LECTURE 12: Free body diagrams

Size: px
Start display at page:

Download "LECTURE 12: Free body diagrams"

Transcription

1 LECTURE 12: Free body diagrams Select LEARNING OBJECTIVES: i. ii. iii. iv. v. vi. Understand how to define a system for which to draw a FBD for. Demonstrate the ability to draw a properly scaled free body diagram from an image of a scenario or a written description of a scenario. Understand the importance of including a coordinate system along with a FBD. Be able to determine the relative direction of the acceleration of an object based off of a properly scaled FBD. Understand that the two forces constituting a force pair will never show up on the same FBD. Be able to identify any internal forces for a system if applicable. TEXTBOOK CHAPTERS: Giancoli (Physics Principles with Applications 7 th ) :: N/A Knight (College Physics : A strategic approach 3 rd ) :: 4.3, 4.6, 5.7 BoxSand :: Forces ( Free Body Diagrams ) WARM UP: After a baseball with mass m1 is hit, it flies through the air from the home plate (HP) to the outfield from left to right as represented by the trajectory drawn below. Ignoring air resistance, which of the following FBDs for the baseball at point P could be correct? To help us properly analyze the motion of a system, we need to consider all the interactions that the system has with its surroundings before we write down any equations. The number of interactions can become daunting, not to mention keeping track of the magnitudes and directions of all the forces that we use to mathematically describe these interactions. A free body diagram (FBD) is an invaluable tool to help us visualize all the forces acting on our system so that we may analyze the motion of the system much more efficiently. Until otherwise noted, we will still be working under the point particle approximation. Thus all forces we draw on objects can be represented as acting through the object's center of mass, which itself can be represented by a point particle. Do not concern yourself with the actual calculation of the center of mass statement just yet, we will introduce that math at a later time. For now it is sufficient to just understand that we are writing equations of motion for the center of mass of our system, wherever that may be located. Lectures Page 1

2 Defining a system The first step in analyzing any problem is deciding what object(s) we are interested in. This is known as defining our system. So the system is just another word for the collection of objects, or single object, that we plan on analyzing to determine motion. We restrict ourselves to only defining a system of multiple objects if all objects have the same acceleration. Consider the collection of objects below. Where mass 1 and 2 do not slide relative to one another (i.e. mass 2 will always be directly on top of mass 1), and mass 3 is connected by a massless string which does not stretch. Since mass 2 does not slide relative to mass 1, they both have the same acceleration to the right. Also, since mass 3 is connected to mass 1 via a string that does not stretch, mass 3 has the same acceleration as mass 1. Thus, as the person is pulling mass 3 to the right via a massless string, all objects have the same acceleration. With this image constructed, we now have options for how we can define our system. The options for our system are (m 1, m 2, m 3, m 1 + m 2, m 1 + m 3, m 2 + m 3, m 1 + m 2 + m 3 ). A few of these options are shown below. Drawing a FBD Now that you have defined your system, it is time to draw a FBD for that system. Our FBD will consist of a single dot, representing our system, from which we draw force vectors that represent all the interactions that the system has with its environment. FBD are not complete without a coordinate system defined. To illustrate what a FBD is, we will look at two examples. EXAMPLE: Draw a FBD for the defined system below. Assume no friction exists between m 1 and the surface, and also that m 2 is stuck on top of m 1. Lectures Page 2

3 Since this is not a video, I will show the important steps that I take when drawing a FBD. Showing all these steps are not necessary, they are only shown for pedagogical purposes. After this one example, I will only show the final free body diagram(s) without the steps. Step 1: Draw horizontal and vertical axes Step 2: Draw non-contact forces Step 3: Draw contact forces NOTE: I like to draw my non-contact forces first, just so I don't forget them (e.g. I think about all the non-contact forces that exist and see if any of them would be present on the FBD of interest). Then I go through the long list of contact forces in my head to make sure I don't forget any of them either. You do not need to draw them in this order, I just use it as a systematic way so that I hopefully don't forget to include any necessary forces. Lectures Page 3

4 Step 4: Draw/label coordinate system ** This is the final finished FBD with the forces scaled appropriately. EXAMPLE: Draw a FBD for the defined system below. Assume no friction exists between m 1 and the table, also no friction between m 3 and the table, and that m 2 is stuck on top of m 1. The steps shown in the first example before this one should be followed (i.e. draw horizontal and vertical axes, draw non-contact forces, draw contact forces, define coordinate system). PRACTICE: Draw a FBD for each mass separately and the combined (m 1 + m 2 ) system. Attempt to scale each force relative to each other. Lectures Page 4

5 PRACTICE: Draw a FBD for the person m 2, and the scale m 1. Attempt to scale each force relative to each other. What does a scale really measure? Scale PRACTICE: Draw a FBD for the box below. Attempt to scale each force relative to each other. Lectures Page 5

6 PRACTICE: Mass 1 and mass 2 are suspended by three separate wires of negligible mass. Draw a FBD for each separate mass. Attempt to scale the forces relative to each other. *Do you see another system we could construct?* Lectures Page 6

7 Conceptual questions for discussion 1) 2) Will a force-pair ever show up on the same FBD? Consider the image below. Is there a normal force from the person on mass 2? 3) Consider the image below. How many systems could you construct to draw FBDs? Lectures Page 7

LECTURE 30: Conservation of energy

LECTURE 30: Conservation of energy Lectures Page 1 LECTURE 30: Conservation of energy Select LEARNING OBJECTIVES: i. ii. iii. iv. Differentiate between the vector nature of momentum conservation and the scalar nature of energy conservation.

