Development of Property Models with Uncertainty Estimate for Reliable Product-Process design

Size: px
Start display at page:

Download "Development of Property Models with Uncertainty Estimate for Reliable Product-Process design"

Transcription

1 Development of Property Models with Uncertainty Estimate for Reliable Product-Process design Amol Hukkerikar a, Bent Sarup b, Jens Abildskov a, Gürkan Sin a, and Rafiqul Gani a a CAPEC, Department of Chemical Engineering, Technical University of Denmark, Lyngby, Denmark. b Vegetable Oil Technology Business Unit, Alfa Laval Copenhagen A/S, Søborg, Denmark.

2 Outline Motivation Objective Overview Methodology for property modeling and uncertainty analysis Results Conclusions 2

3 Motivation Physical and thermodynamic property data and property models are vital pre-requisites for performing tasks such as, 1) Process design, simulation and optimisation 2) Computer aided molecular/mixture (product) design (CAMD) The accuracy & reliability of product/process design largely depends on the accuracy of the involved thermo-physical properties. For the estimation of pure component properties, group-contribution (GC) methods have been widely used; but how good is their accuracy? This issue is highlighted for pure component properties in this work. In addition to the accuracy, it is also necessary to know the uncertainties (prediction error) of the estimated property values. With this information, it is possible to perform better-informed product/process design by taking into account these uncertainties. 3

4 Objective Develop a systematic methodology to provide more reliable predictions with a revised and improved sets of model parameters for GC (groupcontribution) based and CI (atom connectivity index) based models to estimate properties of pure components and to quantify the uncertainties (for eg. 95% confidence intervals) of the estimated property values. 4

5 Overview of property modeling and uncertainty analysis Experimental data Property Prediction model Molecular structure information Application of models Parameter estimation Model parameters Uncertainty analysis Prediction error Marrero and Gani GC-method based property models CI method based property models 5

6 Overview of property modeling and uncertainty analysis Experimental data Property Prediction model Molecular structure information Application of models Parameter estimation Model parameters Uncertainty analysis Prediction error Maximum-likelihood estimation theory 6

7 Marrero and Gani (MG) method The MG method based property prediction model has the form, The function f (X) is a function for a target property X. For normal melting point: f (X) = exp (T m / T mo ) For normal boiling Point: f (X) = exp (T b / T bo ) For critical temperature: f (X) = exp (T c / T co ) For critical pressure: For critical volume: f (X) = (P c P c1 ) 0.5 P c2 f (X) = V c V co Details of other MG method based property prediction models can be found in the following references. J. Marrero, and R. Gani, Fluid Phase Equilibria, (2001), J. Marrero, and R. Gani, Industrial and Engineering Chemistry Research, (2002), Kolska et al., Industrial and Engineering Chemistry Research (2005), E. Conte et al., Industrial and Engineering Chemistry Research, (2008), A. Hukkerikar et al., Fluid Phase Equilibria, (2012), doi: /j.fluid

8 Marrero and Gani (MG) method Step-wise approach The parameter estimation is performed at three levels. The contributions of the higher levels act as corrections to the approximations of the lower levels. 1 st Level estimation First-order group Contribution (w =0; z = 0) 2 nd Level Estimation Second-order group contribution (w =1; z = 0) 3 rd Level Estimation Third-order group contribution (w =1; z = 1) Reference: J. Marrero, and R. Gani, Fluid Phase Equilibria, (2001),

9 Marrero and Gani (MG) method - Simultaneous approach The parameter estimation is performed in a single step by considering all three terms (first order, second order and third order group term). The definition of function f (X) for each property is the same as used in the step-wise approach. First-order group contribution term Second-order group contribution term Third-order group contribution term 9

10 Atom Connectivity Index (CI) method This method allows creation of new groups through the regressed contributions of the connectivity indices. The CI method based property prediction model is: The function f (X) is a function for a target property X. v o 1 v and are the zeroth- and the first-order connectivity indices. A i represents the occurrences of the i th atom in the molecular structure. a i is the contribution of atom i. b and c are adjustable parameters and d is a model constant. If the molecular structure of a given component is not completely described by any of the available groups, CI method can be employed together with GC method (known as GC + approach) to create the missing groups and to predict their contributions. Reference: Gani et al., Industrial and Engineering Chemistry Research, (2005), 44,

11 Methodology for parameter estimation and uncertainty analysis Maximum-likelihood estimation theory The minimization of a cost function, S(P * ) i.e. sum of the squares of the difference between the experimental value and estimated value, X exp X pred 2 * exp pred * min N P j j P S X X j1 yields the values of model parameters P *. The covariance matrix COV (P * ) for the estimated parameters is given by, * SSE * * P P T P COV J J dof 1 The Jacobian matrix J(P * ) is given by, J P * pred X P * P * The covariance matrix for estimated property value is then obtained by, pred P * P * P * COV X J COV J T References: Seber and Wild, (1989). Nonlinear Regression, New York: Wiley. Sin et al., Computers and Chemical Engineering, (2010), 34,

12 Continued... The confidence interval of parameters, P *, at α t significance level (usually a value of 0.05) is given as, P P diag COV P 1 t * * *. t dof, t 2 The confidence interval of the predicted property value, level is given as, X pred, at α t significance X T P * P * P *., t pred pred 1 diag J COV J t dof 2 t X Following 21 pure component properties were considered for the analysis: 1. Normal melting point, 2. Normal boiling point, 3. Critical temperature, 4. Critical pressure, 5. Critical volume, 6. Standard enthalpy of formation, 7. Standard enthalpy of vaporization (298 K), 8. Standard enthalpy of vaporization (Tb), 9. Standard Gibbs energy, 10. Standard enthalpy of fusion, 11. Entropy of vaporization (Tb), 12. Liquid surface tension (298 K), 13. Liquid viscosity (300 K), 14. Flash point, 15. Auto ignition temperature, 16. Hansen solubility parameters, 17. Hildebrand solubility parameter, 18. Aqueous solubility, 19. Octanol/water partition coefficient, 20. Acentric factor, and 21. Liquid molar volume (298K). 12

13 CAPEC database used for parameter estimation (class-wise description) Class of pure components T b T c P c V c T m G f H f H fus LogK ow F p δ D δ P δ H H v H vb S vb δ Ait ω V m Hydrocarbons Oxygenated Nitrogenated Chlorinated Fluorinated Brominated Iodinated P containing Sulfonated Si containing Multifunctional Total no. of components Reference: T. Nielsen et al., J. Chem. Eng. Data, 46 (2001)

14 Results: 1.1 Model performance statistics Performance of MG Method Based Property Prediction Models Property Exptl. data points Corr. Coeff. R 2 % of data points within ±5% error SD AAE ARE No. of parameters regressed T b K T c K P c bar V c cc/mol T m K G f kj/mol ** 227 H f kj/mol ** 233 H fus kj/mol ** 244 H v kj/mol H vb kj/mol Total no. of parameters = 424 (first-order groups = 220, second-order groups = 130, third-order groups = 74) T b = Normal boiling point, T c = Critical temperature, P c = Critical pressure, V c = Critical volume, T m = Normal melting point, G f = Gibbs free energy, H f = Enthalpy of formation, H fus = Enthalpy of fusion, H v = Enthalpy of vaporisation (298K), H vb = Enthalpy of vaporisation (T b ). SD = Standard deviation, AAE = Average Absolute Error, ARE = Average Relative Error ** These values are not given as these properties contain both +ve and ve values. 14

