Lecture 21 Power Series Method at Singular Points Frobenius Theory

Size: px
Start display at page:

Download "Lecture 21 Power Series Method at Singular Points Frobenius Theory"

Transcription

1 Lecture 1 Power Series Method at Singular Points Frobenius Theory 10/8/011 Review. The usual power series method, that is setting y = a n 0 ) n, breaks down if 0 is a singular point. Here breaks down means cannot find all solutions. It s possible to completely solve one class of DE a y + by + cy = 0 1) Euler equations at singular points. The solutions involve r r not 0,1,, ) and ln, which are not analytic at 0 = 0 and therefore cannot be represented as a n 0 ) n. Remark 1. Note that α+iβ = α cos β ln + sinβ ln ). It turns out, once we include these two new ingredients into our ansatz, we can solve equations at singular points as long as those singular points are regular singular : 0 is regular singular point if 0 is singular; The Method of Frobenius. 0 ) p) and 0 ) q) are analytic at 0. The method of Frobenius is a modification to the power series method guided by the above observation. This method is effective at regular singular points. The basic idea is to look for solutions of the form Consider the equation Let 0 be a regular singular point. That is p) 0 ) = 0 ) r a n 0 ) n. ) y + p) y + q) y = 0. 3) p n 0 ) n, q) 0 ) = q n 0 ) n 4) with certain radii of convergence. To make the following discussion easier to read, we assume 0 =0. Substitute the epansion y = r a n n 5) into the equation we get ) r a n n + p) ) r a n n + q) r a n n = 0. 6) 1

2 Lecture 1 Power Series Method at Singular Points Frobenius Theory Now compute r a n n ) ) = a n n+r = n +r) n + r 1) a n n+r. 7) p) ) r a n n q) r ) = p) a n n+r ) = p) n +r) a n n+r 1 ) = p) ) n + r)a n n+r ) ) = p n n n +r)a n n+r = { n p n m m + r)a m } n+r. 8) a n n = r q n n ) a n n ) Now the equation becomes = n q n m a m ] n+r. 9) { n + r)n + r 1)a n + n m + r) p n m + q n m ] a m } n+r = 0. 10) Or equivalently { n + r)n + r 1)+n + r) p 0 + q 0 ] a n + m +r) p n m + q n m ] a m } n+r = 0. 11) This leads to the following equations: n 1): n +r) n + r 1)+n +r) p 0 + q 0 ] a n + n =0): r r 1) + p 0 r + q 0 ] a 0 = 0, 1) m + r) p n m + q n m ] a m = 0. 13) The n = 0 equation is singled out because if we require a 0 0 which is natural as when a 0 = 0, we have y = r+1 b m m where b m = a m+1.), then it becomes a condition on r: r r 1) + p 0 r + q 0 = 0. 14) This is called the indicial equation and will provide us with two roots r 1, r Some complicated situation may arise, we will discuss them later). These two roots are called eponents of the regular singular point =0. After deciding r, the n 1 relations provide us with a way to determine a n one by one. It turns out that there are three cases: r 1 r with r 1 r not an integer; r 1 = r ; r 1 r is an integer. Before we discuss these cases in a bit more detail, let s state the following theorem which summarizes the method of Frobenius in its full glory.

3 10/8/011 3 Theorem. Consider the equation y + p) y + q) y = 0 15) at an regular singular point 0. Let ρ be no bigger than the radius of convergence of either 0 ) p or 0 ) q. Let r 1, r solve the indicial equation Then r r 1) + p 0 r + q 0 = 0. 16) 1. If r 1 r and r 1 r is not an integer, then the two linearly independent solutions are given by y 1 )= 0 r1 a n 0 ) n, y )= 0 r ā n 0 ) n. 17) The coefficients a n and ā n should be determined through the recursive relation n + r)n + r 1)+n + r) p 0 + q 0 ] a n + m + r) p n m + q n m ] a m =0. 18). If r 1 =r, then y 1 is given by the same formula as above, and y is of the form y ) = y 1 ) ln r1 d n 0 ) n. 19) 3. If r 1 r is an integer, then take r 1 to be the larger root More precisely, when r 1,r are both comple, take r 1 to be the one with larger real part, that is Rer 1 ) Rer )). Then y 1 is still the same, while Note that c may be 0. y )=cy 1 ) ln r e n 0 ) n. 0) All the solutions constructed above converge at least for 0 < 0 < ρ Remember that 0 is a singular point, so we cannot epect convergence there). Remark 3. Note that, although ρ is given by radii of convergence of 0 ) p and 0 ) q, in practice, it is the same as the distance from 0 to the nearest singular point of p and q no 0 ) factor needed. Remark 4. The proof of this theorem is through careful estimate of the size of a n using the recurrence relation. See R. P. Agarwal & D. O Regan Ordinary and Partial Differential Equations: With Special Functions, Fourier Series, and Boundary Value Problems Lecture 5. Remark 5. In fact the converse of this theorem is also true. That is if all solutions of the equation satisfies lim 0 0 r y)=0 1) for some r, then 0 ) p and 0 ) q are analytic at 0. This is called Fuchs Theorem. Its proof is a tour de force of comple analysis and can be found in K. Yosida Lectures on Differential and Integral Equations, pp Eamples. In this class we will only require solving equations with r 1 r not an integer. Eample 6. Solve at 0 = 0. y + 1 ) y + 1 y =0 )

