L06. Chapter 6: Continuous Probability Distributions

Size: px
Start display at page:

Download "L06. Chapter 6: Continuous Probability Distributions"

Transcription

1 L06 Chapter 6: Continuous Probability Distributions

2 Probability Chapter 6 Continuous Probability Distributions Recall Discrete Probability Distributions Could only take on particular values Continuous can take on any value Values of Random Variable (TV sales)

3 Continuous Probability Distributions Uniform Probability Distribution Normal Probability Distribution Eponential Probability Distribution f () Uniform f () Eponential f () Normal

4 Continuous Probability Distributions A continuous random variable can assume any value in an interval on the real line or in intervals. To find probabilities, we use areas under a probability density function It is not possible to talk about the probability of the random variable assuming a single value. For eample: Probability that height = 60 inches This is because the area under a single point is zero Instead, we talk about the probability of the random variable assuming a value within an For Eample, Height being between 60 and 65 inches

5 Continuous Probability Distributions The probability of the random variable assuming a value within an interval from 1 to 2 is defined to be the under the graph of the probability density function between 1 and 2. f () Uniform f () Eponential f () Normal

6 Uniform Probability Distribution A random variable is uniformly distributed whenever the probability is proportional to the interval s length. The uniform probability density function is: f () = 1/(b a) for a < < b = 0 elsewhere f () where: a = smallest value the variable can assume b = largest value the variable can assume These Statements tell us about the shape of the probability distribution To find Probabilities, we need the the shape

7 Uniform Probability Distribution Eample: Slater's Buffet Slater customers are charged for the amount of salad they take. Sampling suggests that the amount of salad taken is uniformly distributed between 5 ounces and 15 ounces.

8 Uniform Probability Distribution Uniform Probability Density Function f() = 1/10 for 5 < < 15 = 0 elsewhere where: = salad plate filling weight

9 Uniform Probability Distribution Uniform Probability Distribution for Salad Plate Filling Weight f() 1/ Salad Weight (oz.)

10 Uniform Probability Distribution What is the probability that a customer will take between 12 and 15 ounces of salad? f() 1/ Salad Weight (oz.) Notice, we simply used the formula for the area of a rectangle, BASE * HEIGHT

11 Uniform Probability Distribution Epected Value of E() = (a + b)/2 Variance of Var() = (b - a) 2 /12

12 Uniform Probability Distribution Epected Value of E() = (a + b)/2 = (5 + 15)/2 = 10 Variance of Var() = (b - a) 2 /12 = (15 5) 2 /12 = 8.33

13 Heights of people Test scores Normal Probability Distribution Is this chapter discrete or continuous? And how do we find the probability of variables that are continuous? We are staying in the world where we find probability by the area under a curve. We simply are of the curve Normal curve will be used etensively throughout the rest of this semester and net semester. Scientific measurements Amounts of rainfall

14 Normal Probability Distribution Let s take a look at what the curve looks like.

15 Normal Probability Function Let s take a look at the formula that generates our curve = mean = standard deviation = e =

16 Normal Probability Distribution Characteristics Distribution is Skew is Tails are of one another Value on the -ais below highest point is the mean, median, and mode.

17 Normal Probability Distribution Characteristics The mean can be any numerical value The mean moves the distribution to

18 Normal Probability Distribution Characteristics The standard deviation determines the of the curve. Greater standard deviation, the. = 15 = 25

19 Normal Probability Distribution Characteristics Probabilities = area under the curve. Total area = Area under right half = Same for left..5.5

20 Standard Normal Distribution There are many means for a normal distribution There are many standard deviations for the normal distribution. We are going to get our probability information from a table, but our book is not big enough to contain infinitely man normal distribution tables. What should we do? STANDARDIZE so we only have to use one table

21 Standard Normal Standard Normal Probability Distribution: A normal distribution with mean of 0 and standard deviation of 1 All normal distributions can be into the standard normal distribution We use the transformation so we don t have to have infinitely many tables in the back of the book. The letter z is used to designate the standard normal random variable

22 Standard Normal Transforming from normal to standard normal z Interpretation of z The number of is from the mean

23 Eample Now let s work on a problem where we have to go from a normal distribution to a standardized normal distribution. The time required to build a computer is normally distributed with a mean of 50 minutes and a standard deviation of 10 minutes. What is the probability that a computer is assembled in a time between 45 and 60 minutes? Algebraically speaking, what is P(45 < X < 60)? Method: 1. Draw 2. Convert to Z 3. Look up probabilities in Table 0

24 Eample CONVERT TO A STATEMENT ABOUT Z P(45<X<60) = P( < X < ) Draw in your z values Go to table Find area of interest. Answer = z = -.5 z = 1

25 Eponential Probability Distribution Useful to describe it takes to complete a task or for something to happen Time between vehicle arrivals at a toll booth Time required to complete a questionnaire Distance between major defects in a highway

26 Eponential Probability Distribution We are staying in the world where we find probability by the area under a curve. We simply are changing the shape of the curve Shape of the curve can be represented by the density function f ( ) 1 e / For 0, > 0 Think Plotting Points where: = mean e =

27 f ( ) 1 e / where: = mean e = / Total area under curve is

28 Eponential Distribution Variable is quantitative ( continuous). X values must be positive (or zero). Only one parameter: (mean) Std. deviation: = (same value) SKEWED right.

