Ch 5.7: Series Solutions Near a Regular Singular Point, Part II

Size: px
Start display at page:

Download "Ch 5.7: Series Solutions Near a Regular Singular Point, Part II"

Transcription

1 Ch 5.7: Series Solutions Near a Regular Singular Point, Part II! Recall from Section 5.6 (Part I): The point x 0 = 0 is a regular singular point of with and corresponding Euler Equation! We assume solutions have the form

2 Substitute Derivatives into ODE! Taking derivatives, we have! Substituting these derivatives into the differential equation, we obtain

3 Multiplying Series

4 Combining Terms in ODE! Our equation then becomes

5 Rewriting ODE! Define F(r) by! We can then rewrite our equation in more compact form:

6 Indicial Equation! Thus our equation is! Since a 0 0, we must have! This indicial equation is the same one obtained when seeking solutions y = x r to the corresponding Euler Equation.! Note that F(r) is quadratic in r, and hence has two roots, r 1 and r 2. If r 1 and r 2 are real, then assume r 1 r 2.! These roots are called the exponents at the singularity, and they determine behavior of solution near singular point.

7 Recurrence Relation! From our equation, the recurrence relation is! This recurrence relation shows that in general, a n depends on r and the previous coefficients a 0, a 1,, a n-1.! Note that we must have r = r 1 or r = r 2.

8 Recurrence Relation & First Solution! With the recurrence relation we can compute a 1,, a n-1 in terms of a 0, p m and q m, provided F(r + 1), F(r + 2),, F(r + n), are not zero.! Recall r = r 1 or r = r 2, and these are the only roots of F(r).! Since r 1 r 2, we have r 1 + n r 1 and r 1 + n r 2 for n 1.! Thus F(r 1 + n) 0 for n 1, and at least one solution exists: where the notation a n (r 1 ) indicates that a n has been determined using r = r 1.

9 Recurrence Relation & Second Solution! Now consider r = r 2. Using the recurrence relation we compute a 1,, a n-1 in terms of a 0, p m and q m, provided F(r 2 + 1), F(r 2 + 2),, F(r 2 + n), are not zero.! If r 2 r 1, and r 2 - r 1 n for n 1, then r 2 + n r 1 for n 1.! Thus F(r 2 + n) 0 for n 1, and a second solution exists: where the notation a n (r 2 ) indicates that a n has been determined using r = r 2.

10 Convergence of Solutions! If the restrictions on r 2 are satisfied, we have two solutions where a 0 =1 and x > 0. The series converge for x < ρ, and define analytic functions within their radii of convergence.! It follows that any singular behavior of solutions y 1 and y 2 is due to the factors x r1 and x r2.! To obtain solutions for x < 0, it can be shown that we need only replace x r1 and x r2 by x r1 and x r2 in y 1 and y 2 above.! If r 1 and r 2 are complex, then r 1 r 2 and r 2 - r 1 n for n 1, and real-valued series solutions can be found.

11 Example 1: Singular Points (1 of 5)! Find all regular singular points, determine indicial equation and exponents of singularity for each regular singular point. Then discuss nature of solutions near singular points.! Solution: The equation can be rewritten as! The singular points are x = 0 and x = -1.! Then x = 0 is a regular singular point, since

12 Example 1: Indicial Equation, x = 0 (2 of 5)! The corresponding indicial equation is given by or! The exponents at the singularity for x = 0 are found by solving indicial equation:! Thus r 1 = 0 and r 2 = -1/2, for the regular singular point x = 0.

13 Example 1: Series Solutions, x = 0 (3 of 5)! The solutions corresponding to x = 0 have the form! The coefficients a n (0) and a n (-1/2) are determined by the corresponding recurrence relation.! Both series converge for x < ρ, where ρ is the smaller radius of convergence for the series representations about x = 0 for! The smallest ρ can be is 1, which is the distance between the two singular points x = 0 and x = -1.! Note y 1 is bounded as x 0, whereas y 2 unbounded as x 0.

14 Example 1: Indicial Equation, x = -1 (4 of 5)! Next, x = -1 is a regular singular point, since and! The indicial equation is given by and hence the exponents at the singularity for x = -1 are! Note that r 1 and r 2 differ by a positive integer.

15 Example 1: Series Solutions, x = -1 (5 of 5)! The first solution corresponding to x = -1 has the form! This series converges for x < ρ, where ρ is the smaller radius of convergence for the series representations about x = -1 for! The smallest ρ can be is 1. Note y 1 is bounded as x -1.! Since the roots r 1 = 2 and r 2 = 0 differ by a positive integer, there may or may not be a second solution of the form

16 Equal Roots! Recall that the general indicial equation is given by! In the case of equal roots, F(r) simplifies to! It can be shown (see text) that the solutions are given by where the b n (r 1 ) are found by substituting y 2 into the ODE and solving, as usual. Alternatively, as shown in text,

17 Roots Differing by an Integer! If roots of indicial equation differ by a positive integer, i.e., r 1 r 2 = N, it can be shown that the ODE solns are given by where the c n (r 1 ) are found by substituting y 2 into the differential equation and solving, as usual. Alternatively, and! See Theorem for a summary of results in this section.