15 Results: 1.1 Model performance statistics Performance of MG Method Based Property Prediction Models Property Exptl. data points Corr. Coeff. R 2 % of data points within ±5% error SD AAE ARE No. of parameters regressed T b K T c K P c bar V c cc/mol T m K G f kj/mol ** H f kj/mol ** 233 H fus kj/mol ** 244 H v kj/mol H vb kj/mol

16 Results: 1.2 Model performance statistics Performance of MG Method Based Property Prediction Models Property Exptl. data points Corr. Coeff. R 2 % of data points within ±5% error SD AAE ARE No. of parameters regressed LogKow ** 376 LogWs Logmg/L ** 370 F p K AiT K HSP-D MPa 1/ HSP-P MPa 1/ HSP-H MPa 1/ ST mn/m Visc mpa-s SolP MPa 1/ Omega V m cc/mol Total no. of parameters = 424 (first-order groups = 220, second-order groups = 130, third-order groups = 74) LogKow = Octanol/water partition coefficient, LogWs = Aq. solubility, F p = Flash point, AiT = Auto ignition temperature, HSP = Hansen solubility parameter, ST = Surface tension, Visc = Viscosity, SolP = Hildebrand solubility parameter, Omega = Acentric factor, V m = Liquid molar volume (298K); SD = Standard deviation, AAE = Average Absolute Error, ARE = Average Relative Error ** ARE is not reported ad these properties contain both +ve and ve experimental property values. - ARE is not reported as these properties contain very small experimental values 16

17 Results: 2. Model performance For most properties, the average prediction error is lower than (or comparable to) the average measurement error. Comparison of model prediction error with reported measurement error Property Data-points (DIPPR) Avg. measurement error * Data-points (This work) Avg. prediction error (with revised parameters) Normal boiling point K 1306 < Critical temperature K 402 < Critical pressure bar 293 < Critical volume cc/mol 234 < Normal melting point K 1385 < Gibbs free energy kj/mol 258 < Enthalpy of formation kj/mol 668 < Enthalpy of fusion kj/mol 520 < Flash point K 111 < * Reference: DIPPR 801 database 17

18 Results: 3.1 Reliability of property prediction models Plot of Tb and Tc for n-alkanes Plot of Tc/Tb for a large data-set For n-alkanes, the ratio Tc / Tb is greater than unity. For a wide range of components considered in the data-set, the ratio Tc /Tb was found greater than unity. 18

19 Results: 3.2 Reliability of property prediction models Plot of Tc/Pc for n-alkanes Plot of critical compressibility factor for n-alkanes Zc max = for components with Tc > 100 K The ratio Tc/Pc is important in many engineering calculations. This ratio is reliably predicted with a good accuracy. Z c = R T c / V c P c The predicted critical compressibility factor values of n-alkanes are consistent with the theoretical foundation. Reference: Poling et al., The properties of gases and liquids, McGraw Hill, New York,

20 Results: 4.1 Application example (Estimation of normal boiling point and the 95% confidence interval) Butanedioic acid, dipropyl ester Molecular structure CAS No: O O O O Molecular formula: C 10 H 18 O 4 First-order groups Occurrences Contribution CH CH CH 2 COO Second-order groups Occurrences Contribution OOC-CHm-CHm-COO (n, m in 1..2) Third-order groups Occurrences Contribution No third-order groups are involved pred T T ln b bo NiCi w M jdj z EkO k i j k K Absolute error = K K = 4.28 K Marrero and Gani (2001) method = K, Abs. Err. = K ; Constantinou and Gani (1994) method = K, Abs. Err. = K Joback and Reid (1987) method = K, Abs. Err. = K 20

21 Results: 4.2 Application example (Calculation of 95% confidence interval of predicted property value) Covariance matrix COV(P * ) with dimensions (5 5) for the groups listed T bo CH 3 CH 2 CH 2 COO OOC-CHm-CHm-COO (n, m in 1..2) T bo CH E E-05 CH E E-05 CH 2 COO E E OOC-CHm-CHm-COO (n, m in 1..2) E E E Local sensitivity J(P * ) with dimensions (5 5) of T b model δt b /δt b0 δt b /δch 3 δt b /δch 2 δt b /δch 2 COO δt b /δ OOC-CHm-CHm-COO (n, m in 1..2) The 95% confidence interval of predicted normal boiling point is calculated by, b pred pred T * * * , 2. b diag J COV J t dof P P P t T T K ± 4.79 K It can be observed that experimental value of the normal boiling point ( K) lies within predicted confidence interval indicating reliability of developed methodology. 21

22 Experimental values of Tb in K Experimental values of Tm in K Results: 4.3 Reliability of the developed methodology of property estimation and uncertainty analysis Experimental values together with calculated 95% confidence intervals Experimental values 95% confidence intervals Experimental values 95% confidence intervals Data-set of normal boiling point Data-set of normal metling point The most of the experimental values falls within calculated 95% confidence intervals. This analysis supports linear error propagation method for quantifying model prediction error. 22

23 Results: 4.3 Reliability of the developed methodology of property estimation and uncertainty analysis Comparison of the performance of Marrero and Gani (2001) method and this work (2012) 23

24 Results: 5.1 Implementation in ICAS The developed methodology was implemented in ProPred - a property estimation toolbox of ICAS (Integrated Computer Aided System) software developed by CAPEC. ProPred (Component Property Prediction Toolbox) 24

25 Results: 5.2 ProPred Property display area (method of estimation-wise) Tools available for drawing a molecular structure Drawing area to draw structure of a molecule Alternatively, molecule s structure can be drawn by importing SMILES. Step 1 Step 2 25

26 Results: 5.3 Illustrative example Component: Butanedioic acid, dipropyl ester, CAS No Step-wise method Simultanous method Molecular structure First order groups Second order groups Third order groups 26

27 Conclusions A systematic methodology for property modeling and uncertainty analysis is developed to provide more reliable predictions together with an estimate of uncertainties which is much needed information to obtain reliable product/process design. The application range, and prediction capability of earlier version of models is improved by utilizing extended CAPEC database. In addition, a new approach based on the simultanous regression is developed. The reliability of developed methodology has been tested by comparing model prediction uncertainties with the reported range of measurement uncertainties. For most properties, experimental values of properties were found within the calculated 95% confidence intervals. Motivated by these results, our current and future work is focused on 1) extension of the methodology to other important pure component properties (for eg. environmentrelated properties such as LC50, LD50 etc.) 2) sensitivity analysis of product/process design to uncertainties in property estimates. 27

28 Acknowledgments Project Supervisors: Bent Sarup, Jens Abildskov, Gürkan Sin, and Rafiqul Gani CAPEC, DTU and Alfa Laval Copenhagen A/S MULTIMOD ITN Network (project under the FP7 Programme) 28

29 Development of Property Models with Uncertainty Estimate for Reliable Product-Process design Amol Hukkerikar a, Bent Sarup b, Jens Abildskov a, Gürkan Sin a, and Rafiqul Gani a a CAPEC, Department of Chemical Engineering, Technical University of Denmark, Lyngby, Denmark. b Vegetable Oil Technology Business Unit, Alfa Laval Copenhagen A/S, Søborg, Denmark. Thank You For Your Attention Questions????