More information

LECTURE 16: Friction

LECTURE 16: Friction Lectures Page 1 LECTURE 16: Friction Select LEARNING OBJECTIVES: i. ii. iii. iv. v. vi. vii. viii. ix. x. xi. Identify the direction that friction is acting. Identify which object(s) are creating a force

More information

LECTURE 19: Universal Law of Gravitation

LECTURE 19: Universal Law of Gravitation Lectures Page 1 LECTURE 19: Universal Law of Gravitation Select LEARNING OBJECTIVES: i. ii. iii. Introduce the general form of the force of gravity between two objects. Strength the ability to do proportional

More information

LECTURE 26: Work- Kinetic Energy

LECTURE 26: Work- Kinetic Energy Lectures Page 1 LECTURE 26: Work- Kinetic Energy Select LEARNING OBJECTIVES: i. ii. iii. iv. v. vi. vii. viii. ix. Introduce and define linear kinetic energy. Strengthen the ability to perform proportional

More information

LECTURE 28: Spring force and potential energy

LECTURE 28: Spring force and potential energy Lectures Page 1 LECTURE 28: Spring force and potential energy Select LEARNING OBJECTIVES: i. ii. iii. Introduce the definition of spring potential energy. Understand the shape of a spring potential energy

More information

LECTURE 18: Uniform Circular Motion (UCM)

LECTURE 18: Uniform Circular Motion (UCM) Lectures Page 1 LECTURE 18: Uniform Circular Motion (UCM) Select LEARNING OBJECTIVES: i. ii. iii. iv. v. vi. vii. viii. ix. x. xi. xii. xiii. xiv. xv. Understand the definition of UCM, specifically that

More information

SPH4U UNIVERSITY PHYSICS

SPH4U UNIVERSITY PHYSICS SPH4U UNIVERSITY PHYSICS DYNAMICS L (P.77-83) To avoid using complex mathematical analysis, you can make several assumptions about cables and ropes that support loads. The mass of the rope or cable is

More information

LECTURE 27: Gravitational potential energy

LECTURE 27: Gravitational potential energy Lectures Page 1 LECTURE 27: Gravitational potential energy Select LEARNING OBJECTIVES: i. ii. Construct an expression for the work due to gravity, defining this expression as gravitational potential energy

More information

Answers without work shown will not be given any credit.

Answers without work shown will not be given any credit. MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics Physics 8.01 Fall Term 2012 Problem 1 of 4 (25 points) Exam 1 Solutions with Grading Scheme Answers without work shown will not be given any

More information

LECTURE 20: Rotational kinematics

LECTURE 20: Rotational kinematics Lectures Page 1 LECTURE 20: Rotational kinematics Select LEARNING OBJECTIVES: i. ii. iii. iv. v. vi. vii. viii. Introduce the concept that objects possess momentum. Introduce the concept of impulse. Be

More information

LECTURE 10: Newton's laws of motion

LECTURE 10: Newton's laws of motion LECTURE 10: Newton's laws of motion Select LEARNING OBJECTIVES: i. ii. iii. iv. v. vi. vii. viii. Understand that an object can only change its speed or direction if there is a net external force. Understand

More information

LECTURE 04: Position, Velocity, and Acceleration Graphs

LECTURE 04: Position, Velocity, and Acceleration Graphs Lectures Page 1 LECTURE 04: Position, Velocity, and Acceleration Graphs Select LEARNING OBJECTIVES: i. ii. iii. iv. v. vi. vii. viii. Qualitatively and quantitatively describe motion of an object based

More information

LECTURE 23: Momentum-Impulse

LECTURE 23: Momentum-Impulse Lectures Page 1 LECTURE 23: Momentum-Impulse Select LEARNING OBJECTIVES: i. ii. iii. iv. v. vi. vii. viii. Introduce the concept that objects possess momentum. Introduce the concept of impulse. Be able

More information

(a) On the dots below that represent the students, draw and label free-body diagrams showing the forces on Student A and on Student B.