Series Solutions Near a Regular Singular Point

Series Solutions Near a Regular Singular Point Series Solutions Near a Regular Singular Point MATH 365 Ordinary Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Background We will find a power series solution to the equation:

More information

Equations with regular-singular points (Sect. 5.5).

Equations with regular-singular points (Sect. 5.5). Equations with regular-singular points (Sect. 5.5). Equations with regular-singular points. s: Equations with regular-singular points. Method to find solutions. : Method to find solutions. Recall: The

More information

1 Series Solutions Near Regular Singular Points

1 Series Solutions Near Regular Singular Points 1 Series Solutions Near Regular Singular Points All of the work here will be directed toward finding series solutions of a second order linear homogeneous ordinary differential equation: P xy + Qxy + Rxy

More information

12d. Regular Singular Points

12d. Regular Singular Points October 22, 2012 12d-1 12d. Regular Singular Points We have studied solutions to the linear second order differential equations of the form P (x)y + Q(x)y + R(x)y = 0 (1) in the cases with P, Q, R real

More information

Differential Equations Practice: Euler Equations & Regular Singular Points Page 1

Differential Equations Practice: Euler Equations & Regular Singular Points Page 1 Differential Equations Practice: Euler Equations & Regular Singular Points Page 1 Questions Eample (5.4.1) Determine the solution to the differential equation y + 4y + y = 0 that is valid in any interval

More information

ODE Homework Series Solutions Near an Ordinary Point, Part I 1. Seek power series solution of the equation. n(n 1)a n x n 2 = n=0

ODE Homework Series Solutions Near an Ordinary Point, Part I 1. Seek power series solution of the equation. n(n 1)a n x n 2 = n=0 ODE Homework 6 5.2. Series Solutions Near an Ordinary Point, Part I 1. Seek power series solution of the equation y + k 2 x 2 y = 0, k a constant about the the point x 0 = 0. Find the recurrence relation;

More information

The Method of Frobenius

The Method of Frobenius The Method of Frobenius Department of Mathematics IIT Guwahati If either p(x) or q(x) in y + p(x)y + q(x)y = 0 is not analytic near x 0, power series solutions valid near x 0 may or may not exist. If either

More information

Lecture 21 Power Series Method at Singular Points Frobenius Theory

Lecture 21 Power Series Method at Singular Points Frobenius Theory Lecture 1 Power Series Method at Singular Points Frobenius Theory 10/8/011 Review. The usual power series method, that is setting y = a n 0 ) n, breaks down if 0 is a singular point. Here breaks down means

More information

Chapter 5.3: Series solution near an ordinary point

Chapter 5.3: Series solution near an ordinary point Chapter 5.3: Series solution near an ordinary point We continue to study ODE s with polynomial coefficients of the form: P (x)y + Q(x)y + R(x)y = 0. Recall that x 0 is an ordinary point if P (x 0 ) 0.

More information

Bessel s Equation. MATH 365 Ordinary Differential Equations. J. Robert Buchanan. Fall Department of Mathematics

Bessel s Equation. MATH 365 Ordinary Differential Equations. J. Robert Buchanan. Fall Department of Mathematics Bessel s Equation MATH 365 Ordinary Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Background Bessel s equation of order ν has the form where ν is a constant. x 2 y + xy

More information

Chapter 5.8: Bessel s equation

Chapter 5.8: Bessel s equation Chapter 5.8: Bessel s equation Bessel s equation of order ν is: x 2 y + xy + (x 2 ν 2 )y = 0. It has a regular singular point at x = 0. When ν = 0,, 2,..., this equation comes up when separating variables

More information

Review for Exam 2. Review for Exam 2.

Review for Exam 2. Review for Exam 2. Review for Exam 2. 5 or 6 problems. No multiple choice questions. No notes, no books, no calculators. Problems similar to homeworks. Exam covers: Regular-singular points (5.5). Euler differential equation

More information

Math Assignment 11

Math Assignment 11 Math 2280 - Assignment 11 Dylan Zwick Fall 2013 Section 8.1-2, 8, 13, 21, 25 Section 8.2-1, 7, 14, 17, 32 Section 8.3-1, 8, 15, 18, 24 1 Section 8.1 - Introduction and Review of Power Series 8.1.2 - Find

More information

Section 3.7: Solving Radical Equations

Section 3.7: Solving Radical Equations Objective: Solve equations with radicals and check for extraneous solutions. In this section, we solve equations that have roots in the problem. As you might expect, to clear a root we can raise both sides

More information

y + α x s y + β x t y = 0,

y + α x s y + β x t y = 0, 80 Chapter 5. Series Solutions of Second Order Linear Equations. Consider the differential equation y + α s y + β t y = 0, (i) where α = 0andβ = 0 are real numbers, and s and t are positive integers that

More information

Math 334 A1 Homework 3 (Due Nov. 5 5pm)

Math 334 A1 Homework 3 (Due Nov. 5 5pm) Math 334 A1 Homework 3 Due Nov. 5 5pm No Advanced or Challenge problems will appear in homeworks. Basic Problems Problem 1. 4.1 11 Verify that the given functions are solutions of the differential equation,