4 4 Lecture 1 Power Series Method at Singular Points Frobenius Theory Solution. We first write it into the standard form y + 1/) y + 1 y =0. 3) Thus p)= 1/ and q)= 1. It is clear that p) and q) are analytic so 0 is a regular singular point, and the method of Frobenius applies. Now we write y = a n n+r. 4) Substitute into the equation, we have ) ) a n n+r + 1/ a n n+r + 1 a n n+r = 0. 5) As p and q are particularly simple, we write the equation as ) ) ) a n n+r + a n n+r 1 a n n+r + 1 a n n+r = 0. 6) Carrying out the differentiation, we reach n + r) n + r 1) a n n+r + n + r) a n n+r 1 1 n + r) a n n+r + 0. Shifting inde: Now the equation becomes r r 1) r + 1 ] a 0 r + { an n+r = n + r)a n n+r 1 = n + r 1)a n+r. 8) n + r) n + r 1) 1 n + r) + 1 7) ]a n + n + r 1) a } n+r = 0. The indicial equation is 9) r r 1) r + 1 = 0 r 1 =1, r = 1. 30) Their difference is not an integer. To find y 1 we set r = r 1 =1. The recurrence relation n + r)n +r 1) 1 n +r) + 1 ] a n + n + r 1)a = 0 31) becomes nn +1) 1 n +1)+ 1 ] a n + n a =0 3) which simplifies to This gives Setting a 0 =1 we obtain a n = 1) n y 1 )= a n = n +1 a. 33) n n +1)n 1) 3 a 0. 34) 1) n n n+1) n 1) 3 n. 35)

5 10/8/011 5 so To find y we set r = r =1/. The recurrence relation becomes Finall the general solution is y) =C 1 a n = 1 n a a n = 1) n 1 n! a 0 36) y ) = 1/ 1) n 1) n 1 n! n = 1/ e. 37) n n+1) n 1) 3 n + C 1/ e. 38) Remark 7. Of course, for anyone who can remember the formulas, there is no need to do all these differentiation and inde-shifting. Remark 8. After getting r 1,, one can also write y 1, y eplicitly and solve a n by substituting them into the equation. See homework 8 solution. Remark 9. For detailed discussion of the why and how of the other two cases, see my Math note at They are not required for Math

Series Solutions Near a Regular Singular Point

Series Solutions Near a Regular Singular Point Series Solutions Near a Regular Singular Point MATH 365 Ordinary Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Background We will find a power series solution to the equation:

More information

The Method of Frobenius

The Method of Frobenius The Method of Frobenius Department of Mathematics IIT Guwahati If either p(x) or q(x) in y + p(x)y + q(x)y = 0 is not analytic near x 0, power series solutions valid near x 0 may or may not exist. If either

More information

2 Series Solutions near a Regular Singular Point

2 Series Solutions near a Regular Singular Point McGill University Math 325A: Differential Equations LECTURE 17: SERIES SOLUTION OF LINEAR DIFFERENTIAL EQUATIONS II 1 Introduction Text: Chap. 8 In this lecture we investigate series solutions for the

More information

MATH 312 Section 6.2: Series Solutions about Singular Points

MATH 312 Section 6.2: Series Solutions about Singular Points MATH 312 Section 6.2: Series Solutions about Singular Points Prof. Jonathan Duncan Walla Walla University Spring Quarter, 2008 Outline 1 Classifying Singular Points 2 The Method of Frobenius 3 Conclusions

More information

Lecture 4: Frobenius Series about Regular Singular Points

Lecture 4: Frobenius Series about Regular Singular Points Introductory lecture notes on Partial Differential Equations - c Anthony Peirce. Not to be copied, used, or revised without explicit written permission from the copyright owner. 1 Lecture 4: Frobenius

More information

Review for Exam 2. Review for Exam 2.

Review for Exam 2. Review for Exam 2. Review for Exam 2. 5 or 6 problems. No multiple choice questions. No notes, no books, no calculators. Problems similar to homeworks. Exam covers: Regular-singular points (5.5). Euler differential equation

More information

Ch 5.7: Series Solutions Near a Regular Singular Point, Part II

Ch 5.7: Series Solutions Near a Regular Singular Point, Part II Ch 5.7: Series Solutions Near a Regular Singular Point, Part II! Recall from Section 5.6 (Part I): The point x 0 = 0 is a regular singular point of with and corresponding Euler Equation! We assume solutions

More information

Equations with regular-singular points (Sect. 5.5).