(a) On the dots below that represent the students, draw and label free-body diagrams showing the forces on Student A and on Student B. 2003 B1. (15 points) A rope of negligible mass passes over a pulley of negligible mass attached to the ceiling, as shown above. One end of the rope is held by Student A of mass 70 kg, who is at rest on

More information

PHYSICS 220 Lecture 04 Forces and Motion in 1 D Textbook Sections

PHYSICS 220 Lecture 04 Forces and Motion in 1 D Textbook Sections PHYSICS 220 Lecture 04 Forces and Motion in 1 D Textbook Sections 3.2 3.6 Lecture 4 Purdue University, Physics 220 1 Last Lecture Constant Acceleration x = x 0 + v 0 t + ½ at 2 v = v 0 + at Overview v

More information

Physics 207 Lecture 9. Lecture 9

Physics 207 Lecture 9. Lecture 9 Lecture 9 Today: Review session Assignment: For Thursday, Read Chapter 8, first four sections Exam Wed., Feb. 18 th from 7:15-8:45 PM Chapters 1-7 One 8½ X 11 note sheet and a calculator (for trig.) Place:

More information

Physics 207 Lecture 9. Lecture 9

Physics 207 Lecture 9. Lecture 9 Lecture 9 Today: Review session Assignment: For Thursday, Read through Chapter 8 (first four sections) Exam Wed., Feb. 17 th from 7:15-8:45 PM Chapters 1-6 One 8½ X 11 hand written note sheet and a calculator

More information

Lecture PowerPoints. Chapter 7 Physics for Scientists and Engineers, with Modern Physics, 4 th Edition Giancoli

Lecture PowerPoints. Chapter 7 Physics for Scientists and Engineers, with Modern Physics, 4 th Edition Giancoli Lecture PowerPoints Chapter 7 Physics for Scientists and Engineers, with Modern Physics, 4 th Edition Giancoli 2009 Pearson Education, Inc. This work is protected by United States copyright laws and is

More information

Lecture 10. Example: Friction and Motion

Lecture 10. Example: Friction and Motion Lecture 10 Goals: Exploit Newton s 3 rd Law in problems with friction Employ Newton s Laws in 2D problems with circular motion Assignment: HW5, (Chapter 7, due 2/24, Wednesday) For Tuesday: Finish reading

More information

Physics 201 Lecture 16

Physics 201 Lecture 16 Physics 01 Lecture 16 Agenda: l Review for exam Lecture 16 Newton s Laws Three blocks are connected on the table as shown. The table has a coefficient of kinetic friction of 0.350, the masses are m 1 =

More information

PHY 123 Lab 1 - Error and Uncertainty and the Simple Pendulum

PHY 123 Lab 1 - Error and Uncertainty and the Simple Pendulum To print higher-resolution math symbols, click the Hi-Res Fonts for Printing button on the jsmath control panel. PHY 13 Lab 1 - Error and Uncertainty and the Simple Pendulum Important: You need to print

More information

Chapter 3, Problem 28. Agenda. Forces. Contact and Field Forces. Fundamental Forces. External and Internal Forces 2/6/14

Chapter 3, Problem 28. Agenda. Forces. Contact and Field Forces. Fundamental Forces. External and Internal Forces 2/6/14 Agenda Today: Homework Quiz, Chapter 4 (Newton s Laws) Thursday: Applying Newton s Laws Start reading Chapter 5 Chapter 3, Problem 28 A ball with a horizontal speed of 1.25 m/s rolls off a bench 1.00 m

More information

3/10/2019. What Is a Force? What Is a Force? Tactics: Drawing Force Vectors

3/10/2019. What Is a Force? What Is a Force? Tactics: Drawing Force Vectors What Is a Force? A force acts on an object. A force requires an agent, something that acts on the object. If you throw a ball, your hand is the agent or cause of the force exerted on the ball. A force

More information

Physics Mechanics. Lecture 11 Newton s Laws - part 2

Physics Mechanics. Lecture 11 Newton s Laws - part 2 Physics 170 - Mechanics Lecture 11 Newton s Laws - part 2 Newton s Second Law of Motion An object may have several forces acting on it; the acceleration is due to the net force: Newton s Second Law of

More information

SDI LAB #7: NEWTON S LAWS REVISITED

SDI LAB #7: NEWTON S LAWS REVISITED SDI LAB #7: NEWTON S LAWS REVISITED NAME Last (Print Clearly) First (Print Clearly) ID Number LAB SECTION LAB TABLE POSITION I. Introduction... 1 II. Stationary Cart... 1 III. Cart in Motion... 6 I. INTRODUCTION

More information

AP PHYSICS 1 UNIT 4 / FINAL 1 PRACTICE TEST

AP PHYSICS 1 UNIT 4 / FINAL 1 PRACTICE TEST AP PHYSICS 1 UNIT 4 / FINAL 1 PRACTICE TEST NAME FREE RESPONSE PROBLEMS Put all answers on this test. Show your work for partial credit. Circle or box your answers. Include the correct units and the correct

More information

What Is a Force? Slide Pearson Education, Inc.