30 Effect of quantity of experimental data on the model performance Large quantity of experimental data helps to achieve improved quality parameter estimation and improved property predictions. Large quantity of experimental data helps to estimate maximum number of model parameters (group-contributions) Table 5. Effect of quantity of experimental data on quality of parameter estimation Distribution of experimental data SD in kj/mol AAE in kj/mol No. of model parameters estimated a 50% for training purpose % for training purpose % for training purpose All data-points for training purpose a The total no. of model parameters (first-order, second-order and third-order group contributions) is 424. * Reference: A. Hukkerikar et al., Fluid Phase Equilibria, (2012), doi: /j.fluid

Systematic optimization-based integrated chemical product-process design framework

Systematic optimization-based integrated chemical product-process design framework Systematic optimization-based integrated chemical product-process design framework Stefano Cignitti*, Seyed Soheil Mansouri, John M. Woodley, Jens Abildskov Process and Systems Engineering Centre (PROSYS),

More information

Title: Generic Mathematical Programming Formulation and Solution for Computer-Aided Molecular Design. Computers and Chemical Engineering

Title: Generic Mathematical Programming Formulation and Solution for Computer-Aided Molecular Design. Computers and Chemical Engineering Title: Generic Mathematical Programming Formulation and Solution for Computer-Aided Molecular Design Author: Lei Zhang Stefano Cignitti Rafiqul Gani PII: S0098-354(5)0023-4 DOI: http://dx.doi.org/doi:0.06/j.compchemeng.205.04.022

More information

Group-contribution based estimation of pure component properties

Group-contribution based estimation of pure component properties Fluid Phase Equilibria 183 184 (2001) 183 208 Group-contribution based estimation of pure component properties Jorge Marrero a, Rafiqul Gani b, a Center of Pharmaceutical Chemistry, P.O. Box 16042, Havana,

More information

THE PROPERTIES OF GASES AND LIQUIDS

THE PROPERTIES OF GASES AND LIQUIDS THE PROPERTIES OF GASES AND LIQUIDS Bruce E. Poling University of Toledo John M. Prausnitz University of California at Berkeley John P. O'Connell University of Virginia Fifth Edition McGRAW-HILL New York

More information

Optimal (Solvent) Mixture Design through a Decomposition Based CAMD methodology

Optimal (Solvent) Mixture Design through a Decomposition Based CAMD methodology European Symposium on Computer-Aided Process Engineering- 14 A. Barbosa-P6voa and H. Matos (Editors) 9 2004 Elsevier B.V. All rights reserved. 217 Optimal (Solvent) Mixture Design through a Decomposition

More information

DIPPR (Design Institute for Physical Property Data) Physical Properties Database Revised January 2007

DIPPR (Design Institute for Physical Property Data) Physical Properties Database Revised January 2007 DIPPR (Design Institute for Physical Property Data) Physical Properties Database Revised January 007 This database contains 33 fixed-value properties and 15 temperature-dependent properties of approximately

More information

Simultaneous polymer property modeling using Grid technology for structured products

Simultaneous polymer property modeling using Grid technology for structured products 17 th European Symposium on Computer Aided Process Engineering ESCAPE17 V. Plesu and P.S. Agachi (Editors) 2007 Elsevier B.V. All rights reserved. 1 Simultaneous polymer property modeling using Grid technology

More information

The Solvent Selection framework: solvents for organic synthesis, separation processes and ionic-organic synthesis

The Solvent Selection framework: solvents for organic synthesis, separation processes and ionic-organic synthesis Downloaded from orbit.dtu.dk on: Apr 30, 2018 The Solvent Selection framework: solvents for organic synthesis, separation processes and ionic-organic synthesis Mitrofanov, Igor; Sansonetti, Sascha; Abildskov,

More information

Group-Contribution Estimation of the Critical Properties of Hydrocarbons

Group-Contribution Estimation of the Critical Properties of Hydrocarbons Oil & Gas Science and Technology Rev. IFP, Vol. 62 (2007), No. 3, pp. 391-398 Copyright 2007, Institut français du pétrole DOI: 10.2516/ogst:2007031 Group-Contribution Estimation of the Critical Properties

More information

A new estimation algorithm of physical properties based on a group contribution and support vector machine

A new estimation algorithm of physical properties based on a group contribution and support vector machine Korean J. Chem. Eng., 25(3), 568-574 (2008) SHORT COMMUICATIO A new estimation algorithm of physical properties based on a group contribution and support vector machine Chang Jun Lee, Gibaek Lee, Won So

More information

Estimation of Vapour Pressures of Organic Liquids using Group Contributions and Group Interactions

Estimation of Vapour Pressures of Organic Liquids using Group Contributions and Group Interactions Estimation of Vapour Pressures of Organic Liquids using Group Contributions and Group Interactions B. Moller*, J. Rarey**, D. Ramjugernath* * University of Kwazulu-Natal, Durban 4041, South Africa ** Technische

More information

Thermophysical Properties of Ethane from Cubic Equations of State

Thermophysical Properties of Ethane from Cubic Equations of State Thermophysical Properties of Ethane from Cubic Equations of State MIHAELA NOUR, DANIELA DUNA, MIRELA IONITA, VIOREL FEROIU *, DAN GEANA Politehnica University Bucharest, Department of Inorganic Chemistry,

More information

Nor Alafiza Yunus, Zainuddin Abd. Manan, Haslenda Hashim and Rafiqul Gani. BY: NOR ALAFIZA YUNUS 5th PSE ASIA, July 25-28, 2010 Singapore

Nor Alafiza Yunus, Zainuddin Abd. Manan, Haslenda Hashim and Rafiqul Gani. BY: NOR ALAFIZA YUNUS 5th PSE ASIA, July 25-28, 2010 Singapore Nor Alafiza Yunus, Zainuddin Abd. Manan, Haslenda Hashim and Rafiqul Gani BY: NOR ALAFIZA YUNUS 1 Outline Introduction Motivation Objective Methodology Results Future work 2/21 Introduction Chemical Product

More information

Fluid data consistency testing incorporation into the ThermoDataEngine

Fluid data consistency testing incorporation into the ThermoDataEngine Fluid data consistency testing incorporation into the ThermoEngine Vladimir Diky 2, John O'Connell 1 *, Jens Abildskov 3, Kenneth Kroenlein 2, Michael Frenkel 2 1 Professor Emeritus, University of Virginia,

More information

Chapter 19 Chemical Thermodynamics

Chapter 19 Chemical Thermodynamics Chapter 19. Chemical Thermodynamics Sample Exercise 19.2 (p. 819) Elemental mercury is a silver liquid at room temperature. Its normal freezing point is -38.9 o C, and its molar enthalpy of fusion is H