Equations with regular-singular points (Sect. 5.5). Equations with regular-singular points (Sect. 5.5). Equations with regular-singular points. s: Equations with regular-singular points. Method to find solutions. : Method to find solutions. Recall: The

More information

Differential Equations Practice: Euler Equations & Regular Singular Points Page 1

Differential Equations Practice: Euler Equations & Regular Singular Points Page 1 Differential Equations Practice: Euler Equations & Regular Singular Points Page 1 Questions Eample (5.4.1) Determine the solution to the differential equation y + 4y + y = 0 that is valid in any interval

More information

Math Assignment 11

Math Assignment 11 Math 2280 - Assignment 11 Dylan Zwick Fall 2013 Section 8.1-2, 8, 13, 21, 25 Section 8.2-1, 7, 14, 17, 32 Section 8.3-1, 8, 15, 18, 24 1 Section 8.1 - Introduction and Review of Power Series 8.1.2 - Find

More information

Bessel s Equation. MATH 365 Ordinary Differential Equations. J. Robert Buchanan. Fall Department of Mathematics

Bessel s Equation. MATH 365 Ordinary Differential Equations. J. Robert Buchanan. Fall Department of Mathematics Bessel s Equation MATH 365 Ordinary Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Background Bessel s equation of order ν has the form where ν is a constant. x 2 y + xy

More information

Series Solutions of Linear Differential Equations

Series Solutions of Linear Differential Equations Differential Equations Massoud Malek Series Solutions of Linear Differential Equations In this chapter we shall solve some second-order linear differential equation about an initial point using The Taylor

More information

ODE Homework Series Solutions Near an Ordinary Point, Part I 1. Seek power series solution of the equation. n(n 1)a n x n 2 = n=0

ODE Homework Series Solutions Near an Ordinary Point, Part I 1. Seek power series solution of the equation. n(n 1)a n x n 2 = n=0 ODE Homework 6 5.2. Series Solutions Near an Ordinary Point, Part I 1. Seek power series solution of the equation y + k 2 x 2 y = 0, k a constant about the the point x 0 = 0. Find the recurrence relation;

More information

12d. Regular Singular Points

12d. Regular Singular Points October 22, 2012 12d-1 12d. Regular Singular Points We have studied solutions to the linear second order differential equations of the form P (x)y + Q(x)y + R(x)y = 0 (1) in the cases with P, Q, R real

More information

Math 334 A1 Homework 3 (Due Nov. 5 5pm)

Math 334 A1 Homework 3 (Due Nov. 5 5pm) Math 334 A1 Homework 3 Due Nov. 5 5pm No Advanced or Challenge problems will appear in homeworks. Basic Problems Problem 1. 4.1 11 Verify that the given functions are solutions of the differential equation,

More information

The Method of Frobenius

The Method of Frobenius The Method of Frobenius R. C. Trinity University Partial Differential Equations April 7, 2015 Motivating example Failure of the power series method Consider the ODE 2xy +y +y = 0. In standard form this

More information

8 - Series Solutions of Differential Equations

8 - Series Solutions of Differential Equations 8 - Series Solutions of Differential Equations 8.2 Power Series and Analytic Functions Homework: p. 434-436 # ü Introduction Our earlier technques allowed us to write our solutions in terms of elementary

More information

Method of Frobenius. General Considerations. L. Nielsen, Ph.D. Dierential Equations, Fall Department of Mathematics, Creighton University

Method of Frobenius. General Considerations. L. Nielsen, Ph.D. Dierential Equations, Fall Department of Mathematics, Creighton University Method of Frobenius General Considerations L. Nielsen, Ph.D. Department of Mathematics, Creighton University Dierential Equations, Fall 2008 Outline 1 The Dierential Equation and Assumptions 2 3 Main Theorem

More information

Power Series Solutions to the Bessel Equation

Power Series Solutions to the Bessel Equation Power Series Solutions to the Bessel Equation Department of Mathematics IIT Guwahati The Bessel equation The equation x 2 y + xy + (x 2 α 2 )y = 0, (1) where α is a non-negative constant, i.e α 0, is called

More information

The method of Fröbenius

The method of Fröbenius Note III.5 1 1 April 008 The method of Fröbenius For the general homogeneous ordinary differential equation y (x) + p(x)y (x) + q(x)y(x) = 0 (1) the series method works, as in the Hermite case, where both

More information

Lecture 4b. Bessel functions. Introduction. Generalized factorial function. 4b.1. Using integration by parts it is easy to show that

Lecture 4b. Bessel functions. Introduction. Generalized factorial function. 4b.1. Using integration by parts it is easy to show that 4b. Lecture 4b Using integration by parts it is easy to show that Bessel functions Introduction In the previous lecture the separation of variables method led to Bessel's equation y' ' y ' 2 y= () 2 Here

More information

MATH 417 Homework 6 Instructor: D. Cabrera Due July Find the radius of convergence for each power series below. c n+1 c n (n + 1) 2 (z 3) n+1

MATH 417 Homework 6 Instructor: D. Cabrera Due July Find the radius of convergence for each power series below. c n+1 c n (n + 1) 2 (z 3) n+1 MATH 47 Homework 6 Instructor: D. Cabrera Due Jul 2. Find the radius of convergence for each power series below. (a) (b) n 2 (z 3) n n=2 e n (z + i) n n=4 Solution: (a) Using the Ratio Test we have L =

More information

1 Series Solutions Near Regular Singular Points

1 Series Solutions Near Regular Singular Points 1 Series Solutions Near Regular Singular Points All of the work here will be directed toward finding series solutions of a second order linear homogeneous ordinary differential equation: P xy + Qxy + Rxy

More information

y + α x s y + β x t y = 0,

y + α x s y + β x t y = 0, 80 Chapter 5. Series Solutions of Second Order Linear Equations. Consider the differential equation y + α s y + β t y = 0, (i) where α = 0andβ = 0 are real numbers, and s and t are positive integers that

More information

Math 1B Final Exam, Solution. Prof. Mina Aganagic Lecture 2, Spring (6 points) Use substitution and integration by parts to find:

Math 1B Final Exam, Solution. Prof. Mina Aganagic Lecture 2, Spring (6 points) Use substitution and integration by parts to find: Math B Final Eam, Solution Prof. Mina Aganagic Lecture 2, Spring 20 The eam is closed book, apart from a sheet of notes 8. Calculators are not allowed. It is your responsibility to write your answers clearly..

