Magnetic moment measurements

Size: px
Start display at page:

Download "Magnetic moment measurements"

Transcription

1 Magnetic moment measurements Davíð Örn Þorsteinsson (1), Guðjón Henning Hilmarsson (2) and Saga Huld Helgadóttir (3) 1) 2) and 3) Abstract: A uniform magnetic field makes a magnetic dipole experience a net magnetic torque. By measuring precessional motion of a rotating body and period of an oscillating pendulum in a varying uniform magnetic field, the magnetic dipole can be obtained. Using a superconducting magnet, with VSM, measurements of an unknown sample are performed. The magnetic moment for different orientations of the magnetic field on the sample is measured and from that the sample s composition is determined. Introduction Magnetic moment Because a magnetic dipole in a uniform magnetic field experiences a net magnetic torque, the dipole s magnetic moment can be determined. This knowledge is exploited in two experiments. In both experiments, the objective is to measure the dipole moment of a magnet inside a cue ball, but with different methods. In the first one, the torque is used to cause a rotating cue ball to precess. Then, in the second one, the torque is made to act as a restoring torque on a physical pendulum, i.e. a cue ball. The uniform magnetic field is acquired by putting a current through wires of Helmholtz coils. By knowing relations between precessional angular velocity, Ω p, period of oscillation, T, and magnetic field strength gives one the ability to calculate the magnetic moment by measuring Ω p and T in varying uniform magnetic fields. Theory The central principle of this experiment is that when the magnetic moment is displaced some angle from the direction of the magnetic field, the magnetic dipole experiences a torque that causes a change in the ball s angular momentum in the direction of the torque. The ball is displaced from the vertical position and spun, its spin-axis is the axis that runs through the handle of the ball. This creates a large spin angular momentum. The spin axis will remain in a fixed position until the uniform magnetic field is turned on. When it is turned on the magnetic dipole will experience a torque which will cause a change in angular momentum in the direction of the torque. But because the ball already has a large spin angular momentum it will change the rotational axis of the ball. The differential equation for the motion of the ball is µ B = L t (1) The relation between Ω p, the precessional angular velocity, and µ, the magnetic moment, is Ω p = µ L B (2) The precessional frequency is the dependent variable. It can be determined, in radians/second, by measuring the time needed for the handle of the ball to precess through 2π radians and then dividing that time by 2π. The magnetic field is the independent variable. The magnitude of the angular momentum L is a constant that can be measured using a strobe light. The handle of the ball has a white dot on its top. As the ball spins the strobe light reflects off of this white dot. When the strobe light is flashing at the same frequency at which the white dot is spinning, the dot will appear stationary. Then from the displayed strobe frequency and the measurement of the moment of inertia, the spin angular momentum of the ball at that time can be calculated. The graph of Ω p as a function of B will give a straight line if L is held constant throughout the experiment. From the slope of this line, µ can be determined. The magnetic field, B, is generated by introducing current through Helmholtz coils. While spinning the cue ball to the correct angular velocity, a field gradient is turned on at the center of the coils to keep the ball from starting its precessional motion. When ready, the field gradient is then turned off which gives a uniform magnetic field and the ball s precession starts and its period can be measured. Fig. 1: Cue ball with spin angular momentum about its handle s axis This experiment involves dynamics principles. From classical mechanics it is known that a net torque on an object causes a change in that object s angular momentum. For the system in this

2 experiment, if the cue ball is placed in the air bearing with a uniform magnetic field present, and if the intrinsic dipole moment of the ball is displaced some angle away from the direction of the magnetic field, the ball will experience a net torque and will change its angular momentum. It is important to note the direction of the magnetic moment relative to the magnetic field. If the magnetic moment in the ball is displaced by an angle θ from the axis of the coils, in the direction of the field, it experiences a restoring torque that acts against the angular displacement of µ. So the differential equation that describes the motion of the ball with moment of inertia I is µ B = I 2 Θ 2 t (3) where θ is the angular displacement from the direction of B. The minus sign indicates that the torque is restoring in nature. For small angle displacements sinθ θ and in scalar form µbθ = I 2 Θ 2 t (4) The solulution of this equation is Θ(t) = Acosωt, where ω and A are constants. Plugging the value of Θ into eq. 3 gives µbacosωt = IAω 2 cosωt (5) For this to be true for all times t, the following relation needs to be fulfilled, ω 2 = µ I B (6) where ω is the angular frequency of oscillation. If T is the period of oscillation T = 2π ω then the final equation for small angles is : T 2 = 4π2 I µb (7) (8) I can be approximated as the moment of inertia of a uniform solid sphere I = 2 5 MR2 (9) where M is the mass of the ball and R is the ball s radius. B is the independent variable and T can be measured using a stopwatch. From the graph of T 2 as a function of 1/B it is possible to get a straight line whose slope includes the magnetic moment, µ. Fig. 2: Vertical angular displacement of cue ball Experimental First the constants are measured, the radius, the mass and the spin angular momentum of the ball. A constant value of the spin angular momentum of the ball is accomplished by fixing the frequency of the strobe light. The strobe light is set to frequency 5 Hz because in the range of frequency between 4.5 and 6 Hz the rotational frequency does not change significantly during the time it takes the ball to precess through one period. The ball is spun and adjusted so its handle is bathed in the strobe light. The white dot on the handle is observed and as the ball slows down, the white dot s rotation slows down until it appears stationary under the strobe light. At that moment the field gradient is turned off and a magnetic field is introduced to the system. This results in a precessional movement of the ball and its period is measured. Measurements are carried out from 1 A to 4 A with 0.5 A intervals. First the moment of inertia of the cue ball is determined using its mass and its radius. The mass can be determined using a scale and the radius by using the calipers. In this experiment, the field gradient and strobe light should be off, the air on and the field s direction up. Because in this experiment the magnetic torque is the only torque involved, the experiment can be performed at low currents, which results in a small magnetic field, B. The cue ball is placed on the air bearing and the current set at 1 A. Then handle of the ball is given a small angular displacement from the vertical. The ball is released from rest and starts to oscillate. The amount of time it takes the ball to complete 20 full cycles of motion is measured with a stopwatch. This measured time divided by 20 will be period of oscillation for the ball at that particular magnetic field. This is repeated for currents up to 3 A with 0.5 A intervals. The small angular displacement of the ball s han-