More information

Last Update: March 1 2, 201 0

Last Update: March 1 2, 201 0 M ath 2 0 1 E S 1 W inter 2 0 1 0 Last Update: March 1 2, 201 0 S eries S olutions of Differential Equations Disclaimer: This lecture note tries to provide an alternative approach to the material in Sections

More information

MATH 312 Section 6.2: Series Solutions about Singular Points

MATH 312 Section 6.2: Series Solutions about Singular Points MATH 312 Section 6.2: Series Solutions about Singular Points Prof. Jonathan Duncan Walla Walla University Spring Quarter, 2008 Outline 1 Classifying Singular Points 2 The Method of Frobenius 3 Conclusions

More information

Example: x 10-2 = ( since 10 2 = 100 and [ 10 2 ] -1 = 1 which 100 means divided by 100)

Example: x 10-2 = ( since 10 2 = 100 and [ 10 2 ] -1 = 1 which 100 means divided by 100) Scientific Notation When we use 10 as a factor 2 times, the product is 100. 10 2 = 10 x 10 = 100 second power of 10 When we use 10 as a factor 3 times, the product is 1000. 10 3 = 10 x 10 x 10 = 1000 third

More information

Problem Sheet 1.1 First order linear equations;

Problem Sheet 1.1 First order linear equations; Problem Sheet 1 First order linear equations; In each of Problems 1 through 8 find the solution of the given initial value problem 5 6 7 8 In each of Problems 9 and 10: (a) Let be the value of for which

More information

Series Solution of Linear Ordinary Differential Equations

Series Solution of Linear Ordinary Differential Equations Series Solution of Linear Ordinary Differential Equations Department of Mathematics IIT Guwahati Aim: To study methods for determining series expansions for solutions to linear ODE with variable coefficients.

More information

PRIMALITY TEST FOR FERMAT NUMBERS USING QUARTIC RECURRENCE EQUATION. Predrag Terzic Podgorica, Montenegro

PRIMALITY TEST FOR FERMAT NUMBERS USING QUARTIC RECURRENCE EQUATION. Predrag Terzic Podgorica, Montenegro PRIMALITY TEST FOR FERMAT NUMBERS USING QUARTIC RECURRENCE EQUATION Predrag Terzic Podgorica, Montenegro pedja.terzic@hotmail.com Abstract. We present deterministic primality test for Fermat numbers, F

More information

General Form. Standard Form(Vertex Form) where a,b, and c are real numbers, with. where a, h, and k are real numbers, with.

General Form. Standard Form(Vertex Form) where a,b, and c are real numbers, with. where a, h, and k are real numbers, with. Quadratic Equations A quadratic equation is a second degree polynomial equation in x. Meaning that there is at least one term that is being squared and there is NO exponent in the equation that is greater

More information

SOLUTIONS ABOUT ORDINARY POINTS

SOLUTIONS ABOUT ORDINARY POINTS 238 CHAPTER 6 SERIES SOLUTIONS OF LINEAR EQUATIONS In Problems 23 and 24 use a substitution to shift the summation index so that the general term of given power series involves x k. 23. nc n x n2 n 24.

More information

8 - Series Solutions of Differential Equations

8 - Series Solutions of Differential Equations 8 - Series Solutions of Differential Equations 8.2 Power Series and Analytic Functions Homework: p. 434-436 # ü Introduction Our earlier technques allowed us to write our solutions in terms of elementary

More information

AN ALGEBRAIC PROOF OF RSA ENCRYPTION AND DECRYPTION

AN ALGEBRAIC PROOF OF RSA ENCRYPTION AND DECRYPTION AN ALGEBRAIC PROOF OF RSA ENCRYPTION AND DECRYPTION Recall that RSA works as follows. A wants B to communicate with A, but without E understanding the transmitted message. To do so: A broadcasts RSA method,

More information

PRELIMINARIES FOR HYPERGEOMETRIC EQUATION. We will only consider differential equations with regular singularities in this lectures.

PRELIMINARIES FOR HYPERGEOMETRIC EQUATION. We will only consider differential equations with regular singularities in this lectures. PRELIMINARIES FOR HYPERGEOMETRIC EQUATION EDMUND Y.-M. CHIANG Abstract. We give a brief introduction to some preliminaries for Gauss hypergeometric equations. We will only consider differential equations

More information

The greatest common factor, or GCF, is the largest factor that two or more terms share.

The greatest common factor, or GCF, is the largest factor that two or more terms share. Unit, Lesson Factoring Recall that a factor is one of two or more numbers or expressions that when multiplied produce a given product You can factor certain expressions by writing them as the product of

More information

Power Series Solutions to the Bessel Equation

Power Series Solutions to the Bessel Equation Power Series Solutions to the Bessel Equation Department of Mathematics IIT Guwahati The Bessel equation The equation x 2 y + xy + (x 2 α 2 )y = 0, (1) where α is a non-negative constant, i.e α 0, is called

More information

Relevant sections from AMATH 351 Course Notes (Wainwright): Relevant sections from AMATH 351 Course Notes (Poulin and Ingalls):

