Oxygen Partial Pressure Grid Lines

Size: px
Start display at page:

Download "Oxygen Partial Pressure Grid Lines"

Transcription

1 Oxygen artial ressure Grid Lines When values of G for oxides are displayed, the Ellingham diagram offers a simple and useful way to estimate equilibrium oxygen pressures as a function of temperature. his is because of the ordinate being the G = R ln ( eqm ) O for oxidation reactions. hus for constant O values, G vs. is represented by straight lines with R ln O slope and G = 0 intercept. If these lines are superimposed on Ellingham diagram, constant oxygen partial pressures can be read from the oxygen partial pressure scale provided on Ellingham diagrams. herefore, along any straight line that passes through the origin of Ellingham diagram, there is a constant oxygen partial pressure and it can be read from the O scale. he intersections of the constant oxygen partial pressure lines and the copper-cuprous oxide equilibrium line give the equilibrium oxygen pressures for this reaction at various temperatures. For example, at 700 o C, the oxygen pressure in equilibrium with CuO and Cu is atm. 0 O 1 atm. /\G o CuO 0(K)

2 Figure Superposition of equilibrium oxygen pressure grid lines on Ellingham diagram. Cu-O-CuO equilibrium at 700 o C is used to illustrate the use of (O) scale he Oxides of Carbon Carbon is extensively used in materials processing. here are two oxides of carbon, and, both are gaseous substances. herefore, it is important to know how these oxides are distributed in an environment containing these gases. Ellingham lines for these oxides yield, another line that represent the equilibrium between and. / C(s) + O(g) = (g) G = (J) - C(s) + O(g) = (g) G = (J) (g) + O(g) = (g) G = (J) ( (cal)) hen, on the Ellingham diagram three lines are represented as shown in figure. G / K

3 he point of intercept of three lines represent --O equilibrium when and are at 1 atmosphere pressures / Ratio Grid Lines Oxygen partial pressure in a system can also be controlled using the --O equilibrium. From the reaction among these three species: G = - R ln O G = R ln O - R ln R ln O = G - R ln Since, G = (J) or ( (cal)) R ln = ( R ln O ) (cal) Since, R ln O is the ordinate of the Ellingham diagram, constant / ratios fall on straight lines on Ellingham diagram. hese straight lines have intercepts at G = J ( calories) (point C) and slopes of: R ln J ( R ln calories) herefore, a / ratio scale is provided on Ellingham diagrams. Along a straight line that passes through cal. at zero Kelvin on Ellingham diagram, ()/() ratio is constant and can be read from the / ratio scale.

4 0 / <1 O /\G o / >1 0 K Example: Equilibrium in - -O mixture

5 H/HO Ratio Grid Lines Ellingham diagram takes advantage of the relationship between equilibrium partial pressures of H and HO to develop H/HO ratio scale. From H-HO-O equilibrium, that is H(g) + O(g) = HO(g) G= ( ) = (cal) G = - R ln HO H O G = R ln O - R ln HO H H R ln = G - R ln O H O Since, G = (J) or ( (cal)) R ln = (6. - R ln H O ) (cal) HO Since, R ln O is the ordinate of the Ellingham diagram, constant H/HO ratios fall on straight lines on Ellingham diagram. hese straight lines have intercepts at G o = J ( calories) (point H) and H H slopes of: ( R ln J (6. - R ln cal). HO HO herefore, an H/HO ratio scale is provided on Ellingham diagrams. Along a straight line that passes through cal. at zero Kelvin on Ellingham diagram, (H)/(HO) ratio is constant and can be read from the H/HO ratio scale.

6 0 H /H O <1 O C /\G o H /H O >1 1 0 K 4.5. Effect of emperature on Equilibrium At equilibrium, G = - R ln K o G = -S From Gibbs-Helmholtz equation o G H o = - Replacing G = - R ln K, R ln K H o = - ln K H o or = R or from, ln K = -H/R + S/R

7 ln K or 1 H o = - R ln K slope>o /\H<0 1/ slope<0 /\H>0 hen, if H> 0, endothermic, then K if H< 0, exothermic, then K 1/, K increases with decreasing temperature. he variation of K with temperature can be deduced from consideration of Le Chatelier's principle; If heat is added to the system, then equilibrium is displaced in that direction which involves the absorption of heat Efffect of ressure on Equilibrium Although equilibrium constant is independent of pressure, Le Chatelier's principle gives that an increase in total pressure at constant temperature will shift the equilibrium in that direction which involves a decrease in the number of moles in the system. For a general equilibrium a A(g) + b B(g) = c C(g) + d D(g)

8 K = [(C)c (D)d]/[(A)a (B)b] K = [(XC )c (XD )d]/[(xa )a (XB )b] or K = Kx (c+d-a-b) K is independent of pressure, but it is made up of two terms; Kx and the pressure term. Depending on the values of a, b, c and d, change of pressure may have effect on Kx, qoutient of mole fractions. If c+d>a+b, increasing pressure decreases Kx. If c+d=a+b, pressure does not have any effect on Kx. If c+d<a+b, Kx is proportional with pressure Effect of Composition on Equilibrium Reaction Equilibria in Systems Containing Components in Condensed Solutions Consider the general equilibrium a A + b B = c C + d D occuring at the temperature and pressure. If none of the above components are in their standard states, then G = G + R ln a a c C a A a a d D b B Consider the oxidation of a solid M according to: M(s) + O (g) = MO (s) When all the components are at their standard states; G = G = A + B his is one of the lines on Ellingham diagram. When only M is in solid solution with a M, G is now given by G = G - R ln a M since a M < 1; G > G When only MO is in solution, then G = G + R ln a MO a MO < 1; G < G