More information

For an incompressible β and k = 0, Equations (6.28) and (6.29) become:

For an incompressible β and k = 0, Equations (6.28) and (6.29) become: Internal Energy and Entropy as Functions of T and V These are general equations relating the internal energy and entropy of homogeneous fluids of constant composition to temperature and volume. Equation

More information

CHM 1046 FINAL REVIEW

CHM 1046 FINAL REVIEW CHM 1046 FINAL REVIEW Prepared & Presented By: Marian Ayoub PART I Chapter Description 6 Thermochemistry 11 States of Matter; Liquids and Solids 12 Solutions 13 Rates of Reactions 18 Thermodynamics and

More information

CALCULATION OF THE COMPRESSIBILITY FACTOR AND FUGACITY IN OIL-GAS SYSTEMS USING CUBIC EQUATIONS OF STATE

CALCULATION OF THE COMPRESSIBILITY FACTOR AND FUGACITY IN OIL-GAS SYSTEMS USING CUBIC EQUATIONS OF STATE CALCULATION OF THE COMPRESSIBILITY FACTOR AND FUGACITY IN OIL-GAS SYSTEMS USING CUBIC EQUATIONS OF STATE V. P. de MATOS MARTINS 1, A. M. BARBOSA NETO 1, A. C. BANNWART 1 1 University of Campinas, Mechanical

More information

Lecture 7 Enthalpy. NC State University

Lecture 7 Enthalpy. NC State University Chemistry 431 Lecture 7 Enthalpy NC State University Motivation The enthalpy change ΔH is the change in energy at constant pressure. When a change takes place in a system that is open to the atmosphere,

More information

Exam 3 Solutions. ClO g. At 200 K and a total pressure of 1.0 bar, the partial pressure ratio for the chlorine-containing compounds is p ClO2

Exam 3 Solutions. ClO g. At 200 K and a total pressure of 1.0 bar, the partial pressure ratio for the chlorine-containing compounds is p ClO2 Chemistry 360 Dr. Jean M. Standard Fall 2016 Name KEY Exam 3 Solutions 1.) (14 points) Consider the gas phase decomposition of chlorine dioxide, ClO 2, ClO 2 ( g) ClO ( g) + O ( g). At 200 K and a total

More information

A FRAMEWORK FOR SOLVENT SELECTION BASED ON HERBAL EXTRACTION PROCESS DESIGN

A FRAMEWORK FOR SOLVENT SELECTION BASED ON HERBAL EXTRACTION PROCESS DESIGN Journal of Engineering Science and Technology Special Issue on SOMCHE 2014 & RSCE 2014 Conference, January (2015) 25-34 School of Engineering, Taylor s University A FRAMEWORK FOR SOLVENT SELECTION BASED

More information

Entropy, Free Energy, and Equilibrium

Entropy, Free Energy, and Equilibrium Entropy, Free Energy, and Equilibrium Chapter 17 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 1 Spontaneous Physical and Chemical Processes A waterfall runs

More information

Thermodynamics I. Properties of Pure Substances

Thermodynamics I. Properties of Pure Substances Thermodynamics I Properties of Pure Substances Dr.-Eng. Zayed Al-Hamamre 1 Content Pure substance Phases of a pure substance Phase-change processes of pure substances o Compressed liquid, Saturated liquid,

More information

Computer-Aided Design and Simulation of Working Fluid Pairs for Absorption Refrigerators

Computer-Aided Design and Simulation of Working Fluid Pairs for Absorption Refrigerators International Journal of Scientific & Engineering Research, Volume 4, Issue 4, April-2013 1306 Computer-Aided Design and Simulation of Working Fluid Pairs for Absorption Refrigerators Eman Abdel-Hakim

More information

7/19/2011. Models of Solution. State of Equilibrium. State of Equilibrium Chemical Reaction

7/19/2011. Models of Solution. State of Equilibrium. State of Equilibrium Chemical Reaction Models of Solution Chemistry- I State of Equilibrium A covered cup of coffee will not be colder than or warmer than the room temperature Heat is defined as a form of energy that flows from a high temperature

More information

Index to Tables in SI Units

Index to Tables in SI Units Index to Tables in SI Units Table A-1 Atomic or Molecular Weights and Critical Properties of Selected Elements and Compounds 926 Table A-2 Properties of Saturated Water (Liquid Vapor): Temperature Table

More information

Chapter Eighteen. Thermodynamics

Chapter Eighteen. Thermodynamics Chapter Eighteen Thermodynamics 1 Thermodynamics Study of energy changes during observed processes Purpose: To predict spontaneity of a process Spontaneity: Will process go without assistance? Depends

More information

A covalent bond is a shared pair of electrons between atoms of two non-metal elements.

A covalent bond is a shared pair of electrons between atoms of two non-metal elements. Bonding, Structure and properties Atoms can be held together by chemical bonds. When atoms form bonds, they can achieve a stable electron arrangement (full outer electron shell). To achieve a stable electron

More information

Chemistry 192 Problem Set 7 Spring, 2018

Chemistry 192 Problem Set 7 Spring, 2018 Chemistry 192 Problem Set 7 Spring, 2018 1. Use Table D2 to calculate the standard enthalpy change for the combustion of liquid benzene (C 6 H 6 ) in pure oxygen gas to produce gas phase carbon dioxide

More information

An extension of the group contribution method for estimating thermodynamic and transport properties. Part IV. Noble gas mixtures with polyatomic gases

An extension of the group contribution method for estimating thermodynamic and transport properties. Part IV. Noble gas mixtures with polyatomic gases Korean J. Chem. Eng., 23(3), 447-454 (2006) SHORT COMMUNICATION An extension of the group contribution method for estimating thermodynamic and transport properties. Part IV. Noble gas mixtures with polyatomic

More information

PRACTICAL DATA CORRELATION OF FLASHPOINTS OF BINARY MIXTURES BY A RECIPROCAL FUNCTION: THE CONCEPT AND NUMERICAL EXAMPLES

PRACTICAL DATA CORRELATION OF FLASHPOINTS OF BINARY MIXTURES BY A RECIPROCAL FUNCTION: THE CONCEPT AND NUMERICAL EXAMPLES HERMAL SCIENCE, Year 0, Vol. 5, No. 3, pp. 905-90 905 Open forum PRACICAL DAA CORRELAION OF FLASHPOINS OF BINARY MIXURES BY A RECIPROCAL FUNCION: HE CONCEP AND NUMERICAL EXAMPLES by Mariana HRISOVA a,

More information

Thermodynamic Properties of Refrigerant R116 from Cubic Equations of State

Thermodynamic Properties of Refrigerant R116 from Cubic Equations of State Thermodynamic Properties of Refrigerant R116 from Cubic Equations of State DANIELA DUNA, MIRELA IONITA, VIOREL FEROIU *, DAN GEANA Politehnica University Bucharest, Department of Applied Physical Chemistry