Relevant sections from AMATH 351 Course Notes (Wainwright): Relevant sections from AMATH 351 Course Notes (Poulin and Ingalls): Lecture 5 Series solutions to DEs Relevant sections from AMATH 35 Course Notes (Wainwright):.4. Relevant sections from AMATH 35 Course Notes (Poulin and Ingalls): 2.-2.3 As mentioned earlier in this course,

More information

Ch. 7.6 Squares, Squaring & Parabolas

Ch. 7.6 Squares, Squaring & Parabolas Ch. 7.6 Squares, Squaring & Parabolas Learning Intentions: Learn about the squaring & square root function. Graph parabolas. Compare the squaring function with other functions. Relate the squaring function

More information

Method of Frobenius. General Considerations. L. Nielsen, Ph.D. Dierential Equations, Fall Department of Mathematics, Creighton University

Method of Frobenius. General Considerations. L. Nielsen, Ph.D. Dierential Equations, Fall Department of Mathematics, Creighton University Method of Frobenius General Considerations L. Nielsen, Ph.D. Department of Mathematics, Creighton University Dierential Equations, Fall 2008 Outline 1 The Dierential Equation and Assumptions 2 3 Main Theorem

More information

Worksheet Topic 1 Order of operations, combining like terms 2 Solving linear equations 3 Finding slope between two points 4 Solving linear equations

Worksheet Topic 1 Order of operations, combining like terms 2 Solving linear equations 3 Finding slope between two points 4 Solving linear equations Worksheet Topic 1 Order of operations, combining like terms 2 Solving linear equations 3 Finding slope between two points 4 Solving linear equations 5 Multiplying binomials 6 Practice with exponents 7

More information

The Sommerfeld Polynomial Method: Harmonic Oscillator Example

The Sommerfeld Polynomial Method: Harmonic Oscillator Example Chemistry 460 Fall 2017 Dr. Jean M. Standard October 2, 2017 The Sommerfeld Polynomial Method: Harmonic Oscillator Example Scaling the Harmonic Oscillator Equation Recall the basic definitions of the harmonic

More information

MA22S3 Summary Sheet: Ordinary Differential Equations

MA22S3 Summary Sheet: Ordinary Differential Equations MA22S3 Summary Sheet: Ordinary Differential Equations December 14, 2017 Kreyszig s textbook is a suitable guide for this part of the module. Contents 1 Terminology 1 2 First order separable 2 2.1 Separable

More information

2 Series Solutions near a Regular Singular Point

2 Series Solutions near a Regular Singular Point McGill University Math 325A: Differential Equations LECTURE 17: SERIES SOLUTION OF LINEAR DIFFERENTIAL EQUATIONS II 1 Introduction Text: Chap. 8 In this lecture we investigate series solutions for the

More information

LEGENDRE POLYNOMIALS AND APPLICATIONS. We construct Legendre polynomials and apply them to solve Dirichlet problems in spherical coordinates.

LEGENDRE POLYNOMIALS AND APPLICATIONS. We construct Legendre polynomials and apply them to solve Dirichlet problems in spherical coordinates. LEGENDRE POLYNOMIALS AND APPLICATIONS We construct Legendre polynomials and apply them to solve Dirichlet problems in spherical coordinates.. Legendre equation: series solutions The Legendre equation is

More information

Polynomial Functions and Their Graphs

Polynomial Functions and Their Graphs Polynomial Functions and Their Graphs Definition of a Polynomial Function Let n be a nonnegative integer and let a n, a n- 1,, a 2, a 1, a 0, be real numbers with a n 0. The function defined by f (x) a

More information

Working with Square Roots. Return to Table of Contents

Working with Square Roots. Return to Table of Contents Working with Square Roots Return to Table of Contents 36 Square Roots Recall... * Teacher Notes 37 Square Roots All of these numbers can be written with a square. Since the square is the inverse of the

More information

Mathematics 104 Fall Term 2006 Solutions to Final Exam. sin(ln t) dt = e x sin(x) dx.

Mathematics 104 Fall Term 2006 Solutions to Final Exam. sin(ln t) dt = e x sin(x) dx. Mathematics 14 Fall Term 26 Solutions to Final Exam 1. Evaluate sin(ln t) dt. Solution. We first make the substitution t = e x, for which dt = e x. This gives sin(ln t) dt = e x sin(x). To evaluate the

More information

A quadratic expression is a mathematical expression that can be written in the form 2

A quadratic expression is a mathematical expression that can be written in the form 2 118 CHAPTER Algebra.6 FACTORING AND THE QUADRATIC EQUATION Textbook Reference Section 5. CLAST OBJECTIVES Factor a quadratic expression Find the roots of a quadratic equation A quadratic expression is

More information

Additional material: Linear Differential Equations

Additional material: Linear Differential Equations Chapter 5 Additional material: Linear Differential Equations 5.1 Introduction The material in this chapter is not formally part of the LTCC course. It is included for completeness as it contains proofs

More information

Name: Chapter 7: Exponents and Polynomials

Name: Chapter 7: Exponents and Polynomials Name: Chapter 7: Exponents and Polynomials 7-1: Integer Exponents Objectives: Evaluate expressions containing zero and integer exponents. Simplify expressions containing zero and integer exponents. You

More information

P.5 Solving Equations

P.5 Solving Equations PRC Ch P_5.notebook P.5 Solving Equations What you should learn How to solve linear equations How to solve quadratic equations equations How to solve polynomial equations of degree three or higher How

