand side (the final state), except for the external work and the internal non-conservative forces. Energy Transformations EXAMPLE: Consider a (Earth + ball) system. The ball is dropped from rest on top of a tall building. Identify the various energy transformations occurring within this system. PRACTICE: Consider a system (Box + Table). A box with an initial velocity slides to rest on top of a table. Identify the various energy transformations occurring within this system.

4 Lectures Page 4 PRACTICE: Consider a system (Oliver Queen + Bow + Arrow + Tree). Oliver Queen pulls back an arrow with his bow. He then releases the arrow, which flies horizontally until it gets stuck in a tree. Identify the various energy transformations occurring within this system. EXAMPLE: A box starts from rest on top of a frictionless incline, slides along the surface as seen in the figure below, and makes it to the top of the other side with some non-zero final velocity. Use an energy analysis to construct an equation to find the final velocity of the box. All surfaces are frictionless except for the region of width d as labeled in the figure.

5 Lectures Page 5 PRACTICE: A block is sliding along a level frictionless surface. Its speed at A is v A. It then encounters an incline whose total vertical rise is y B. The block travels off the upper end of the incline and becomes a projectile, striking the level surface as shown in the figure below. Construct an energy equation that would let you solve for the speed of the block at location C when the block is a distance y C above the level ground. PRACTICE: Starting from rest, a block of mass m is pushed up an incline by a constant horizontal force as shown in the figure below. The block travels a distance d along the incline surface and rises a vertical distance h. The coefficient of kinetic friction between the block and the incline is µ k. Construct an equation using an energy analysis to determine the speed of the block at the top of the incline.

6 Lectures Page 6 PRACTICE: Starting from rest, a block of mass m slides down a frictionless incline where it encounters an ideal spring at the bottom as shown in the figure below. Construct an equation to determine how far the spring compresses using energy analysis. Hint: draw a final state picture. Problems for discussion: (1) Find a roommate/friend/family member and try to explain to them in your own words what conservation of energy is and what energy transformations within a system are. Perhaps use some simplified examples to help communicate your understanding.

LECTURE 27: Gravitational potential energy

LECTURE 27: Gravitational potential energy Lectures Page 1 LECTURE 27: Gravitational potential energy Select LEARNING OBJECTIVES: i. ii. Construct an expression for the work due to gravity, defining this expression as gravitational potential energy

More information

LECTURE 12: Free body diagrams

LECTURE 12: Free body diagrams LECTURE 12: Free body diagrams Select LEARNING OBJECTIVES: i. ii. iii. iv. v. vi. Understand how to define a system for which to draw a FBD for. Demonstrate the ability to draw a properly scaled free body

More information

LECTURE 28: Spring force and potential energy

LECTURE 28: Spring force and potential energy Lectures Page 1 LECTURE 28: Spring force and potential energy Select LEARNING OBJECTIVES: i. ii. iii. Introduce the definition of spring potential energy. Understand the shape of a spring potential energy

More information

LECTURE 26: Work- Kinetic Energy

LECTURE 26: Work- Kinetic Energy Lectures Page 1 LECTURE 26: Work- Kinetic Energy Select LEARNING OBJECTIVES: i. ii. iii. iv. v. vi. vii. viii. ix. Introduce and define linear kinetic energy. Strengthen the ability to perform proportional

More information

LECTURE 23: Momentum-Impulse

LECTURE 23: Momentum-Impulse Lectures Page 1 LECTURE 23: Momentum-Impulse Select LEARNING OBJECTIVES: i. ii. iii. iv. v. vi. vii. viii. Introduce the concept that objects possess momentum. Introduce the concept of impulse. Be able

More information

Applying Newton s Laws

Applying Newton s Laws Applying Newton s Laws Free Body Diagrams Draw and label the forces acting on the object. Examples of forces: weight, normal force, air resistance, friction, applied forces (like a push or pull) Velocity

More information

LECTURE 19: Universal Law of Gravitation

LECTURE 19: Universal Law of Gravitation Lectures Page 1 LECTURE 19: Universal Law of Gravitation Select LEARNING OBJECTIVES: i. ii. iii. Introduce the general form of the force of gravity between two objects. Strength the ability to do proportional

More information

Section 4: Newton s Laws and Momentum

Section 4: Newton s Laws and Momentum Section 4: Newton s Laws and Momentum The following maps the videos in this section to the Texas Essential Knowledge and Skills for Physics TAC 112.39(c). 4.01 Newton s First Law Physics (4)(D) 4.02 Newton

More information

LECTURE 16: Friction

LECTURE 16: Friction Lectures Page 1 LECTURE 16: Friction Select LEARNING OBJECTIVES: i. ii. iii. iv. v. vi. vii. viii. ix. x. xi. Identify the direction that friction is acting. Identify which object(s) are creating a force

More information

Old Exams Questions Ch. 8 T072 Q2.: Q5. Q7.