What Is a Force? Slide Pearson Education, Inc. What Is a Force? A force acts on an object. A force requires an agent, something that acts on the object. If you throw a ball, your hand is the agent or cause of the force exerted on the ball. A force

More information

Physics 207 Lecture 7. Lecture 7

Physics 207 Lecture 7. Lecture 7 Lecture 7 "Professor Goddard does not know the relation between action and reaction and the need to have something better than a vacuum against which to react. He seems to lack the basic knowledge ladled

More information

4.4 Energy in multiple dimensions, dot product

4.4 Energy in multiple dimensions, dot product 4 CONSERVATION LAWS 4.4 Energy in multiple dimensions, dot product Name: 4.4 Energy in multiple dimensions, dot product 4.4.1 Background By this point, you have worked a fair amount with vectors in this

More information

Lecture PowerPoints. Chapter 5 Physics for Scientists & Engineers, with Modern Physics, 4 th edition. Giancoli

Lecture PowerPoints. Chapter 5 Physics for Scientists & Engineers, with Modern Physics, 4 th edition. Giancoli Lecture PowerPoints Chapter 5 Physics for Scientists & Engineers, with Modern Physics, 4 th edition 2009 Pearson Education, Inc. This work is protected by United States copyright laws and is provided solely

More information

NII.3: Dynamics & Statics

NII.3: Dynamics & Statics NII.3: Dynamics & Statics Physics 203, Profs. Max Bean & Daniel Martens Yaverbaum John Jay College of Criminal Justice, the CUNY I. Friction Warm Ups A. Moxie, a 4kg calico cat (whose silvery hairs you

More information

Which, if any, of the velocity versus time graphs below represent the movement of the sliding box?

Which, if any, of the velocity versus time graphs below represent the movement of the sliding box? Review Packet Name: _ 1. A box is sliding to the right along a horizontal surface with a velocity of 2 m/s. There is friction between the box and the horizontal surface. The box is tied to a hanging stone

More information

Pulling force $ % 6 Least

Pulling force $ % 6 Least B3-RT2: ROPES PULLING BOXES ACCELERATION Boxes are pulled by ropes along frictionless surfaces, accelerating toward the left. of the boxes are identical. The pulling force applied to the left-most rope

More information

Free-Body Diagrams: Introduction

Free-Body Diagrams: Introduction Free-Body Diagrams: Introduction Learning Goal: To learn to draw free-body diagrams for various real-life situations. Imagine that you are given a description of a real-life situation and are asked to

More information

Acceleration and Force: I

Acceleration and Force: I Lab Section (circle): Day: Monday Tuesday Time: 8:00 9:30 1:10 2:40 Acceleration and Force: I Name Partners Pre-Lab You are required to finish this section before coming to the lab, which will be checked

More information

PHYSICS. Chapter 5 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT Pearson Education, Inc.

PHYSICS. Chapter 5 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT Pearson Education, Inc. PHYSICS FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E Chapter 5 Lecture RANDALL D. KNIGHT Chapter 5 Force and Motion IN THIS CHAPTER, you will learn about the connection between force and motion.

More information

Spring 2010 Physics 141 Practice Exam II Phy141_mt1b.pdf

Spring 2010 Physics 141 Practice Exam II Phy141_mt1b.pdf 1. (15 points) You are given two vectors: A has length 10. and an angle of 60. o (with respect to the +x axis). B has length 10. and an angle of 200. o (with respect to the +x axis). a) Calculate the components

More information

PHYSICS. Chapter 8 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT Pearson Education, Inc.

PHYSICS. Chapter 8 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT Pearson Education, Inc. PHYSICS FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E Chapter 8 Lecture RANDALL D. KNIGHT Chapter 8. Dynamics II: Motion in a Plane IN THIS CHAPTER, you will learn to solve problems about motion

More information

Sara Rwentambo. PHYS 1007 AB

Sara Rwentambo. PHYS 1007 AB Topics: Free body diagrams (FBDs) Static friction and kinetic friction Tension and acceleration of a system Tension in dynamic equilibrium (bonus question) Opener: Find Your Free Body Diagram Group Activity!

More information

PHYSICS. Chapter 7 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT Pearson Education, Inc.

PHYSICS. Chapter 7 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT Pearson Education, Inc. PHYSICS FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E Chapter 7 Lecture RANDALL D. KNIGHT Chapter 7 Newton s Third Law IN THIS CHAPTER, you will use Newton s third law to understand how objects

More information

AP Physics Free Response Practice Oscillations

AP Physics Free Response Practice Oscillations AP Physics Free Response Practice Oscillations 1975B7. A pendulum consists of a small object of mass m fastened to the end of an inextensible cord of length L. Initially, the pendulum is drawn aside through

More information

Newton s First Law. Newton s Second Law 9/29/11

Newton s First Law. Newton s Second Law 9/29/11 Newton s First Law Any object remains at constant velocity unless acted upon by a net force. AND In order for an object to accelerate, there must be a net force acting on it. Constant velocity could mean

More information

Kinematics + Dynamics

Kinematics + Dynamics Physics 101: Lecture 04 Kinematics + Dynamics Today s lecture will cover Textbook Chapter 4 If you are new to the course, please read the course description on the course web page. Neptune Physics 101:

More information

CHAPTER 2. FORCE and Motion. CHAPTER s Objectives

CHAPTER 2. FORCE and Motion. CHAPTER s Objectives 19 CHAPTER 2 FORCE and Motion CHAPTER s Objectives To define a force To understand the relation between force and motion In chapter 1, we understood that the Greek philosopher Aristotle was the first who