3 Fig. 3: a) Magnetic torque apparatus, b) Helmholtz coils, c) cue ball, d) air bearing, e) strobe light dle, from vertical, is Instruments used to conduct these experiment were: Magnet, power supply, air bearing, Helmholtz coils, strobe light, cue ball, stopwatch, calipers and scale. The strobe light was only used in the precessional motion part of the experiment. The schematic setup can be seen in fig. (3). Calculations The radius of the ball is measured as R = ± cm and the mass M = 140 ± 2 g. The moment of inertia of the ball is assumed to be that of a solid sphere. It is calculated, with eq. (9), as I = (3.933 ± 0.002) 10 5 kg m 2. The angular velocity, ω = 31.4 rad/s is calculated from the frequency, f, with the well known relation The angular momentum ω = 2πf (10) L = Iω (11) is then L = (12.3 ± 0.1) 10 4 kg m 2 /s. From the precessional period, t, the precessional frequency, Ω p is calculated with Ω p = 2π t (12) Fig. 4: Ω p as a function of B same as mentioned above. The slope of the best fit line is then 4π 2 I/µ, and since I is known, calculating the magnetic moment is easy. The slope is h h = ± so the magnetic moment is µ = 0.4 ± 0.1 J T Conclusion The value of the dipole s magnetic moment acquired in these two experiments is essentially the same. They overlap each others uncertainty which is a very satisfying result. The magnetic moment value given by the manufacturer is 0.4 J/T so these results are more than acceptable [2]. The precessional period could have been measured more precisely by videotaping the cue ball s motion and determining the period from the video. It might also have been better to spin the ball more slowly to make it easier to see if the ball s rotation was syncronized with the strobe light. The pendulum period could also have been videotaped for more precise measurements. With better equipment the vertical angular displacement could have Then, Ω p is plotted as a function of the magnetic field, B. The magnetic field is related to the applied curent by the value T/A. From eq. (2) it shows that the slope of the best fit line is µ/l. Knowing the value of L, one can then calculate the magnetic moment, µ. From fig. (4), the slope of the best fit line is h p = 280 ± 70, which gives, by multiplying with L, the magnetic moment µ = 0.34 ± 0.08 J T By measuring the oscillation period of the pendulum, T, and plotting T 2 as a function of 1/B, it is possible to determine the magnetic moment from eq. (8). This is shown in fig. (5). The relationship between the magnetic field and current is the Fig. 5: T 2 as a function of 1/B

4 been performed with more accuracy. VSM Measurements Using a Vibrating sample magnetometer(vsm) it is possible to identify an unknown metal sample. A VSM is an instrument that measures magnetic properties of a sample, which is placed in a uniform magnetic field and vibrated. The sample is a very thin sheet of metal and its magnetic moment is measured by vibrations along the sample s easy, hard and perpendicular axis. By plotting the magnetic moment as a function of the magnetic field strength for all the axes it is possible to determine the sample s magnetic saturation and from that the metal can be identified. A simple schematic can be seen in fig. 6. The magnetic sheet has a triaxial anisotropy and therefore has an easy axis, hard axis and a perpendicular axis. The easy axis is the direction which the magnetization wants to head in order to minimize the energy and is parallel to the direction in which the sample was grown. The hard axis is the direction of maximum energy and is perpendicular to the sample s growth direction. The perpendicular axis is then perpendicular to both the hard and easy axes. The sample is a circular sheet. Its thickness is 30 nm and its diameter is 5 ± 0.5 mm. Volume of the sample is then Table 1: Magnetic saturation from different axes Axis M s Perpendicular axis 580 ± 150 emu/cm 3 Hard axis 520 ± 130 emu/cm 3 Easy axis 480 ± 100 emu/cm 3 Table 2: List of sample s potential identity and magnetic saturation Metal M s Fe emu/cm 3 Co emu/cm 3 Ni emu/cm 3 Ni 80 Fe emu/cm 3 2. From the information gathered it is clear that the sample s identity is Nickel. M s values found from all the axes intersect each others uncertainty and are all within the boundaries of the given value of M s for Ni. V = (6 ± 1) 10 7 cm 3 The magnetic saturation, M s, can be determined from the hysteresis graphs of the easy and hard axes, but a different method is nescessary for the perpendicular axis. Best fit lines are drawn through the measurements and their intersections determine the saturation. From the graphs, figs. 7 9, the magnetic saturation is calculated and the results are listed in table 1. A list of potential identity and the magnetic saturation of the given sample was handed out and can be seen in table Fig. 7: Easy axis Fig. 6: VSM schematic [3] Fig. 8: Hard axis

5 Fig. 9: Perpendicular axis References [1] teachspin.com, Magnetic force balance, Magnetic torque [2] 20Torque%20.pdf [3] vsm/thema39.gif [4]

For a rigid body that is constrained to rotate about a fixed axis, the gravitational torque about the axis is

For a rigid body that is constrained to rotate about a fixed axis, the gravitational torque about the axis is Experiment 14 The Physical Pendulum The period of oscillation of a physical pendulum is found to a high degree of accuracy by two methods: theory and experiment. The values are then compared. Theory For