9 a M <1 ΔG o ΔG a MO <1 o C

4. CHEMICAL REACTION EQUILIBRIA

4. CHEMICAL REACTION EQUILIBRIA 4. CHEMICAL REACION EQUILIBRIA 4.1. Introduction In materials processing or materials in service, chemical reactions take place. For example, in the production of steel, liquid iron containing impurities

More information

Chemical reaction equilibria

Chemical reaction equilibria Chemical reaction equilibria Chemical reaction equilibria in metallurgical processes and the conditions that maintain equilibrium are important to obtain maximum efficiency from production processes For

More information

General Chemistry revisited

General Chemistry revisited General Chemistry revisited A(g) + B(g) C(g) + D(g) We said that G = H TS where, eg, H = f H(C) + f H(D) - f H(A) - f H(B) G < 0 implied spontaneous to right G > 0 implied spontaneous to left In a very

More information

Equilibrium. Reversible Reactions. Chemical Equilibrium

Equilibrium. Reversible Reactions. Chemical Equilibrium Equilibrium Reversible Reactions Chemical Equilibrium Equilibrium Constant Reaction Quotient Le Chatelier s Principle Reversible Reactions In most chemical reactions, the chemical reaction can be reversed,

More information

H = DATA THAT YOU MAY USE. Units Conventional Volume ml or cm 3 = cm 3 or 10-3 dm 3 Liter (L) = dm 3 Pressure atm = 760 torr = 1.

H = DATA THAT YOU MAY USE. Units Conventional Volume ml or cm 3 = cm 3 or 10-3 dm 3 Liter (L) = dm 3 Pressure atm = 760 torr = 1. DATA THAT YOU MAY USE Units Conventional S.I. Volume ml or cm 3 = cm 3 or 10-3 dm 3 Liter (L) = dm 3 Pressure atm = 760 torr = 1.013 10 5 Pa torr = 133.3 Pa Temperature C 0 C = 73.15 K PV L-atm = 1.013

More information

Thermodynamics of Reactive Systems The Equilibrium Constant

Thermodynamics of Reactive Systems The Equilibrium Constant Lecture 27 Thermodynamics of Reactive Systems The Equilibrium Constant A. K. M. B. Rashid rofessor, Department of MME BUET, Dhaka Today s Topics The Equilibrium Constant Free Energy and Equilibrium Constant

More information

The Equilibrium State. Chapter 13 - Chemical Equilibrium. The Equilibrium State. Equilibrium is Dynamic! 5/29/2012

The Equilibrium State. Chapter 13 - Chemical Equilibrium. The Equilibrium State. Equilibrium is Dynamic! 5/29/2012 Chapter 13 - Chemical Equilibrium The Equilibrium State Not all chemical reactions go to completion; instead they attain a state of equilibrium. When you hear equilibrium, what do you think of? Example:

More information

Effect of adding an ideal inert gas, M

Effect of adding an ideal inert gas, M Effect of adding an ideal inert gas, M Add gas M If there is no change in volume, then the partial pressures of each of the ideal gas components remains unchanged by the addition of M. If the reaction

More information

Chapter 17.3 Entropy and Spontaneity Objectives Define entropy and examine its statistical nature Predict the sign of entropy changes for phase

Chapter 17.3 Entropy and Spontaneity Objectives Define entropy and examine its statistical nature Predict the sign of entropy changes for phase Chapter 17.3 Entropy and Spontaneity Objectives Define entropy and examine its statistical nature Predict the sign of entropy changes for phase changes Apply the second law of thermodynamics to chemical

More information

Chemical Equilibrium

Chemical Equilibrium Chemical Equilibrium Chemical Equilibrium When compounds react, they eventually form a mixture of products and unreacted reactants, in a dynamic equilibrium. A dynamic equilibrium consists of a forward

More information

Collision Theory. Unit 12: Chapter 18. Reaction Rates. Activation Energy. Reversible Reactions. Reversible Reactions. Reaction Rates and Equilibrium

Collision Theory. Unit 12: Chapter 18. Reaction Rates. Activation Energy. Reversible Reactions. Reversible Reactions. Reaction Rates and Equilibrium Collision Theory For reactions to occur collisions between particles must have Unit 12: Chapter 18 Reaction Rates and Equilibrium the proper orientation enough kinetic energy See Both In Action 1 2 Activation

More information

Chem 1B Dr. White 1 Chapter 13: Chemical Equilibrium Outline Chemical Equilibrium. A. Definition:

Chem 1B Dr. White 1 Chapter 13: Chemical Equilibrium Outline Chemical Equilibrium. A. Definition: Chem 1B Dr. White 1 Chapter 13: Chemical Equilibrium Outline 13.1. Chemical Equilibrium A. Definition: B. Consider: N 2 O 4 (g, colorless) 2NO 2 (g, brown) C. 3 Main Characteristics of Equilibrium 13.2-13.4.