29 Eponential Probability Distribution How to work with Eponential Uniform we used the formula base * height to find the area Normal we used the table to find the area Eponential we use a to find the area P( ) 1 e o / This formula gives the area to the of 0 X 0 is some specific value of the variable 0

30 Relationship Between Poisson and Eponential Poisson Number of occurrences per interval Eponential TIME between occurrences Skill we want. Go from Poisson to Eponential Framework Number of cars that arrive at the carwash follows a Poisson Distribution with mean of 10 cars per hour. How do we go from cars per hour to hours per car? 10 cars/hour 1 hour / 10 cars =.1 hours per car This tells us for the eponential distribution Skill: When given poisson, we can to eponential by division.

31 Final Point on Eponential Remember in Ecel: Lambda = 1/ eponential

Poisson Processes and Poisson Distributions. Poisson Process - Deals with the number of occurrences per interval.

Poisson Processes and Poisson Distributions. Poisson Process - Deals with the number of occurrences per interval. Poisson Processes and Poisson Distributions Poisson Process - Deals with the number of occurrences per interval. Eamples Number of phone calls per minute Number of cars arriving at a toll both per hour

More information

Math 180A. Lecture 16 Friday May 7 th. Expectation. Recall the three main probability density functions so far (1) Uniform (2) Exponential.

Math 180A. Lecture 16 Friday May 7 th. Expectation. Recall the three main probability density functions so far (1) Uniform (2) Exponential. Math 8A Lecture 6 Friday May 7 th Epectation Recall the three main probability density functions so far () Uniform () Eponential (3) Power Law e, ( ), Math 8A Lecture 6 Friday May 7 th Epectation Eample

More information

C.6 Normal Distributions

C.6 Normal Distributions C.6 Normal Distributions APPENDIX C.6 Normal Distributions A43 Find probabilities for continuous random variables. Find probabilities using the normal distribution. Find probabilities using the standard

More information

3/30/2009. Probability Distributions. Binomial distribution. TI-83 Binomial Probability

3/30/2009. Probability Distributions. Binomial distribution. TI-83 Binomial Probability Random variable The outcome of each procedure is determined by chance. Probability Distributions Normal Probability Distribution N Chapter 6 Discrete Random variables takes on a countable number of values

More information

6.4 graphs OF logarithmic FUnCTIOnS

6.4 graphs OF logarithmic FUnCTIOnS SECTION 6. graphs of logarithmic functions 9 9 learning ObjeCTIveS In this section, ou will: Identif the domain of a logarithmic function. Graph logarithmic functions. 6. graphs OF logarithmic FUnCTIOnS

More information

9/19/2012. PSY 511: Advanced Statistics for Psychological and Behavioral Research 1

9/19/2012. PSY 511: Advanced Statistics for Psychological and Behavioral Research 1 PSY 511: Advanced Statistics for Psychological and Behavioral Research 1 The aspect of the data we want to describe/measure is relative position z scores tell us how many standard deviations above or below

More information

Discrete probability distributions

Discrete probability distributions Discrete probability s BSAD 30 Dave Novak Fall 08 Source: Anderson et al., 05 Quantitative Methods for Business th edition some slides are directly from J. Loucks 03 Cengage Learning Covered so far Chapter

More information

Random Variable. Discrete Random Variable. Continuous Random Variable. Discrete Random Variable. Discrete Probability Distribution

Random Variable. Discrete Random Variable. Continuous Random Variable. Discrete Random Variable. Discrete Probability Distribution Random Variable Theoretical Probability Distribution Random Variable Discrete Probability Distributions A variable that assumes a numerical description for the outcome of a random eperiment (by chance).

More information

a 17 9 d rt 700 (72)t P 2L 2W 19 2L 2(3) L 13 A LW 50 12W W 50 9a a a a 17 9a / 9 17 / 9 9a

a 17 9 d rt 700 (72)t P 2L 2W 19 2L 2(3) L 13 A LW 50 12W W 50 9a a a a 17 9a / 9 17 / 9 9a Free Pre-Algebra Lesson 0 page Lesson 0 Equations with Fractions Here we practice solving equations that involve fractions. The Solution is A Fraction Even equations with all whole numbers can have a fraction

More information

Chapter 1 Review of Equations and Inequalities

Chapter 1 Review of Equations and Inequalities Chapter 1 Review of Equations and Inequalities Part I Review of Basic Equations Recall that an equation is an expression with an equal sign in the middle. Also recall that, if a question asks you to solve

More information

The Normal Distribution. Chapter 6

The Normal Distribution. Chapter 6 + The Normal Distribution Chapter 6 + Applications of the Normal Distribution Section 6-2 + The Standard Normal Distribution and Practical Applications! We can convert any variable that in normally distributed

More information

Exponential and Logarithmic Functions

Exponential and Logarithmic Functions Lesson 6 Eponential and Logarithmic Fu tions Lesson 6 Eponential and Logarithmic Functions Eponential functions are of the form y = a where a is a constant greater than zero and not equal to one and is