More information

Lecture 26: Liquids 1: phase changes & heat capacity

Lecture 26: Liquids 1: phase changes & heat capacity Lecture 26: Liquids 1: phase changes & heat capacity Read: BLB 5.5; 11.4 HW: BLB 5:48,49,51; 11:33,37,39 Know: viscosity, surface tension cohesive & adhesive forces phase changes heat capacity calorimetry

More information

Since the coefficients are only determined up to a multiplicative constant, set c 1 1 and solve for the coefficients: c 1 1 c c 3 1

Since the coefficients are only determined up to a multiplicative constant, set c 1 1 and solve for the coefficients: c 1 1 c c 3 1 In[1]:= dipole moment of S4 Input interpretation: sulfur tetrafluoride dipole moment Result:.632 D (debyes) Unit conversions: 2.18 1-18 pc m (picocoulomb meters) 2.18 1-21 nc m (nanocoulomb meters) 2.18

More information

Calculating Fugacities in OLI Studio

Calculating Fugacities in OLI Studio Calculating Fugacities in OLI Studio If you are working at high pressures where only a water (aqueous) and hydrocarbon (second liquid) phase are present, you can still culate fugacities using values generated

More information

INTEGRATION OF DESIGN AND CONTROL FOR ENERGY INTEGRATED DISTILLATION

INTEGRATION OF DESIGN AND CONTROL FOR ENERGY INTEGRATED DISTILLATION INTEGRATION OF DESIGN AND CONTROL FOR ENERGY INTEGRATED DISTILLATION Hongwen Li, Rafiqul Gani, Sten Bay Jørgensen CAPEC, Department of Chemical Engineering Technical University of Denmark, Lyngby, Denmark

More information

: : Use simple structure and bonding models to account for the following. The bond lengths in CO 3

: : Use simple structure and bonding models to account for the following. The bond lengths in CO 3 Chem 55 Problem Set #2 Spring 200 Name TA Name Lab Section # ALL work must be shown to receive full credit. Due at the beginning of lecture on Friday, February 2, 200. PS2.. Draw two resonance structures

More information

DETERMINATION OF OPTIMAL ENERGY EFFICIENT SEPARATION SCHEMES BASED ON DRIVING FORCES

DETERMINATION OF OPTIMAL ENERGY EFFICIENT SEPARATION SCHEMES BASED ON DRIVING FORCES DETERMINATION OF OPTIMAL ENERGY EFFICIENT SEPARATION SCHEMES BASED ON DRIVING FORCES Abstract Erik Bek-Pedersen, Rafiqul Gani CAPEC, Department of Chemical Engineering, Technical University of Denmark,

More information

Aspen Dr. Ziad Abuelrub

Aspen Dr. Ziad Abuelrub Aspen Plus Lab Pharmaceutical Plant Design Aspen Dr. Ziad Abuelrub OUTLINE 1. Introduction 2. Getting Started 3. Thermodynamic Models & Physical Properties 4. Pressure Changers 5. Heat Exchangers 6. Flowsheet

More information

2.26 Intermolecular Forces

2.26 Intermolecular Forces 2.26 Intermolecular Forces Intermolecular forces are the relatively weak forces that exist between molecules. These govern the physical properties such as boiling point, melting point, solubility in solvents

More information

Uncertainty Analysis of the Experimental Results of Air Conditioner Performance due to the Uncertainty of the Equation of State

Uncertainty Analysis of the Experimental Results of Air Conditioner Performance due to the Uncertainty of the Equation of State Purdue University Purdue e-pubs International Refrigeration and Air Conditioning Conference School of Mechanical Engineering July 018 Uncertainty Analysis of the Experimental Results of Air Conditioner

More information

17.4 Calculating Heats Essential Understanding Heats of reaction can be calculated when it is difficult or

17.4 Calculating Heats Essential Understanding Heats of reaction can be calculated when it is difficult or 17.4 Calculating Heats of Reaction Essential Understanding Heats of reaction can be calculated when it is difficult or impossible to measure them directly. Lesson Summary Hess s Law Hess s law provides

More information

Identify the bonding types molecular, covalent network, ionic, and metallic - in various solids (11.8)

Identify the bonding types molecular, covalent network, ionic, and metallic - in various solids (11.8) Intermolecular Forces, Liquids, and Solids (Chapter 11) Very brief review of Lewis structures and molecular geometry Draw Lewis structures for and determine polarity of molecules through sp 3 8.45 8.64,

More information

ChBE BIBLE. Robert A. Pinnick. 28 April 2006

ChBE BIBLE. Robert A. Pinnick. 28 April 2006 ChBE BIBLE Robert A. Pinnick 28 April 2006 Contents 1 Thermodynamics 2 1.1 Equations of State....................................... 2 1.1.1 Ideal Gas Law..................................... 3 1.1.2 Cubic

More information

Gaussian Processes: We demand rigorously defined areas of uncertainty and doubt

Gaussian Processes: We demand rigorously defined areas of uncertainty and doubt Gaussian Processes: We demand rigorously defined areas of uncertainty and doubt ACS Spring National Meeting. COMP, March 16 th 2016 Matthew Segall, Peter Hunt, Ed Champness matt.segall@optibrium.com Optibrium,

More information

Estimation of Critical Temperature, Critical Pressure, and Normal Boiling Point of Alkanes and Alkenes

Estimation of Critical Temperature, Critical Pressure, and Normal Boiling Point of Alkanes and Alkenes Estimation of Critical Temperature, Critical Pressure, and Normal Boiling Point of Alkanes and Alkenes (Received July 10, 1989) A simple and accurate method was developed, based exclusively on molecular

More information

Remember Chapter 12.1 Introduction to Kinetic Molecular Theory and Intermolecular forces

Remember Chapter 12.1 Introduction to Kinetic Molecular Theory and Intermolecular forces Remember Chapter 12.1 Introduction to Kinetic Molecular Theory and Intermolecular forces 1 To understand properties, we want to connect what we see to what is happening on a molecular level. Start with

More information

Chapter 3 PROPERTIES OF PURE SUBSTANCES

Chapter 3 PROPERTIES OF PURE SUBSTANCES Thermodynamics: An Engineering Approach Seventh Edition Yunus A. Cengel, Michael A. Boles McGraw-Hill, 2011 Chapter 3 PROPERTIES OF PURE SUBSTANCES Copyright The McGraw-Hill Companies, Inc. Permission

More information

SUPeR Chemistry CH 222 Practice Exam

SUPeR Chemistry CH 222 Practice Exam SUPeR Chemistry CH 222 Practice Exam This exam has been designed to help you practice working multiple choice problems over the material that will be covered on the first CH 222 midterm. The actual exams

More information

CHEMISTRY - CLUTCH CH CHEMICAL THERMODYNAMICS.