More information

UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics

UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics Physics 115.3 MIDTERM TEST October 22, 2015 Time: 90 minutes NAME: (Last) Please Print (Given) STUDENT NO.: LECTURE SECTION (please

More information

Ch.8: Forces as Interactions

Ch.8: Forces as Interactions Name: Lab Partners: Date: Ch.8: Forces as Interactions Investigation 1: Newton s Third Law Objective: To learn how two systems interact. To identify action/reaction pairs of forces. To understand and use

More information

Newton s First Law and IRFs

Newton s First Law and IRFs Goals: Physics 207, Lecture 6, Sept. 22 Recognize different types of forces and know how they act on an object in a particle representation Identify forces and draw a Free Body Diagram Solve 1D and 2D

More information

Lecture 5. Dynamics. Forces: Newton s First and Second

Lecture 5. Dynamics. Forces: Newton s First and Second Lecture 5 Dynamics. Forces: Newton s First and Second What is a force? It s a pull or a push: F F Force is a quantitative description of the interaction between two physical bodies that causes them to

More information

Chapter 7 Work and Energy

Chapter 7 Work and Energy 8/04/0 Lecture PowerPoints 009 Pearson Education, Inc. This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching their courses and assessing student

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics 8.01 Physics Fall Term = # v x. t " =0. are the values at t = 0.

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics 8.01 Physics Fall Term = # v x. t  =0. are the values at t = 0. MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics 8.01 Physics Fall Term 2012 Exam 1: Practice Problems! d r!! d v! One-Dimensional Kinematics: v =, a = dt dt t " =t v x (t)! v x,0 = # a x (

More information

Chapter 6: Work and Kinetic Energy

Chapter 6: Work and Kinetic Energy Chapter 6: Work and Kinetic Energy Suppose you want to find the final velocity of an object being acted on by a variable force. Newton s 2 nd law gives the differential equation (for 1D motion) dv dt =

More information

Ballistic Pendulum. Caution

Ballistic Pendulum. Caution Ballistic Pendulum Caution In this experiment a steel ball is projected horizontally across the room with sufficient speed to injure a person. Be sure the line of fire is clear before firing the ball,

More information

PHYSICS. Chapter 5 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT Pearson Education, Inc.

PHYSICS. Chapter 5 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT Pearson Education, Inc. PHYSICS FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E Chapter 5 Lecture RANDALL D. KNIGHT Chapter 5 Force and Motion IN THIS CHAPTER, you will learn about the connection between force and motion.

More information

(A) 0 (B) mv (C) 2mv (D) 2mv sin θ (E) 2mv cos θ

(A) 0 (B) mv (C) 2mv (D) 2mv sin θ (E) 2mv cos θ Physics 1 Lesson 8 Forces and Momentum Homework Outcomes 1. Define linear momentum. 2. Determine the total linear momentum of a system. 3. Apply the Law of Conservation of Momentum to solve problems. 4.

More information

Kinematics Lab. 1 Introduction. 2 Equipment. 3 Procedures

Kinematics Lab. 1 Introduction. 2 Equipment. 3 Procedures Kinematics Lab 1 Introduction An object moving in one dimension and undergoing constant or uniform acceleration has a position given by: x(t) =x 0 +v o t +1/2at 2 where x o is its initial position (its

More information

Physics 1A, Week 2 Quiz Solutions

Physics 1A, Week 2 Quiz Solutions Vector _ A points north and vector _ B points east. If _ C = _ B _ A, then vector _C points: a. north of east. b. south of east. c. north of west. d. south of west. Find the resultant of the following

More information

# x = v f + v & % ( t x = v

# x = v f + v & % ( t x = v Name: Physics Chapter 4 Study Guide ----------------------------------------------------------------------------------------------------- Useful Information: F = ma µ = F fric a = v f " v i t # x = v f

More information

What is a Force? Free-Body diagrams. Contact vs. At-a-Distance 11/28/2016. Forces and Newton s Laws of Motion

What is a Force? Free-Body diagrams. Contact vs. At-a-Distance 11/28/2016. Forces and Newton s Laws of Motion Forces and Newton s Laws of Motion What is a Force? In generic terms: a force is a push or a pull exerted on an object that could cause one of the following to occur: A linear acceleration of the object

More information

= 1 2 kx2 dw =! F! d! r = Fdr cosθ. T.E. initial. = T.E. Final. = P.E. final. + K.E. initial. + P.E. initial. K.E. initial =

= 1 2 kx2 dw =! F! d! r = Fdr cosθ. T.E. initial. = T.E. Final. = P.E. final. + K.E. initial. + P.E. initial. K.E. initial = Practice Template K.E. = 1 2 mv2 P.E. height = mgh P.E. spring = 1 2 kx2 dw =! F! d! r = Fdr cosθ Energy Conservation T.E. initial = T.E. Final (1) Isolated system P.E. initial (2) Energy added E added