More information

Least Squares Regression

Least Squares Regression Least Squares Regression Chemical Engineering 2450 - Numerical Methods Given N data points x i, y i, i 1 N, and a function that we wish to fit to these data points, fx, we define S as the sum of the squared

More information

Power series solutions for 2nd order linear ODE s (not necessarily with constant coefficients) a n z n. n=0

Power series solutions for 2nd order linear ODE s (not necessarily with constant coefficients) a n z n. n=0 Lecture 22 Power series solutions for 2nd order linear ODE s (not necessarily with constant coefficients) Recall a few facts about power series: a n z n This series in z is centered at z 0. Here z can

More information

swapneel/207

swapneel/207 Partial differential equations Swapneel Mahajan www.math.iitb.ac.in/ swapneel/207 1 1 Power series For a real number x 0 and a sequence (a n ) of real numbers, consider the expression a n (x x 0 ) n =

More information

The Method of Frobenius

The Method of Frobenius The Method of Frobenius R. C. Trinity University Partial Differential Equations April 7, 2015 Motivating example Failure of the power series method Consider the ODE 2xy +y +y = 0. In standard form this

More information

{ independent variable some property or restriction about independent variable } where the vertical line is read such that.

{ independent variable some property or restriction about independent variable } where the vertical line is read such that. Page 1 of 5 Introduction to Review Materials One key to Algebra success is identifying the type of work necessary to answer a specific question. First you need to identify whether you are dealing with

More information

Lecture 4: Frobenius Series about Regular Singular Points

Lecture 4: Frobenius Series about Regular Singular Points Introductory lecture notes on Partial Differential Equations - c Anthony Peirce. Not to be copied, used, or revised without explicit written permission from the copyright owner. 1 Lecture 4: Frobenius

More information

Math 1B Final Exam, Solution. Prof. Mina Aganagic Lecture 2, Spring (6 points) Use substitution and integration by parts to find:

Math 1B Final Exam, Solution. Prof. Mina Aganagic Lecture 2, Spring (6 points) Use substitution and integration by parts to find: Math B Final Eam, Solution Prof. Mina Aganagic Lecture 2, Spring 20 The eam is closed book, apart from a sheet of notes 8. Calculators are not allowed. It is your responsibility to write your answers clearly..

More information

Notes on Bessel s Equation and the Gamma Function

Notes on Bessel s Equation and the Gamma Function Notes on Bessel s Equation and the Gamma Function Charles Byrne (Charles Byrne@uml.edu) Department of Mathematical Sciences University of Massachusetts at Lowell Lowell, MA 1854, USA April 19, 7 1 Bessel

More information

Exponents Drill. Warm-up Problems. Problem 1 If (x 3 y 3 ) -3 = (xy) -z, what is z? A) -6 B) 0 C) 1 D) 6 E) 9. Problem 2 36 =?

Exponents Drill. Warm-up Problems. Problem 1 If (x 3 y 3 ) -3 = (xy) -z, what is z? A) -6 B) 0 C) 1 D) 6 E) 9. Problem 2 36 =? Exponents Drill Warm-up Problems Problem 1 If (x 3 y 3 ) -3 = (xy) -z, what is z? A) -6 B) 0 C) 1 D) 6 E) 9 Problem 2 3 36 4 4 3 2 =? A) 0 B) 1/36 C) 1/6 D) 6 E) 36 Problem 3 3 ( xy) =? 6 6 x y A) (xy)

More information

Ch 6.2: Solution of Initial Value Problems

Ch 6.2: Solution of Initial Value Problems Ch 6.2: Solution of Initial Value Problems! The Laplace transform is named for the French mathematician Laplace, who studied this transform in 1782.! The techniques described in this chapter were developed

More information

Solving Quadratic Equations

Solving Quadratic Equations Solving Quadratic Equations MATH 101 College Algebra J. Robert Buchanan Department of Mathematics Summer 2012 Objectives In this lesson we will learn to: solve quadratic equations by factoring, solve quadratic

More information

7.3 Singular points and the method of Frobenius

7.3 Singular points and the method of Frobenius 284 CHAPTER 7. POWER SERIES METHODS 7.3 Singular points and the method of Frobenius Note: or.5 lectures, 8.4 and 8.5 in [EP], 5.4 5.7 in [BD] While behaviour of ODEs at singular points is more complicated,

More information

Introduction. Adding and Subtracting Polynomials

Introduction. Adding and Subtracting Polynomials Introduction Polynomials can be added and subtracted like real numbers. Adding and subtracting polynomials is a way to simplify expressions. It can also allow us to find a shorter way to represent a sum

More information

Boundary Value Problems in Cylindrical Coordinates

Boundary Value Problems in Cylindrical Coordinates Boundary Value Problems in Cylindrical Coordinates 29 Outline Differential Operators in Various Coordinate Systems Laplace Equation in Cylindrical Coordinates Systems Bessel Functions Wave Equation the

More information

Numerical Methods. Equations and Partial Fractions. Jaesung Lee

Numerical Methods. Equations and Partial Fractions. Jaesung Lee Numerical Methods Equations and Partial Fractions Jaesung Lee Solving linear equations Solving linear equations Introduction Many problems in engineering reduce to the solution of an equation or a set