More information

Overview of Experiments for Magnetic Torque

Overview of Experiments for Magnetic Torque Overview of Experiments for Magnetic Torque General Description of Apparatus The Magnetic Torque instrument consists of a pair of Helmholtz like coils with a brass air bearing mounted in the middle. (The

More information

Human Arm. 1 Purpose. 2 Theory. 2.1 Equation of Motion for a Rotating Rigid Body

Human Arm. 1 Purpose. 2 Theory. 2.1 Equation of Motion for a Rotating Rigid Body Human Arm Equipment: Capstone, Human Arm Model, 45 cm rod, sensor mounting clamp, sensor mounting studs, 2 cord locks, non elastic cord, elastic cord, two blue pasport force sensors, large table clamps,

More information

Two Methods for Determining the Moment of a Magnet Inside a Cue Ball

Two Methods for Determining the Moment of a Magnet Inside a Cue Ball WJP X, XXXX.XX Wabash (20XX) Journal of Physics 1 Two Methods for Determining the Moment of a Magnet Inside a Cue Ball Adam L. Fritsch and Thomas F. Pizarek Department of Physics, Wabash College, Crawfordsville,

More information

The Airborne Gyroscope

The Airborne Gyroscope The Airborne Gyroscope Chris Hodgson and Paul Hughes Department of Physics and Astronomy The University of Manchester Manchester M13 9PL First Year Laboratory Report Nov 3 Abstract Gyroscopic motion involves

More information

Magnetic Torque Physics 2150 Experiment No. 11 University of Colorado

Magnetic Torque Physics 2150 Experiment No. 11 University of Colorado Experiment 11 1 Introduction Magnetic Torque Physics 2150 Experiment No. 11 University of Colorado In this experiment, you will study how a magnet moment interacts with a magnetic field. You will measure

More information

Exam II Difficult Problems

Exam II Difficult Problems Exam II Difficult Problems Exam II Difficult Problems 90 80 70 60 50 40 30 20 10 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Two boxes are connected to each other as shown. The system is released

More information

Chapter 11. Angular Momentum

Chapter 11. Angular Momentum Chapter 11 Angular Momentum Angular Momentum Angular momentum plays a key role in rotational dynamics. There is a principle of conservation of angular momentum. In analogy to the principle of conservation

More information

AP Pd 3 Rotational Dynamics.notebook. May 08, 2014

AP Pd 3 Rotational Dynamics.notebook. May 08, 2014 1 Rotational Dynamics Why do objects spin? Objects can travel in different ways: Translation all points on the body travel in parallel paths Rotation all points on the body move around a fixed point An

More information

Rotational Motion. Figure 1: Torsional harmonic oscillator. The locations of the rotor and fiber are indicated.

Rotational Motion. Figure 1: Torsional harmonic oscillator. The locations of the rotor and fiber are indicated. Rotational Motion 1 Purpose The main purpose of this laboratory is to familiarize you with the use of the Torsional Harmonic Oscillator (THO) that will be the subject of the final lab of the course on

More information

Handout 7: Torque, angular momentum, rotational kinetic energy and rolling motion. Torque and angular momentum

Handout 7: Torque, angular momentum, rotational kinetic energy and rolling motion. Torque and angular momentum Handout 7: Torque, angular momentum, rotational kinetic energy and rolling motion Torque and angular momentum In Figure, in order to turn a rod about a fixed hinge at one end, a force F is applied at a

More information

SHM Simple Harmonic Motion revised May 23, 2017

SHM Simple Harmonic Motion revised May 23, 2017 SHM Simple Harmonic Motion revised May 3, 017 Learning Objectives: During this lab, you will 1. communicate scientific results in writing.. estimate the uncertainty in a quantity that is calculated from

More information

In-Class Problems 30-32: Moment of Inertia, Torque, and Pendulum: Solutions

In-Class Problems 30-32: Moment of Inertia, Torque, and Pendulum: Solutions MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics Physics 8.01 TEAL Fall Term 004 In-Class Problems 30-3: Moment of Inertia, Torque, and Pendulum: Solutions Problem 30 Moment of Inertia of a

More information

= o + t = ot + ½ t 2 = o + 2

= o + t = ot + ½ t 2 = o + 2 Chapters 8-9 Rotational Kinematics and Dynamics Rotational motion Rotational motion refers to the motion of an object or system that spins about an axis. The axis of rotation is the line about which the

More information

Worksheet for Exploration 10.1: Constant Angular Velocity Equation

Worksheet for Exploration 10.1: Constant Angular Velocity Equation Worksheet for Exploration 10.1: Constant Angular Velocity Equation By now you have seen the equation: θ = θ 0 + ω 0 *t. Perhaps you have even derived it for yourself. But what does it really mean for the

More information

Physics 41 HW Set 1 Chapter 15 Serway 8 th ( 7 th )

Physics 41 HW Set 1 Chapter 15 Serway 8 th ( 7 th ) Conceptual Q: 4 (7), 7 (), 8 (6) Physics 4 HW Set Chapter 5 Serway 8 th ( 7 th ) Q4(7) Answer (c). The equilibrium position is 5 cm below the starting point. The motion is symmetric about the equilibrium

More information

General Physics I Lab. M7 Conservation of Angular Momentum

General Physics I Lab. M7 Conservation of Angular Momentum Purpose In this experiment, you will investigate the conservation law of angular momentum in a collision between a ball falling along an inclined ramp and a ball catcher fixed on a freely rotating disk.