More information

California State University Northridge MATH 280: Applied Differential Equations Midterm Exam 3

California State University Northridge MATH 280: Applied Differential Equations Midterm Exam 3 California State University Northridge MATH 280: Applied Differential Equations Midterm Exam 3 April 29, 2013. Duration: 75 Minutes. Instructor: Jing Li Student Name: Signature: Do not write your student

More information

Additional material: Linear Differential Equations

Additional material: Linear Differential Equations Chapter 5 Additional material: Linear Differential Equations 5.1 Introduction The material in this chapter is not formally part of the LTCC course. It is included for completeness as it contains proofs

More information

Last Update: March 1 2, 201 0

Last Update: March 1 2, 201 0 M ath 2 0 1 E S 1 W inter 2 0 1 0 Last Update: March 1 2, 201 0 S eries S olutions of Differential Equations Disclaimer: This lecture note tries to provide an alternative approach to the material in Sections

More information

Series Solutions of Linear ODEs

Series Solutions of Linear ODEs Chapter 2 Series Solutions of Linear ODEs This Chapter is concerned with solutions of linear Ordinary Differential Equations (ODE). We will start by reviewing some basic concepts and solution methods for

More information

MA22S3 Summary Sheet: Ordinary Differential Equations

MA22S3 Summary Sheet: Ordinary Differential Equations MA22S3 Summary Sheet: Ordinary Differential Equations December 14, 2017 Kreyszig s textbook is a suitable guide for this part of the module. Contents 1 Terminology 1 2 First order separable 2 2.1 Separable

More information

Math 180A. Lecture 16 Friday May 7 th. Expectation. Recall the three main probability density functions so far (1) Uniform (2) Exponential.

Math 180A. Lecture 16 Friday May 7 th. Expectation. Recall the three main probability density functions so far (1) Uniform (2) Exponential. Math 8A Lecture 6 Friday May 7 th Epectation Recall the three main probability density functions so far () Uniform () Eponential (3) Power Law e, ( ), Math 8A Lecture 6 Friday May 7 th Epectation Eample

More information

Relevant sections from AMATH 351 Course Notes (Wainwright): Relevant sections from AMATH 351 Course Notes (Poulin and Ingalls):

Relevant sections from AMATH 351 Course Notes (Wainwright): Relevant sections from AMATH 351 Course Notes (Poulin and Ingalls): Lecture 5 Series solutions to DEs Relevant sections from AMATH 35 Course Notes (Wainwright):.4. Relevant sections from AMATH 35 Course Notes (Poulin and Ingalls): 2.-2.3 As mentioned earlier in this course,

More information

Series Solutions Near an Ordinary Point

Series Solutions Near an Ordinary Point Series Solutions Near an Ordinary Point MATH 365 Ordinary Differential Equations J. Robert Buchanan Department of Mathematics Spring 2018 Ordinary Points (1 of 2) Consider the second order linear homogeneous

More information

Math Lecture 36

Math Lecture 36 Math 80 - Lecture 36 Dylan Zwick Fall 013 Today, we re going to examine the solutions to the differential equation x y + xy + (x p )y = 0, which is called Bessel s equation of order p 0. The solutions

More information

Review of Power Series

Review of Power Series Review of Power Series MATH 365 Ordinary Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Introduction In addition to the techniques we have studied so far, we may use power

More information

Section 11.1 Sequences

Section 11.1 Sequences Math 152 c Lynch 1 of 8 Section 11.1 Sequences A sequence is a list of numbers written in a definite order: a 1, a 2, a 3,..., a n,... Notation. The sequence {a 1, a 2, a 3,...} can also be written {a

More information

Series solutions of second order linear differential equations

Series solutions of second order linear differential equations Series solutions of second order linear differential equations We start with Definition 1. A function f of a complex variable z is called analytic at z = z 0 if there exists a convergent Taylor series

More information

Math-2 Lesson 2-4. Radicals

Math-2 Lesson 2-4. Radicals Math- Lesson - Radicals = What number is equivalent to the square root of? Square both sides of the equation ( ) ( ) = = = is an equivalent statement to = 1.7 1.71 1.70 1.701 1.7008... There is no equivalent

More information

Recurrence Relations and Recursion: MATH 180

Recurrence Relations and Recursion: MATH 180 Recurrence Relations and Recursion: MATH 180 1: Recursively Defined Sequences Example 1: The sequence a 1,a 2,a 3,... can be defined recursively as follows: (1) For all integers k 2, a k = a k 1 + 1 (2)

More information

Fall Math 3410 Name (Print): Solution KEY Practice Exam 2 - November 4 Time Limit: 50 Minutes

Fall Math 3410 Name (Print): Solution KEY Practice Exam 2 - November 4 Time Limit: 50 Minutes Fall 206 - Math 340 Name (Print): Solution KEY Practice Exam 2 - November 4 Time Limit: 50 Minutes This exam contains pages (including this cover page) and 5 problems. Check to see if any pages are missing.