Old Exams Questions Ch. 8 T072 Q2.: Q5. Q7. Old Exams Questions Ch. 8 T072 Q2.: A ball slides without friction around a loop-the-loop (see Fig 2). A ball is released, from rest, at a height h from the left side of the loop of radius R. What is the

More information

Conservative vs. Non-conservative forces Gravitational Potential Energy. Conservation of Mechanical energy

Conservative vs. Non-conservative forces Gravitational Potential Energy. Conservation of Mechanical energy Next topic Conservative vs. Non-conservative forces Gravitational Potential Energy Mechanical Energy Conservation of Mechanical energy Work done by non-conservative forces and changes in mechanical energy

More information

PHYSICS. Chapter 5 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT Pearson Education, Inc.

PHYSICS. Chapter 5 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT Pearson Education, Inc. PHYSICS FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E Chapter 5 Lecture RANDALL D. KNIGHT Chapter 5 Force and Motion IN THIS CHAPTER, you will learn about the connection between force and motion.

More information

PHYSICS. Chapter 5 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT Pearson Education, Inc.

PHYSICS. Chapter 5 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT Pearson Education, Inc. PHYSICS FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E Chapter 5 Lecture RANDALL D. KNIGHT Chapter 5 Force and Motion IN THIS CHAPTER, you will learn about the connection between force and motion.

More information

equations that I should use? As you see the examples, you will end up with a system of equations that you have to solve

equations that I should use? As you see the examples, you will end up with a system of equations that you have to solve Preface The common question is Which is the equation that I should use?. I think I will rephrase the question as Which are the equations that I should use? As you see the examples, you will end up with

More information

LECTURE 18: Uniform Circular Motion (UCM)

LECTURE 18: Uniform Circular Motion (UCM) Lectures Page 1 LECTURE 18: Uniform Circular Motion (UCM) Select LEARNING OBJECTIVES: i. ii. iii. iv. v. vi. vii. viii. ix. x. xi. xii. xiii. xiv. xv. Understand the definition of UCM, specifically that

More information

Physics 2010 Work and Energy Recitation Activity 5 (Week 9)

Physics 2010 Work and Energy Recitation Activity 5 (Week 9) Physics 2010 Work and Energy Recitation Activity 5 (Week 9) Name Section Tues Wed Thu 8am 10am 12pm 2pm 1. The figure at right shows a hand pushing a block as it moves through a displacement Δ! s. a) Suppose

More information

First Midterm Exam. Physics General Physics Lecture 11 Work and Energy 9/28/2016. Fall 2016 Semester Prof. Matthew Jones

First Midterm Exam. Physics General Physics Lecture 11 Work and Energy 9/28/2016. Fall 2016 Semester Prof. Matthew Jones Physics 22000 General Physics Lecture 11 Work and Energy Fall 2016 Semester Prof. Matthew Jones 1 First Midterm Exam Tuesday, October 4 th, 8:00-9:30 pm Location: PHYS 112 and WTHR 200. Covering material

More information

Physics 101 Lecture 5 Newton`s Laws

Physics 101 Lecture 5 Newton`s Laws Physics 101 Lecture 5 Newton`s Laws Dr. Ali ÖVGÜN EMU Physics Department The Laws of Motion q Newton s first law q Force q Mass q Newton s second law q Newton s third law qfrictional forces q Examples

More information

AP Physics 2 - Summer Assignment

AP Physics 2 - Summer Assignment AP Physics 2 - Summer Assignment This assignment is due on the first day of school. You must show all your work in all steps. This material is review of First Year Physics and will be covered in its entirety

More information

2 possibilities. 2.) Work is done and... 1.) Work is done and... *** The function of work is to change energy ***

2 possibilities. 2.) Work is done and... 1.) Work is done and... *** The function of work is to change energy *** Work-Energy Theorem and Energy Conservation *** The function of work is to change energy *** 2 possibilities 1.) Work is done and... or 2.) Work is done and... 1 EX: A 100 N box is 10 m above the ground

More information

Exercise 6: The conservation of energy and momentum

Exercise 6: The conservation of energy and momentum Physics 221 Name: Exercise 6: The conservation of energy and momentum Part 1: The projectile launcher s spring constant Objective: Through the use of the principle of conservation of energy (first law

More information

LECTURE 10: Newton's laws of motion

LECTURE 10: Newton's laws of motion LECTURE 10: Newton's laws of motion Select LEARNING OBJECTIVES: i. ii. iii. iv. v. vi. vii. viii. Understand that an object can only change its speed or direction if there is a net external force. Understand

More information

LECTURE 20: Rotational kinematics

LECTURE 20: Rotational kinematics Lectures Page 1 LECTURE 20: Rotational kinematics Select LEARNING OBJECTIVES: i. ii. iii. iv. v. vi. vii. viii. Introduce the concept that objects possess momentum. Introduce the concept of impulse. Be

More information

1D Motion: Review Packet Problem 1: Consider the following eight velocity vs. time graphs. Positive velocity is forward velocity.