More information

MCGILL UNIVERSITY FACULTY OF SCIENCE MIDTERM EXAMINATION CHEM 120 MONDAY MARCH 16, :30PM 8:30PM VERSION NUMBER: 1

MCGILL UNIVERSITY FACULTY OF SCIENCE MIDTERM EXAMINATION CHEM 120 MONDAY MARCH 16, :30PM 8:30PM VERSION NUMBER: 1 MCGILL UNIVERSITY FACULTY OF SCIENCE MIDTERM EXAMINATION CHEM 120 MONDAY MARCH 16, 2009 6:30PM 8:30PM VERSION NUMBER: 1 Instructions: BEFORE YOU BEGIN: Enter your student number and name on the computer

More information

10.02 PE Diagrams. 1. Given the equation and potential energy diagram representing a reaction:

10.02 PE Diagrams. 1. Given the equation and potential energy diagram representing a reaction: 10.02 PE Diagrams 1. Given the equation and potential energy diagram representing a reaction: 3. Given the potential energy diagram and equation representing the reaction between substances A and D : If

More information

Ch 10 Practice Problems

Ch 10 Practice Problems Ch 10 Practice Problems 1. Which of the following result(s) in an increase in the entropy of the system? I. (See diagram.) II. Br 2(g) Br 2(l) III. NaBr(s) Na + (aq) + Br (aq) IV. O 2(298 K) O 2(373 K)

More information

Chemical Equilibrium

Chemical Equilibrium Chemical Equilibrium What is equilibrium? Expressions for equilibrium constants, K eq ; Calculating K eq using equilibrium concentrations; Factors that affect equilibrium; Le Chatelier s Principle What

More information

Chemical Equilibria. Chapter Extent of Reaction

Chemical Equilibria. Chapter Extent of Reaction Chapter 6 Chemical Equilibria At this point, we have all the thermodynamics needed to study systems in ulibrium. The first type of uilibria we will examine are those involving chemical reactions. We will

More information

Chemical Kinetics and Equilibrium

Chemical Kinetics and Equilibrium Chemical Kinetics and Equilibrium 1 Which statement incorrectly describes a chemical reaction approaching equilibrium? As a chemical reaction approaches equilibrium, the net change in the amount of reactants

More information

FACULTY OF SCIENCE MID-TERM EXAMINATION 2 MARCH 18, :30 TO 8:30 PM CHEMISTRY 120 GENERAL CHEMISTRY

FACULTY OF SCIENCE MID-TERM EXAMINATION 2 MARCH 18, :30 TO 8:30 PM CHEMISTRY 120 GENERAL CHEMISTRY FACULTY OF SCIENCE MID-TERM EXAMINATION 2 MARCH 18, 2011. 6:30 TO 8:30 PM CHEMISTRY 120 GENERAL CHEMISTRY Examiners: Prof. B. Siwick Prof. A. Mittermaier Dr. A. Fenster Name: Associate Examiner: A. Fenster

More information

Thermodynamics in combustion

Thermodynamics in combustion Thermodynamics in combustion 2nd ste in toolbox Thermodynamics deals with a equilibrium state and how chemical comosition can be calculated for a system with known atomic or molecular comosition if 2 indeendent

More information

Chemistry B11 Chapter 6 Gases, Liquids, and Solids

Chemistry B11 Chapter 6 Gases, Liquids, and Solids Chapter 6 Gases, Liquids, and Solids States of matter: the physical state of matter depends on a balance between the kinetic energy of particles, which tends to keep them apart, and the attractive forces

More information

Equilibrium point of any reaction is characterized by a single number: K eq is the equilibrium constant for the reaction

Equilibrium point of any reaction is characterized by a single number: K eq is the equilibrium constant for the reaction Lecture 19 Equilibrium Constant Equilibrium oint of any reaction is characterized by a single number: K eq is the equilibrium constant for the reaction In general: ja + kb R + qs K eq [ R] [ S] [ A] [

More information

Thermochemistry Lecture

Thermochemistry Lecture Thermochemistry Lecture Jennifer Fang 1. Enthalpy 2. Entropy 3. Gibbs Free Energy 4. q 5. Hess Law 6. Laws of Thermodynamics ENTHALPY total energy in all its forms; made up of the kinetic energy of the

More information

Thermodynamic and Stochiometric Principles in Materials Balance

Thermodynamic and Stochiometric Principles in Materials Balance Thermodynamic and Stochiometric Principles in Materials Balance Typical metallurgical engineering problems based on materials and energy balance NiO is reduced in an open atmosphere furnace by excess carbon

More information

1.0 L container NO 2 = 0.12 mole. time

1.0 L container NO 2 = 0.12 mole. time CHEM 1105 GAS EQUILIBRIA 1. Equilibrium Reactions - a Dynamic Equilibrium Initial amounts: = mole = 0 mole 1.0 L container = 0.12 mole moles = 0.04 mole 0 time (a) 2 In a 1.0 L container was placed 4.00

More information

Class work on Calorimetry. January 11 and 12, 2011

Class work on Calorimetry. January 11 and 12, 2011 Class work on Calorimetry January 11 and 12, 2011 Name 1. The number of calories needed to raise the temperature of 100 grams of water 10 degrees Celsius is the same as the number of calories needed to

More information

Free-energy change ( G) and entropy change ( S)

Free-energy change ( G) and entropy change ( S) Free-energy change ( G) and entropy change ( S) A SPONTANEOUS PROCESS (e.g. diffusion) will proceed on its own without any external influence. A problem with H A reaction that is exothermic will result

More information

C h a p t e r 13. Chemical Equilibrium

C h a p t e r 13. Chemical Equilibrium C h a p t e r 13 Chemical Equilibrium Chemical equilibrium is achieved when: the rates of the forward and reverse reactions are equal and the concentrations of the reactants and products remain constant

More information

UNIT 15: THERMODYNAMICS

UNIT 15: THERMODYNAMICS UNIT 15: THERMODYNAMICS ENTHALPY, DH ENTROPY, DS GIBBS FREE ENERGY, DG ENTHALPY, DH Energy Changes in Reactions Heat is the transfer of thermal energy between two bodies that are at different temperatures.