More information

FROBENIUS SERIES SOLUTIONS

FROBENIUS SERIES SOLUTIONS FROBENIUS SERIES SOLUTIONS TSOGTGEREL GANTUMUR Abstract. We introduce the Frobenius series method to solve second order linear equations, and illustrate it by concrete examples. Contents. Regular singular

More information

PRELIMINARIES FOR HYPERGEOMETRIC EQUATION. We will only consider differential equations with regular singularities in this lectures.

PRELIMINARIES FOR HYPERGEOMETRIC EQUATION. We will only consider differential equations with regular singularities in this lectures. PRELIMINARIES FOR HYPERGEOMETRIC EQUATION EDMUND Y.-M. CHIANG Abstract. We give a brief introduction to some preliminaries for Gauss hypergeometric equations. We will only consider differential equations

More information

Series solutions to a second order linear differential equation with regular singular points

Series solutions to a second order linear differential equation with regular singular points Physics 6C Fall 0 Series solutions to a second order linear differential equation with regular singular points Consider the second-order linear differential equation, d y dx + p(x) dy x dx + q(x) y = 0,

More information

Lecture 13: Series Solutions near Singular Points

Lecture 13: Series Solutions near Singular Points Lecture 13: Series Solutions near Singular Points March 28, 2007 Here we consider solutions to second-order ODE s using series when the coefficients are not necessarily analytic. A first-order analogy

More information

1 Solutions in cylindrical coordinates: Bessel functions

1 Solutions in cylindrical coordinates: Bessel functions 1 Solutions in cylindrical coordinates: Bessel functions 1.1 Bessel functions Bessel functions arise as solutions of potential problems in cylindrical coordinates. Laplace s equation in cylindrical coordinates

More information

Series Solution of Linear Ordinary Differential Equations

Series Solution of Linear Ordinary Differential Equations Series Solution of Linear Ordinary Differential Equations Department of Mathematics IIT Guwahati Aim: To study methods for determining series expansions for solutions to linear ODE with variable coefficients.

More information

Differentiation of Logarithmic Functions

Differentiation of Logarithmic Functions Differentiation of Logarithmic Functions The rule for finding the derivative of a logarithmic function is given as: If y log a then dy or y. d a ( ln This rule can be proven by rewriting the logarithmic

More information

Problem 1 Kaplan, p. 436: 2c,i

Problem 1 Kaplan, p. 436: 2c,i Mathematical Methods I - Fall 03 Homework Solutions Page Problem Kaplan, p 36: c,i Find the first three nonzero terms of the following Taylor series: c) ln + x) about x = 0 i) arctanh x about x = 0 The

More information

Section 4.3: Quadratic Formula

Section 4.3: Quadratic Formula Objective: Solve quadratic equations using the quadratic formula. In this section we will develop a formula to solve any quadratic equation ab c 0 where a b and c are real numbers and a 0. Solve for this

More information

7.3 Singular points and the method of Frobenius

7.3 Singular points and the method of Frobenius 284 CHAPTER 7. POWER SERIES METHODS 7.3 Singular points and the method of Frobenius Note: or.5 lectures, 8.4 and 8.5 in [EP], 5.4 5.7 in [BD] While behaviour of ODEs at singular points is more complicated,

More information

DIFFERENTIATION RULES

DIFFERENTIATION RULES 3 DIFFERENTIATION RULES DIFFERENTIATION RULES 3.6 Derivatives of Logarithmic Functions In this section, we: use implicit differentiation to find the derivatives of the logarithmic functions and, in particular,

More information

2 2 + x =

2 2 + x = Lecture 30: Power series A Power Series is a series of the form c n = c 0 + c 1 x + c x + c 3 x 3 +... where x is a variable, the c n s are constants called the coefficients of the series. n = 1 + x +

More information

S. Ghorai 1. Lecture XV Bessel s equation, Bessel s function. e t t p 1 dt, p > 0. (1)

S. Ghorai 1. Lecture XV Bessel s equation, Bessel s function. e t t p 1 dt, p > 0. (1) S Ghorai 1 1 Gamma function Gamma function is defined by Lecture XV Bessel s equation, Bessel s function Γp) = e t t p 1 dt, p > 1) The integral in 1) is convergent that can be proved easily Some special

More information

Chapter 5.3: Series solution near an ordinary point

Chapter 5.3: Series solution near an ordinary point Chapter 5.3: Series solution near an ordinary point We continue to study ODE s with polynomial coefficients of the form: P (x)y + Q(x)y + R(x)y = 0. Recall that x 0 is an ordinary point if P (x 0 ) 0.