CHEMISTRY - CLUTCH CH CHEMICAL THERMODYNAMICS. !! www.clutchprep.com CONCEPT: THERMOCHEMICAL PROCESSES is the branch of physical science concerned with heat and its transformations to and from other forms of energy. In terms of a chemical reaction,

More information

CHEMISTRY Topic #2: Thermochemistry and Electrochemistry What Makes Reactions Go? Fall 2018 Dr. Susan Findlay See Exercises in Topic 8

CHEMISTRY Topic #2: Thermochemistry and Electrochemistry What Makes Reactions Go? Fall 2018 Dr. Susan Findlay See Exercises in Topic 8 CHEMISTRY 2000 Topic #2: Thermochemistry and Electrochemistry What Makes Reactions Go? Fall 208 Dr. Susan Findlay See Exercises in Topic 8 Vapour Pressure of Pure Substances When you leave wet dishes on

More information

Honors Unit 9: Liquids and Solids

Honors Unit 9: Liquids and Solids Name: Honors Unit 9: Liquids and Solids Objectives: 1. Students will be able to describe particles in the solid, liquid, and gas phases, and to explain what happens during phase transitions in terms of

More information

Chapter 3 PROPERTIES OF PURE SUBSTANCES. Thermodynamics: An Engineering Approach, 6 th Edition Yunus A. Cengel, Michael A. Boles McGraw-Hill, 2008

Chapter 3 PROPERTIES OF PURE SUBSTANCES. Thermodynamics: An Engineering Approach, 6 th Edition Yunus A. Cengel, Michael A. Boles McGraw-Hill, 2008 Chapter 3 PROPERTIES OF PURE SUBSTANCES Thermodynamics: An Engineering Approach, 6 th Edition Yunus A. Cengel, Michael A. Boles McGraw-Hill, 2008 Objectives Introduce the concept of a pure substance. Discuss

More information

MODELING OF PHASE EQUILIBRIA FOR BINARY AND TERNARY MIXTURES OF CARBON DIOXIDE, HYDROGEN AND METHANOL

MODELING OF PHASE EQUILIBRIA FOR BINARY AND TERNARY MIXTURES OF CARBON DIOXIDE, HYDROGEN AND METHANOL MODELING OF PHASE EQUILIBRIA FOR BINARY AND TERNARY MIXTURES OF CARBON DIOXIDE, HYDROGEN AND METHANOL Neil R. Foster *, Keivan Bezanehtak, Fariba Dehghani School of Chemical Engineering and Industrial

More information

Chem 112 Dr. Kevin Moore

Chem 112 Dr. Kevin Moore Chem 112 Dr. Kevin Moore Gas Liquid Solid Polar Covalent Bond Partial Separation of Charge Electronegativity: H 2.1 Cl 3.0 H Cl δ + δ - Dipole Moment measure of the net polarity in a molecule Q Q magnitude

More information

AGK s Fall 2006 Chem 111 Exam 2 Review Sheet

AGK s Fall 2006 Chem 111 Exam 2 Review Sheet AGK s Fall 2006 Chem 111 Exam 2 Review Sheet *NOTE: This list is fairly comprehensive but designed only as a study aid. You are responsible for all material covered in class and in assigned readings. While

More information

PX-III Chem 1411 Chaps 11 & 12 Ebbing

PX-III Chem 1411 Chaps 11 & 12 Ebbing PX-III Chem 1411 Chaps 11 & 12 Ebbing 1. What is the name for the following phase change? I 2 (s) I 2 (g) A) melting B) condensation C) sublimation D) freezing E) vaporization 2. Which of the following

More information

CORRELATING SOLUBILITY VALUES OF BLACK PEPPER OIL IN SUPERCRITICAL CO 2 USING EMPIRICAL MODELS

CORRELATING SOLUBILITY VALUES OF BLACK PEPPER OIL IN SUPERCRITICAL CO 2 USING EMPIRICAL MODELS CORRELATING SOLUBILITY VALUES OF BLACK PEPPER OIL IN SUPERCRITICAL CO 2 USING EMPIRICAL MODELS SILVA, D. C. M. N. 1, FERREIRA, S.R.S. 1,*, MEIRELES, M.A.A. 2 1 LATESC/EQA/CTC UFSC, CP 476-88040-900, Florianópolis,

More information

A QSPR STUDY OF NORMAL BOILING POINT OF ORGANIC COMPOUNDS (ALIPHATIC ALKANES) USING MOLECULAR DESCRIPTORS. B. Souyei * and M.

A QSPR STUDY OF NORMAL BOILING POINT OF ORGANIC COMPOUNDS (ALIPHATIC ALKANES) USING MOLECULAR DESCRIPTORS. B. Souyei * and M. Journal of Fundamental and Applied Sciences ISSN 1112-987 Available online at http://www.jfas.info A QSPR STUDY OF NORMAL BOILING POINT OF ORGANIC COMPOUNDS (ALIPHATIC ALKANES) USING MOLECULAR DESCRIPTORS

More information

Ch 10 Chemical Bonding, Lewis Structures for Ionic & Covalent Compounds, and Predicting Shapes of Molecules

Ch 10 Chemical Bonding, Lewis Structures for Ionic & Covalent Compounds, and Predicting Shapes of Molecules Fructose Water Ch 10 Chemical Bonding, Lewis Structures for Ionic & Covalent Compounds, and Predicting Shapes of Molecules Carbon Dioxide Ammonia Title and Highlight TN Ch 10.1 Topic: EQ: Right Side NOTES

More information

Introduction to Chemical Thermodynamics. (10 Lectures) Michaelmas Term

Introduction to Chemical Thermodynamics. (10 Lectures) Michaelmas Term Introduction to Chemical Thermodynamics Dr. D. E. Manolopoulos First Year (0 Lectures) Michaelmas Term Lecture Synopsis. Introduction & Background. Le Chatelier s Principle. Equations of state. Systems

More information

Chapter 3 PROPERTIES OF PURE SUBSTANCES

Chapter 3 PROPERTIES OF PURE SUBSTANCES Thermodynamics: An Engineering Approach Seventh Edition in SI Units Yunus A. Cengel, Michael A. Boles McGraw-Hill, 2011 Chapter 3 PROPERTIES OF PURE SUBSTANCES Copyright The McGraw-Hill Companies, Inc.

More information

Cooling Temperatures of Binary Mixed Refrigerants: Vapor-Liquid-Liquid Equilibrium versus Vapor-Liquid Equilibrium

Cooling Temperatures of Binary Mixed Refrigerants: Vapor-Liquid-Liquid Equilibrium versus Vapor-Liquid Equilibrium 1 Cooling Temperatures of Binary Mixed Refrigerants: Vapor-Liquid-Liquid Equilibrium versus Vapor-Liquid Equilibrium N. Tzabar, H.J.M. ter Brake Energy Materials and Systems Faculty of Science and Technology

More information

Chapter 11 part 2. Properties of Liquids Viscosity Surface Tension Capillary Action. Phase Changes (energy of phase changes)

Chapter 11 part 2. Properties of Liquids Viscosity Surface Tension Capillary Action. Phase Changes (energy of phase changes) Chapter 11 part 2 Properties of Liquids Viscosity Surface Tension Capillary Action Phase Changes (energy of phase changes) Dynamic Equilibrium Vapor pressure Phase diagram 1 Structure Affects Function

More information

AP Chemistry Common Ion Effect; 16.6 ionization constants, will. Equilibria with Weak Acids and and the preparation of buffer