More information

Equilibrium. Introduction

Equilibrium. Introduction Equilibrium Introduction From kinetics, we know that reactants sometimes collide to give products. But why can t products collide to go back to reactants? Theoretically, all chemical reactions are reversible.

More information

10-1 Heat 10-2 Calorimetry 10-3 Enthalpy 10-4 Standard-State Enthalpies 10-5 Bond Enthalpies 10-6 The First Law of Thermodynamics

10-1 Heat 10-2 Calorimetry 10-3 Enthalpy 10-4 Standard-State Enthalpies 10-5 Bond Enthalpies 10-6 The First Law of Thermodynamics Chapter 10 Thermochemistry 10-1 Heat 10-2 Calorimetry 10-3 Enthalpy 10-4 Standard-State Enthalpies 10-5 Bond Enthalpies 10-6 The First Law of Thermodynamics OFB Chap. 10 1 OFB Chap. 10 2 Thermite Reaction

More information

Problem Set. Assigned October 18, 2013 Due Friday, October 25, Please show all work for credit

Problem Set. Assigned October 18, 2013 Due Friday, October 25, Please show all work for credit Problem Set Assigned October 18, 2013 Due Friday, October 25, 2013 Please show all work for credit To hand in: Thermodynamic Relations 1. The shells of marine organisms contain CaCO 3 largely in the crystalline

More information

CHEMICAL EQUILIBRIUM. Chapter 15

CHEMICAL EQUILIBRIUM. Chapter 15 Chapter 15 P a g e 1 CHEMICAL EQUILIBRIUM Examples of Dynamic Equilibrium Vapor above a liquid is in equilibrium with the liquid phase. rate of evaporation = rate of condensation Saturated solutions rate

More information

Module Tag CHE_P10_M6

Module Tag CHE_P10_M6 Subject Chemistry Paper No and Title 10: Physical Chemistry- III (Classical Thermodynamics, Non-Equilibrium Thermodynamics, Module No and 6, Thermochemistry and Hess s law Title Module Tag CHE_P10_M6 TABLE

More information

Name Chem 6 Section #

Name Chem 6 Section # Equilibrium Constant and its Meaning 1. Write the expressions for K eq for the following reactions. a) CH 4 (g) + 2 H 2 S(g) CS 2 (g) + 4 H 2 (g) b) 2 N 2 O 5 (g) 4 NO 2 (g) + O 2 (g) c) 3 O 2 (g) 2 O

More information

Name Chemistry Exam #8 Period: Unit 8: Kinetics, Thermodynamics, & Equilibrium

Name Chemistry Exam #8 Period: Unit 8: Kinetics, Thermodynamics, & Equilibrium 1. Which quantities must be equal for a chemical reaction at equilibrium? (A) the potential energies of the reactants and products (B) the concentrations of the reactants and products (C) the activation

More information

Gas Phase Equilibrium

Gas Phase Equilibrium Gas Phase Equilibrium Chemical Equilibrium Equilibrium Constant K eq Equilibrium constant expression Relationship between K p and K c Heterogeneous Equilibria Meaning of K eq Calculations of K c Solving

More information

Quiz B3: Le Chatelier s Principle Block:

Quiz B3: Le Chatelier s Principle Block: Quiz B3: Le Chatelier s Principle Name: Block: 1. Consider the following reaction: 2SO2(g) + O2(g) 2SO3(g) H = -197 kj/mol Which of the following will not shift the equilibrium to the right? A. Adding

More information

Chem 1B Dr. White 1 Chapter 17: Thermodynamics. Review From Chem 1A (Chapter 6, section 1) A. The First Law of Thermodynamics

Chem 1B Dr. White 1 Chapter 17: Thermodynamics. Review From Chem 1A (Chapter 6, section 1) A. The First Law of Thermodynamics Chem 1B Dr. White 1 Chapter 17: Thermodynamics Review From Chem 1A (Chapter 6, section 1) A. The First Law of Thermodynamics 17.1 Spontaneous Processes and Entropy A. Spontaneous Change Chem 1B Dr. White

More information

Chemical Equilibrium

Chemical Equilibrium Chemical Equilibrium Concept of Equilibrium Equilibrium Constant Equilibrium expressions Applications of equilibrium constants Le Chatelier s Principle The Concept of Equilibrium The decomposition of N

More information

Worksheet 21 - Le Chatelier's Principle

Worksheet 21 - Le Chatelier's Principle Worksheet 21 - Le Chatelier's Principle Le Chatelier's Principle states that if a stress is applied to a system at equilibrium, the system will adjust, to partially offset the stress and will reach a new

More information

1002_1st Exam_

1002_1st Exam_ 1002_1st Exam_1010321 MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Consider the following reaction: POCl3(g) POCl(g) + Cl2(g) Kc = 0.450 A sample

More information

California Standards Test (CST) Practice

California Standards Test (CST) Practice California Standards Test (CST) Practice 1. Which element has properties most like those of magnesium? (a) calcium (b) potassium (c) cesium (d) sodium 5. Which pair of atoms will share electrons when a

More information

CHEM 1423 Chapter 17 Homework Questions TEXTBOOK HOMEWORK

CHEM 1423 Chapter 17 Homework Questions TEXTBOOK HOMEWORK CHEM 1423 Chapter 17 Homework Questions TEXTBOOK HOMEWORK 17.29 At 425 o C, Kp = 4.18x10-9 for the reaction 2HBr(g) H 2 (g) + Br 2 (g) In one experiment, 0.20 atm of HBr(g), 0.010 atm of H 2 (g), and 0.010

More information

Contents. Content Guidance. Questions & Answers. Getting the most from this book... 4 About this book... 5

Contents. Content Guidance. Questions & Answers. Getting the most from this book... 4 About this book... 5 Contents Getting the most from this book... 4 About this book.... 5 Content Guidance Atomic structure......................................... 6 Amount of substance....................................