More information

Boundary Value Problems in Cylindrical Coordinates

Boundary Value Problems in Cylindrical Coordinates Boundary Value Problems in Cylindrical Coordinates 29 Outline Differential Operators in Various Coordinate Systems Laplace Equation in Cylindrical Coordinates Systems Bessel Functions Wave Equation the

More information

Math Calculus f. Business and Management - Worksheet 12. Solutions for Worksheet 12 - Limits as x approaches infinity

Math Calculus f. Business and Management - Worksheet 12. Solutions for Worksheet 12 - Limits as x approaches infinity Math 0 - Calculus f. Business and Management - Worksheet 1 Solutions for Worksheet 1 - Limits as approaches infinity Simple Limits Eercise 1: Compute the following its: 1a : + 4 1b : 5 + 8 1c : 5 + 8 Solution

More information

Lecture 18: Section 4.3

Lecture 18: Section 4.3 Lecture 18: Section 4.3 Shuanglin Shao November 6, 2013 Linear Independence and Linear Dependence. We will discuss linear independence of vectors in a vector space. Definition. If S = {v 1, v 2,, v r }

More information

Welcome to Math 257/316 - Partial Differential Equations

Welcome to Math 257/316 - Partial Differential Equations Welcome to Math 257/316 - Partial Differential Equations Instructor: Mona Rahmani email: mrahmani@math.ubc.ca Office: Mathematics Building 110 Office hours: Mondays 2-3 pm, Wednesdays and Fridays 1-2 pm.

More information

Math-1010 Lesson 4-2. Add and Subtract Rational Expressions

Math-1010 Lesson 4-2. Add and Subtract Rational Expressions Math-00 Lesson - Add and Subtract Rational Epressions What are like terms? Like variables: Like powers: y y Multiples of the same variable same base and same eponent. Like radicals: same radicand and same

More information

Power series solutions for 2nd order linear ODE s (not necessarily with constant coefficients) a n z n. n=0

Power series solutions for 2nd order linear ODE s (not necessarily with constant coefficients) a n z n. n=0 Lecture 22 Power series solutions for 2nd order linear ODE s (not necessarily with constant coefficients) Recall a few facts about power series: a n z n This series in z is centered at z 0. Here z can

More information

Page 1. These are all fairly simple functions in that wherever the variable appears it is by itself. What about functions like the following, ( ) ( )

Page 1. These are all fairly simple functions in that wherever the variable appears it is by itself. What about functions like the following, ( ) ( ) Chain Rule Page We ve taken a lot of derivatives over the course of the last few sections. However, if you look back they have all been functions similar to the following kinds of functions. 0 w ( ( tan

More information

Practice Problems For Test 3

Practice Problems For Test 3 Practice Problems For Test 3 Power Series Preliminary Material. Find the interval of convergence of the following. Be sure to determine the convergence at the endpoints. (a) ( ) k (x ) k (x 3) k= k (b)

More information

Chapter 5.8: Bessel s equation

Chapter 5.8: Bessel s equation Chapter 5.8: Bessel s equation Bessel s equation of order ν is: x 2 y + xy + (x 2 ν 2 )y = 0. It has a regular singular point at x = 0. When ν = 0,, 2,..., this equation comes up when separating variables

More information

LECTURE 9: SERIES SOLUTIONS NEAR AN ORDINARY POINT I

LECTURE 9: SERIES SOLUTIONS NEAR AN ORDINARY POINT I LECTURE 9: SERIES SOLUTIONS NEAR AN ORDINARY POINT I In this lecture and the next two, we will learn series methods through an attempt to answer the following two questions: What is a series method and

More information

Practice Problems For Test 3

Practice Problems For Test 3 Practice Problems For Test 3 Power Series Preliminary Material. Find the interval of convergence of the following. Be sure to determine the convergence at the endpoints. (a) ( ) k (x ) k (x 3) k= k (b)

More information

Power Series. Part 1. J. Gonzalez-Zugasti, University of Massachusetts - Lowell

Power Series. Part 1. J. Gonzalez-Zugasti, University of Massachusetts - Lowell Power Series Part 1 1 Power Series Suppose x is a variable and c k & a are constants. A power series about x = 0 is c k x k A power series about x = a is c k x a k a = center of the power series c k =

More information

Pre-Calculus Summer Packet

Pre-Calculus Summer Packet Pre-Calculus Summer Packet Name ALLEN PARK HIGH SCHOOL Summer Assessment Pre-Calculus Summer Packet For Students Entering Pre-Calculus Summer 05 This summer packet is intended to be completed by the FIRST

More information

Algebra Concepts Equation Solving Flow Chart Page 1 of 6. How Do I Solve This Equation?