More information

# of units, X P(X) Show that the probability distribution for X is legitimate.

# of units, X P(X) Show that the probability distribution for X is legitimate. Probability Distributions A. El Dorado Community College considers a student to be full-time if he or she is taking between 12 and 18 units. The number of units X that a randomly selected El Dorado Community

More information

determine whether or not this relationship is.

determine whether or not this relationship is. Section 9-1 Correlation A correlation is a between two. The data can be represented by ordered pairs (x,y) where x is the (or ) variable and y is the (or ) variable. There are several types of correlations

More information

Chapter 5. Statistical Models in Simulations 5.1. Prof. Dr. Mesut Güneş Ch. 5 Statistical Models in Simulations

Chapter 5. Statistical Models in Simulations 5.1. Prof. Dr. Mesut Güneş Ch. 5 Statistical Models in Simulations Chapter 5 Statistical Models in Simulations 5.1 Contents Basic Probability Theory Concepts Discrete Distributions Continuous Distributions Poisson Process Empirical Distributions Useful Statistical Models

More information

Exponents. Reteach. Write each expression in exponential form (0.4)

Exponents. Reteach. Write each expression in exponential form (0.4) 9-1 Exponents You can write a number in exponential form to show repeated multiplication. A number written in exponential form has a base and an exponent. The exponent tells you how many times a number,

More information

We have examined power functions like f (x) = x 2. Interchanging x

We have examined power functions like f (x) = x 2. Interchanging x CHAPTER 5 Eponential and Logarithmic Functions We have eamined power functions like f =. Interchanging and ields a different function f =. This new function is radicall different from a power function

More information

One Solution Two Solutions Three Solutions Four Solutions. Since both equations equal y we can set them equal Combine like terms Factor Solve for x

One Solution Two Solutions Three Solutions Four Solutions. Since both equations equal y we can set them equal Combine like terms Factor Solve for x Algebra Notes Quadratic Systems Name: Block: Date: Last class we discussed linear systems. The only possibilities we had we 1 solution, no solution or infinite solutions. With quadratic systems we have

More information

Recall Discrete Distribution. 5.2 Continuous Random Variable. A probability histogram. Density Function 3/27/2012

Recall Discrete Distribution. 5.2 Continuous Random Variable. A probability histogram. Density Function 3/27/2012 3/7/ Recall Discrete Distribution 5. Continuous Random Variable For a discrete distribution, for eample Binomial distribution with n=5, and p=.4, the probabilit distribution is f().7776.59.3456.34.768.4.3

More information

Algebra Calculator Skills Inventory Solutions

Algebra Calculator Skills Inventory Solutions Algebra Calculator Skills Inventory Solutions 1. The equation P = 1.25x 15 represents the profit in dollars when x widgets are sold. Find the profit if 450 widgets are sold. A. $427.50 B. $697.50 C. $562.50

More information

Core Connections Algebra 2 Checkpoint Materials

Core Connections Algebra 2 Checkpoint Materials Core Connections Algebra 2 Note to Students (and their Teachers) Students master different skills at different speeds. No two students learn eactly the same way at the same time. At some point you will

More information

Chapter 8: Continuous Probability Distributions

Chapter 8: Continuous Probability Distributions Chapter 8: Continuous Probability Distributions 8.1 Introduction This chapter continued our discussion of probability distributions. It began by describing continuous probability distributions in general,

More information

Practice Algebra 1 SCP Midterm 2015

Practice Algebra 1 SCP Midterm 2015 Practice Algebra 1 SCP Midterm 01 Multiple Choice Identif the choice that best completes the statement or answers the question. Solve the equation. 1. = m 0 7 7 7 7. 0 7 60. x 6 = 7 8 19 1 1 19 1..1x +.

More information

Alex s Guide to Word Problems and Linear Equations Following Glencoe Algebra 1

Alex s Guide to Word Problems and Linear Equations Following Glencoe Algebra 1 Alex s Guide to Word Problems and Linear Equations Following Glencoe Algebra 1 What is a linear equation? It sounds fancy, but linear equation means the same thing as a line. In other words, it s an equation

More information

MA 1125 Lecture 15 - The Standard Normal Distribution. Friday, October 6, Objectives: Introduce the standard normal distribution and table.

MA 1125 Lecture 15 - The Standard Normal Distribution. Friday, October 6, Objectives: Introduce the standard normal distribution and table. MA 1125 Lecture 15 - The Standard Normal Distribution Friday, October 6, 2017. Objectives: Introduce the standard normal distribution and table. 1. The Standard Normal Distribution We ve been looking at

More information

Aim #92: How do we interpret and calculate deviations from the mean? How do we calculate the standard deviation of a data set?