More information

Q.1 Write out equations for the reactions between...

Q.1 Write out equations for the reactions between... 1 CHEMICAL EQUILIBRIUM Dynamic Equilibrium not all reactions proceed to completion some end up with a mixture of reactants and products this is because some reactions are reversible; products revert to

More information

Chemical Equilibrium. Chapter 8

Chemical Equilibrium. Chapter 8 Chemical Equilibrium Chapter 8 Equilibrium is a state in which there are no observable changes as time goes by. Chemical equilibrium is achieved when: the rates of the forward and reverse reactions are

More information

CHAPTER - 12 THERMODYNAMICS

CHAPTER - 12 THERMODYNAMICS CHAPER - HERMODYNAMICS ONE MARK QUESIONS. What is hermodynamics?. Mention the Macroscopic variables to specify the thermodynamics. 3. How does thermodynamics differ from Mechanics? 4. What is thermodynamic

More information

Chemical Equilibrium. Professor Bice Martincigh. Equilibrium

Chemical Equilibrium. Professor Bice Martincigh. Equilibrium Chemical Equilibrium by Professor Bice Martincigh Equilibrium involves reversible reactions Some reactions appear to go only in one direction are said to go to completion. indicated by All reactions are

More information

Second law of thermodynamics

Second law of thermodynamics Second law of thermodynamics It is known from everyday life that nature does the most probable thing when nothing prevents that For example it rains at cool weather because the liquid phase has less energy

More information

Chemical Equilibrium. Chapter

Chemical Equilibrium. Chapter Chemical Equilibrium Chapter 14 14.1-14.5 Equilibrium Equilibrium is a state in which there are no observable changes as time goes by. Chemical equilibrium is achieved when: 1.) the rates of the forward

More information

Chapter 11 Spontaneous Change and Equilibrium

Chapter 11 Spontaneous Change and Equilibrium Chapter 11 Spontaneous Change and Equilibrium 11-1 Enthalpy and Spontaneous Change 11-2 Entropy 11-3 Absolute Entropies and Chemical Reactions 11-4 The Second Law of Thermodynamics 11-5 The Gibbs Function

More information

CHEMICAL EQUILIBRIA: GENERAL CONCEPTS

CHEMICAL EQUILIBRIA: GENERAL CONCEPTS CHEMICAL EQUILIBRIA: GENERAL CONCEPTS THE NATURE OF THE EQUILIBRIUM STATE: Equilibrium is the state where the concentrations of all reactants and products remain constant with time. (in stoichiometry,

More information

Topic 2.1 ENERGETICS. Measuring and Calculating Enthalpy Changes Mean Bond Dissociation Enthalpies Hess Law

Topic 2.1 ENERGETICS. Measuring and Calculating Enthalpy Changes Mean Bond Dissociation Enthalpies Hess Law Topic 2.1 ENERGETICS Measuring and Calculating Enthalpy Changes Mean Bond Dissociation Enthalpies ess Law 1. Exothermic and endothermic reactions ENTALPY CANGES When a chemical reaction takes place, the

More information

CHEMICAL - EQUILIBRIA

CHEMICAL - EQUILIBRIA . Favourable conditions for manufacture of ammonia by the reaction, N + H NH ; H =.9 kcal are: (a) Low temperature, low pressure and catalyst (b) Low temperature, high pressure and catalyst (c) High temperature,

More information

Kwantlen Polytechnic University Chemistry 1105 S10 Spring Term Test No. 3 Thursday, April 4, 2013

Kwantlen Polytechnic University Chemistry 1105 S10 Spring Term Test No. 3 Thursday, April 4, 2013 Kwantlen Polytechnic University Chemistry 1105 S10 Spring Term Test No. 3 Thursday, April 4, 2013 Name: Student Number Instructions: Ensure that this exam contains all eight pages including this page.

More information

All chemical reactions involve changes in energy. Typically this energy comes in the form of heat.

All chemical reactions involve changes in energy. Typically this energy comes in the form of heat. Topic: Thermochemistry Essential Question: How does energy flow in chemical reactions? Name: Class: Date: / / Period: All chemical reactions involve changes in energy. Typically this energy comes in the

More information

Name (Print) Section # or TA. 1. You may use a crib sheet which you prepared in your own handwriting. This may be

Name (Print) Section # or TA. 1. You may use a crib sheet which you prepared in your own handwriting. This may be Name (Print) Section # or TA 1. You may use a crib sheet which you prepared in your own handwriting. This may be one 8-1/2 by 11 inch sheet of paper with handwriting only on one side. 2. You may use a

More information

AP CHEMISTRY NOTES 8-1 CHEMICAL EQUILIBRIUM: AN INTRODUCTION

AP CHEMISTRY NOTES 8-1 CHEMICAL EQUILIBRIUM: AN INTRODUCTION AP CHEMISTRY NOTES 8-1 CHEMICAL EQUILIBRIUM: AN INTRODUCTION Chemical Equilibrium a dynamic state in which the rate of the forward reaction and the rate of the reverse reaction in a system are equal (the