Algebra Concepts Equation Solving Flow Chart Page 1 of 6. How Do I Solve This Equation? Algebra Concepts Equation Solving Flow Chart Page of 6 How Do I Solve This Equation? First, simplify both sides of the equation as much as possible by: combining like terms, removing parentheses using

More information

Exponential and Logarithmic Functions

Exponential and Logarithmic Functions Lesson 6 Eponential and Logarithmic Fu tions Lesson 6 Eponential and Logarithmic Functions Eponential functions are of the form y = a where a is a constant greater than zero and not equal to one and is

More information

Lesson #33 Solving Incomplete Quadratics

Lesson #33 Solving Incomplete Quadratics Lesson # Solving Incomplete Quadratics A.A.4 Know and apply the technique of completing the square ~ 1 ~ We can also set up any quadratic to solve it in this way by completing the square, the technique

More information

An Introduction to Bessel Functions

An Introduction to Bessel Functions An Introduction to R. C. Trinity University Partial Differential Equations Lecture 17 Bessel s equation Given p 0, the ordinary differential equation x 2 y + xy + (x 2 p 2 )y = 0, x > 0 is known as Bessel

More information

Chapter 4. Series Solutions. 4.1 Introduction to Power Series

Chapter 4. Series Solutions. 4.1 Introduction to Power Series Series Solutions Chapter 4 In most sciences one generation tears down what another has built and what one has established another undoes. In mathematics alone each generation adds a new story to the old

More information

d 1 µ 2 Θ = 0. (4.1) consider first the case of m = 0 where there is no azimuthal dependence on the angle φ.

d 1 µ 2 Θ = 0. (4.1) consider first the case of m = 0 where there is no azimuthal dependence on the angle φ. 4 Legendre Functions In order to investigate the solutions of Legendre s differential equation d ( µ ) dθ ] ] + l(l + ) m dµ dµ µ Θ = 0. (4.) consider first the case of m = 0 where there is no azimuthal

More information

1. State the definition of the integral. Be certain to include all of the appropriate words and symbols. tan(t 2 ) dt, find f (x).

1. State the definition of the integral. Be certain to include all of the appropriate words and symbols. tan(t 2 ) dt, find f (x). Math 26 First Eam Spring 2 Write neat, concise, and accurate solutions to each of the problems below I will not give partial credit for steps I cannot follow Include all relevant steps, use correct notation,

More information

Taylor Series and Series Convergence (Online)

Taylor Series and Series Convergence (Online) 7in 0in Felder c02_online.te V3 - February 9, 205 9:5 A.M. Page CHAPTER 2 Taylor Series and Series Convergence (Online) 2.8 Asymptotic Epansions In introductory calculus classes the statement this series

More information

MATH 391 Test 1 Fall, (1) (12 points each)compute the general solution of each of the following differential equations: = 4x 2y.

MATH 391 Test 1 Fall, (1) (12 points each)compute the general solution of each of the following differential equations: = 4x 2y. MATH 391 Test 1 Fall, 2018 (1) (12 points each)compute the general solution of each of the following differential equations: (a) (b) x dy dx + xy = x2 + y. (x + y) dy dx = 4x 2y. (c) yy + (y ) 2 = 0 (y

More information

16.5. Maclaurin and Taylor Series. Introduction. Prerequisites. Learning Outcomes

16.5. Maclaurin and Taylor Series. Introduction. Prerequisites. Learning Outcomes Maclaurin and Talor Series 6.5 Introduction In this Section we eamine how functions ma be epressed in terms of power series. This is an etremel useful wa of epressing a function since (as we shall see)

More information

MATH ASSIGNMENT 1 - SOLUTIONS September 11, 2006

MATH ASSIGNMENT 1 - SOLUTIONS September 11, 2006 MATH 0-090 ASSIGNMENT - September, 00. Using the Trichotomy Law prove that if a and b are real numbers then one and only one of the following is possible: a < b, a b, or a > b. Since a and b are real numbers

More information

ODE. Philippe Rukimbira. Department of Mathematics Florida International University PR (FIU) MAP / 92

ODE. Philippe Rukimbira. Department of Mathematics Florida International University PR (FIU) MAP / 92 ODE Philippe Rukimbira Department of Mathematics Florida International University PR (FIU) MAP 2302 1 / 92 4.4 The method of Variation of parameters 1. Second order differential equations (Normalized,

More information

ACCUPLACER MATH 0311 OR MATH 0120

ACCUPLACER MATH 0311 OR MATH 0120 The University of Teas at El Paso Tutoring and Learning Center ACCUPLACER MATH 0 OR MATH 00 http://www.academics.utep.edu/tlc MATH 0 OR MATH 00 Page Factoring Factoring Eercises 8 Factoring Answer to Eercises

More information

Pure Core 2. Revision Notes

Pure Core 2. Revision Notes Pure Core Revision Notes June 06 Pure Core Algebra... Polynomials... Factorising... Standard results... Long division... Remainder theorem... 4 Factor theorem... 5 Choosing a suitable factor... 6 Cubic

More information

Series Solutions of ODEs. Special Functions

Series Solutions of ODEs. Special Functions C05.tex 6/4/0 3: 5 Page 65 Chap. 5 Series Solutions of ODEs. Special Functions We continue our studies of ODEs with Legendre s, Bessel s, and the hypergeometric equations. These ODEs have variable coefficients

More information

A-LEVEL MATHS Bridging Work 2017

A-LEVEL MATHS Bridging Work 2017 A-LEVEL MATHS Bridging Work 017 Name: Firstly, CONGRATULATIONS for choosing the best A-Level subject there is. A-Level Maths at Wales is not only interesting and enjoyable but is highly regarded by colleges,