More information

Lab 11: Rotational Dynamics

Lab 11: Rotational Dynamics Lab 11: Rotational Dynamics Objectives: To understand the relationship between net torque and angular acceleration. To understand the concept of the moment of inertia. To understand the concept of angular

More information

Handout 6: Rotational motion and moment of inertia. Angular velocity and angular acceleration

Handout 6: Rotational motion and moment of inertia. Angular velocity and angular acceleration 1 Handout 6: Rotational motion and moment of inertia Angular velocity and angular acceleration In Figure 1, a particle b is rotating about an axis along a circular path with radius r. The radius sweeps

More information

AP Physics. Harmonic Motion. Multiple Choice. Test E

AP Physics. Harmonic Motion. Multiple Choice. Test E AP Physics Harmonic Motion Multiple Choice Test E A 0.10-Kg block is attached to a spring, initially unstretched, of force constant k = 40 N m as shown below. The block is released from rest at t = 0 sec.

More information

Rotational Dynamics. Goals and Introduction

Rotational Dynamics. Goals and Introduction Rotational Dynamics Goals and Introduction In translational dynamics, we use the quantities displacement, velocity, acceleration, mass and force to model the motion of objects. In that model, a net force

More information

Rotational Dynamics Smart Pulley

Rotational Dynamics Smart Pulley Rotational Dynamics Smart Pulley The motion of the flywheel of a steam engine, an airplane propeller, and any rotating wheel are examples of a very important type of motion called rotational motion. If

More information

A B = AB cos θ = 100. = 6t. a(t) = d2 r(t) a(t = 2) = 12 ĵ

A B = AB cos θ = 100. = 6t. a(t) = d2 r(t) a(t = 2) = 12 ĵ 1. A ball is thrown vertically upward from the Earth s surface and falls back to Earth. Which of the graphs below best symbolizes its speed v(t) as a function of time, neglecting air resistance: The answer

More information

Understanding Precession

Understanding Precession University of Rochester PHY35 Term Paper Understanding Precession Author: Peter Heuer Professor: Dr. Douglas Cline December 1th 01 1 Introduction Figure 1: Bicycle wheel gyroscope demonstration used at

More information

Earth s Magnetic Field Adapted by MMWaite from Measurement of Earth's Magnetic Field [Horizontal Component] by Dr. Harold Skelton

Earth s Magnetic Field Adapted by MMWaite from Measurement of Earth's Magnetic Field [Horizontal Component] by Dr. Harold Skelton Adapted by MMWaite from Measurement of Earth's Magnetic Field [Horizontal Component] by Dr. Harold Skelton Object: The purpose of this lab is to determine the horizontal component of the Earth s Magnetic

More information

Magnetic Force and the Determination of µ Physics 208

Magnetic Force and the Determination of µ Physics 208 Magnetic Force and the Determination of µ Physics 208 Purpose: To determine the permanent magnetic dipole moment,µ, using Helmholtz coils and a small neodymium-ironboron permanent magnet. Introduction:

More information

A. Incorrect! It looks like you forgot to include π in your calculation of angular velocity.

A. Incorrect! It looks like you forgot to include π in your calculation of angular velocity. High School Physics - Problem Drill 10: Rotational Motion and Equilbrium 1. If a bike wheel of radius 50 cm rotates at 300 rpm what is its angular velocity and what is the linear speed of a point on the

More information

Rotational Motion and Torque

Rotational Motion and Torque Rotational Motion and Torque Introduction to Angular Quantities Sections 8- to 8-2 Introduction Rotational motion deals with spinning objects, or objects rotating around some point. Rotational motion is

More information

Hall probe, Magnetic Field and Forces

Hall probe, Magnetic Field and Forces Hall probe, Magnetic Field and Forces Julia Velkovska (based on an earlier document by Med Webster) Sept 2007 Introduction In this lab you will perform a series of experiments that will familiarize you

More information

On my honor as a Texas A&M University student, I will neither give nor receive unauthorized help on this exam.

On my honor as a Texas A&M University student, I will neither give nor receive unauthorized help on this exam. Physics 201, Exam 3 Name (printed) On my honor as a Texas A&M University student, I will neither give nor receive unauthorized help on this exam. Name (signed) The multiple-choice problems carry no partial

More information

DEVIL PHYSICS BADDEST CLASS ON CAMPUS IB PHYSICS

DEVIL PHYSICS BADDEST CLASS ON CAMPUS IB PHYSICS DEVIL PHYSICS BADDEST CLASS ON CAMPUS IB PHYSICS OPTION B-1A: ROTATIONAL DYNAMICS Essential Idea: The basic laws of mechanics have an extension when equivalent principles are applied to rotation. Actual

More information

PHY 123 Lab 6 - Angular Momentum

PHY 123 Lab 6 - Angular Momentum 1 PHY 123 Lab 6 - Angular Momentum (updated 10/17/13) The purpose of this lab is to study torque, moment of inertia, angular acceleration and the conservation of angular momentum. If you need the.pdf version

More information

Review of physics concepts for Exam 3. April, 2019

Review of physics concepts for Exam 3. April, 2019 Review of physics concepts for Exam 3 April, 2019 Reminders: 1. The vector sum of all forces = (the total inertial mass ) *a 2. Gravity F = mg; E=mgh 3. Friction along a surface Ff = (friction coefficient)

More information

Simple harmonic motion the motion of springs is a very important topic in physics.