More information

a factors The exponential 0 is a special case. If b is any nonzero real number, then

a factors The exponential 0 is a special case. If b is any nonzero real number, then 0.1 Exponents The expression x a is an exponential expression with base x and exponent a. If the exponent a is a positive integer, then the expression is simply notation that counts how many times the

More information

Math 2 Variable Manipulation Part 2 Powers & Roots PROPERTIES OF EXPONENTS:

Math 2 Variable Manipulation Part 2 Powers & Roots PROPERTIES OF EXPONENTS: Math 2 Variable Manipulation Part 2 Powers & Roots PROPERTIES OF EXPONENTS: 1 EXPONENT REVIEW PROBLEMS: 2 1. 2x + x x + x + 5 =? 2. (x 2 + x) (x + 2) =?. The expression 8x (7x 6 x 5 ) is equivalent to?.

More information

QUADRATIC EQUATIONS EXPECTED BACKGROUND KNOWLEDGE

QUADRATIC EQUATIONS EXPECTED BACKGROUND KNOWLEDGE 6 QUADRATIC EQUATIONS In this lesson, you will study aout quadratic equations. You will learn to identify quadratic equations from a collection of given equations and write them in standard form. You will

More information

Lecture 5. Complex Numbers and Euler s Formula

Lecture 5. Complex Numbers and Euler s Formula Lecture 5. Complex Numbers and Euler s Formula University of British Columbia, Vancouver Yue-Xian Li March 017 1 Main purpose: To introduce some basic knowledge of complex numbers to students so that they

More information

Graphing Radicals Business 7

Graphing Radicals Business 7 Graphing Radicals Business 7 Radical functions have the form: The most frequently used radical is the square root; since it is the most frequently used we assume the number 2 is used and the square root

More information

Lecture 3. Frits Beukers. Arithmetic of values of E- and G-function. Lecture 3 E- and G-functions 1 / 20

Lecture 3. Frits Beukers. Arithmetic of values of E- and G-function. Lecture 3 E- and G-functions 1 / 20 Lecture 3 Frits Beukers Arithmetic of values of E- and G-function Lecture 3 E- and G-functions 1 / 20 G-functions, definition Definition An analytic function f (z) given by a powerseries a k z k k=0 with

More information

7.3 Ridge Analysis of the Response Surface

7.3 Ridge Analysis of the Response Surface 7.3 Ridge Analysis of the Response Surface When analyzing a fitted response surface, the researcher may find that the stationary point is outside of the experimental design region, but the researcher wants

More information

NAME DATE PERIOD. A negative exponent is the result of repeated division. Extending the pattern below shows that 4 1 = 1 4 or 1. Example: 6 4 = 1 6 4

NAME DATE PERIOD. A negative exponent is the result of repeated division. Extending the pattern below shows that 4 1 = 1 4 or 1. Example: 6 4 = 1 6 4 Lesson 4.1 Reteach Powers and Exponents A number that is expressed using an exponent is called a power. The base is the number that is multiplied. The exponent tells how many times the base is used as

More information

Spotlight on the Extended Method of Frobenius

Spotlight on the Extended Method of Frobenius 113 Spotlight on the Extended Method of Frobenius See Sections 11.1 and 11.2 for the model of an aging spring. Reference: Section 11.4 and SPOTLIGHT ON BESSEL FUNCTIONS. Bessel functions of the first kind

More information

Systems of Linear ODEs

Systems of Linear ODEs P a g e 1 Systems of Linear ODEs Systems of ordinary differential equations can be solved in much the same way as discrete dynamical systems if the differential equations are linear. We will focus here

More information

MULTIPLYING TRINOMIALS

MULTIPLYING TRINOMIALS Name: Date: 1 Math 2 Variable Manipulation Part 4 Polynomials B MULTIPLYING TRINOMIALS Multiplying trinomials is the same process as multiplying binomials except for there are more terms to multiply than

More information

Exponents and Polynomials. (5) Page 459 #15 43 Second Column; Page 466 #6 30 Fourth Column

Exponents and Polynomials. (5) Page 459 #15 43 Second Column; Page 466 #6 30 Fourth Column Algebra Name: Date: Period: # Exponents and Polynomials (1) Page 453 #22 59 Left (2) Page 453 #25 62 Right (3) Page 459 #5 29 Odd (4) Page 459 #14 42 First Column; Page 466 #3 27 First Column (5) Page

More information

A2 HW Imaginary Numbers

A2 HW Imaginary Numbers Name: A2 HW Imaginary Numbers Rewrite the following in terms of i and in simplest form: 1) 100 2) 289 3) 15 4) 4 81 5) 5 12 6) -8 72 Rewrite the following as a radical: 7) 12i 8) 20i Solve for x in simplest

More information

1 + lim. n n+1. f(x) = x + 1, x 1. and we check that f is increasing, instead. Using the quotient rule, we easily find that. 1 (x + 1) 1 x (x + 1) 2 =