1D Motion: Review Packet Problem 1: Consider the following eight velocity vs. time graphs. Positive velocity is forward velocity. Name: 1D Motion: Review Packet Problem 1: Consider the following eight velocity vs. time graphs. Positive velocity is forward velocity. Graph A Graph B Graph C Graph D Graph E Graph F Graph G Graph H (a)

More information

Module 17: Systems, Conservation of Momentum and Center of Mass

Module 17: Systems, Conservation of Momentum and Center of Mass Module 17: Systems, Conservation of Momentum and Center of Mass 17.1 External and Internal Forces and the Change in Momentum of a System So far we have restricted ourselves to considering how the momentum

More information

Physics 211 Week 5. Work and Kinetic Energy: Block on Ramp

Physics 211 Week 5. Work and Kinetic Energy: Block on Ramp Physics 211 Week 5 Work and Kinetic Energy: Block on Ramp A block starts with a speed of 15 m/s at the bottom of a ramp that is inclined at an angle of 30 o with the horizontal. The coefficient of kinetic

More information

Chapter 10 Momentum, System of Particles, and Conservation of Momentum

Chapter 10 Momentum, System of Particles, and Conservation of Momentum Chapter 10 Momentum, System of Particles, and Conservation of Momentum 10.1 Introduction... 1 10. Momentum (Quantity of Motion) and Impulse... 1 10..1 Average Force, Momentum, and Impulse... 10.. Non-Constant

More information

Dynamics Newton s Laws Lecture Notes

Dynamics Newton s Laws Lecture Notes Pre-AP Dynamics Newton s Laws Lecture Notes Name Targeted Skills for Newton s Laws (Lecture ONLY) 1. Identify and apply Newton s Laws of Motion to a variety of qualitative and quantitative problems. 2.

More information

Chapter 3, Problem 28. Agenda. Forces. Contact and Field Forces. Fundamental Forces. External and Internal Forces 2/6/14

Chapter 3, Problem 28. Agenda. Forces. Contact and Field Forces. Fundamental Forces. External and Internal Forces 2/6/14 Agenda Today: Homework Quiz, Chapter 4 (Newton s Laws) Thursday: Applying Newton s Laws Start reading Chapter 5 Chapter 3, Problem 28 A ball with a horizontal speed of 1.25 m/s rolls off a bench 1.00 m

More information

Physics Mechanics. Lecture 11 Newton s Laws - part 2

Physics Mechanics. Lecture 11 Newton s Laws - part 2 Physics 170 - Mechanics Lecture 11 Newton s Laws - part 2 Newton s Second Law of Motion An object may have several forces acting on it; the acceleration is due to the net force: Newton s Second Law of

More information

CHAPTER 6 TEST REVIEW -- MARKSCHEME

CHAPTER 6 TEST REVIEW -- MARKSCHEME Force (N) AP PHYSICS Name: Period: Date: 50 Multiple Choice 45 Single Response 5 Multi-Response Free Response 3 Short Free Response 2 Long Free Response DEVIL PHYSICS BADDEST CLASS ON CAMPUS AP EXAM CHAPTER

More information

To study applications of Newton s Laws as they. To study conditions that establish equilibrium. To consider contact forces and the effects of

To study applications of Newton s Laws as they. To study conditions that establish equilibrium. To consider contact forces and the effects of Chap. 5: More Examples with Newton s Law Chap.5: Applying Newton s Laws To study conditions that establish equilibrium. To study applications of Newton s Laws as they apply when the net force is not zero.

More information

Energy Problem Solving Techniques.

Energy Problem Solving Techniques. 1 Energy Problem Solving Techniques www.njctl.org 2 Table of Contents Introduction Gravitational Potential Energy Problem Solving GPE, KE and EPE Problem Solving Conservation of Energy Problem Solving

More information

AP Physics C. Work and Energy. Free-Response Problems. (Without Calculus)

AP Physics C. Work and Energy. Free-Response Problems. (Without Calculus) AP Physics C Work and Energy Free-Response Problems (Without Calculus) 1. A block with a mass m =10 kg is released from rest and slides a distance d = 5 m down a frictionless plane inclined at an angle

More information

Chapter 6 Work and Energy

Chapter 6 Work and Energy Chapter 6 Work and Energy Midterm exams will be available next Thursday. Assignment 6 Textbook (Giancoli, 6 th edition), Chapter 6: Due on Thursday, November 5 1. On page 162 of Giancoli, problem 4. 2.