More information

General strategy for using Newton's second law to solve problems:

General strategy for using Newton's second law to solve problems: Chapter 4B: Applications of Newton's Laws Tuesday, September 17, 2013 10:00 PM General strategy for using Newton's second law to solve problems: 1. Draw a diagram; select a coördinate system 2. Identify

More information

Chapter 5: Applications of Newton's laws Tuesday, September 17, :00 PM. General strategy for using Newton's second law to solve problems:

Chapter 5: Applications of Newton's laws Tuesday, September 17, :00 PM. General strategy for using Newton's second law to solve problems: Ch5 Page 1 Chapter 5: Applications of Newton's laws Tuesday, September 17, 2013 10:00 PM General strategy for using Newton's second law to solve problems: 1. Draw a diagram; select a coördinate system

More information

Potential Energy & Conservation of Energy

Potential Energy & Conservation of Energy PHYS 101 Previous Exam Problems CHAPTER 8 Potential Energy & Conservation of Energy Potential energy Conservation of energy conservative forces Conservation of energy friction Conservation of energy external

More information

physics Chapter 8 Lecture a strategic approach randall d. knight FOR SCIENTISTS AND ENGINEERS CHAPTER8_LECTURE8.1 THIRD EDITION

physics Chapter 8 Lecture a strategic approach randall d. knight FOR SCIENTISTS AND ENGINEERS CHAPTER8_LECTURE8.1 THIRD EDITION Chapter 8 Lecture physics FOR SCIENTISTS AND ENGINEERS a strategic approach THIRD EDITION randall d. knight CHAPTER8_LECTURE8.1 2013 Pearson Education, Inc. 1 Chapter 8. Newton s Laws for Circular Motion

More information

MITOCW free_body_diagrams

MITOCW free_body_diagrams MITOCW free_body_diagrams This is a bungee jumper at the bottom of his trajectory. This is a pack of dogs pulling a sled. And this is a golf ball about to be struck. All of these scenarios can be represented

More information

PHYSICS 1 Forces & Newton s Laws

PHYSICS 1 Forces & Newton s Laws Advanced Placement PHYSICS 1 Forces & Newton s Laws Presenter 2014-2015 Forces & Newton s Laws What I Absolutel Have to Know to Survive the AP* Exam Force is an push or pull. It is a vector. Newton s Second

More information

Energy Whiteboard Problems

Energy Whiteboard Problems Energy Whiteboard Problems 1. (a) Consider an object that is thrown vertically up into the air. Draw a graph of gravitational force vs. height for that object. (b) Based on your experience with the formula

More information

(f ) From the graph, obtain the height of the tube given the mass of the dart is 20 grams and the constant force applied in the tube is 2 newtons.

(f ) From the graph, obtain the height of the tube given the mass of the dart is 20 grams and the constant force applied in the tube is 2 newtons. 1. Bowling Ball A is dropped from a point halfway up a cliff. A second identical bowling ball, B, is dropped simultaneously from the top of the cliff. Comparing the bowling balls at the instant they reach

More information

Engage I 1. What do you think about this design? If the car were to suddenly stop, what would happen to the child? Why?

Engage I 1. What do you think about this design? If the car were to suddenly stop, what would happen to the child? Why? AP Physics 1 Lesson 4.a Nature of Forces Outcomes Define force. State and explain Newton s first Law of Motion. Describe inertia and describe its relationship to mass. Draw free-body diagrams to represent

More information

AP Physics C: Work, Energy, and Power Practice

AP Physics C: Work, Energy, and Power Practice AP Physics C: Work, Energy, and Power Practice 1981M2. A swing seat of mass M is connected to a fixed point P by a massless cord of length L. A child also of mass M sits on the seat and begins to swing

More information

RECAP!! Paul is a safe driver who always drives the speed limit. Here is a record of his driving on a straight road. Time (s)

RECAP!! Paul is a safe driver who always drives the speed limit. Here is a record of his driving on a straight road. Time (s) RECAP!! What is uniform motion? > Motion in a straight line > Moving at a constant speed Yes or No? Yes or No? Paul is a safe driver who always drives the speed limit. Here is a record of his driving on

More information

Section /07/2013. PHY131H1F University of Toronto Class 9 Preclass Video by Jason Harlow. Based on Knight 3 rd edition Ch. 5, pgs.

Section /07/2013. PHY131H1F University of Toronto Class 9 Preclass Video by Jason Harlow. Based on Knight 3 rd edition Ch. 5, pgs. PHY131H1F University of Toronto Class 9 Preclass Video by Jason Harlow Based on Knight 3 rd edition Ch. 5, pgs. 116-133 Section 5.1 A force is a push or a pull What is a force? What is a force? A force

More information

LAB: FORCE AND MOTION

LAB: FORCE AND MOTION LAB: FORCE AND MOTION Introduction In this lab we will apply a force to a cart and look at the motion that results. Therefore, we are asking the question: "How does the motion depend on the force?" More

More information

Calculating Acceleration

Calculating Acceleration Calculating Acceleration Textbook pages 392 405 Before You Read Section 9. 2 Summary How do you think a velocity-time graph might differ from the position-time graph you learned about in the previous chapter?