Simple harmonic motion the motion of springs is a very important topic in physics. Chapter 11 Potential and Kinetic Energy Together: Simple Harmonic Motion In This Chapter Using Hooke s law Working with simple harmonic motion Calculating simple harmonic motion velcoity Finding simple

More information

THE GYROSCOPE REFERENCES

THE GYROSCOPE REFERENCES THE REFERENCES The Feynman Lectures on Physics, Chapter 20 (this has a very nice, intuitive description of the operation of the gyroscope) Copy available at the Resource Centre. Most Introductory Physics

More information

AP Physics QUIZ Chapters 10

AP Physics QUIZ Chapters 10 Name: 1. Torque is the rotational analogue of (A) Kinetic Energy (B) Linear Momentum (C) Acceleration (D) Force (E) Mass A 5-kilogram sphere is connected to a 10-kilogram sphere by a rigid rod of negligible

More information

Circular Motion, Pt 2: Angular Dynamics. Mr. Velazquez AP/Honors Physics

Circular Motion, Pt 2: Angular Dynamics. Mr. Velazquez AP/Honors Physics Circular Motion, Pt 2: Angular Dynamics Mr. Velazquez AP/Honors Physics Formulas: Angular Kinematics (θ must be in radians): s = rθ Arc Length 360 = 2π rads = 1 rev ω = θ t = v t r Angular Velocity α av

More information

Phys 270 Final Exam. Figure 1: Question 1

Phys 270 Final Exam. Figure 1: Question 1 Phys 270 Final Exam Time limit: 120 minutes Each question worths 10 points. Constants: g = 9.8m/s 2, G = 6.67 10 11 Nm 2 kg 2. 1. (a) Figure 1 shows an object with moment of inertia I and mass m oscillating

More information

31 ROTATIONAL KINEMATICS

31 ROTATIONAL KINEMATICS 31 ROTATIONAL KINEMATICS 1. Compare and contrast circular motion and rotation? Address the following Which involves an object and which involves a system? Does an object/system in circular motion have

More information

We define angular displacement, θ, and angular velocity, ω. What's a radian?

We define angular displacement, θ, and angular velocity, ω. What's a radian? We define angular displacement, θ, and angular velocity, ω Units: θ = rad ω = rad/s What's a radian? Radian is the ratio between the length of an arc and its radius note: counterclockwise is + clockwise

More information

E X P E R I M E N T 11

E X P E R I M E N T 11 E X P E R I M E N T 11 Conservation of Angular Momentum Produced by the Physics Staff at Collin College Copyright Collin College Physics Department. All Rights Reserved. University Physics, Exp 11: Conservation

More information

Lecture 3. Rotational motion and Oscillation 06 September 2018

Lecture 3. Rotational motion and Oscillation 06 September 2018 Lecture 3. Rotational motion and Oscillation 06 September 2018 Wannapong Triampo, Ph.D. Angular Position, Velocity and Acceleration: Life Science applications Recall last t ime. Rigid Body - An object

More information

Exam II. Spring 2004 Serway & Jewett, Chapters Fill in the bubble for the correct answer on the answer sheet. next to the number.

Exam II. Spring 2004 Serway & Jewett, Chapters Fill in the bubble for the correct answer on the answer sheet. next to the number. Agin/Meyer PART I: QUALITATIVE Exam II Spring 2004 Serway & Jewett, Chapters 6-10 Assigned Seat Number Fill in the bubble for the correct answer on the answer sheet. next to the number. NO PARTIAL CREDIT:

More information

Final Exam Spring 2014 May 05, 2014

Final Exam Spring 2014 May 05, 2014 95.141 Final Exam Spring 2014 May 05, 2014 Section number Section instructor Last/First name Last 3 Digits of Student ID Number: Answer all questions, beginning each new question in the space provided.

More information

Gyroscopes and statics

Gyroscopes and statics Gyroscopes and statics Announcements: Welcome back from Spring Break! CAPA due Friday at 10pm We will finish Chapter 11 in H+R on angular momentum and start Chapter 12 on stability. Friday we will begin

More information

Uniform Circular Motion:-Circular motion is said to the uniform if the speed of the particle (along the circular path) remains constant.

Uniform Circular Motion:-Circular motion is said to the uniform if the speed of the particle (along the circular path) remains constant. Circular Motion:- Uniform Circular Motion:-Circular motion is said to the uniform if the speed of the particle (along the circular path) remains constant. Angular Displacement:- Scalar form:-?s = r?θ Vector

More information

Rotational Kinematics and Dynamics. UCVTS AIT Physics

Rotational Kinematics and Dynamics. UCVTS AIT Physics Rotational Kinematics and Dynamics UCVTS AIT Physics Angular Position Axis of rotation is the center of the disc Choose a fixed reference line Point P is at a fixed distance r from the origin Angular Position,

More information

Two Dimensional Rotational Kinematics Challenge Problem Solutions

Two Dimensional Rotational Kinematics Challenge Problem Solutions Two Dimensional Rotational Kinematics Challenge Problem Solutions Problem 1: Moment of Inertia: Uniform Disc A thin uniform disc of mass M and radius R is mounted on an axis passing through the center

More information

NUCLEAR MAGNETIC RESONANCE. The phenomenon of nuclear magnetic resonance will be used to study magnetic moments of nuclei.

NUCLEAR MAGNETIC RESONANCE. The phenomenon of nuclear magnetic resonance will be used to study magnetic moments of nuclei. 14 Sep 11 NMR.1 NUCLEAR MAGNETIC RESONANCE The phenomenon of nuclear magnetic resonance will be used to study magnetic moments of nuclei. Theory: In addition to its well-known properties of mass, charge,

More information

Slide 1 / 37. Rotational Motion

Slide 1 / 37. Rotational Motion Slide 1 / 37 Rotational Motion Slide 2 / 37 Angular Quantities An angle θ can be given by: where r is the radius and l is the arc length. This gives θ in radians. There are 360 in a circle or 2π radians.