More information

Liquids and Solutions Crib Sheet

Liquids and Solutions Crib Sheet Liquids and Solutions Crib Sheet Determining the melting point of a substance from its solubility Consider a saturated solution of B in a solvent, A. Since the solution is saturated, pure solid B is in

More information

L = 6.02 x mol Determine the number of particles and the amount of substance (in moles)

L = 6.02 x mol Determine the number of particles and the amount of substance (in moles) 1.1 The Mole 1.1.1 - Apply the mole concept to substances A mole is the name given to a certain quantity. It represents 6.02 x 10 23 particles. This number is also known as Avogadro's constant, symbolised

More information

Gibbs Free Energy. Evaluating spontaneity

Gibbs Free Energy. Evaluating spontaneity Gibbs Free Energy Evaluating spontaneity Predicting Spontaneity An increase in entropy; Changing from a more structured to less structured physical state: Solid to liquid Liquid to gas Increase in temperature

More information

Characteristics of Chemical Equilibrium. Equilibrium is Dynamic. The Equilibrium Constant. Equilibrium and Catalysts. Chapter 14: Chemical Equilibrium

Characteristics of Chemical Equilibrium. Equilibrium is Dynamic. The Equilibrium Constant. Equilibrium and Catalysts. Chapter 14: Chemical Equilibrium Characteristics of Chemical Equilibrium Chapter 14: Chemical Equilibrium 008 Brooks/Cole 1 008 Brooks/Cole Equilibrium is Dynamic Equilibrium is Independent of Direction of Approach Reactants convert to

More information

Reaction rate. reaction rate describes change in concentration of reactants and products with time -> r = dc j

Reaction rate. reaction rate describes change in concentration of reactants and products with time -> r = dc j Reaction rate ChE 400 - Reactive Process Engineering reaction rate describes change in concentration of reactants and products with time -> r = dc j /dt r is proportional to the reactant concentrations

More information

Chapter 8 Thermochemistry: Chemical Energy. Chemical Thermodynamics

Chapter 8 Thermochemistry: Chemical Energy. Chemical Thermodynamics Chapter 8 Thermochemistry: Chemical Energy Chapter 8 1 Chemical Thermodynamics Chemical Thermodynamics is the study of the energetics of a chemical reaction. Thermodynamics deals with the absorption or

More information

2/18/2013. Spontaneity, Entropy & Free Energy Chapter 16. The Dependence of Free Energy on Pressure Sample Exercises

2/18/2013. Spontaneity, Entropy & Free Energy Chapter 16. The Dependence of Free Energy on Pressure Sample Exercises Spontaneity, Entropy & Free Energy Chapter 16 16.7 The Dependence of Free Energy on Pressure Why is free energy dependent on pressure? Isn t H, enthalpy independent of pressure at constant pressure? No

More information

CHEM1901/ J-8 June 2013

CHEM1901/ J-8 June 2013 CHEM1901/3 2013-J-8 June 2013 The atmosphere of Venus contains 96.5 % CO 2 at 95 atm of pressure, leading to an average global surface temperature of 462 C. The energy density of solar radiation striking

More information

which has an equilibrium constant of Which of the following diagrams represents a mixture of the reaction at equilibrium?

which has an equilibrium constant of Which of the following diagrams represents a mixture of the reaction at equilibrium? Chapter 9 Quiz: Chemical Equilibria 1. Which of the following statements is true regarding chemical equilibrium? I. The concentrations of reactants and products at equilibrium are constant, which means

More information

7.1 Dynamic Equilibrium

7.1 Dynamic Equilibrium 7.1 Dynamic 7.1.1 - Outline the characteristics of chemical and physical systems in a state of equilibrium Open system When a reaction occurs in an unsealed container Closed system When a reaction occurs

More information

The Equilibrium Law. Calculating Equilibrium Constants. then (at constant temperature) [C] c. [D] d = a constant, ( K c )

The Equilibrium Law. Calculating Equilibrium Constants. then (at constant temperature) [C] c. [D] d = a constant, ( K c ) Chemical Equilibrium 1 The Equilibrium Law States If the concentrations of all the substances present at equilibrium are raised to the power of the number of moles they appear in the equation, the product

More information

Chapter 6. Energy Thermodynamics

Chapter 6. Energy Thermodynamics Chapter 6 Energy Thermodynamics 1 Energy is... The ability to do work. Conserved. made of heat and work. a state function. independent of the path, or how you get from point A to B. Work is a force acting

More information

CHAPTER 7: Chemical Equilibrium

CHAPTER 7: Chemical Equilibrium CHAPTER 7: Chemical Equilibrium Chemical Reactions and Equilibrium Calculating Equilibrium Constants The Reaction Quotient Calculation of Gas-Phase Equilibria The effect of External Stresses: Le Châtelier

More information

8. A piece of Mg(s) ribbon is held in a Bunsen burner flame and begins to burn according to the equation: 2Mg(s) + O2 (g) 2MgO(s).

8. A piece of Mg(s) ribbon is held in a Bunsen burner flame and begins to burn according to the equation: 2Mg(s) + O2 (g) 2MgO(s). 1. Which event must always occur for a chemical reaction to take place? A) formation of a precipitate B) formation of a gas C) effective collisions between reacting particles D) addition of a catalyst

More information

I never let my schooling get in the way of my education.