Aim #92: How do we interpret and calculate deviations from the mean? How do we calculate the standard deviation of a data set? Aim #92: How do we interpret and calculate deviations from the mean? How do we calculate the standard deviation of a data set? 5-1-17 Homework: handout Do Now: Using the graph below answer the following

More information

Chapter 6 Continuous Probability Distributions

Chapter 6 Continuous Probability Distributions Continuous Probability Distributions Learning Objectives 1. Understand the difference between how probabilities are computed for discrete and continuous random variables. 2. Know how to compute probability

More information

BINOMIAL DISTRIBUTION

BINOMIAL DISTRIBUTION BINOMIAL DISTRIBUTION The binomial distribution is a particular type of discrete pmf. It describes random variables which satisfy the following conditions: 1 You perform n identical experiments (called

More information

POISSON RANDOM VARIABLES

POISSON RANDOM VARIABLES POISSON RANDOM VARIABLES Suppose a random phenomenon occurs with a mean rate of occurrences or happenings per unit of time or length or area or volume, etc. Note: >. Eamples: 1. Cars passing through an

More information

MATH 250 TOPIC 11 LIMITS. A. Basic Idea of a Limit and Limit Laws. Answers to Exercises and Problems

MATH 250 TOPIC 11 LIMITS. A. Basic Idea of a Limit and Limit Laws. Answers to Exercises and Problems Math 5 T-Limits Page MATH 5 TOPIC LIMITS A. Basic Idea of a Limit and Limit Laws B. Limits of the form,, C. Limits as or as D. Summary for Evaluating Limits Answers to Eercises and Problems Math 5 T-Limits

More information

Answers Investigation 4

Answers Investigation 4 Answers Investigation Applications. a. 7 gallons are being pumped out each hour; students may make a table and notice the constant rate of change, which is - 7, or they may recognize that - 7 is the coefficient

More information

Central Limit Theorem and the Law of Large Numbers Class 6, Jeremy Orloff and Jonathan Bloom

Central Limit Theorem and the Law of Large Numbers Class 6, Jeremy Orloff and Jonathan Bloom Central Limit Theorem and the Law of Large Numbers Class 6, 8.5 Jeremy Orloff and Jonathan Bloom Learning Goals. Understand the statement of the law of large numbers. 2. Understand the statement of the

More information

10.2 Graphing Exponential Functions

10.2 Graphing Exponential Functions Name Class Date 10. Graphing Eponential Functions Essential Question: How do ou graph an eponential function of the form f () = ab? Resource Locker Eplore Eploring Graphs of Eponential Functions Eponential

More information

Open book, but no loose leaf notes and no electronic devices. Points (out of 200) are in parentheses. Put all answers on the paper provided to you.

Open book, but no loose leaf notes and no electronic devices. Points (out of 200) are in parentheses. Put all answers on the paper provided to you. ISQS 5347 Final Exam Spring 2017 Open book, but no loose leaf notes and no electronic devices. Points (out of 200) are in parentheses. Put all answers on the paper provided to you. 1. Recall the commute

More information

What can I tell from a survey?

What can I tell from a survey? CCA Ch 10: Solving Comple Equations Name Team # 10.1.1 What can I tell from a survey? Association in Two-Way Tables 10-1. a. c. d. d. 10-. a. Complete the following two-way table: Laptop No Laptop TOTAL

More information

Pre-Cal Review 13.2 Parent Functions and Their Domain

Pre-Cal Review 13.2 Parent Functions and Their Domain Pre-Cal Review. Parent Functions and Their Domain Name: Date: Per: Parent functions are used to identif available domain and ranges. If ou can quickl think of what the function looks like, ou can quickl

More information

4.5 Rational functions.

4.5 Rational functions. 4.5 Rational functions. We have studied graphs of polynomials and we understand the graphical significance of the zeros of the polynomial and their multiplicities. Now we are ready to etend these eplorations

More information

9.5 HONORS Determine Odd and Even Functions Graphically and Algebraically

9.5 HONORS Determine Odd and Even Functions Graphically and Algebraically 9.5 HONORS Determine Odd and Even Functions Graphically and Algebraically Use this blank page to compile the most important things you want to remember for cycle 9.5: 181 Even and Odd Functions Even Functions:

More information

Chapter 2. Random Variable. Define single random variables in terms of their PDF and CDF, and calculate moments such as the mean and variance.

Chapter 2. Random Variable. Define single random variables in terms of their PDF and CDF, and calculate moments such as the mean and variance. Chapter 2 Random Variable CLO2 Define single random variables in terms of their PDF and CDF, and calculate moments such as the mean and variance. 1 1. Introduction In Chapter 1, we introduced the concept

More information

Exponential and Logarithmic Functions

Exponential and Logarithmic Functions Eponential and Logarithmic Functions 6 Figure Electron micrograph of E. Coli bacteria (credit: Mattosaurus, Wikimedia Commons) CHAPTER OUTLINE 6. Eponential Functions 6. Logarithmic Properties 6. Graphs

More information

Fundamentals of Algebra, Geometry, and Trigonometry. (Self-Study Course)

Fundamentals of Algebra, Geometry, and Trigonometry. (Self-Study Course) Fundamentals of Algebra, Geometry, and Trigonometry (Self-Study Course) This training is offered eclusively through the Pennsylvania Department of Transportation, Business Leadership Office, Technical

More information

22. RADICALS. x add 5. multiply by 7

22. RADICALS. x add 5. multiply by 7 22. RADICALS doing something, then undoing it The concept of doing something and then undoing it is very important in mathematics. Here are some eamples: Take a number. Add 5 to it. How can you get back