More information

CPS lesson Work and Energy ANSWER KEY

CPS lesson Work and Energy ANSWER KEY CPS lesson Work and Energy ANSWER KEY 1. A ball feeder slowly pushes a bowling ball up a 1-m ramp to a height of 0.5 m above the floor. Neglecting friction, what constant force must be exerted on the 5-kg

More information

Physics General Physics. Lecture 3 Newtonian Mechanics. Fall 2016 Semester. Prof. Matthew Jones

Physics General Physics. Lecture 3 Newtonian Mechanics. Fall 2016 Semester. Prof. Matthew Jones Physics 22000 General Physics Lecture 3 Newtonian Mechanics Fall 2016 Semester Prof. Matthew Jones 1 Review of Lectures 1 and 2 In the previous lectures we learned how to describe some special types of

More information

4.) A baseball that weighs 1.6 N leaves a bat with a speed of 40.0 m/s. Calculate the kinetic energy of the ball. 130 J

4.) A baseball that weighs 1.6 N leaves a bat with a speed of 40.0 m/s. Calculate the kinetic energy of the ball. 130 J AP Physics-B Energy And Its Conservation Introduction: Energy is a term that most of us take for granted and use quite freely. We assume we know what we are talking about when speaking of energy. In truth,

More information

Chapter 2 Physics in Action Sample Problem 1 A weightlifter uses a force of 325 N to lift a set of weights 2.00 m off the ground. How much work did th

Chapter 2 Physics in Action Sample Problem 1 A weightlifter uses a force of 325 N to lift a set of weights 2.00 m off the ground. How much work did th Chapter Physics in Action Sample Problem 1 A weightlifter uses a force of 35 N to lift a set of weights.00 m off the ground. How much work did the weightlifter do? Strategy: You can use the following equation

More information

LECTURE 04: Position, Velocity, and Acceleration Graphs

LECTURE 04: Position, Velocity, and Acceleration Graphs Lectures Page 1 LECTURE 04: Position, Velocity, and Acceleration Graphs Select LEARNING OBJECTIVES: i. ii. iii. iv. v. vi. vii. viii. Qualitatively and quantitatively describe motion of an object based

More information

AP Physics C 2015 Summer Assignment

AP Physics C 2015 Summer Assignment AP Physics C 2015 Summer Assignment College Board (the people in charge of AP exams) recommends students to only take AP Physics C if they have already taken a 1 st year physics course and are currently

More information

PHYS 1114, Lecture 10, February 8 Contents:

PHYS 1114, Lecture 10, February 8 Contents: PHYS 1114, Lecture 10, February 8 Contents: 1 Example of projectile motion: Man shooting a gun firing a bullet horizontally. 2 Example of projectile motion: Man shooting an arrow at a monkey in a tree.

More information

Physics Exam 2 October 11, 2007

Physics Exam 2 October 11, 2007 INSTRUCTIONS: Write your NAME on the front of the blue exam booklet. The exam is closed book, and you may have only pens/pencils and a calculator (no stored equations or programs and no graphing). Show

More information

AP Physics C - Mechanics

AP Physics C - Mechanics Slide 1 / 84 Slide 2 / 84 P Physics C - Mechanics Energy Problem Solving Techniques 2015-12-03 www.njctl.org Table of Contents Slide 3 / 84 Introduction Gravitational Potential Energy Problem Solving GPE,

More information

Energy Whiteboard Problems

Energy Whiteboard Problems Energy Whiteboard Problems 1. (a) Consider an object that is thrown vertically up into the air. Draw a graph of gravitational force vs. height for that object. (b) Based on your experience with the formula

More information

PHYSICS 218 EXAM 2 Tuesday, October 26, 2010

PHYSICS 218 EXAM 2 Tuesday, October 26, 2010 PHYSICS 218 EXAM 2 Tuesday, October 26, 2010 NAME: SECTION: 513 514 515 516 Note: 513 Recitation & lab Wed 8:00-10:50 am 514 Recitation & lab Wed 11:30 am - 2:20 pm 515 Recitation & lab Wed 3:00-5:50 pm

More information

Sometimes (like on AP test) you will see the equation like this:

Sometimes (like on AP test) you will see the equation like this: Work, Energy & Momentum Notes Chapter 5 & 6 The two types of energy we will be working with in this unit are: (K in book KE): Energy associated with of an object. (U in book PE): Energy associated with

More information

Section /07/2013. PHY131H1F University of Toronto Class 9 Preclass Video by Jason Harlow. Based on Knight 3 rd edition Ch. 5, pgs.