AP Chemistry Common Ion Effect; 16.6 ionization constants, will. Equilibria with Weak Acids and and the preparation of buffer Instructional Unit Acid-Base Equibria 16.1 Acid-Ionizaation Equilibria; Students will perform Students will distinguish Oral response, written 3.1.12C, 16.2 Polyprotic Acids; 16.3 Base- calculations involving

More information

Chapter 11 part 2: Properties of Liquids

Chapter 11 part 2: Properties of Liquids Chapter 11 part 2: Properties of Liquids Read: BLB 5.5; 11.4 HW: BLB 5:48, 49, 51; 11:33, 37, 39 Supplemental 11:5-10 Know: viscosity, surface tension cohesive & adhesive forces phase changes heat capacity

More information

Le Châtelier's Principle. Chemical Equilibria & the Application of Le Châtelier s Principle to General Equilibria. Using Le Châtelier's Principle

Le Châtelier's Principle. Chemical Equilibria & the Application of Le Châtelier s Principle to General Equilibria. Using Le Châtelier's Principle Chemical Equilibria & the Application of Le Châtelier s Principle to General Equilibria CHEM 107 T. Hughbanks Le Châtelier's Principle When a change is imposed on a system at equilibrium, the system will

More information

Free-energy change ( G) and entropy change ( S)

Free-energy change ( G) and entropy change ( S) Free-energy change ( G) and entropy change ( S) A SPONTANEOUS PROCESS (e.g. diffusion) will proceed on its own without any external influence. A problem with H A reaction that is exothermic will result

More information

Introduction to Chemical Thermodynamics. D. E. Manolopoulos First Year (13 Lectures) Michaelmas Term

Introduction to Chemical Thermodynamics. D. E. Manolopoulos First Year (13 Lectures) Michaelmas Term Introduction to Chemical Thermodynamics D. E. Manolopoulos First Year (13 Lectures) Michaelmas Term Lecture Synopsis 1. Introduction & Background. Le Chatelier s Principle. Equations of state. Systems

More information

2.2.2 Bonding and Structure

2.2.2 Bonding and Structure 2.2.2 Bonding and Structure Ionic Bonding Definition: Ionic bonding is the electrostatic force of attraction between oppositely charged ions formed by electron transfer. Metal atoms lose electrons to form

More information

of its physical and chemical properties.

of its physical and chemical properties. 8.4 Molecular Shapes VSEPR Model The shape of a molecule determines many of its physical and chemical properties. Molecular l geometry (shape) can be determined with the Valence Shell Electron Pair Repulsion

More information

Ch. 11: Liquids and Intermolecular Forces

Ch. 11: Liquids and Intermolecular Forces Ch. 11: Liquids and Intermolecular Forces Learning goals and key skills: Identify the intermolecular attractive interactions (dispersion, dipole-dipole, hydrogen bonding, ion-dipole) that exist between

More information

Lecture 6. NONELECTROLYTE SOLUTONS

Lecture 6. NONELECTROLYTE SOLUTONS Lecture 6. NONELECTROLYTE SOLUTONS NONELECTROLYTE SOLUTIONS SOLUTIONS single phase homogeneous mixture of two or more components NONELECTROLYTES do not contain ionic species. CONCENTRATION UNITS percent

More information

Phase Diagrams. NC State University

Phase Diagrams. NC State University Chemistry 433 Lecture 18 Phase Diagrams NC State University Definition of a phase diagram A phase diagram is a representation of the states of matter, solid, liquid, or gas as a function of temperature

More information

2. Match each liquid to its surface tension (in millinewtons per meter, mn*m -1, at 20 C).

2. Match each liquid to its surface tension (in millinewtons per meter, mn*m -1, at 20 C). 1. Using your knowledge of the types of intermolecular forces present in CO 2, CH 3 CN, Ne, and CH 4 gases, assign each gas to its van der Waals a parameter. a ( ) 17.58 3.392 2.253 0.2107 gas 2. Match

More information

Fundamentals of Distribution Separations (III)

Fundamentals of Distribution Separations (III) Fundamentals of Distribution Separations (III) (01/16/15) K = exp -Δμ 0 ext i - Δμ i RT distribution coefficient C i = exp -Δμ 0 RT - - Δμ i = ΔH i TΔS i 0 0 0 solubility q A---B A + B 0 0 0 ΔH i = ΔH

More information

2.26 Intermolecular Forces

2.26 Intermolecular Forces 2.26 Intermolecular Forces Intermolecular forces are the relatively weak forces that exist between molecules. These govern the physical properties such as boiling point, melting point, solubility in solvents

More information

Heating and Cooling Curves

Heating and Cooling Curves Heating and Cooling Curves $ Under normal circumstances, particles will undergo more than one type of change when heated or cooled $ During a phase change, the temperature will not change $ Parts of the

More information

Chapter 11 part 2: Properties of Liquids

Chapter 11 part 2: Properties of Liquids Chapter 11 part 2: Properties of Liquids Read: BLB 5.5; 11.4 HW: BLB 5:48, 49, 51; 11:33, 37, 39 Packet 11:5-10 Know: viscosity, surface tension cohesive & adhesive forces phase changes heat capacity calorimetry

More information

Screening for solvents in Extractive Distillation considering Quantitative Risk Analysis

Screening for solvents in Extractive Distillation considering Quantitative Risk Analysis Screening for solvents in Extractive Distillation considering Quantitative Risk Analysis Nancy Medina-Herrera, Arturo Jiménez-Gutiérrez and Ignacio Grossmann. Department of Chemical Engineering, Instituto

More information

Generalized relation between surface tension and viscosity: a study on pure and mixed n-alkanes

Generalized relation between surface tension and viscosity: a study on pure and mixed n-alkanes Fluid Phase Equilibria 222 223 (2004) 161 168 Generalized relation between surface tension and viscosity: a study on pure and mixed n-alkanes A.J. Queimada a,b, I.M. Marrucho a, E.H. Stenby b, J.A.P. Coutinho

More information

A) sublimation. B) liquefaction. C) evaporation. D) condensation. E) freezing. 11. Below is a phase diagram for a substance.