More information

LECTURE 19: Simple harmonic oscillators

LECTURE 19: Simple harmonic oscillators Lectures Page 1 Select LEARNING OBJECTIVES: LECTURE 19: Simple harmonic oscillators Be able to identify the features of a system that oscillates - i.e. systems with a restoring force and a potential energy

More information

Chapter 3 Kinematics in Two Dimensions; Vectors

Chapter 3 Kinematics in Two Dimensions; Vectors Chapter 3 Kinematics in Two Dimensions; Vectors Vectors and Scalars Addition of Vectors Graphical Methods (One and Two- Dimension) Multiplication of a Vector by a Scalar Subtraction of Vectors Graphical

More information

Concepts in Physics. Friday, October 16th

Concepts in Physics. Friday, October 16th 1206 - Concepts in Physics Friday, October 16th Notes Assignment #4 due Wednesday, October 21 st in class (no later than noon) There are still assignments #1 and #2 in my office to be picked up... If you

More information

If there is now a constant air resistance force of 35 N, what is the new maximum height the ball attains?

If there is now a constant air resistance force of 35 N, what is the new maximum height the ball attains? A 1kg ball is launched straight up into the air with an initial speed of 64 m/s. Using only energy considerations, determine the maximum height the ball attains assuming there is no air resistance. If

More information

Frictional Force ( ): The force that occurs when two object rub against one another and always OPPOSES motion. It's not dependent on area of contact.

Frictional Force ( ): The force that occurs when two object rub against one another and always OPPOSES motion. It's not dependent on area of contact. Force Push or pull Law Scientific theory that has been proven for many years (can be changed) Newton's 1 st Law (Law of Inertia): Object at rest stays at rest while an object in motion continues in motion

More information

To study applications of Newton s Laws as they. To study conditions that establish equilibrium. To consider contact forces and the effects of

To study applications of Newton s Laws as they. To study conditions that establish equilibrium. To consider contact forces and the effects of Chap. 5: More Examples with Newton s Law Chap.5: Applying Newton s Laws To study conditions that establish equilibrium. To study applications of Newton s Laws as they apply when the net force is not zero.

More information

Lecture Outline Chapter 6. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc.

Lecture Outline Chapter 6. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc. Lecture Outline Chapter 6 Physics, 4 th Edition James S. Walker Chapter 6 Applications of Newton s Laws Units of Chapter 6 Frictional Forces Strings and Springs Translational Equilibrium Connected Objects

More information

Dynamics: Forces and Newton s Laws of Motion

Dynamics: Forces and Newton s Laws of Motion Lecture 7 Chapter 5 Dynamics: Forces and Newton s Laws of Motion Course website: http://faculty.uml.edu/andriy_danylov/teaching/physicsi Today we are going to discuss: Chapter 5: Force, Mass: Section 5.1

More information

Lecture PowerPoints. Chapter 2 Physics for Scientists and Engineers, with Modern Physics, 4 th Edition Giancoli

Lecture PowerPoints. Chapter 2 Physics for Scientists and Engineers, with Modern Physics, 4 th Edition Giancoli Lecture PowerPoints Chapter 2 Physics for Scientists and Engineers, with Modern Physics, 4 th Edition Giancoli 2009 Pearson Education, Inc. This work is protected by United States copyright laws and is

More information

Q2. A book whose mass is 2 kg rests on a table. Find the magnitude of the force exerted by the table on the book.

Q2. A book whose mass is 2 kg rests on a table. Find the magnitude of the force exerted by the table on the book. AP Physics 1- Dynamics Practice Problems FACT: Inertia is the tendency of an object to resist a change in state of motion. A change in state of motion means a change in an object s velocity, therefore

More information

Physics 2A Chapter 4: Forces and Newton s Laws of Motion

Physics 2A Chapter 4: Forces and Newton s Laws of Motion Physics 2A Chapter 4: Forces and Newton s Laws of Motion There is nothing either good or bad, but thinking makes it so. William Shakespeare It s not what happens to you that determines how far you will

More information

Chapter 4. Forces and Newton s Laws of Motion. continued

Chapter 4. Forces and Newton s Laws of Motion. continued Chapter 4 Forces and Newton s Laws of Motion continued 4.9 Static and Kinetic Frictional Forces When an object is in contact with a surface forces can act on the objects. The component of this force acting

More information

Forces and Newton s Second Law

Forces and Newton s Second Law Forces and Newton s Second Law Goals and Introduction Newton s laws of motion describe several possible effects of forces acting upon objects. In particular, Newton s second law of motion says that when

More information

Physics Mechanics. Lecture 18 Energy Conservation I

Physics Mechanics. Lecture 18 Energy Conservation I Physics 170 - Mechanics Lecture 18 Energy Conservation I 1 Conservation of Mechanical Energy Definition of mechanical energy: Using this definition and considering only conservative forces, we find: Or