Section /07/2013. PHY131H1F University of Toronto Class 9 Preclass Video by Jason Harlow. Based on Knight 3 rd edition Ch. 5, pgs. PHY131H1F University of Toronto Class 9 Preclass Video by Jason Harlow Based on Knight 3 rd edition Ch. 5, pgs. 116-133 Section 5.1 A force is a push or a pull What is a force? What is a force? A force

More information

s_3x03 Page 1 Physics Samples

s_3x03 Page 1 Physics Samples Physics Samples KE, PE, Springs 1. A 1.0-kilogram rubber ball traveling east at 4.0 meters per second hits a wall and bounces back toward the west at 2.0 meters per second. Compared to the kinetic energy

More information

AP PHYSICS 1 UNIT 4 / FINAL 1 PRACTICE TEST

AP PHYSICS 1 UNIT 4 / FINAL 1 PRACTICE TEST AP PHYSICS 1 UNIT 4 / FINAL 1 PRACTICE TEST NAME FREE RESPONSE PROBLEMS Put all answers on this test. Show your work for partial credit. Circle or box your answers. Include the correct units and the correct

More information

Chapter 4 Dynamics: Newton s Laws of Motion

Chapter 4 Dynamics: Newton s Laws of Motion Chapter 4 Dynamics: Newton s Laws of Motion Force Newton s First Law of Motion Mass Newton s Second Law of Motion Newton s Third Law of Motion Weight the Force of Gravity; and the Normal Force Applications

More information

LECTURE 19: Simple harmonic oscillators

LECTURE 19: Simple harmonic oscillators Lectures Page 1 Select LEARNING OBJECTIVES: LECTURE 19: Simple harmonic oscillators Be able to identify the features of a system that oscillates - i.e. systems with a restoring force and a potential energy

More information

Name Student ID Phys121 Win2011

Name Student ID Phys121 Win2011 (1) (3 pts) The airplane in the figure below is travelling at a constant speed and at a fixed altitude with its engines providing forward thrust. Which of the free-body diagrams below best represents the

More information

10 Work, Energy, and Machines BIGIDEA

10 Work, Energy, and Machines BIGIDEA 10 Work, Energy, and Machines BIGIDEA Write the Big Idea for this chapter. Use the What I Know column to list the things you know about the Big Idea. Then list the questions you have about the Big Idea

More information

The Laws of Motion. Newton s first law Force Mass Newton s second law Gravitational Force Newton s third law Examples

The Laws of Motion. Newton s first law Force Mass Newton s second law Gravitational Force Newton s third law Examples The Laws of Motion Newton s first law Force Mass Newton s second law Gravitational Force Newton s third law Examples Gravitational Force Gravitational force is a vector Expressed by Newton s Law of Universal

More information

Physics 2414 Group Exercise 8. Conservation of Energy

Physics 2414 Group Exercise 8. Conservation of Energy Physics 244 Group Exercise 8 Name : OUID : Name 2: OUID 2: Name 3: OUID 3: Name 4: OUID 4: Section Number: Solutions Solutions Conservation of Energy A mass m moves from point i to point f under the action

More information

SPH4U UNIVERSITY PHYSICS

SPH4U UNIVERSITY PHYSICS SPH4U UNIVERSITY PHYSICS DYNAMICS L (P.77-83) To avoid using complex mathematical analysis, you can make several assumptions about cables and ropes that support loads. The mass of the rope or cable is

More information

1 of 6 10/21/2009 6:33 PM

1 of 6 10/21/2009 6:33 PM 1 of 6 10/21/2009 6:33 PM Chapter 10 Homework Due: 9:00am on Thursday, October 22, 2009 Note: To understand how points are awarded, read your instructor's Grading Policy. [Return to Standard Assignment

More information

LECTURE 13- PROBLEMS. Chapter 1-9,13 Professor Noronha-Hostler Professor Montalvo

LECTURE 13- PROBLEMS. Chapter 1-9,13 Professor Noronha-Hostler Professor Montalvo LECTURE 13- PROBLEMS Chapter 1-9,13 Professor Noronha-Hostler Professor Montalvo FARADAY LECTURES! Physics Lecture Hall Friday Dec. 7 Demos: 6pm Show: 7-8:30pm Saturday Dec. 8 Demos: 2pm Show: 3-4:30pm

More information

*Be able to use any previous concepts with work & energy, including kinematics & circular motion.