More information

MATH39001 Generating functions. 1 Ordinary power series generating functions

MATH39001 Generating functions. 1 Ordinary power series generating functions MATH3900 Generating functions The reference for this part of the course is generatingfunctionology by Herbert Wilf. The 2nd edition is downloadable free from http://www.math.upenn. edu/~wilf/downldgf.html,

More information

Power Series Solutions of Ordinary Differential Equations

Power Series Solutions of Ordinary Differential Equations Power Series Solutions for Ordinary Differential Equations James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University December 4, 2017 Outline Power

More information

Maths Department. A Level Induction Booklet

Maths Department. A Level Induction Booklet Maths Department A Level Induction Booklet CONTENTS Chapter 1 Removing brackets page Chapter Linear equations 4 Chapter 3 Simultaneous equations 8 Chapter 4 Factors 10 Chapter 5 Change the subject of the

More information

MA123, Chapter 8: Idea of the Integral (pp , Gootman)

MA123, Chapter 8: Idea of the Integral (pp , Gootman) MA13, Chapter 8: Idea of the Integral (pp. 155-187, Gootman) Chapter Goals: Understand the relationship between the area under a curve and the definite integral. Understand the relationship between velocit

More information

ACCUPLACER MATH 0310

ACCUPLACER MATH 0310 The University of Teas at El Paso Tutoring and Learning Center ACCUPLACER MATH 00 http://www.academics.utep.edu/tlc MATH 00 Page Linear Equations Linear Equations Eercises 5 Linear Equations Answer to

More information

Ordinary Differential Equations (ODEs)

Ordinary Differential Equations (ODEs) Chapter 13 Ordinary Differential Equations (ODEs) We briefly review how to solve some of the most standard ODEs. 13.1 First Order Equations 13.1.1 Separable Equations A first-order ordinary differential

More information

POWER SERIES REVIEW SOLUTIONS

POWER SERIES REVIEW SOLUTIONS POWER SERIES REVIEW SOLUTIONS 1. Convergence of power series: For the following, find the radius of convergence: a) (m + 1)mx m In CME 10, we only teach you the ratio test, so that is the only test you

More information

1 5 π 2. 5 π 3. 5 π π x. 5 π 4. Figure 1: We need calculus to find the area of the shaded region.

1 5 π 2. 5 π 3. 5 π π x. 5 π 4. Figure 1: We need calculus to find the area of the shaded region. . Area In order to quantify the size of a 2-dimensional object, we use area. Since we measure area in square units, we can think of the area of an object as the number of such squares it fills up. Using

More information

5.4 Bessel s Equation. Bessel Functions

5.4 Bessel s Equation. Bessel Functions SEC 54 Bessel s Equation Bessel Functions J (x) 87 # with y dy>dt, etc, constant A, B, C, D, K, and t 5 HYPERGEOMETRIC ODE At B (t t )(t t ), t t, can be reduced to the hypergeometric equation with independent

More information

Power Series Solutions for Ordinary Differential Equations

Power Series Solutions for Ordinary Differential Equations Power Series Solutions for Ordinary Differential Equations James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University December 4, 2017 Outline 1 Power

More information

A summary of factoring methods

A summary of factoring methods Roberto s Notes on Prerequisites for Calculus Chapter 1: Algebra Section 1 A summary of factoring methods What you need to know already: Basic algebra notation and facts. What you can learn here: What

More information

Lecture 10: Powers of Matrices, Difference Equations

Lecture 10: Powers of Matrices, Difference Equations Lecture 10: Powers of Matrices, Difference Equations Difference Equations A difference equation, also sometimes called a recurrence equation is an equation that defines a sequence recursively, i.e. each

More information

AP Calculus AB Summer Assignment

AP Calculus AB Summer Assignment AP Calculus AB Summer Assignment Name: When you come back to school, it is my epectation that you will have this packet completed. You will be way behind at the beginning of the year if you haven t attempted

More information

Two special equations: Bessel s and Legendre s equations. p Fourier-Bessel and Fourier-Legendre series. p

Two special equations: Bessel s and Legendre s equations. p Fourier-Bessel and Fourier-Legendre series. p LECTURE 1 Table of Contents Two special equations: Bessel s and Legendre s equations. p. 259-268. Fourier-Bessel and Fourier-Legendre series. p. 453-460. Boundary value problems in other coordinate system.

More information

and the compositional inverse when it exists is A.

and the compositional inverse when it exists is A. Lecture B jacques@ucsd.edu Notation: R denotes a ring, N denotes the set of sequences of natural numbers with finite support, is a generic element of N, is the infinite zero sequence, n 0 R[[ X]] denotes

More information

WORKSHEET FOR THE PRELIMINARY EXAMINATION-REAL ANALYSIS (SEQUENCES OF FUNCTIONS, SERIES OF FUNCTIONS & POWER SERIES)

WORKSHEET FOR THE PRELIMINARY EXAMINATION-REAL ANALYSIS (SEQUENCES OF FUNCTIONS, SERIES OF FUNCTIONS & POWER SERIES) WORKSHEET FOR THE PRELIMINARY EXAMINATION-REAL ANALYSIS (SEQUENCES OF FUNCTIONS, SERIES OF FUNCTIONS & POWER SERIES) INSTRUCTOR: CEZAR LUPU Problem. Decide which of the following sequences of functions

More information