More information

Teacher s notes 35 Conservation of angular momentum (1)

Teacher s notes 35 Conservation of angular momentum (1) Sensors: Loggers: Rotary Motion Any EASYSENSE Physics Logging time: 10 seconds Teacher s notes 35 Conservation of angular momentum (1) Introduction The use of the disc accessories allows the Rotary Motion

More information

Chapter 19. Magnetism

Chapter 19. Magnetism Chapter 19 Magnetism Magnetic Fields When moving through a magnetic field, a charged particle experiences a magnetic force This force has a maximum value when the charge moves perpendicularly to the magnetic

More information

z F 3 = = = m 1 F 1 m 2 F 2 m 3 - Linear Momentum dp dt F net = d P net = d p 1 dt d p n dt - Conservation of Linear Momentum Δ P = 0

z F 3 = = = m 1 F 1 m 2 F 2 m 3 - Linear Momentum dp dt F net = d P net = d p 1 dt d p n dt - Conservation of Linear Momentum Δ P = 0 F 1 m 2 F 2 x m 1 O z F 3 m 3 y Ma com = F net F F F net, x net, y net, z = = = Ma Ma Ma com, x com, y com, z p = mv - Linear Momentum F net = dp dt F net = d P dt = d p 1 dt +...+ d p n dt Δ P = 0 - Conservation

More information

Chapter 14 (Oscillations) Key concept: Downloaded from

Chapter 14 (Oscillations) Key concept: Downloaded from Chapter 14 (Oscillations) Multiple Choice Questions Single Correct Answer Type Q1. The displacement of a particle is represented by the equation. The motion of the particle is (a) simple harmonic with

More information

is acting on a body of mass m = 3.0 kg and changes its velocity from an initial

is acting on a body of mass m = 3.0 kg and changes its velocity from an initial PHYS 101 second major Exam Term 102 (Zero Version) Q1. A 15.0-kg block is pulled over a rough, horizontal surface by a constant force of 70.0 N acting at an angle of 20.0 above the horizontal. The block

More information

8.012 Physics I: Classical Mechanics Fall 2008

8.012 Physics I: Classical Mechanics Fall 2008 MIT OpenCourseWare http://ocw.mit.edu 8.012 Physics I: Classical Mechanics Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. MASSACHUSETTS INSTITUTE

More information

Date: 1 April (1) The only reference material you may use is one 8½x11 crib sheet and a calculator.

Date: 1 April (1) The only reference material you may use is one 8½x11 crib sheet and a calculator. PH1140: Oscillations and Waves Name: Solutions Conference: Date: 1 April 2005 EXAM #1: D2005 INSTRUCTIONS: (1) The only reference material you may use is one 8½x11 crib sheet and a calculator. (2) Show

More information

Date: 31 March (1) The only reference material you may use is one 8½x11 crib sheet and a calculator.

Date: 31 March (1) The only reference material you may use is one 8½x11 crib sheet and a calculator. PH1140: Oscillations and Waves Name: SOLUTIONS AT END Conference: Date: 31 March 2005 EXAM #1: D2006 INSTRUCTIONS: (1) The only reference material you may use is one 8½x11 crib sheet and a calculator.

More information

Physics 2A Chapter 10 - Rotational Motion Fall 2018

Physics 2A Chapter 10 - Rotational Motion Fall 2018 Physics A Chapter 10 - Rotational Motion Fall 018 These notes are five pages. A quick summary: The concepts of rotational motion are a direct mirror image of the same concepts in linear motion. Follow

More information

Oscillatory Motion and Wave Motion

Oscillatory Motion and Wave Motion Oscillatory Motion and Wave Motion Oscillatory Motion Simple Harmonic Motion Wave Motion Waves Motion of an Object Attached to a Spring The Pendulum Transverse and Longitudinal Waves Sinusoidal Wave Function

More information

Chapters 10 & 11: Rotational Dynamics Thursday March 8 th

Chapters 10 & 11: Rotational Dynamics Thursday March 8 th Chapters 10 & 11: Rotational Dynamics Thursday March 8 th Review of rotational kinematics equations Review and more on rotational inertia Rolling motion as rotation and translation Rotational kinetic energy

More information

CHAPTER 7 FORCE ON A CURRENT IN A MAGNETIC FIELD

CHAPTER 7 FORCE ON A CURRENT IN A MAGNETIC FIELD 1 CHAPTER 7 FORCE ON A CURRENT IN A MAGNETIC FIELD 7.1 Introduction In Chapter 6 we showed that when an electric current is situated in an external magnetic field it experiences a force at right angles

More information

General Definition of Torque, final. Lever Arm. General Definition of Torque 7/29/2010. Units of Chapter 10

General Definition of Torque, final. Lever Arm. General Definition of Torque 7/29/2010. Units of Chapter 10 Units of Chapter 10 Determining Moments of Inertia Rotational Kinetic Energy Rotational Plus Translational Motion; Rolling Why Does a Rolling Sphere Slow Down? General Definition of Torque, final Taking

More information

In physics, motion in circles is just as important as motion along lines, but there are all

In physics, motion in circles is just as important as motion along lines, but there are all Chapter 6 Round and Round: Circular Motion In This Chapter Converting angles Handling period and frequency Working with angular frequency Using angular acceleration In physics, motion in circles is just

More information

AS3010: Introduction to Space Technology

AS3010: Introduction to Space Technology AS3010: Introduction to Space Technology L E C T U R E 22 Part B, Lecture 22 19 April, 2017 C O N T E N T S Attitude stabilization passive and active. Actuators for three axis or active stabilization.