More information

Physics 8 Monday, October 9, 2017

Physics 8 Monday, October 9, 2017 Physics 8 Monday, October 9, 2017 Pick up a HW #5 handout if you didn t already get one on Wednesday. It s due this Friday, 10/13. It contains some Ch9 (work) problems, some Ch10 (motion in a plane) problems,

More information

Chapter 3 Kinematics in Two Dimensions; Vectors

Chapter 3 Kinematics in Two Dimensions; Vectors Chapter 3 Kinematics in Two Dimensions; Vectors Vectors and Scalars Addition of Vectors Graphical Methods (One and Two- Dimension) Multiplication of a Vector by a Scalar Subtraction of Vectors Graphical

More information

The world is charged with the grandeur of God.

The world is charged with the grandeur of God. Name: Course: HS Physics Date: Mr. Szopiak FINAL EXAM STUDY GUIDE Final Exam Focus on Dynamic Systems Forces and their Effect on Particle Motion Conservation of Energy Transferring and Converting Energy

More information

Exam. Name. 1) For general projectile motion with no air resistance, the horizontal component of a projectile's velocity A) B) C) D)

Exam. Name. 1) For general projectile motion with no air resistance, the horizontal component of a projectile's velocity A) B) C) D) Exam Name 1) For general projectile motion with no air resistance, the horizontal component of a projectile's velocity 2) An athlete participates in an interplanetary discus throw competition during an

More information

PHYSICAL SCIENCES: PAPER I

PHYSICAL SCIENCES: PAPER I NATIONAL SENIOR CERTIFICATE EXAMINATION NOVEMBER 2014 PHYSICAL SCIENCES: PAPER I Time: 3 hours 200 marks PLEASE READ THE FOLLOWING INSTRUCTIONS CAREFULLY 1. This paper consists of: a question paper of

More information

Physics 380 Physics and Society. Lecture 2: Newton s Laws, Mass, Force and Motion

Physics 380 Physics and Society. Lecture 2: Newton s Laws, Mass, Force and Motion Physics 380 Physics and Society Lecture 2: Newton s Laws, Mass, Force and Motion 1 Topics for This Lecture Mass Force Motion: acceleration, speed and displacement Newton s three Laws Equations of motion

More information

PHY321 Homework Set 2

PHY321 Homework Set 2 PHY321 Homework Set 2 1. [5 pts] Consider the forces from the previous homework set, F A ( r )and F B ( r ), acting on a particle. The force components depend on position r of the particle according to

More information

Show all work in answering the following questions. Partial credit may be given for problems involving calculations.

Show all work in answering the following questions. Partial credit may be given for problems involving calculations. Physics 3210, Spring 2017 Exam #1 Name: Signature: UID: Please read the following before continuing: Show all work in answering the following questions. Partial credit may be given for problems involving

More information

Physics 121, Sections 1 and 2, Winter 2011 Instructor: Scott Bergeson Exam #3 April 16 April 21, 2011 RULES FOR THIS TEST:

Physics 121, Sections 1 and 2, Winter 2011 Instructor: Scott Bergeson Exam #3 April 16 April 21, 2011 RULES FOR THIS TEST: Physics 121, Sections 1 and 2, Winter 2011 Instructor: Scott Bergeson Exam #3 April 16 April 21, 2011 RULES FOR THIS TEST: This test is closed book. You may use a dictionary. You may use your own calculator

More information

PHYSICS 8A, Lecture 2 Spring 2017 Midterm 2, C. Bordel Thursday, April 6 th, 7pm-9pm

PHYSICS 8A, Lecture 2 Spring 2017 Midterm 2, C. Bordel Thursday, April 6 th, 7pm-9pm PHYSICS 8A, Lecture 2 Spring 2017 Midterm 2, C. Bordel Thursday, April 6 th, 7pm-9pm Student name: Student ID #: Discussion section #: Name of your GSI: Day/time of your DS: Physics Instructions In the

More information

Isaac Newton ( ) 1687 Published Principia Invented Calculus 3 Laws of Motion Universal Law of Gravity

Isaac Newton ( ) 1687 Published Principia Invented Calculus 3 Laws of Motion Universal Law of Gravity Isaac Newton (1642-1727) 1687 Published Principia Invented Calculus 3 Laws of Motion Universal Law of Gravity Newton s First Law (Law of Inertia) An object will remain at rest or in a constant state of

More information

Newton s first and second laws

Newton s first and second laws Lecture 2 Newton s first and second laws Pre-reading: KJF 4.1 to 4.7 Please log in to Socrative, room HMJPHYS1002 Recall Forces are either contact Pushes / Pulls Tension in rope Friction Normal force (virtually

More information

MITOCW MIT8_01F16_L12v01_360p

MITOCW MIT8_01F16_L12v01_360p MITOCW MIT8_01F16_L12v01_360p Let's look at a typical application of Newton's second law for a system of objects. So what I want to consider is a system of pulleys and masses. So I'll have a fixed surface

More information