1 + lim. n n+1. f(x) = x + 1, x 1. and we check that f is increasing, instead. Using the quotient rule, we easily find that. 1 (x + 1) 1 x (x + 1) 2 = Chapter 5 Sequences and series 5. Sequences Definition 5. (Sequence). A sequence is a function which is defined on the set N of natural numbers. Since such a function is uniquely determined by its values

More information

(i) Represent discrete-time signals using transform. (ii) Understand the relationship between transform and discrete-time Fourier transform

(i) Represent discrete-time signals using transform. (ii) Understand the relationship between transform and discrete-time Fourier transform z Transform Chapter Intended Learning Outcomes: (i) Represent discrete-time signals using transform (ii) Understand the relationship between transform and discrete-time Fourier transform (iii) Understand

More information

Adding & Subtracting Polynomial Expressions

Adding & Subtracting Polynomial Expressions Adding & Subtracting Polynomial Expressions A polynomial is a single term or the sum of two or more terms containing variables with exponents that are positive integers. Polynomials are ADDED or SUBTRACTED

More information

Today s Outline. CS 362, Lecture 4. Annihilator Method. Lookup Table. Annihilators for recurrences with non-homogeneous terms Transformations

Today s Outline. CS 362, Lecture 4. Annihilator Method. Lookup Table. Annihilators for recurrences with non-homogeneous terms Transformations Today s Outline CS 362, Lecture 4 Jared Saia University of New Mexico Annihilators for recurrences with non-homogeneous terms Transformations 1 Annihilator Method Lookup Table Write down the annihilator

More information

The method of Fröbenius

The method of Fröbenius Note III.5 1 1 April 008 The method of Fröbenius For the general homogeneous ordinary differential equation y (x) + p(x)y (x) + q(x)y(x) = 0 (1) the series method works, as in the Hermite case, where both

More information

FastTrack - MA109. Exponents and Review of Polynomials

FastTrack - MA109. Exponents and Review of Polynomials FastTrack - MA109 Exponents and Review of Polynomials Katherine Paullin, Ph.D. Lecturer, Department of Mathematics University of Kentucky katherine.paullin@uky.edu Monday, August 15, 2016 1 / 25 REEF Question

More information

Power Series Solutions We use power series to solve second order differential equations

Power Series Solutions We use power series to solve second order differential equations Objectives Power Series Solutions We use power series to solve second order differential equations We use power series expansions to find solutions to second order, linear, variable coefficient equations

More information

Taylor and Laurent Series

Taylor and Laurent Series Chapter 4 Taylor and Laurent Series 4.. Taylor Series 4... Taylor Series for Holomorphic Functions. In Real Analysis, the Taylor series of a given function f : R R is given by: f (x + f (x (x x + f (x

More information

Chapter 2 Notes: Polynomials and Polynomial Functions

Chapter 2 Notes: Polynomials and Polynomial Functions 39 Algebra 2 Honors Chapter 2 Notes: Polynomials and Polynomial Functions Section 2.1: Use Properties of Exponents Evaluate each expression (3 4 ) 2 ( 5 8 ) 3 ( 2) 3 ( 2) 9 ( a2 3 ( y 2 ) 5 y 2 y 12 rs

More information

4 Power Series Solutions: Frobenius Method

4 Power Series Solutions: Frobenius Method 4 Power Series Solutions: Frobenius Method Now the ODE adventure takes us to series solutions for ODEs, a technique A & W, that is often viable, valuable and informative. These can be readily applied Sec.

More information

Exam 3 Review Sheet Math 2070

Exam 3 Review Sheet Math 2070 The syllabus for Exam 3 is Sections 3.6, 5.1 to 5.3, 5.5, 5.6, and 6.1 to 6.4. You should review the assigned exercises in these sections. Following is a brief list (not necessarily complete) of terms,

More information

Series Solutions Near an Ordinary Point

Series Solutions Near an Ordinary Point Series Solutions Near an Ordinary Point MATH 365 Ordinary Differential Equations J. Robert Buchanan Department of Mathematics Spring 2018 Ordinary Points (1 of 2) Consider the second order linear homogeneous

More information

MATH 241 Practice Second Midterm Exam - Fall 2012

MATH 241 Practice Second Midterm Exam - Fall 2012 MATH 41 Practice Second Midterm Exam - Fall 1 1. Let f(x = { 1 x for x 1 for 1 x (a Compute the Fourier sine series of f(x. The Fourier sine series is b n sin where b n = f(x sin dx = 1 = (1 x cos = 4

More information

Quadratic Congruences, the Quadratic Formula, and Euler s Criterion

Quadratic Congruences, the Quadratic Formula, and Euler s Criterion Quadratic Congruences, the Quadratic Formula, and Euler s Criterion R. C. Trinity University Number Theory Introduction Let R be a (commutative) ring in which 2 = 1 R + 1 R R. Consider a quadratic equation

More information

POWER SERIES REVIEW SOLUTIONS

POWER SERIES REVIEW SOLUTIONS POWER SERIES REVIEW SOLUTIONS 1. Convergence of power series: For the following, find the radius of convergence: a) (m + 1)mx m In CME 10, we only teach you the ratio test, so that is the only test you