More information

Chapter 8 Lecture Notes

Chapter 8 Lecture Notes Chapter 8 Lecture Notes Physics 2414 - Strauss Formulas: v = l / t = r θ / t = rω a T = v / t = r ω / t =rα a C = v 2 /r = ω 2 r ω = ω 0 + αt θ = ω 0 t +(1/2)αt 2 θ = (1/2)(ω 0 +ω)t ω 2 = ω 0 2 +2αθ τ

More information

Chapter 11. Angular Momentum

Chapter 11. Angular Momentum Chapter 11 Angular Momentum Angular Momentum Angular momentum plays a key role in rotational dynamics. There is a principle of conservation of angular momentum. In analogy to the principle of conservation

More information

Chapter 4. Oscillatory Motion. 4.1 The Important Stuff Simple Harmonic Motion

Chapter 4. Oscillatory Motion. 4.1 The Important Stuff Simple Harmonic Motion Chapter 4 Oscillatory Motion 4.1 The Important Stuff 4.1.1 Simple Harmonic Motion In this chapter we consider systems which have a motion which repeats itself in time, that is, it is periodic. In particular

More information

Inelastic Collisions. Experiment Number 8 Physics 109 Fall 2017

Inelastic Collisions. Experiment Number 8 Physics 109 Fall 2017 Inelastic Collisions Experiment Number 8 Physics 109 Fall 2017 Midterm Exam Scores 6 5 4 Number 3 2 1 0 0-49 50-59 60-69 70-79 Score Range 80-89 90-100 Outline Ballistic Pendulum Physics of Rotation Angular

More information

Important because SHM is a good model to describe vibrations of a guitar string, vibrations of atoms in molecules, etc.

Important because SHM is a good model to describe vibrations of a guitar string, vibrations of atoms in molecules, etc. Simple Harmonic Motion Oscillatory motion under a restoring force proportional to the amount of displacement from equilibrium A restoring force is a force that tries to move the system back to equilibrium

More information

Rotational & Rigid-Body Mechanics. Lectures 3+4

Rotational & Rigid-Body Mechanics. Lectures 3+4 Rotational & Rigid-Body Mechanics Lectures 3+4 Rotational Motion So far: point objects moving through a trajectory. Next: moving actual dimensional objects and rotating them. 2 Circular Motion - Definitions

More information

EXAMPLE 2: CLASSICAL MECHANICS: Worked examples. b) Position and velocity as integrals. Michaelmas Term Lectures Prof M.

EXAMPLE 2: CLASSICAL MECHANICS: Worked examples. b) Position and velocity as integrals. Michaelmas Term Lectures Prof M. CLASSICAL MECHANICS: Worked examples Michaelmas Term 2006 4 Lectures Prof M. Brouard EXAMPLE 2: b) Position and velocity as integrals Calculate the position of a particle given its time dependent acceleration:

More information

Rotational Motion About a Fixed Axis

Rotational Motion About a Fixed Axis Rotational Motion About a Fixed Axis Vocabulary rigid body axis of rotation radian average angular velocity instantaneous angular average angular Instantaneous angular frequency velocity acceleration acceleration

More information

Chap. 15: Simple Harmonic Motion

Chap. 15: Simple Harmonic Motion Chap. 15: Simple Harmonic Motion Announcements: CAPA is due next Tuesday and next Friday. Web page: http://www.colorado.edu/physics/phys1110/phys1110_sp12/ Examples of periodic motion vibrating guitar

More information

LAB 5: ROTATIONAL DYNAMICS

LAB 5: ROTATIONAL DYNAMICS 1 Name Date Day/Time of Lab Partner(s) Lab TA OBJECTIVES LAB 5: ROTATIONAL DYNAMICS To investigate and understand moment of inertia as it relates to rotational motion. To relate angular and linear position,

More information

The Pendulum. The purpose of this tab is to predict the motion of various pendulums and compare these predictions with experimental observations.

The Pendulum. The purpose of this tab is to predict the motion of various pendulums and compare these predictions with experimental observations. The Pendulum Introduction: The purpose of this tab is to predict the motion of various pendulums and compare these predictions with experimental observations. Equipment: Simple pendulum made from string

More information

Lab 9. Rotational Dynamics

Lab 9. Rotational Dynamics Lab 9. Rotational Dynamics Goals To calculate the moment of inertia of two metal cylindrical masses from their measured dimensions and their distance from the axis of rotation. To use the principle of

More information

August 2013 Qualifying Exam. Part II

August 2013 Qualifying Exam. Part II August 2013 Qualifying Exam Part II Mathematical tables are allowed. Formula sheets are provided. Calculators are allowed. Please clearly mark the problems you have solved and want to be graded. Do only

More information

Moment of inertia of different bodies

Moment of inertia of different bodies Moment of inertia of different bodies Aim: 1) Study moment of inertia of different bodies Objectives of the experiment 1. Measuring the period of oscillation of a thin transverse rod with weights on a

More information

PHYSICS 149: Lecture 21

PHYSICS 149: Lecture 21 PHYSICS 149: Lecture 21 Chapter 8: Torque and Angular Momentum 8.2 Torque 8.4 Equilibrium Revisited 8.8 Angular Momentum Lecture 21 Purdue University, Physics 149 1 Midterm Exam 2 Wednesday, April 6, 6:30

More information

Oscillatory Motion. Solutions of Selected Problems

Oscillatory Motion. Solutions of Selected Problems Chapter 15 Oscillatory Motion. Solutions of Selected Problems 15.1 Problem 15.18 (In the text book) A block-spring system oscillates with an amplitude of 3.50 cm. If the spring constant is 250 N/m and

More information

Experiment 9: Compound Pendulum

Experiment 9: Compound Pendulum COMSATS nstitute of nformation Technology, slamabad Campus PHYS - 108 Experiment 9: Compound Pendulum A compound pendulum (also known as a physical pendulum) consists of a rigid body oscillating about

More information

Chapter 13. Hooke s Law: F = - kx Periodic & Simple Harmonic Motion Springs & Pendula Waves Superposition. Next Week!

Chapter 13. Hooke s Law: F = - kx Periodic & Simple Harmonic Motion Springs & Pendula Waves Superposition. Next Week! Chapter 13 Hooke s Law: F = - kx Periodic & Simple Harmonic Motion Springs & Pendula Waves Superposition Next Week! Review Physics 2A: Springs, Pendula & Circular Motion Elastic Systems F = kx Small Vibrations

More information

Chapter 14 Oscillations

Chapter 14 Oscillations Chapter 14 Oscillations Chapter Goal: To understand systems that oscillate with simple harmonic motion. Slide 14-2 Chapter 14 Preview Slide 14-3 Chapter 14 Preview Slide 14-4 Chapter 14 Preview Slide 14-5

More information

1. An object is dropped from rest. Which of the five following graphs correctly represents its motion? The positive direction is taken to be downward.