*Be able to use any previous concepts with work & energy, including kinematics & circular motion. AP Physics 1 Chapter 6 Study Guide Work & Energy Topics: Work o W = Fdcosq, where q is the angle between F & d (only using part of force that makes the object move) o Force must make object move to do

More information

2. What would happen to his acceleration if his speed were half? Energy The ability to do work

2. What would happen to his acceleration if his speed were half? Energy The ability to do work 1. A 40 kilogram boy is traveling around a carousel with radius 0.5 meters at a constant speed of 1.7 meters per second. Calculate his centripetal acceleration. 2. What would happen to his acceleration

More information

Sara Rwentambo. PHYS 1007 AB

Sara Rwentambo. PHYS 1007 AB Topics: Free body diagrams (FBDs) Static friction and kinetic friction Tension and acceleration of a system Tension in dynamic equilibrium (bonus question) Opener: Find Your Free Body Diagram Group Activity!

More information

UNIT XX: DYNAMICS AND NEWTON S LAWS. DYNAMICS is the branch of mechanics concerned with the forces that cause motions of bodies

UNIT XX: DYNAMICS AND NEWTON S LAWS. DYNAMICS is the branch of mechanics concerned with the forces that cause motions of bodies I. Definition of FORCE UNIT XX: DYNAMICS AND NEWTON S LAWS DYNAMICS is the branch of mechanics concerned with the forces that cause motions of bodies FORCE is a quantitative interaction between two (or

More information

8.01x Classical Mechanics, Fall 2016 Massachusetts Institute of Technology. Problem Set 8

8.01x Classical Mechanics, Fall 2016 Massachusetts Institute of Technology. Problem Set 8 8.01x Classical Mechanics, Fall 2016 Massachusetts Institute of Technology 1. Spring-Loop-the-Loop Problem Set 8 A small block of mass m is pushed against a spring with spring constant k and held in place

More information

AP Mechanics Summer Assignment

AP Mechanics Summer Assignment 2012-2013 AP Mechanics Summer Assignment To be completed in summer Submit for grade in September Name: Date: Equations: Kinematics (For #1 and #2 questions: use following equations only. Need to show derivation

More information

Announcements 24 Sep 2013

Announcements 24 Sep 2013 Announcements 24 Sep 2013 1. If you have questions on exam 1 2. Newton s 2 nd Law Problems: F m a. Inclined planes b. Pulleys c. Ropes d. Friction e. Etc Remember N2 is a blueprint for obtaining a useful

More information

Chapter 5 Force and Motion

Chapter 5 Force and Motion Chapter 5 Force and Motion Chapter Goal: To establish a connection between force and motion. Slide 5-2 Chapter 5 Preview Slide 5-3 Chapter 5 Preview Slide 5-4 Chapter 5 Preview Slide 5-5 Chapter 5 Preview

More information

Physics UCSB TR 2:00-3:15 lecture Final Exam Wednesday 3/17/2010

Physics UCSB TR 2:00-3:15 lecture Final Exam Wednesday 3/17/2010 Physics @ UCSB TR :00-3:5 lecture Final Eam Wednesday 3/7/00 Print your last name: Print your first name: Print your perm no.: INSTRUCTIONS: DO NOT START THE EXAM until you are given instructions to do

More information

Chapter 10 Momentum, System of Particles, and Conservation of Momentum

Chapter 10 Momentum, System of Particles, and Conservation of Momentum Chapter 10 Momentum, System of Particles, and Conservation of Momentum 10.1 Introduction... 1 10.2 Momentum (Quantity of Motion) and Average Impulse... 1 Example 10.1 Impulse for a Non-Constant Force...

More information

Classical Mechanics Lecture 11

Classical Mechanics Lecture 11 Classical Mechanics Lecture 11 Today s Examples Center of Mass Today s Concept: Conservation of Momentum Inelastic Collisions Mechanics Lecture 11, Slide 1 Unit 10 Homework Problems Mechanics Lecture 10,

More information

Conservation of Energy Challenge Problems Problem 1

Conservation of Energy Challenge Problems Problem 1 Conservation of Energy Challenge Problems Problem 1 An object of mass m is released from rest at a height h above the surface of a table. The object slides along the inside of the loop-the-loop track consisting

More information

Lecture PowerPoints. Chapter 4 Physics: Principles with Applications, 7 th edition Giancoli

Lecture PowerPoints. Chapter 4 Physics: Principles with Applications, 7 th edition Giancoli Lecture PowerPoints Chapter 4 Physics: Principles with Applications, 7 th edition Giancoli This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching

More information

Static and Kinetic Friction. Section 5.1 Friction. Example 5.1. Is the normal force always. equal to µmg? Is the frictional force always