More information

Section 4.5 Graphs of Logarithmic Functions

Section 4.5 Graphs of Logarithmic Functions 6 Chapter 4 Section 4. Graphs of Logarithmic Functions Recall that the eponential function f ( ) would produce this table of values -3 - -1 0 1 3 f() 1/8 ¼ ½ 1 4 8 Since the arithmic function is an inverse

More information

6. Graph each of the following functions. What do you notice? What happens when x = 2 on the graph of b?

6. Graph each of the following functions. What do you notice? What happens when x = 2 on the graph of b? Pre Calculus Worksheet 1. Da 1 1. The relation described b the set of points {(-,5,0,5,,8,,9 ) ( ) ( ) ( )} is NOT a function. Eplain wh. For questions - 4, use the graph at the right.. Eplain wh the graph

More information

18.175: Lecture 2 Extension theorems, random variables, distributions

18.175: Lecture 2 Extension theorems, random variables, distributions 18.175: Lecture 2 Extension theorems, random variables, distributions Scott Sheffield MIT Outline Extension theorems Characterizing measures on R d Random variables Outline Extension theorems Characterizing

More information

AP Calculus AB Summer Assignment

AP Calculus AB Summer Assignment AP Calculus AB 08-09 Summer Assignment Dear Future AP Student, I hope you are ecited for the year of Calculus that we will be pursuing together! I don t know how much you know about Calculus, but it is

More information

Which boxplot represents the same information as the histogram? Test Scores Test Scores

Which boxplot represents the same information as the histogram? Test Scores Test Scores Frequency of Test Scores ALGEBRA I 01 013 SEMESTER EXAMS SEMESTER 1. Mrs. Johnson created this histogram of her 3 rd period students test scores. 8 6 4 50 60 70 80 90 100 Test Scores Which boplot represents

More information

EXPONENT REVIEW!!! Concept Byte (Review): Properties of Exponents. Property of Exponents: Product of Powers. x m x n = x m + n

EXPONENT REVIEW!!! Concept Byte (Review): Properties of Exponents. Property of Exponents: Product of Powers. x m x n = x m + n Algebra B: Chapter 6 Notes 1 EXPONENT REVIEW!!! Concept Byte (Review): Properties of Eponents Recall from Algebra 1, the Properties (Rules) of Eponents. Property of Eponents: Product of Powers m n = m

More information

Chapter 6. The Standard Deviation as a Ruler and the Normal Model 1 /67

Chapter 6. The Standard Deviation as a Ruler and the Normal Model 1 /67 Chapter 6 The Standard Deviation as a Ruler and the Normal Model 1 /67 Homework Read Chpt 6 Complete Reading Notes Do P129 1, 3, 5, 7, 15, 17, 23, 27, 29, 31, 37, 39, 43 2 /67 Objective Students calculate

More information

CS 237: Probability in Computing

CS 237: Probability in Computing CS 237: Probability in Computing Wayne Snyder Computer Science Department Boston University Lecture 13: Normal Distribution Exponential Distribution Recall that the Normal Distribution is given by an explicit

More information

MgtOp 215 Chapter 5 Dr. Ahn

MgtOp 215 Chapter 5 Dr. Ahn MgtOp 215 Chapter 5 Dr. Ahn Random variable: a variable that assumes its values corresponding to a various outcomes of a random experiment, therefore its value cannot be predicted with certainty. Discrete

More information

Data Analysis and Statistical Methods Statistics 651

Data Analysis and Statistical Methods Statistics 651 Data Analysis and Statistical Methods Statistics 651 http://www.stat.tamu.edu/~suhasini/teaching.html Lecture 9 (MWF) Calculations for the normal distribution Suhasini Subba Rao Evaluating probabilities

More information

Algebra Review C H A P T E R. To solve an algebraic equation with one variable, find the value of the unknown variable.

Algebra Review C H A P T E R. To solve an algebraic equation with one variable, find the value of the unknown variable. C H A P T E R 6 Algebra Review This chapter reviews key skills and concepts of algebra that you need to know for the SAT. Throughout the chapter are sample questions in the style of SAT questions. Each

More information

Chapter 1: Exploring Data

Chapter 1: Exploring Data Chapter 1: Exploring Data Section 1.3 with Numbers The Practice of Statistics, 4 th edition - For AP* STARNES, YATES, MOORE Chapter 1 Exploring Data Introduction: Data Analysis: Making Sense of Data 1.1

More information

In Chapter 17, I delve into probability in a semiformal way, and introduce distributions

In Chapter 17, I delve into probability in a semiformal way, and introduce distributions IN THIS CHAPTER»» Understanding the beta version»» Pursuing Poisson»» Grappling with gamma»» Speaking eponentially Appendi A More About Probability In Chapter 7, I delve into probability in a semiformal

More information

Name Class Date. Inverse of Function. Understanding Inverses of Functions

Name Class Date. Inverse of Function. Understanding Inverses of Functions Name Class Date. Inverses of Functions Essential Question: What is an inverse function, and how do ou know it s an inverse function? A..B Graph and write the inverse of a function using notation such as