1. An object is dropped from rest. Which of the five following graphs correctly represents its motion? The positive direction is taken to be downward. Unless otherwise instructed, use g = 9.8 m/s 2 Rotational Inertia about an axis through com: Hoop about axis(radius=r, mass=m) : MR 2 Hoop about diameter (radius=r, mass=m): 1/2MR 2 Disk/solid cyllinder

More information

Chapter 14 Periodic Motion

Chapter 14 Periodic Motion Chapter 14 Periodic Motion 1 Describing Oscillation First, we want to describe the kinematical and dynamical quantities associated with Simple Harmonic Motion (SHM), for example, x, v x, a x, and F x.

More information

Solution to phys101-t112-final Exam

Solution to phys101-t112-final Exam Solution to phys101-t112-final Exam Q1. An 800-N man stands halfway up a 5.0-m long ladder of negligible weight. The base of the ladder is.0m from the wall as shown in Figure 1. Assuming that the wall-ladder

More information

r CM = ir im i i m i m i v i (2) P = i

r CM = ir im i i m i m i v i (2) P = i Physics 121 Test 3 study guide Thisisintendedtobeastudyguideforyourthirdtest, whichcoverschapters 9, 10, 12, and 13. Note that chapter 10 was also covered in test 2 without section 10.7 (elastic collisions),

More information

20 Torque & Circular Motion

20 Torque & Circular Motion Chapter 0 Torque & Circular Motion 0 Torque & Circular Motion The mistake that crops up in the application of Newton s nd Law for Rotational Motion involves the replacement of the sum of the torques about

More information

PHYSICS. Chapter 15 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT Pearson Education, Inc.

PHYSICS. Chapter 15 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT Pearson Education, Inc. PHYSICS FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E Chapter 15 Lecture RANDALL D. KNIGHT Chapter 15 Oscillations IN THIS CHAPTER, you will learn about systems that oscillate in simple harmonic

More information

43. A person sits on a freely spinning lab stool that has no friction in its axle. When this person extends her arms,

43. A person sits on a freely spinning lab stool that has no friction in its axle. When this person extends her arms, 43. A person sits on a freely spinning lab stool that has no friction in its axle. When this person extends her arms, A) her moment of inertia increases and her rotational kinetic energy remains the same.

More information

Laws of gyroscopes / cardanic gyroscope

Laws of gyroscopes / cardanic gyroscope Principle If the axis of rotation of the force-free gyroscope is displaced slightly, a nutation is produced. The relationship between precession frequency or nutation frequency and gyrofrequency is examined

More information

1. Which of the following is the unit for angular displacement? A. Meters B. Seconds C. Radians D. Radian per second E. Inches

1. Which of the following is the unit for angular displacement? A. Meters B. Seconds C. Radians D. Radian per second E. Inches AP Physics B Practice Questions: Rotational Motion Multiple-Choice Questions 1. Which of the following is the unit for angular displacement? A. Meters B. Seconds C. Radians D. Radian per second E. Inches

More information

Chapter 8 Lecture. Pearson Physics. Rotational Motion and Equilibrium. Prepared by Chris Chiaverina Pearson Education, Inc.

Chapter 8 Lecture. Pearson Physics. Rotational Motion and Equilibrium. Prepared by Chris Chiaverina Pearson Education, Inc. Chapter 8 Lecture Pearson Physics Rotational Motion and Equilibrium Prepared by Chris Chiaverina Chapter Contents Describing Angular Motion Rolling Motion and the Moment of Inertia Torque Static Equilibrium

More information

Simple Harmonic Motion

Simple Harmonic Motion 1. Object Simple Harmonic Motion To determine the period of motion of objects that are executing simple harmonic motion and to check the theoretical prediction of such periods. 2. Apparatus Assorted weights

More information

Lecture 13 REVIEW. Physics 106 Spring What should we know? What should we know? Newton s Laws

Lecture 13 REVIEW. Physics 106 Spring What should we know? What should we know? Newton s Laws Lecture 13 REVIEW Physics 106 Spring 2006 http://web.njit.edu/~sirenko/ What should we know? Vectors addition, subtraction, scalar and vector multiplication Trigonometric functions sinθ, cos θ, tan θ,

More information

Oscillatory Motion SHM

Oscillatory Motion SHM Chapter 15 Oscillatory Motion SHM Dr. Armen Kocharian Periodic Motion Periodic motion is motion of an object that regularly repeats The object returns to a given position after a fixed time interval A

More information

Physics 5A Final Review Solutions

Physics 5A Final Review Solutions Physics A Final Review Solutions Eric Reichwein Department of Physics University of California, Santa Cruz November 6, 0. A stone is dropped into the water from a tower 44.m above the ground. Another stone

More information

Chap 11. Vibration and Waves. The impressed force on an object is proportional to its displacement from it equilibrium position.

Chap 11. Vibration and Waves. The impressed force on an object is proportional to its displacement from it equilibrium position. Chap 11. Vibration and Waves Sec. 11.1 - Simple Harmonic Motion The impressed force on an object is proportional to its displacement from it equilibrium position. F x This restoring force opposes the change

More information

( (Chapter 5)(Magnetism and Matter)

(  (Chapter 5)(Magnetism and Matter) Additional Exercises Question 5.16: Answer the following questions: (a) Why does a paramagnetic sample display greater magnetisation (for the same magnetising field) when cooled? (b) Why is diamagnetism,

More information