Static and Kinetic Friction. Section 5.1 Friction. Example 5.1. Is the normal force always. equal to µmg? Is the frictional force always Section 5.1 Friction Static and Kinetic Friction Friction is an electromagnetic phenomenon: molecular attraction between surfaces Extreme example: Gecko foot Two kinds of friction: Static Friction: a force

More information

Dynamics Notes 1 Newton s Laws

Dynamics Notes 1 Newton s Laws Dynamics Notes 1 Newton s Laws In 1665 Sir Isaac Newton formulated three laws that dictate the motion of objects. These three laws are universal and apply to all forces in the universe. Newton s 1 st Law:

More information

Physics 207 Lecture 7. Lecture 7

Physics 207 Lecture 7. Lecture 7 Lecture 7 "Professor Goddard does not know the relation between action and reaction and the need to have something better than a vacuum against which to react. He seems to lack the basic knowledge ladled

More information

i. Indicate on the figure the point P at which the maximum speed of the car is attained. ii. Calculate the value vmax of this maximum speed.

i. Indicate on the figure the point P at which the maximum speed of the car is attained. ii. Calculate the value vmax of this maximum speed. 1. A 0.20 kg object moves along a straight line. The net force acting on the object varies with the object's displacement as shown in the graph above. The object starts from rest at displacement x = 0

More information

The Laws of Motion. Before You Read. Science Journal

The Laws of Motion. Before You Read. Science Journal The Laws of Motion Before You Read Before you read the chapter, use the What I know column to list three things you know about motion. Then list three questions you have about motion in the What I want

More information

Unit 2: Vector Dynamics

Unit 2: Vector Dynamics Multiple Choice Portion Unit 2: Vector Dynamics 1. Which one of the following best describes the motion of a projectile close to the surface of the Earth? (Assume no friction) Vertical Acceleration Horizontal

More information

Physics B Newton s Laws AP Review Packet

Physics B Newton s Laws AP Review Packet Force A force is a push or pull on an object. Forces cause an object to accelerate To speed up To slow down To change direction Unit: Newton (SI system) Newton s First Law The Law of Inertia. A body in

More information

(A) 0 (B) mv (C) 2mv (D) 2mv sin θ (E) 2mv cos θ

(A) 0 (B) mv (C) 2mv (D) 2mv sin θ (E) 2mv cos θ Physics 1 Lesson 8 Forces and Momentum Homework Outcomes 1. Define linear momentum. 2. Determine the total linear momentum of a system. 3. Apply the Law of Conservation of Momentum to solve problems. 4.

More information

AP PHYSICS 1 Content Outline arranged TOPICALLY

AP PHYSICS 1 Content Outline arranged TOPICALLY AP PHYSICS 1 Content Outline arranged TOPICALLY with o Big Ideas o Enduring Understandings o Essential Knowledges o Learning Objectives o Science Practices o Correlation to Common Textbook Chapters Much

More information

Physics 201 Lecture 16

Physics 201 Lecture 16 Physics 01 Lecture 16 Agenda: l Review for exam Lecture 16 Newton s Laws Three blocks are connected on the table as shown. The table has a coefficient of kinetic friction of 0.350, the masses are m 1 =

More information

Dynamics; Newton s Laws of Motion

Dynamics; Newton s Laws of Motion Dynamics; Newton s Laws of Motion Force A force is any kind of push or pull on an object. An object at rest needs a force to get it moving; a moving object needs a force to change its velocity. The magnitude

More information

Circular Motion. A car is traveling around a curve at a steady 45 mph. Is the car accelerating? A. Yes B. No

Circular Motion. A car is traveling around a curve at a steady 45 mph. Is the car accelerating? A. Yes B. No Circular Motion A car is traveling around a curve at a steady 45 mph. Is the car accelerating? A. Yes B. No Circular Motion A car is traveling around a curve at a steady 45 mph. Which vector shows the

More information

Physics 111 Lecture 4 Newton`s Laws

Physics 111 Lecture 4 Newton`s Laws Physics 111 Lecture 4 Newton`s Laws Dr. Ali ÖVGÜN EMU Physics Department www.aovgun.com he Laws of Motion q Newton s first law q Force q Mass q Newton s second law q Newton s third law q Examples Isaac

More information

Review Session 1. Page 1

Review Session 1. Page 1 Review Session 1 1. Which combination of fundamental units can be used to express the amount of work done on an object? 2. The height of a typical kitchen table is approximately A) 10-2 m B) 10 0 m C)

More information

Inaugural University of Michigan Science Olympiad Invitational Tournament. Hovercraft