More information

Ch. 7: Estimates and Sample Sizes

Ch. 7: Estimates and Sample Sizes Ch. 7: Estimates and Sample Sizes Section Title Notes Pages Introduction to the Chapter 2 2 Estimating p in the Binomial Distribution 2 5 3 Estimating a Population Mean: Sigma Known 6 9 4 Estimating a

More information

Descriptive Statistics

Descriptive Statistics Descriptive Statistics Summarizing a Single Variable Reference Material: - Prob-stats-review.doc (see Sections 1 & 2) P. Hammett - Lecture Eercise: desc-stats.ls 1 Topics I. Discrete and Continuous Measurements

More information

7.1 One-to-One Functions

7.1 One-to-One Functions 514 transcendental functions 7.1 One-to-One Functions You ve seen that some equations have only one solution (for eample, 5 2 = 3 and 3 = 8), while some have two solutions ( 2 + 3 = 7) and some even have

More information

Lecture 7: Indeterminate forms; L Hôpitals rule; Relative rates of growth. If we try to simply substitute x = 1 into the expression, we get

Lecture 7: Indeterminate forms; L Hôpitals rule; Relative rates of growth. If we try to simply substitute x = 1 into the expression, we get Lecture 7: Indeterminate forms; L Hôpitals rule; Relative rates of growth 1. Indeterminate Forms. Eample 1: Consider the it 1 1 1. If we try to simply substitute = 1 into the epression, we get. This is

More information

Reporting Measurement and Uncertainty

Reporting Measurement and Uncertainty Introduction Reporting Measurement and Uncertainty One aspect of Physics is to describe the physical world. In this class, we are concerned primarily with describing objects in motion and objects acted

More information

Section 1.2 A Catalog of Essential Functions

Section 1.2 A Catalog of Essential Functions Page 1 of 6 Section 1. A Catalog of Essential Functions Linear Models: All linear equations have the form y = m + b. rise change in horizontal The letter m is the slope of the line, or. It can be positive,

More information

Probability Methods in Civil Engineering Prof. Dr. Rajib Maity Department of Civil Engineering Indian Institution of Technology, Kharagpur

Probability Methods in Civil Engineering Prof. Dr. Rajib Maity Department of Civil Engineering Indian Institution of Technology, Kharagpur Probability Methods in Civil Engineering Prof. Dr. Rajib Maity Department of Civil Engineering Indian Institution of Technology, Kharagpur Lecture No. # 36 Sampling Distribution and Parameter Estimation

More information

Algebra 1: Semester 2 Practice Final Unofficial Worked Out Solutions by Earl Whitney

Algebra 1: Semester 2 Practice Final Unofficial Worked Out Solutions by Earl Whitney Algebra 1: Semester 2 Practice Final Unofficial Worked Out Solutions by Earl Whitney 1. The situation described in this problem involves probability without replacement. Because of this, the probabilities

More information

Section 1.2 A Catalog of Essential Functions

Section 1.2 A Catalog of Essential Functions Chapter 1 Section Page 1 of 6 Section 1 A Catalog of Essential Functions Linear Models: All linear equations have the form rise change in horizontal The letter m is the of the line, or It can be positive,

More information

Horizontal asymptotes

Horizontal asymptotes Roberto s Notes on Differential Calculus Chapter 1: Limits and continuity Section 5 Limits at infinity and Horizontal asymptotes What you need to know already: The concept, notation and terminology of

More information

Quadratic Function. Parabola. Parent quadratic function. Vertex. Axis of Symmetry

Quadratic Function. Parabola. Parent quadratic function. Vertex. Axis of Symmetry Name: Chapter 10: Quadratic Equations and Functions Section 10.1: Graph = a + c Quadratic Function Parabola Parent quadratic function Verte Ais of Smmetr Parent Function = - -1 0 1 1 Eample 1: Make a table,

More information

Discrete Probability Distribution

Discrete Probability Distribution Shapes of binomial distributions Discrete Probability Distribution Week 11 For this activity you will use a web applet. Go to http://socr.stat.ucla.edu/htmls/socr_eperiments.html and choose Binomial coin

More information

Chapter 5. Understanding and Comparing. Distributions

Chapter 5. Understanding and Comparing. Distributions STAT 141 Introduction to Statistics Chapter 5 Understanding and Comparing Distributions Bin Zou (bzou@ualberta.ca) STAT 141 University of Alberta Winter 2015 1 / 27 Boxplots How to create a boxplot? Assume

More information

Cumulative Test 1. Evaluate the expression Answers [32 (17 12) 2 ] [(5 + 3)2 31]

Cumulative Test 1. Evaluate the expression Answers [32 (17 12) 2 ] [(5 + 3)2 31] Name Date Cumulative Test 1 Evaluate the expression. 1. 7 + 6 3. 4 5 18 3. 4[3 (17 1) ] 4. 3 [(5 + 3) 31] 5. 3(5m 4) when m = 6. 9x 4 when x = 3 Write an algebraic expression, an equation, or an inequality.