A) sublimation. B) liquefaction. C) evaporation. D) condensation. E) freezing. 11. Below is a phase diagram for a substance. PX0411-1112 1. Which of the following statements concerning liquids is incorrect? A) The volume of a liquid changes very little with pressure. B) Liquids are relatively incompressible. C) Liquid molecules

More information

The Second Law of Thermodynamics (Chapter 4)

The Second Law of Thermodynamics (Chapter 4) The Second Law of Thermodynamics (Chapter 4) First Law: Energy of universe is constant: ΔE system = - ΔE surroundings Second Law: New variable, S, entropy. Changes in S, ΔS, tell us which processes made

More information

4. Based on the following thermochemical equation below, which statement is false? 2 NH 3 (g) N 2 (g) + 3 H 2 (g) H = kj

4. Based on the following thermochemical equation below, which statement is false? 2 NH 3 (g) N 2 (g) + 3 H 2 (g) H = kj CHEM 101 WINTER 09-10 EXAM 3 On the answer sheet (Scantron) write you name, student ID number, and recitation section number. Choose the best (most correct) answer for each question and enter it on your

More information

The Reaction module. Table of Contents

The Reaction module. Table of Contents Table of contents The module calculates the thermochemical properties of a species, a mixture of species or a chemical reaction. accesses only compound databases. assumes all gases are ideal and ignores

More information

c) Explain the observations in terms of the DYNAMIC NATURE of the equilibrium system.

c) Explain the observations in terms of the DYNAMIC NATURE of the equilibrium system. Chemical Equilibrium - Part A: 1. At 25 o C and 101.3 kpa one mole of hydrogen gas and one mol of chlorine gas are reacted in a stoppered reaction vessel. After a certain time, three gases are detected

More information

4. Which one of the following aqueous solutions will have the highest vapor pressure?

4. Which one of the following aqueous solutions will have the highest vapor pressure? Chemistry 12 Final Exam December 14, 2000 FRM A 1. For the following reaction at 1000 K, K p = 3.9 10 2. C(g) + 2 (g) What is the value of K c for this reaction? C 2 (g) A. 4.69 10 6 B. 5.79 10 6 C. 2.75

More information

MARLBORO CENTRAL SCHOOL DISTRICT-CURRICULUM MAP. Subject: AP Chemistry 2015/16

MARLBORO CENTRAL SCHOOL DISTRICT-CURRICULUM MAP. Subject: AP Chemistry 2015/16 MARLBORO CENTRAL SCHOOL DISTRICT-CURRICULUM MAP Subject: AP Chemistry 205/6 Title or Topics (Unit organizing idea) Concepts (understandings) Tasks (What students actually do) Major Assessments (Tests,

More information

5.4 Liquid Mixtures. G i. + n B. = n A. )+ n B. + RT ln x A. + RT ln x B. G = nrt ( x A. ln x A. Δ mix. + x B S = nr( x A

5.4 Liquid Mixtures. G i. + n B. = n A. )+ n B. + RT ln x A. + RT ln x B. G = nrt ( x A. ln x A. Δ mix. + x B S = nr( x A 5.4 Liquid Mixtures Key points 1. The Gibbs energy of mixing of two liquids to form an ideal solution is calculated in the same way as for two perfect gases 2. A regular solution is one in which the entropy

More information

Questions 1-2 Consider the atoms of the following elements. Assume that the atoms are in the ground state. a. S b. Ca c. Ga d. Sb e.

Questions 1-2 Consider the atoms of the following elements. Assume that the atoms are in the ground state. a. S b. Ca c. Ga d. Sb e. AP Chemistry Fall Semester Practice Exam 5 MULTIPLE CHOICE PORTION: Write the letter for the correct answer to the following questions on the provided answer sheet. Each multiple choice question is worth

More information

Chemistry 2000 Fall 2017 Test 2 Version B Solutions

Chemistry 2000 Fall 2017 Test 2 Version B Solutions Chemistry 2000 Fall 207 Test 2 Version B Solutions. Start with a balanced reaction: (a) liquid water: CH (g) + 2 O 2(g) CO 2(g) + 2 H 2 O r S = S (CO 2 ) + 2S (H 2 O, l) [S (CH ) + 2S (O 2 )] = 23.7 +

More information

CHM 2046 Final Exam Review: Chapters 11 18

CHM 2046 Final Exam Review: Chapters 11 18 Chapter 11 1. Which of the following has the lowest boiling point? a. NH 3 b. CH 3 Cl c. NaCl d. CO 2 e. CH 3 CH 2 CH 2 CH 2 CH 3 2. Which of the following has the lowest vapor pressure? a. CH 3 F b. CH

More information

COSMO-RS Theory. The Basics

COSMO-RS Theory. The Basics Theory The Basics From µ to properties Property µ 1 µ 2 activity coefficient vapor pressure Infinite dilution Gas phase Pure compound Pure bulk compound Partition coefficient Phase 1 Phase 2 Liquid-liquid

More information

Chapter 19. Spontaneous processes. Spontaneous processes. Spontaneous processes

Chapter 19. Spontaneous processes. Spontaneous processes. Spontaneous processes Spontaneous processes Chapter 19 Spontaneous Change: Entropy and Free Energy Dr. Peter Warburton peterw@mun.ca http://www.chem.mun.ca/zcourses/1051.php We have a general idea of what we consider spontaneous

More information

INTERNATIONAL ISLAMIC UNIVERSITY MALAYSIA COURSE OUTLINE

INTERNATIONAL ISLAMIC UNIVERSITY MALAYSIA COURSE OUTLINE INTERNATIONAL ISLAMIC UNIVERSITY MALAYSIA COURSE OUTLINE Kulliyyah Department Programme Centre for Foundation Studies Department of Chemistry Physical Science, Biological Science, Medicine, Pharmacy, Allied

More information

Bexp. The temperature validity range of this second equation is relatively small. () 8

Bexp. The temperature validity range of this second equation is relatively small. () 8 Chapter 3 From Components to Models 121 Another classic formulation for the second virial coefficient is given by (Ambrose [44, 45]): C BT ( ) = A+ Bexp (3.35) T The temperature validity range of this

More information

CHEM 172 EXAMINATION 2. February 12, Dr. Kimberly M. Broekemeier NAME: l = 2r l = 8 1/2 r l = (4/3 1/2 )r. h = 6.

CHEM 172 EXAMINATION 2. February 12, Dr. Kimberly M. Broekemeier NAME: l = 2r l = 8 1/2 r l = (4/3 1/2 )r. h = 6. EM 17 EXAMINATION February 1, 009 Dr. Kimberly M. Broekemeier NAME: P 1 1 P1 R T T1 ln = - ( - ) l = r l = 8 1/ r l = (4/3 1/ )r onstants: c = 3.00 X 10 8 m/s h = 6.63 X 10-34 J x s R = 0.0806 L x atm/mol

More information

Non-Newtonian fluids is the fluids in which shear stress is not directly proportional to deformation rate, such as toothpaste,

Non-Newtonian fluids is the fluids in which shear stress is not directly proportional to deformation rate, such as toothpaste, CHAPTER1: Basic Definitions, Zeroth, First, and Second Laws of Thermodynamics 1.1. Definitions What does thermodynamic mean? It is a Greeks word which means a motion of the heat. Water is a liquid substance

More information

Chem 1A, Fall 2015, Midterm Exam 3. Version A November 17, 2015 (Prof. Head-Gordon) 2. Student ID: TA:

Chem 1A, Fall 2015, Midterm Exam 3. Version A November 17, 2015 (Prof. Head-Gordon) 2. Student ID: TA: Chem 1A, Fall 2015, Midterm Exam 3. Version A November 17, 2015 (Prof. Head-Gordon) 2 Name: Student ID: TA: Contents: 6 pages A. Multiple choice (10 points) B. Thermochemistry and Equilibria (12 points)

More information

Liquids and Solids Chapter 10

Liquids and Solids Chapter 10 Liquids and Solids Chapter 10 Nov 15 9:56 AM Types of Solids Crystalline solids: Solids with highly regular arrangement of their components Amorphous solids: Solids with considerable disorder in their

More information