More information

Lecture 13: Series Solutions near Singular Points

Lecture 13: Series Solutions near Singular Points Lecture 13: Series Solutions near Singular Points March 28, 2007 Here we consider solutions to second-order ODE s using series when the coefficients are not necessarily analytic. A first-order analogy

More information

Equations. Rational Equations. Example. 2 x. a b c 2a. Examine each denominator to find values that would cause the denominator to equal zero

Equations. Rational Equations. Example. 2 x. a b c 2a. Examine each denominator to find values that would cause the denominator to equal zero Solving Other Types of Equations Rational Equations Examine each denominator to find values that would cause the denominator to equal zero Multiply each term by the LCD or If two terms cross-multiply Solve,

More information

Mathematics Textbook Correlation to the 2016 Algebra I Standards of Learning and Curriculum Framework

Mathematics Textbook Correlation to the 2016 Algebra I Standards of Learning and Curriculum Framework and Curriculum Framework Publisher: McGraw-Hill School Education Text: Algebra 1 Copyright date 2018 A.1 The student will a) represent verbal quantitative situations algebraically; and TE: 5-9, 23-29,

More information

Unit 3 Vocabulary. An algebraic expression that can contains. variables, numbers and operators (like +, An equation is a math sentence stating

Unit 3 Vocabulary. An algebraic expression that can contains. variables, numbers and operators (like +, An equation is a math sentence stating Hart Interactive Math Algebra 1 MODULE 2 An algebraic expression that can contains 1 Algebraic Expression variables, numbers and operators (like +,, x and ). 1 Equation An equation is a math sentence stating

More information

Algebra 1: Hutschenreuter Chapter 10 Notes Adding and Subtracting Polynomials

Algebra 1: Hutschenreuter Chapter 10 Notes Adding and Subtracting Polynomials Algebra 1: Hutschenreuter Chapter 10 Notes Name 10.1 Adding and Subtracting Polynomials Polynomial- an expression where terms are being either added and/or subtracted together Ex: 6x 4 + 3x 3 + 5x 2 +

More information

Assignment. Disguises with Trig Identities. Review Product Rule. Integration by Parts. Manipulating the Product Rule. Integration by Parts 12/13/2010

Assignment. Disguises with Trig Identities. Review Product Rule. Integration by Parts. Manipulating the Product Rule. Integration by Parts 12/13/2010 Fitting Integrals to Basic Rules Basic Integration Rules Lesson 8.1 Consider these similar integrals Which one uses The log rule The arctangent rule The rewrite with long division principle Try It Out

More information

SERIES SOLUTION OF DIFFERENTIAL EQUATIONS

SERIES SOLUTION OF DIFFERENTIAL EQUATIONS SERIES SOLUTION OF DIFFERENTIAL EQUATIONS Introduction to Differential Equations Nanang Susyanto Computer Science (International) FMIPA UGM 17 April 2017 NS (CS-International) Series solution 17/04/2017

More information

UNC Charlotte Super Competition Level 3 Test March 4, 2019 Test with Solutions for Sponsors

UNC Charlotte Super Competition Level 3 Test March 4, 2019 Test with Solutions for Sponsors . Find the minimum value of the function f (x) x 2 + (A) 6 (B) 3 6 (C) 4 Solution. We have f (x) x 2 + + x 2 + (D) 3 4, which is equivalent to x 0. x 2 + (E) x 2 +, x R. x 2 + 2 (x 2 + ) 2. How many solutions

More information

McGill University Faculty of Science. Solutions to Practice Final Examination Math 240 Discrete Structures 1. Time: 3 hours Marked out of 60

McGill University Faculty of Science. Solutions to Practice Final Examination Math 240 Discrete Structures 1. Time: 3 hours Marked out of 60 McGill University Faculty of Science Solutions to Practice Final Examination Math 40 Discrete Structures Time: hours Marked out of 60 Question. [6] Prove that the statement (p q) (q r) (p r) is a contradiction

More information

2.2 Radical Expressions I

2.2 Radical Expressions I 2.2 Radical Expressions I Learning objectives Use the product and quotient properties of radicals to simplify radicals. Add and subtract radical expressions. Solve real-world problems using square root

More information

Georgia Tech PHYS 6124 Mathematical Methods of Physics I

Georgia Tech PHYS 6124 Mathematical Methods of Physics I Georgia Tech PHYS 612 Mathematical Methods of Physics I Instructor: Predrag Cvitanović Fall semester 2012 Homework Set #5 due October 2, 2012 == show all your work for maximum credit, == put labels, title,

More information

Chapter Intended Learning Outcomes: (i) Understanding the relationship between transform and the Fourier transform for discrete-time signals

Chapter Intended Learning Outcomes: (i) Understanding the relationship between transform and the Fourier transform for discrete-time signals z Transform Chapter Intended Learning Outcomes: (i) Understanding the relationship between transform and the Fourier transform for discrete-time signals (ii) Understanding the characteristics and properties

More information

THE UNIT GROUP OF A REAL QUADRATIC FIELD

THE UNIT GROUP OF A REAL QUADRATIC FIELD THE UNIT GROUP OF A REAL QUADRATIC FIELD While the unit group of an imaginary quadratic field is very simple the unit group of a real quadratic field has nontrivial structure Its study involves some geometry

More information