More information

Logistical and Transportation Planning. QUIZ 1 Solutions

Logistical and Transportation Planning. QUIZ 1 Solutions QUIZ 1 Solutions Problem 1. Patrolling Police Car. A patrolling police car is assigned to the rectangular sector shown in the figure. The sector is bounded on all four sides by a roadway that requires

More information

PhysicsAndMathsTutor.com

PhysicsAndMathsTutor.com PhysicsAndMathsTutor.com June 2005 3. The random variable X is the number of misprints per page in the first draft of a novel. (a) State two conditions under which a Poisson distribution is a suitable

More information

A) Questions on Estimation

A) Questions on Estimation A) Questions on Estimation 1 The following table shows the data about the number of seeds germinating out of 10 on damp filter paper which has Poisson distribution. Determine Estimate of λ. Number of seeds

More information

Chapter 2 Linear Equations and Inequalities in One Variable

Chapter 2 Linear Equations and Inequalities in One Variable Chapter 2 Linear Equations and Inequalities in One Variable Section 2.1: Linear Equations in One Variable Section 2.3: Solving Formulas Section 2.5: Linear Inequalities in One Variable Section 2.6: Compound

More information

Probability Methods in Civil Engineering Prof. Rajib Maity Department of Civil Engineering Indian Institute of Technology, Kharagpur

Probability Methods in Civil Engineering Prof. Rajib Maity Department of Civil Engineering Indian Institute of Technology, Kharagpur Probability Methods in Civil Engineering Prof. Rajib Maity Department of Civil Engineering Indian Institute of Technology, Kharagpur Lecture No. # 12 Probability Distribution of Continuous RVs (Contd.)

More information

Electric Potential A New Physical Quantity

Electric Potential A New Physical Quantity Electric Potential A New Physical Quantity 1.1 Represent and Reason A positive test charged object is placed at each of the following points (A through F) near a source charged object. a) Rank the potential

More information

8.EE The Intersection of Two

8.EE The Intersection of Two 8.EE The Intersection of Two Lines Alignments to Content Standards: 8.EE.C.8.a Task a. Draw the two lines that intersect only at the point. One of the lines should pass (0, ) through the point. b. Write

More information

Business Statistics. Chapter 6 Review of Normal Probability Distribution QMIS 220. Dr. Mohammad Zainal

Business Statistics. Chapter 6 Review of Normal Probability Distribution QMIS 220. Dr. Mohammad Zainal Department of Quantitative Methods & Information Systems Business Statistics Chapter 6 Review of Normal Probability Distribution QMIS 220 Dr. Mohammad Zainal Chapter Goals After completing this chapter,

More information

Discrete Probability Distributions

Discrete Probability Distributions Discrete Probability Distributions Chapter 06 McGraw-Hill/Irwin Copyright 2013 by The McGraw-Hill Companies, Inc. All rights reserved. LEARNING OBJECTIVES LO 6-1 Identify the characteristics of a probability

More information

Grade 5 Number Strings

Grade 5 Number Strings Grade 5 Purpose: To use number relationships to solve problems and to learn number facts To use known facts and relationships to determine unknown facts To develop and test conjectures To make generalizations

More information

Basic methods to solve equations

Basic methods to solve equations Roberto s Notes on Prerequisites for Calculus Chapter 1: Algebra Section 1 Basic methods to solve equations What you need to know already: How to factor an algebraic epression. What you can learn here:

More information

INFINITE SUMS. In this chapter, let s take that power to infinity! And it will be equally natural and straightforward.

INFINITE SUMS. In this chapter, let s take that power to infinity! And it will be equally natural and straightforward. EXPLODING DOTS CHAPTER 7 INFINITE SUMS In the previous chapter we played with the machine and saw the power of that machine to make advanced school algebra so natural and straightforward. In this chapter,

More information

Chapter Start Thinking! For use before Activity 6.1. For use before Activity Start Thinking! For use before Lesson

Chapter Start Thinking! For use before Activity 6.1. For use before Activity Start Thinking! For use before Lesson . Enrichment and Etension. a =, b =. a =, b =. a =, b =. a =, b =. a =, b is an number ecept.. a =, b =. a =, b =. a =, b =. Check students work.. Puzzle PAY HIM Etension. Start Thinking! For use before

More information

Applications of Exponential Functions Group Activity 7 STEM Project Week #10

Applications of Exponential Functions Group Activity 7 STEM Project Week #10 Applications of Exponential Functions Group Activity 7 STEM Project Week #10 In the last activity we looked at exponential functions. We looked at an example of a population growing at a certain rate.