I never let my schooling get in the way of my education. Chemistry NT I never let my schooling get in the way of my education. Mark Twain Chem NT Chemical Equilibrium Module Describing Chemical Equilibrium The Equilibrium Constant Equilibrium Constant for Sums

More information

Properties of Matter

Properties of Matter Properties of Matter Chapter 4 Hein and Arena Version 1.0 Eugene Passer Chemistry Department Bronx Community 1 College John Wiley and Sons, Inc Properties of Substances 2 Properties of a Substance A property

More information

NOTE: WORK FOR QUESTIONS 1, 2 and 9 ARE HANDWRITTEN AND FOUND IN THE LAST PAGES OF THIS DOCUMENT. 1. For the following equilibrium CH 3.

NOTE: WORK FOR QUESTIONS 1, 2 and 9 ARE HANDWRITTEN AND FOUND IN THE LAST PAGES OF THIS DOCUMENT. 1. For the following equilibrium CH 3. WorkSheet 4 key Equilibrium NOTE: WORK FOR QUESTIONS 1, 2 and 9 ARE HANDWRITTEN AND FOUND IN THE LAST PAGES OF THIS DOCUMENT. 1. For the following equilibrium CH 3 COOH(aq) CH 3 COO (aq) + H + (aq) if

More information

The following gas laws describes an ideal gas, where

The following gas laws describes an ideal gas, where Alief ISD Chemistry STAAR Review Reporting Category 4: Gases and Thermochemistry C.9.A Describe and calculate the relations between volume, pressure, number of moles, and temperature for an ideal gas as

More information

Thermodynamics Review 2014 Worth 10% of Exam Score

Thermodynamics Review 2014 Worth 10% of Exam Score Thermodynamics Review 2014 Worth 10% of Exam Score Name: Period: 1. Base your answer to the following question on the diagram shown below. 4. The heat of combustion for is kcal. What is the heat of formation

More information

Chemical Equilibria 2

Chemical Equilibria 2 Chemical Equilibria 2 Reading: Ch 14 sections 6-9 Homework: Chapter 14: 27*, 29*, 31, 33, 41, 43, 45, 51*, 55, 61*, 63, 67*, 69* * = important homework question Review A chemical equilibrium and its respective

More information

10-1 Heat 10-2 Calorimetry 10-3 Enthalpy 10-4 Standard-State Enthalpies 10-5 Bond Enthalpies 10-6 The First Law of Thermodynamics

10-1 Heat 10-2 Calorimetry 10-3 Enthalpy 10-4 Standard-State Enthalpies 10-5 Bond Enthalpies 10-6 The First Law of Thermodynamics Chapter 10 Thermochemistry 10-1 Heat 10-2 Calorimetry 10-3 Enthalpy 10-4 Standard-State Enthalpies 10-5 Bond Enthalpies 10-6 The First Law of Thermodynamics OFB Chap. 10 1 Chapter 10 Thermochemistry Heat

More information

AP Questions: Thermodynamics

AP Questions: Thermodynamics AP Questions: Thermodynamics 1970 Consider the first ionization of sulfurous acid: H2SO3(aq) H + (aq) + HSO3 - (aq) Certain related thermodynamic data are provided below: H2SO3(aq) H + (aq) HSO3 - (aq)

More information

Practice Questions for Exam 2 CH 1020 Spring 2017

Practice Questions for Exam 2 CH 1020 Spring 2017 Practice Questions for Exam 2 CH 1020 Spring 2017 1. Pick all of the statements which are true about a reaction mechanism?. A rate law can be written from the molecularity of the slowest elementary step..

More information

THERMODYNAMICS I. TERMS AND DEFINITIONS A. Review of Definitions 1. Thermodynamics = Study of the exchange of heat, energy and work between a system

THERMODYNAMICS I. TERMS AND DEFINITIONS A. Review of Definitions 1. Thermodynamics = Study of the exchange of heat, energy and work between a system THERMODYNAMICS I. TERMS AND DEFINITIONS A. Review of Definitions 1. Thermodynamics = Study of the exchange of heat, energy and work between a system and its surroundings. a. System = That part of universe

More information

Practice Questions Placement Exam for Entry into Chemistry 120

Practice Questions Placement Exam for Entry into Chemistry 120 Practice Questions Placement Exam for Entry into Chemistry 120 Potentially Useful Information Avogadro's number = 6.0221420 10 23 h = 6.6260688 10 34 J s c = 2.9979246 10 8 m/s 1amu = 1.6605387 10 27 kg

More information

Name Date Class SECTION 16.1 PROPERTIES OF SOLUTIONS

Name Date Class SECTION 16.1 PROPERTIES OF SOLUTIONS SOLUTIONS Practice Problems In your notebook, solve the following problems. SECTION 16.1 PROPERTIES OF SOLUTIONS 1. The solubility of CO 2 in water at 1.22 atm is 0.54 g/l. What is the solubility of carbon

More information

Chemistry B11 Chapter 5 Chemical reactions

Chemistry B11 Chapter 5 Chemical reactions Chapter 5 Chemical reactions Chemical reactions are classified into five groups: A + B AB Synthesis reactions (Combination) H + O H O AB A + B Decomposition reactions (Analysis) NaCl Na +Cl A + BC AC +

More information

Chemistry 102b First Exam. CIRCLE the section in which you are officially registered:

Chemistry 102b First Exam. CIRCLE the section in which you are officially registered: Chemistry 102b First Exam PRINT your name I have neither given or received unauthorized aid on this examination Sign if upheld CIRCLE the section in which you are officially registered: Section 1-Rosenthal

More information

AP Chemistry Chapter 16 Assignment. Part I Multiple Choice

AP Chemistry Chapter 16 Assignment. Part I Multiple Choice Page 1 of 7 AP Chemistry Chapter 16 Assignment Part I Multiple Choice 1984 47. CH 4 (g) + 2 O 2 (g) CO 2 (g) + 2 H 2 O(l) H = 889.1 kj H f H 2 O(l) = 285.8 kj mol 1 H f CO 2 (g) = 393.3 kj mol 1 What is

More information

3. Indicate the mass action expression for the following reaction: 2X(g) + Y(g) 3W(g) + V(g) a) [X] 2 [Y][W] 3 [V] [W] 3 [V] [X] 2 [Y] [3W][V] [2X][Y]

3. Indicate the mass action expression for the following reaction: 2X(g) + Y(g) 3W(g) + V(g) a) [X] 2 [Y][W] 3 [V] [W] 3 [V] [X] 2 [Y] [3W][V] [2X][Y] 1. Which of the following statements concerning equilibrium is not true? a) A system that is disturbed from an equilibrium condition responds in a manner to restore equilibrium. b) Equilibrium in molecular

More information

January 03, Ch 13 SB equilibrium.notebook

January 03, Ch 13 SB equilibrium.notebook Ch 13: Chemical Equilibrium exists when 2 opposing reactions occur simultaneously at the same rate (dynamic rather than static) Forward rate = reverse rate https://www.youtube.com/watch?v=wld_imyqagq The

More information

CHEM N-2 November 2014

CHEM N-2 November 2014 CHEM1612 2014-N-2 November 2014 Explain the following terms or concepts. Le Châtelier s principle 1 Used to predict the effect of a change in the conditions on a reaction at equilibrium, this principle

More information

Lecture 4. Professor Hicks Inorganic Chemistry (CHE152) Add the following homework problems Chapter 14: 61, 63, 69, 71. Equilibrium for a Multistep

Lecture 4. Professor Hicks Inorganic Chemistry (CHE152) Add the following homework problems Chapter 14: 61, 63, 69, 71. Equilibrium for a Multistep Lecture 4 Professor Hicks Inorganic Chemistry (CHE152) Add the following homework problems Chapter 14: 61, 63, 69, 71 Equilibrium for a Multistep Mechanism A + 2B k 1F k 1R C At equilibrium forward and

More information

Regents review Kinetics & equilibrium

Regents review Kinetics & equilibrium 2011-2012 1. A is most likely to occur when reactant particles collide with A) proper energy, only B) proper orientation, only C) both proper energy and proper orientation D) neither proper energy nor

More information

CHEMICAL THERMODYNAMICS. Nature of Energy. ΔE = q + w. w = PΔV

CHEMICAL THERMODYNAMICS. Nature of Energy. ΔE = q + w. w = PΔV CHEMICAL HERMODYNAMICS Nature of Energy hermodynamics hermochemistry Energy (E) Work (w) Heat (q) Some Definitions Study the transformation of energy from one form to another during physical and chemical

More information

Chapter 6 The States of Matter. Examples of Physical Properties of Three States of Matter

Chapter 6 The States of Matter. Examples of Physical Properties of Three States of Matter Chapter 6 The States of Matter Examples of Physical Properties of Three States of Matter 1 Three States of Matter Solids: Fixed shape, fixed volume, particles are held rigidly in place. Liquids: Variable

More information

OCN 623: Thermodynamic Laws & Gibbs Free Energy. or how to predict chemical reactions without doing experiments

OCN 623: Thermodynamic Laws & Gibbs Free Energy. or how to predict chemical reactions without doing experiments OCN 623: Thermodynamic Laws & Gibbs Free Energy or how to predict chemical reactions without doing experiments Definitions Extensive properties Depend on the amount of material e.g. # of moles, mass or

More information

3.2.1 Energetics. Bond Enthalpy. 98 minutes. 96 marks. Page 1 of 16

3.2.1 Energetics. Bond Enthalpy. 98 minutes. 96 marks. Page 1 of 16 3..1 Energetics Bond Enthalpy 98 minutes 96 marks Page 1 of 16 Q1. (a) State what is meant by the term mean bond enthalpy. () (b) Ethanal has the structure Gaseous ethanal burns as shown by the equation

More information

Thermodynamics II. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Thermodynamics II. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Thermodynamics II Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 1 Spontaneous Physical and Chemical Processes A waterfall runs downhill A lump of sugar dissolves

More information

Chapter 8 Thermochemistry: Chemical Energy

Chapter 8 Thermochemistry: Chemical Energy Chapter 8 Thermochemistry: Chemical Energy 國防醫學院生化學科王明芳老師 2011-11-8 & 2011-11-15 Chapter 8/1 Energy and Its Conservation Conservation of Energy Law: Energy cannot be created or destroyed; it can only be

More information

Thermodynamics Spontaneity. 150/151 Thermochemistry Review. Spontaneity. Ch. 16: Thermodynamics 12/14/2017

Thermodynamics Spontaneity. 150/151 Thermochemistry Review. Spontaneity. Ch. 16: Thermodynamics 12/14/2017 Ch. 16: Thermodynamics Geysers are a dramatic display of thermodynamic principles in nature. As water inside the earth heats up, it rises to the surface through small channels. Pressure builds up until

More information