Inaugural University of Michigan Science Olympiad Invitational Tournament. Hovercraft Inaugural University of Michigan Science Olympiad Invitational Tournament Test length: 50 Minutes Hovercraft Team number: Team name: Student names: Instructions: Do not open this test until told to do

More information

If there is nothing pushing on an object, it will not move. If there is nothing pushing on an object, it will not stop. The List:

If there is nothing pushing on an object, it will not move. If there is nothing pushing on an object, it will not stop. The List: If there is nothing pushing on an object, it will not move. If there is nothing pushing on an object, it will not stop. The List: No Push No Go No Push No Stop No Push No Speed Up No Push No Slow Down

More information

Unit 2 Forces. Fundamental Forces

Unit 2 Forces. Fundamental Forces Lesson14.notebook July 10, 2013 Unit 2 Forces Fundamental Forces Today's goal: I can identify/name applied forces and draw appropriate free body diagrams (FBD's). There are 4 fundamental forces Gravity

More information

PHYS 154 Practice Test 3 Spring 2018

PHYS 154 Practice Test 3 Spring 2018 The actual test contains 1 multiple choice questions and 2 problems. However, for extra exercise, this practice test includes 4 problems. Questions: N.B. Make sure that you justify your answers explicitly

More information

MECHANICAL (TOTAL) ENERGY

MECHANICAL (TOTAL) ENERGY DO NOW: 1/19 If you haven t already, please take the short google form survey posted on Edmodo Please turn in your Work done by friction Lab in the top tray POTENTIAL ENERGY Stored energy An object that

More information

Summary of Chapters 1-3. Equations of motion for a uniformly accelerating object. Quiz to follow

Summary of Chapters 1-3. Equations of motion for a uniformly accelerating object. Quiz to follow Summary of Chapters 1-3 Equations of motion for a uniformly accelerating object Quiz to follow An unbalanced force acting on an object results in its acceleration Accelerated motion in time, t, described

More information

α f k θ y N m mg Figure 1 Solution 1: (a) From Newton s 2 nd law: From (1), (2), and (3) Free-body diagram (b) 0 tan 0 then

α f k θ y N m mg Figure 1 Solution 1: (a) From Newton s 2 nd law: From (1), (2), and (3) Free-body diagram (b) 0 tan 0 then Question [ Work ]: A constant force, F, is applied to a block of mass m on an inclined plane as shown in Figure. The block is moved with a constant velocity by a distance s. The coefficient of kinetic

More information

A+B. Scalar quantities are described by magnitude only (examples: distance, speed, temperature, energy, and mass).

A+B. Scalar quantities are described by magnitude only (examples: distance, speed, temperature, energy, and mass). Honors Physics Examination I Review Questions #1-#11 - Vectors & Measurements vector quantity is specified by magnitude and direction (examples: displacement, velocity, acceleration, momentum, and weight).

More information

General Physics I Work & Energy

General Physics I Work & Energy General Physics I Work & Energy Forms of Energy Kinetic: Energy of motion. A car on the highway has kinetic energy. We have to remove this energy to stop it. The brakes of a car get HOT! This is an example

More information

Physics 2514 Lecture 26

Physics 2514 Lecture 26 Physics 2514 Lecture 26 P. Gutierrez Department of Physics & Astronomy University of Oklahoma Physics 2514 p. 1/12 Review We have defined the following using Newton s second law of motion ( F net = d p

More information

Topic 2 Revision questions Paper

Topic 2 Revision questions Paper Topic 2 Revision questions Paper 1 3.1.2018 1. [1 mark] The graph shows the variation of the acceleration a of an object with time t. What is the change in speed of the object shown by the graph? A. 0.5

More information

REVISING MECHANICS (LIVE) 30 JUNE 2015 Exam Questions

REVISING MECHANICS (LIVE) 30 JUNE 2015 Exam Questions REVISING MECHANICS (LIVE) 30 JUNE 2015 Exam Questions Question 1 (Adapted from DBE November 2014, Question 2) Two blocks of masses 20 kg and 5 kg respectively are connected by a light inextensible string,

More information

Physics 2111 Unit 7. Today s Concepts: Work & Kinetic Energy Power. Mechanics Lecture 7, Slide 1

Physics 2111 Unit 7. Today s Concepts: Work & Kinetic Energy Power. Mechanics Lecture 7, Slide 1 Physics 2111 Unit 7 Today s Concepts: Work & Kinetic Energy Power Mechanics Lecture 7, Slide 1 Work-Kinetic Energy Theorem The work done by force F as it acts on an object that moves between positions

More information

UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics

UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics Physics 115.3 MIDTERM TEST October 22, 2015 Time: 90 minutes NAME: (Last) Please Print (Given) STUDENT NO.: LECTURE SECTION (please

More information