More information

How can you construct and interpret a scatter plot? ACTIVITY: Constructing a Scatter Plot

How can you construct and interpret a scatter plot? ACTIVITY: Constructing a Scatter Plot 9. Scatter Plots How can ou construct and interpret a scatter plot? ACTIVITY: Constructing a Scatter Plot Work with a partner. The weights (in ounces) and circumferences C (in inches) of several sports

More information

EE/CpE 345. Modeling and Simulation. Fall Class 5 September 30, 2002

EE/CpE 345. Modeling and Simulation. Fall Class 5 September 30, 2002 EE/CpE 345 Modeling and Simulation Class 5 September 30, 2002 Statistical Models in Simulation Real World phenomena of interest Sample phenomena select distribution Probabilistic, not deterministic Model

More information

Answers. Investigation 2. ACE Assignment Choices. Applications. Problem 2.5. Problem 2.1. Problem 2.2. Problem 2.3. Problem 2.4

Answers. Investigation 2. ACE Assignment Choices. Applications. Problem 2.5. Problem 2.1. Problem 2.2. Problem 2.3. Problem 2.4 Answers Investigation ACE Assignment Choices Problem. Core, Problem. Core, Other Applications ; Connections, 3; unassigned choices from previous problems Problem.3 Core Other Connections, ; unassigned

More information

Calculus I Practice Test Problems for Chapter 2 Page 1 of 7

Calculus I Practice Test Problems for Chapter 2 Page 1 of 7 Calculus I Practice Test Problems for Chapter Page of 7 This is a set of practice test problems for Chapter This is in no way an inclusive set of problems there can be other types of problems on the actual

More information

Core Connections Algebra 2 Checkpoint Materials

Core Connections Algebra 2 Checkpoint Materials Core Connections Algebra 2 Note to Students (and their Teachers) Students master different skills at different speeds. No two students learn eactly the same way at the same time. At some point you will

More information

[Limits at infinity examples] Example. The graph of a function y = f(x) is shown below. Compute lim f(x) and lim f(x).

[Limits at infinity examples] Example. The graph of a function y = f(x) is shown below. Compute lim f(x) and lim f(x). [Limits at infinity eamples] Eample. The graph of a function y = f() is shown below. Compute f() and f(). y -8 As you go to the far right, the graph approaches y =, so f() =. As you go to the far left,

More information

Computer Science, Informatik 4 Communication and Distributed Systems. Simulation. Discrete-Event System Simulation. Dr.

Computer Science, Informatik 4 Communication and Distributed Systems. Simulation. Discrete-Event System Simulation. Dr. Simulation Discrete-Event System Simulation Chapter 4 Statistical Models in Simulation Purpose & Overview The world the model-builder sees is probabilistic rather than deterministic. Some statistical model

More information

Preliminary Physics. Moving About. DUXCollege. Week 2. Student name:. Class code:.. Teacher name:.

Preliminary Physics. Moving About. DUXCollege. Week 2. Student name:. Class code:.. Teacher name:. Week 2 Student name:. Class code:.. Teacher name:. DUXCollege Week 2 Theory 1 Present information graphically of: o Displacement vs time o Velocity vs time for objects with uniform and non-uniform linear

More information

Gearing Up for Geometry!

Gearing Up for Geometry! Gearing Up for Geometry! Geometry is right around the corner and you need to make sure you are ready! Many of the concepts you learned in Algebra I will be used in Geometry and you will be epected to remember

More information

ΔP(x) Δx. f "Discrete Variable x" (x) dp(x) dx. (x) f "Continuous Variable x" Module 3 Statistics. I. Basic Statistics. A. Statistics and Physics

ΔP(x) Δx. f Discrete Variable x (x) dp(x) dx. (x) f Continuous Variable x Module 3 Statistics. I. Basic Statistics. A. Statistics and Physics Module 3 Statistics I. Basic Statistics A. Statistics and Physics 1. Why Statistics Up to this point, your courses in physics and engineering have considered systems from a macroscopic point of view. For

More information

= = =

= = = . D - To evaluate the expression, we can regroup the numbers and the powers of ten, multiply, and adjust the decimal and exponent to put the answer in correct scientific notation format: 5 0 0 7 = 5 0

More information

Summary statistics, distributions of sums and means

Summary statistics, distributions of sums and means Summary statistics, distributions of sums and means Joe Felsenstein Summary statistics, distributions of sums and means p.1/17 Quantiles In both empirical distributions and in the underlying distribution,

More information

Algebra 3-4 Unit 1 Absolute Value Functions and Equations

Algebra 3-4 Unit 1 Absolute Value Functions and Equations Name Period Algebra 3-4 Unit 1 Absolute Value Functions and Equations 1.1 I can write domain and range in interval notation when given a graph or an equation. 1.1 I can write a function given a real world

More information

Chapter 18. Sampling Distribution Models /51

Chapter 18. Sampling Distribution Models /51 Chapter 18 Sampling Distribution Models 1 /51 Homework p432 2, 4, 6, 8, 10, 16, 17, 20, 30, 36, 41 2 /51 3 /51 Objective Students calculate values of central 4 /51 The Central Limit Theorem for Sample

More information

3.4 Pascal s Pride. A Solidify Understanding Task

3.4 Pascal s Pride. A Solidify Understanding Task 3.4 Pascal s Pride A Solidify Understanding Task Multiplying polynomials can require a bit of skill in the algebra department, but since polynomials are structured like numbers, multiplication works very

More information

Continuous Variables Chris Piech CS109, Stanford University

Continuous Variables Chris Piech CS109, Stanford University Continuous Variables Chris Piech CS109, Stanford University 1906 Earthquak Magnitude 7.8 Learning Goals 1. Comfort using new discrete random variables 2. Integrate a density function (PDF) to get a probability

More information